 b478491f26
			
		
	
	
	b478491f26
	
	
	
		
			
			The AM34 core is able to do cache snooping, and so can skip some of the cache flushing. Signed-off-by: David Howells <dhowells@redhat.com>
		
			
				
	
	
		
			656 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			656 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* MN10300 Kernel probes implementation
 | |
|  *
 | |
|  * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by Mark Salter (msalter@redhat.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public Licence as published by
 | |
|  * the Free Software Foundation; either version 2 of the Licence, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public Licence for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public Licence
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  */
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <asm/cacheflush.h>
 | |
| 
 | |
| struct kretprobe_blackpoint kretprobe_blacklist[] = { { NULL, NULL } };
 | |
| const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 | |
| 
 | |
| /* kprobe_status settings */
 | |
| #define KPROBE_HIT_ACTIVE	0x00000001
 | |
| #define KPROBE_HIT_SS		0x00000002
 | |
| 
 | |
| static struct kprobe *cur_kprobe;
 | |
| static unsigned long cur_kprobe_orig_pc;
 | |
| static unsigned long cur_kprobe_next_pc;
 | |
| static int cur_kprobe_ss_flags;
 | |
| static unsigned long kprobe_status;
 | |
| static kprobe_opcode_t cur_kprobe_ss_buf[MAX_INSN_SIZE + 2];
 | |
| static unsigned long cur_kprobe_bp_addr;
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| 
 | |
| 
 | |
| /* singlestep flag bits */
 | |
| #define SINGLESTEP_BRANCH 1
 | |
| #define SINGLESTEP_PCREL  2
 | |
| 
 | |
| #define READ_BYTE(p, valp) \
 | |
| 	do { *(u8 *)(valp) = *(u8 *)(p); } while (0)
 | |
| 
 | |
| #define READ_WORD16(p, valp)					\
 | |
| 	do {							\
 | |
| 		READ_BYTE((p), (valp));				\
 | |
| 		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
 | |
| 	} while (0)
 | |
| 
 | |
| #define READ_WORD32(p, valp)					\
 | |
| 	do {							\
 | |
| 		READ_BYTE((p), (valp));				\
 | |
| 		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
 | |
| 		READ_BYTE((u8 *)(p) + 2, (u8 *)(valp) + 2);	\
 | |
| 		READ_BYTE((u8 *)(p) + 3, (u8 *)(valp) + 3);	\
 | |
| 	} while (0)
 | |
| 
 | |
| 
 | |
| static const u8 mn10300_insn_sizes[256] =
 | |
| {
 | |
| 	/* 1  2  3  4  5  6  7  8  9  a  b  c  d  e  f */
 | |
| 	1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3,	/* 0 */
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
 | |
| 	2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
 | |
| 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
 | |
| 	1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
 | |
| 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
 | |
| 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
 | |
| 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
 | |
| 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
 | |
| 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
 | |
| 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
 | |
| 	0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1  /* f */
 | |
| };
 | |
| 
 | |
| #define LT (1 << 0)
 | |
