 dd6dad4288
			
		
	
	
	dd6dad4288
	
	
	
		
			
			This patch adds a new interface to decode memory device (type 17) to help error reporting on DIMMs. Original-author: Tony Luck <tony.luck@intel.com> Signed-off-by: Chen, Gong <gong.chen@linux.intel.com> Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Acked-by: Borislav Petkov <bp@suse.de> Reviewed-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
		
			
				
	
	
		
			1070 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Architecture-specific setup.
 | |
|  *
 | |
|  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *	Stephane Eranian <eranian@hpl.hp.com>
 | |
|  * Copyright (C) 2000, 2004 Intel Corp
 | |
|  * 	Rohit Seth <rohit.seth@intel.com>
 | |
|  * 	Suresh Siddha <suresh.b.siddha@intel.com>
 | |
|  * 	Gordon Jin <gordon.jin@intel.com>
 | |
|  * Copyright (C) 1999 VA Linux Systems
 | |
|  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 | |
|  *
 | |
|  * 12/26/04 S.Siddha, G.Jin, R.Seth
 | |
|  *			Add multi-threading and multi-core detection
 | |
|  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
 | |
|  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
 | |
|  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
 | |
|  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
 | |
|  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
 | |
|  * 01/07/99 S.Eranian	added the support for command line argument
 | |
|  * 06/24/99 W.Drummond	added boot_cpu_data.
 | |
|  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/screen_info.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/serial.h>
 | |
| #include <linux/serial_core.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/crash_dump.h>
 | |
| 
 | |
| #include <asm/machvec.h>
 | |
| #include <asm/mca.h>
 | |
| #include <asm/meminit.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/paravirt.h>
 | |
| #include <asm/paravirt_patch.h>
 | |
| #include <asm/patch.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/sal.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/hpsim.h>
 | |
| 
 | |
| #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
 | |
| # error "struct cpuinfo_ia64 too big!"
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| unsigned long __per_cpu_offset[NR_CPUS];
 | |
| EXPORT_SYMBOL(__per_cpu_offset);
 | |
| #endif
 | |
| 
 | |
| DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
 | |
| DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
 | |
| unsigned long ia64_cycles_per_usec;
 | |
| struct ia64_boot_param *ia64_boot_param;
 | |
| struct screen_info screen_info;
 | |
| unsigned long vga_console_iobase;
 | |
| unsigned long vga_console_membase;
 | |
| 
 | |
| static struct resource data_resource = {
 | |
| 	.name	= "Kernel data",
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 | |
| };
 | |
| 
 | |
| static struct resource code_resource = {
 | |
| 	.name	= "Kernel code",
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 | |
| };
 | |
| 
 | |
| static struct resource bss_resource = {
 | |
| 	.name	= "Kernel bss",
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 | |
| };
 | |
| 
 | |
| unsigned long ia64_max_cacheline_size;
 | |
| 
 | |
| unsigned long ia64_iobase;	/* virtual address for I/O accesses */
 | |
| EXPORT_SYMBOL(ia64_iobase);
 | |
| struct io_space io_space[MAX_IO_SPACES];
 | |
| EXPORT_SYMBOL(io_space);
 | |
| unsigned int num_io_spaces;
 | |
| 
 | |
| /*
 | |
|  * "flush_icache_range()" needs to know what processor dependent stride size to use
 | |
|  * when it makes i-cache(s) coherent with d-caches.
 | |
|  */
 | |
| #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
 | |
| unsigned long ia64_i_cache_stride_shift = ~0;
 | |
| /*
 | |
|  * "clflush_cache_range()" needs to know what processor dependent stride size to
 | |
|  * use when it flushes cache lines including both d-cache and i-cache.
 | |
|  */
 | |
| /* Safest way to go: 32 bytes by 32 bytes */
 | |
| #define	CACHE_STRIDE_SHIFT	5
 | |
| unsigned long ia64_cache_stride_shift = ~0;
 | |
| 
 | |
| /*
 | |
|  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
 | |
|  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
 | |
|  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
 | |
|  * address of the second buffer must be aligned to (merge_mask+1) in order to be
 | |
|  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
 | |
|  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
 | |
|  * page-size of 2^64.
 | |
|  */
 | |
| unsigned long ia64_max_iommu_merge_mask = ~0UL;
 | |
| EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
 | |
| 
 | |
| /*
 | |
|  * We use a special marker for the end of memory and it uses the extra (+1) slot
 | |
|  */
 | |
| struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
 | |
| int num_rsvd_regions __initdata;
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Filter incoming memory segments based on the primitive map created from the boot
 | |
|  * parameters. Segments contained in the map are removed from the memory ranges. A
 | |
|  * caller-specified function is called with the memory ranges that remain after filtering.
 | |
|  * This routine does not assume the incoming segments are sorted.
 | |
|  */
 | |
| int __init
 | |
| filter_rsvd_memory (u64 start, u64 end, void *arg)
 | |
| {
 | |
| 	u64 range_start, range_end, prev_start;
 | |
| 	void (*func)(unsigned long, unsigned long, int);
 | |
| 	int i;
 | |
| 
 | |
| #if IGNORE_PFN0
 | |
| 	if (start == PAGE_OFFSET) {
 | |
| 		printk(KERN_WARNING "warning: skipping physical page 0\n");
 | |
| 		start += PAGE_SIZE;
 | |
| 		if (start >= end) return 0;
 | |
| 	}
 | |
| #endif
 | |
| 	/*
 | |
| 	 * lowest possible address(walker uses virtual)
 | |
| 	 */
 | |
| 	prev_start = PAGE_OFFSET;
 | |
| 	func = arg;
 | |
| 
 | |
| 	for (i = 0; i < num_rsvd_regions; ++i) {
 | |
| 		range_start = max(start, prev_start);
 | |
| 		range_end   = min(end, rsvd_region[i].start);
 | |
| 
 | |
| 		if (range_start < range_end)
 | |
| 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
 | |
| 
 | |
| 		/* nothing more available in this segment */
 | |
| 		if (range_end == end) return 0;
 | |
| 
 | |
| 		prev_start = rsvd_region[i].end;
 | |
| 	}
 | |
| 	/* end of memory marker allows full processing inside loop body */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
 | |
|  * are not filtered out.
 | |
|  */
 | |
| int __init
 | |
| filter_memory(u64 start, u64 end, void *arg)
 | |
| {
 | |
| 	void (*func)(unsigned long, unsigned long, int);
 | |
| 
 | |
| #if IGNORE_PFN0
 | |
| 	if (start == PAGE_OFFSET) {
 | |
| 		printk(KERN_WARNING "warning: skipping physical page 0\n");
 | |
| 		start += PAGE_SIZE;
 | |
| 		if (start >= end)
 | |
| 			return 0;
 | |
| 	}
 | |
| #endif
 | |
| 	func = arg;
 | |
| 	if (start < end)
 | |
| 		call_pernode_memory(__pa(start), end - start, func);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init
 | |
| sort_regions (struct rsvd_region *rsvd_region, int max)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	/* simple bubble sorting */
 | |
| 	while (max--) {
 | |
| 		for (j = 0; j < max; ++j) {
 | |
| 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
 | |
| 				struct rsvd_region tmp;
 | |
| 				tmp = rsvd_region[j];
 | |
| 				rsvd_region[j] = rsvd_region[j + 1];
 | |
| 				rsvd_region[j + 1] = tmp;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* merge overlaps */
 | |
| static int __init
 | |
| merge_regions (struct rsvd_region *rsvd_region, int max)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 1; i < max; ++i) {
 | |
| 		if (rsvd_region[i].start >= rsvd_region[i-1].end)
 | |
| 			continue;
 | |
| 		if (rsvd_region[i].end > rsvd_region[i-1].end)
 | |
| 			rsvd_region[i-1].end = rsvd_region[i].end;
 | |
| 		--max;
 | |
| 		memmove(&rsvd_region[i], &rsvd_region[i+1],
 | |
| 			(max - i) * sizeof(struct rsvd_region));
 | |
| 	}
 | |
| 	return max;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Request address space for all standard resources
 | |
|  */
 | |
| static int __init register_memory(void)
 | |
| {
 | |
| 	code_resource.start = ia64_tpa(_text);
 | |
| 	code_resource.end   = ia64_tpa(_etext) - 1;
 | |
| 	data_resource.start = ia64_tpa(_etext);
 | |
| 	data_resource.end   = ia64_tpa(_edata) - 1;
 | |
| 	bss_resource.start  = ia64_tpa(__bss_start);
 | |
| 	bss_resource.end    = ia64_tpa(_end) - 1;
 | |