| #define GT (1 << 1)
 | |
| #define GE (1 << 2)
 | |
| #define LE (1 << 3)
 | |
| #define CS (1 << 4)
 | |
| #define HI (1 << 5)
 | |
| #define CC (1 << 6)
 | |
| #define LS (1 << 7)
 | |
| #define EQ (1 << 8)
 | |
| #define NE (1 << 9)
 | |
| #define RA (1 << 10)
 | |
| #define VC (1 << 11)
 | |
| #define VS (1 << 12)
 | |
| #define NC (1 << 13)
 | |
| #define NS (1 << 14)
 | |
| 
 | |
| static const u16 cond_table[] = {
 | |
| 	/*  V  C  N  Z  */
 | |
| 	/*  0  0  0  0  */ (NE | NC | CC | VC | GE | GT | HI),
 | |
| 	/*  0  0  0  1  */ (EQ | NC | CC | VC | GE | LE | LS),
 | |
| 	/*  0  0  1  0  */ (NE | NS | CC | VC | LT | LE | HI),
 | |
| 	/*  0  0  1  1  */ (EQ | NS | CC | VC | LT | LE | LS),
 | |
| 	/*  0  1  0  0  */ (NE | NC | CS | VC | GE | GT | LS),
 | |
| 	/*  0  1  0  1  */ (EQ | NC | CS | VC | GE | LE | LS),
 | |
| 	/*  0  1  1  0  */ (NE | NS | CS | VC | LT | LE | LS),
 | |
| 	/*  0  1  1  1  */ (EQ | NS | CS | VC | LT | LE | LS),
 | |
| 	/*  1  0  0  0  */ (NE | NC | CC | VS | LT | LE | HI),
 | |
| 	/*  1  0  0  1  */ (EQ | NC | CC | VS | LT | LE | LS),
 | |
| 	/*  1  0  1  0  */ (NE | NS | CC | VS | GE | GT | HI),
 | |
| 	/*  1  0  1  1  */ (EQ | NS | CC | VS | GE | LE | LS),
 | |
| 	/*  1  1  0  0  */ (NE | NC | CS | VS | LT | LE | LS),
 | |
| 	/*  1  1  0  1  */ (EQ | NC | CS | VS | LT | LE | LS),
 | |
| 	/*  1  1  1  0  */ (NE | NS | CS | VS | GE | GT | LS),
 | |
| 	/*  1  1  1  1  */ (EQ | NS | CS | VS | GE | LE | LS),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Calculate what the PC will be after executing next instruction
 | |
|  */
 | |
| static unsigned find_nextpc(struct pt_regs *regs, int *flags)
 | |
| {
 | |
| 	unsigned size;
 | |
| 	s8  x8;
 | |
| 	s16 x16;
 | |
| 	s32 x32;
 | |
| 	u8 opc, *pc, *sp, *next;
 | |
| 
 | |
| 	next = 0;
 | |
| 	*flags = SINGLESTEP_PCREL;
 | |
| 
 | |
| 	pc = (u8 *) regs->pc;
 | |
| 	sp = (u8 *) (regs + 1);
 | |
| 	opc = *pc;
 | |
| 
 | |
| 	size = mn10300_insn_sizes[opc];
 | |
| 	if (size > 0) {
 | |
| 		next = pc + size;
 | |
| 	} else {
 | |
| 		switch (opc) {
 | |
| 			/* Bxx (d8,PC) */
 | |
| 		case 0xc0 ... 0xca:
 | |
| 			x8 = 2;
 | |
| 			if (cond_table[regs->epsw & 0xf] & (1 << (opc & 0xf)))
 | |
| 				x8 = (s8)pc[1];
 | |
| 			next = pc + x8;
 | |
| 			*flags |= SINGLESTEP_BRANCH;
 | |
| 			break;
 | |
| 
 | |
| 			/* JMP (d16,PC) or CALL (d16,PC) */
 | |
| 		case 0xcc:
 | |
| 		case 0xcd:
 | |
| 			READ_WORD16(pc + 1, &x16);
 | |
| 			next = pc + x16;
 | |
| 			*flags |= SINGLESTEP_BRANCH;
 | |
| 			break;
 | |
| 
 | |
| 			/* JMP (d32,PC) or CALL (d32,PC) */
 | |
| 		case 0xdc:
 | |
| 		case 0xdd:
 | |
| 			READ_WORD32(pc + 1, &x32);
 | |
| 			next = pc + x32;
 | |
| 			*flags |= SINGLESTEP_BRANCH;
 | |
| 			break;
 | |
| 
 | |
| 			/* RETF */
 | |
| 		case 0xde:
 | |
| 			next = (u8 *)regs->mdr;
 | |
| 			*flags &= ~SINGLESTEP_PCREL;
 | |
| 			*flags |= SINGLESTEP_BRANCH;
 | |
| 			break;
 | |
| 
 | |
| 			/* RET */
 | |
| 		case 0xdf:
 | |
| 			sp += pc[2];
 | |
| 			READ_WORD32(sp, &x32);
 | |
| 			next = (u8 *)x32;
 | |
| 			*flags &= ~SINGLESTEP_PCREL;
 | |
| 			*flags |= SINGLESTEP_BRANCH;
 | |
| 			break;
 | |
| 
 | |
| 		case 0xf0:
 | |
| 			next = pc + 2;
 | |
| 			opc = pc[1];
 | |
| 			if (opc >= 0xf0 && opc <= 0xf7) {
 | |
| 				/* JMP (An) / CALLS (An) */
 | |
| 				switch (opc & 3) {
 | |
| 				case 0:
 | |
| 					next = (u8 *)regs->a0;
 | |
| 					break;
 | |
| 				case 1:
 | |
| 					next = (u8 *)regs->a1;
 | |
| 					break;
 | |
| 				case 2:
 | |
| 					next = (u8 *)regs->a2;
 | |
| 					break;
 | |
| 				case 3:
 | |
| 					next = (u8 *)regs->a3;
 | |
| 					break;
 | |
| 				}
 | |
| 				*flags &= ~SINGLESTEP_PCREL;
 | |
| 				*flags |= SINGLESTEP_BRANCH;
 | |
| 			} else if (opc == 0xfc) {
 | |
| 				/* RETS */
 | |
| 				READ_WORD32(sp, &x32);
 | |
| 				next = (u8 *)x32;
 | |
| 				*flags &= ~SINGLESTEP_PCREL;
 | |
| 				*flags |= SINGLESTEP_BRANCH;
 | |
| 			} else if (opc == 0xfd) {
 | |
| 				/* RTI */
 | |
| 				READ_WORD32(sp + 4, &x32);
 | |
| 				next = (u8 *)x32;
 | |
| 				*flags &= ~SINGLESTEP_PCREL;
 | |
| 				*flags |= SINGLESTEP_BRANCH;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 			/* potential 3-byte conditional branches */
 | |
| 		case 0xf8:
 | |
| 			next = pc + 3;
 | |
| 			opc = pc[1];
 | |
| 			if (opc >= 0xe8 && opc <= 0xeb &&
 | |
| 			    (cond_table[regs->epsw & 0xf] &
 | |
| 			     (1 << ((opc & 0xf) + 3)))
 | |
| 			    ) {
 | |
| 				READ_BYTE(pc+2, &x8);
 | |
| 				next = pc + x8;
 | |
| 				*flags |= SINGLESTEP_BRANCH;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case 0xfa:
 | |
| 			if (pc[1] == 0xff) {
 | |
| 				/* CALLS (d16,PC) */
 | |
| 				READ_WORD16(pc + 2, &x16);
 | |
| 				next = pc + x16;
 | |
| 			} else
 | |
| 				next = pc + 4;
 | |
| 			*flags |= SINGLESTEP_BRANCH;
 | |
| 			break;
 | |
| 
 | |
| 		case 0xfc:
 | |
| 			x32 = 6;
 | |
| 			if (pc[1] == 0xff) {
 | |
| 				/* CALLS (d32,PC) */
 | |
| 				READ_WORD32(pc + 2, &x32);
 | |
| 			}
 | |
| 			next = pc + x32;
 | |
| 			*flags |= SINGLESTEP_BRANCH;
 | |
| 			break;
 | |
| 			/* LXX (d8,PC) */
 | |
| 			/* SETLB - loads the next four bytes into the LIR reg */
 | |
| 		case 0xd0 ... 0xda:
 | |
| 		case 0xdb:
 | |
| 			panic("Can't singlestep Lxx/SETLB\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return (unsigned)next;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set up out of place singlestep of some branching instructions
 | |
|  */
 | |
| static unsigned __kprobes singlestep_branch_setup(struct pt_regs *regs)
 | |
| {
 | |
| 	u8 opc, *pc, *sp, *next;
 | |
| 
 | |
| 	next = NULL;
 | |
| 	pc = (u8 *) regs->pc;
 | |
| 	sp = (u8 *) (regs + 1);
 | |
| 
 | |
| 	switch (pc[0]) {
 | |
| 	case 0xc0 ... 0xca:	/* Bxx (d8,PC) */
 | |
| 	case 0xcc:		/* JMP (d16,PC) */
 | |
| 	case 0xdc:		/* JMP (d32,PC) */
 | |
| 	case 0xf8:              /* Bxx (d8,PC)  3-byte version */
 | |
| 		/* don't really need to do anything except cause trap  */
 | |
| 		next = pc;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xcd:		/* CALL (d16,PC) */
 | |
| 		pc[1] = 5;
 | |
| 		pc[2] = 0;
 | |
| 		next = pc + 5;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xdd:		/* CALL (d32,PC) */
 | |
| 		pc[1] = 7;
 | |
| 		pc[2] = 0;
 | |
| 		pc[3] = 0;
 | |
| 		pc[4] = 0;
 | |
| 		next = pc + 7;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xde:		/* RETF */
 | |
| 		next = pc + 3;
 | |
| 		regs->mdr = (unsigned) next;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xdf:		/* RET */
 | |
| 		sp += pc[2];
 | |
| 		next = pc + 3;
 | |
| 		*(unsigned *)sp = (unsigned) next;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xf0:
 | |
| 		next = pc + 2;
 | |
| 		opc = pc[1];
 | |
| 		if (opc >= 0xf0 && opc <= 0xf3) {
 | |
| 			/* CALLS (An) */
 | |
| 			/* use CALLS (d16,PC) to avoid mucking with An */
 | |
| 			pc[0] = 0xfa;
 | |
| 			pc[1] = 0xff;
 | |
| 			pc[2] = 4;
 | |
| 			pc[3] = 0;
 | |
| 			next = pc + 4;
 | |
| 		} else if (opc >= 0xf4 && opc <= 0xf7) {
 | |
| 			/* JMP (An) */
 | |
| 			next = pc;
 | |
| 		} else if (opc == 0xfc) {
 | |
| 			/* RETS */
 | |
| 			next = pc + 2;
 | |
| 			*(unsigned *) sp = (unsigned) next;
 | |
| 		} else if (opc == 0xfd) {
 | |
| 			/* RTI */
 | |
| 			next = pc + 2;
 | |
| 			*(unsigned *)(sp + 4) = (unsigned) next;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 0xfa:	/* CALLS (d16,PC) */
 | |
| 		pc[2] = 4;
 | |
| 		pc[3] = 0;
 | |
| 		next = pc + 4;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xfc:	/* CALLS (d32,PC) */
 | |
| 		pc[2] = 6;
 | |
| 		pc[3] = 0;
 | |
| 		pc[4] = 0;
 | |
| 		pc[5] = 0;
 | |
| 		next = pc + 6;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xd0 ... 0xda:	/* LXX (d8,PC) */
 | |
| 	case 0xdb:		/* SETLB */
 | |
| 		panic("Can't singlestep Lxx/SETLB\n");
 | |
| 	}
 | |
| 
 | |
| 	return (unsigned) next;
 | |
| }
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_copy_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = BREAKPOINT_INSTRUCTION;
 | |
| 	flush_icache_range((unsigned long) p->addr,
 | |
| 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| #ifndef CONFIG_MN10300_CACHE_SNOOP
 | |
| 	mn10300_dcache_flush();
 | |
| 	mn10300_icache_inv();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __kprobes disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	*p->addr = p->opcode;
 | |
| 	regs->pc = (unsigned long) p->addr;
 | |
| #ifndef CONFIG_MN10300_CACHE_SNOOP
 | |
| 	mn10300_dcache_flush();
 | |
| 	mn10300_icache_inv();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline
 | |
| void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long nextpc;
 | |
| 
 | |
| 	cur_kprobe_orig_pc = regs->pc;
 | |
| 	memcpy(cur_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE);
 | |
| 	regs->pc = (unsigned long) cur_kprobe_ss_buf;
 | |
| 
 | |
| 	nextpc = find_nextpc(regs, &cur_kprobe_ss_flags);
 | |
| 	if (cur_kprobe_ss_flags & SINGLESTEP_PCREL)
 | |
| 		cur_kprobe_next_pc = cur_kprobe_orig_pc + (nextpc - regs->pc);
 | |
| 	else
 | |
| 		cur_kprobe_next_pc = nextpc;
 | |
| 
 | |
| 	/* branching instructions need special handling */
 | |
| 	if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH)
 | |
| 		nextpc = singlestep_branch_setup(regs);
 | |
| 
 | |
| 	cur_kprobe_bp_addr = nextpc;
 | |
| 
 | |
| 	*(u8 *) nextpc = BREAKPOINT_INSTRUCTION;
 | |
| 	mn10300_dcache_flush_range2((unsigned) cur_kprobe_ss_buf,
 | |
| 				    sizeof(cur_kprobe_ss_buf));
 | |
| 	mn10300_icache_inv();
 | |
| }
 | |
| 
 | |
| static inline int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	int ret = 0;
 | |
| 	unsigned int *addr = (unsigned int *) regs->pc;
 | |
| 
 | |
| 	/* We're in an interrupt, but this is clear and BUG()-safe. */
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	/* Check we're not actually recursing */
 | |
| 	if (kprobe_running()) {
 | |
| 		/* We *are* holding lock here, so this is safe.
 | |
| 		   Disarm the probe we just hit, and ignore it. */
 | |
| 		p = get_kprobe(addr);
 | |
| 		if (p) {
 | |
| 			disarm_kprobe(p, regs);
 | |
| 			ret = 1;
 | |
| 		} else {
 | |
| 			p = cur_kprobe;
 | |
| 			if (p->break_handler && p->break_handler(p, regs))
 | |
| 				goto ss_probe;
 | |
| 		}
 | |
| 		/* If it's not ours, can't be delete race, (we hold lock). */
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	p = get_kprobe(addr);
 | |
| 	if (!p) {
 | |
| 		if (*addr != BREAKPOINT_INSTRUCTION) {
 | |
| 			/* The breakpoint instruction was removed right after
 | |
| 			 * we hit it.  Another cpu has removed either a
 | |
| 			 * probepoint or a debugger breakpoint at this address.
 | |
| 			 * In either case, no further handling of this
 | |
| 			 * interrupt is appropriate.
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		/* Not one of ours: let kernel handle it */
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 	cur_kprobe = p;
 | |
| 	if (p->pre_handler(p, regs)) {
 | |
| 		/* handler has already set things up, so skip ss setup */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| ss_probe:
 | |
| 	prepare_singlestep(p, regs);
 | |
| 	kprobe_status = KPROBE_HIT_SS;
 | |
| 	return 1;
 | |
| 
 | |
| no_kprobe:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after single-stepping.  p->addr is the address of the
 | |
|  * instruction whose first byte has been replaced by the "breakpoint"
 | |
|  * instruction.  To avoid the SMP problems that can occur when we
 | |
|  * temporarily put back the original opcode to single-step, we
 | |
|  * single-stepped a copy of the instruction.  The address of this
 | |
|  * copy is p->ainsn.insn.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	/* we may need to fixup regs/stack after singlestepping a call insn */
 | |
| 	if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) {
 | |
| 		regs->pc = cur_kprobe_orig_pc;
 | |
| 		switch (p->ainsn.insn[0]) {
 | |
| 		case 0xcd:	/* CALL (d16,PC) */
 | |
| 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 5;
 | |
| 			break;
 | |
| 		case 0xdd:	/* CALL (d32,PC) */
 | |
| 			/* fixup mdr and return address on stack */
 | |
| 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 7;
 | |
| 			break;
 | |
| 		case 0xf0:
 | |
| 			if (p->ainsn.insn[1] >= 0xf0 &&
 | |
| 			    p->ainsn.insn[1] <= 0xf3) {
 | |
| 				/* CALLS (An) */
 | |
| 				/* fixup MDR and return address on stack */
 | |
| 				regs->mdr = regs->pc + 2;
 | |
| 				*(unsigned *) regs->sp = regs->mdr;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case 0xfa:	/* CALLS (d16,PC) */
 | |
| 			/* fixup MDR and return address on stack */
 | |
| 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 4;
 | |
| 			break;
 | |
| 
 | |
| 		case 0xfc:	/* CALLS (d32,PC) */
 | |
| 			/* fixup MDR and return address on stack */
 | |
| 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 6;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	regs->pc = cur_kprobe_next_pc;
 | |
| 	cur_kprobe_bp_addr = 0;
 | |
| }
 | |
| 
 | |
| static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	if (!kprobe_running())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (cur_kprobe->post_handler)
 | |
| 		cur_kprobe->post_handler(cur_kprobe, regs, 0);
 | |
| 
 | |
| 	resume_execution(cur_kprobe, regs);
 | |
| 	reset_current_kprobe();
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Interrupts disabled, kprobe_lock held. */
 | |
| static inline
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	if (cur_kprobe->fault_handler &&
 | |
| 	    cur_kprobe->fault_handler(cur_kprobe, regs, trapnr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kprobe_status & KPROBE_HIT_SS) {
 | |
| 		resume_execution(cur_kprobe, regs);
 | |
| 		reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine to for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = data;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_BREAKPOINT:
 | |
| 		if (cur_kprobe_bp_addr != args->regs->pc) {
 | |
| 			if (kprobe_handler(args->regs))
 | |
| 				return NOTIFY_STOP;
 | |
| 		} else {
 | |
| 			if (post_kprobe_handler(args->regs))
 | |
| 				return NOTIFY_STOP;
 | |
| 		}
 | |
| 		break;
 | |
| 	case DIE_GPF:
 | |
| 		if (kprobe_running() &&
 | |
| 		    kprobe_fault_handler(args->regs, args->trapnr))
 | |
| 			return NOTIFY_STOP;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| /* Jprobes support.  */
 | |
| static struct pt_regs jprobe_saved_regs;
 | |
| static struct pt_regs *jprobe_saved_regs_location;
 | |
| static kprobe_opcode_t jprobe_saved_stack[MAX_STACK_SIZE];
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 
 | |
| 	jprobe_saved_regs_location = regs;
 | |
| 	memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));
 | |
| 
 | |
| 	/* Save a whole stack frame, this gets arguments
 | |
| 	 * pushed onto the stack after using up all the
 | |
| 	 * arg registers.
 | |
| 	 */
 | |
| 	memcpy(&jprobe_saved_stack, regs + 1, sizeof(jprobe_saved_stack));
 | |
| 
 | |
| 	/* setup return addr to the jprobe handler routine */
 | |
| 	regs->pc = (unsigned long) jp->entry;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	void *orig_sp = jprobe_saved_regs_location + 1;
 | |
| 
 | |
| 	preempt_enable_no_resched();
 | |
| 	asm volatile("		mov	%0,sp\n"
 | |
| 		     ".globl	jprobe_return_bp_addr\n"
 | |
| 		     "jprobe_return_bp_addr:\n\t"
 | |
| 		     "		.byte	0xff\n"
 | |
| 		     : : "d" (orig_sp));
 | |
| }
 | |
| 
 | |
| extern void jprobe_return_bp_addr(void);
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	u8 *addr = (u8 *) regs->pc;
 | |
| 
 | |
| 	if (addr == (u8 *) jprobe_return_bp_addr) {
 | |
| 		if (jprobe_saved_regs_location != regs) {
 | |
| 			printk(KERN_ERR"JPROBE:"
 | |
| 			       " Current regs (%p) does not match saved regs"
 | |
| 			       " (%p).\n",
 | |
| 			       regs, jprobe_saved_regs_location);
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| 		/* Restore old register state.
 | |
| 		 */
 | |
| 		memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
 | |
| 
 | |
| 		memcpy(regs + 1, &jprobe_saved_stack,
 | |
| 		       sizeof(jprobe_saved_stack));
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 |