| 	efi_initialize_iomem_resources(&code_resource, &data_resource,
 | |
| 			&bss_resource);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __initcall(register_memory);
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| 
 | |
| /*
 | |
|  * This function checks if the reserved crashkernel is allowed on the specific
 | |
|  * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
 | |
|  * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
 | |
|  * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
 | |
|  * in kdump case. See the comment in sba_init() in sba_iommu.c.
 | |
|  *
 | |
|  * So, the only machvec that really supports loading the kdump kernel
 | |
|  * over 4 GB is "sn2".
 | |
|  */
 | |
| static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
 | |
| {
 | |
| 	if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return pbase < (1UL << 32);
 | |
| }
 | |
| 
 | |
| static void __init setup_crashkernel(unsigned long total, int *n)
 | |
| {
 | |
| 	unsigned long long base = 0, size = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = parse_crashkernel(boot_command_line, total,
 | |
| 			&size, &base);
 | |
| 	if (ret == 0 && size > 0) {
 | |
| 		if (!base) {
 | |
| 			sort_regions(rsvd_region, *n);
 | |
| 			*n = merge_regions(rsvd_region, *n);
 | |
| 			base = kdump_find_rsvd_region(size,
 | |
| 					rsvd_region, *n);
 | |
| 		}
 | |
| 
 | |
| 		if (!check_crashkernel_memory(base, size)) {
 | |
| 			pr_warning("crashkernel: There would be kdump memory "
 | |
| 				"at %ld GB but this is unusable because it "
 | |
| 				"must\nbe below 4 GB. Change the memory "
 | |
| 				"configuration of the machine.\n",
 | |
| 				(unsigned long)(base >> 30));
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (base != ~0UL) {
 | |
| 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 | |
| 					"for crashkernel (System RAM: %ldMB)\n",
 | |
| 					(unsigned long)(size >> 20),
 | |
| 					(unsigned long)(base >> 20),
 | |
| 					(unsigned long)(total >> 20));
 | |
| 			rsvd_region[*n].start =
 | |
| 				(unsigned long)__va(base);
 | |
| 			rsvd_region[*n].end =
 | |
| 				(unsigned long)__va(base + size);
 | |
| 			(*n)++;
 | |
| 			crashk_res.start = base;
 | |
| 			crashk_res.end = base + size - 1;
 | |
| 		}
 | |
| 	}
 | |
| 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
 | |
| 	efi_memmap_res.end = efi_memmap_res.start +
 | |
| 		ia64_boot_param->efi_memmap_size;
 | |
| 	boot_param_res.start = __pa(ia64_boot_param);
 | |
| 	boot_param_res.end = boot_param_res.start +
 | |
| 		sizeof(*ia64_boot_param);
 | |
| }
 | |
| #else
 | |
| static inline void __init setup_crashkernel(unsigned long total, int *n)
 | |
| {}
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * reserve_memory - setup reserved memory areas
 | |
|  *
 | |
|  * Setup the reserved memory areas set aside for the boot parameters,
 | |
|  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
 | |
|  * see arch/ia64/include/asm/meminit.h if you need to define more.
 | |
|  */
 | |
| void __init
 | |
| reserve_memory (void)
 | |
| {
 | |
| 	int n = 0;
 | |
| 	unsigned long total_memory;
 | |
| 
 | |
| 	/*
 | |
| 	 * none of the entries in this table overlap
 | |
| 	 */
 | |
| 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
 | |
| 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
 | |
| 	n++;
 | |
| 
 | |
| 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
 | |
| 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
 | |
| 	n++;
 | |
| 
 | |
| 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
 | |
| 	rsvd_region[n].end   = (rsvd_region[n].start
 | |
| 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
 | |
| 	n++;
 | |
| 
 | |
| 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
 | |
| 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
 | |
| 	n++;
 | |
| 
 | |
| 	n += paravirt_reserve_memory(&rsvd_region[n]);
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	if (ia64_boot_param->initrd_start) {
 | |
| 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
 | |
| 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
 | |
| 		n++;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| 	if (reserve_elfcorehdr(&rsvd_region[n].start,
 | |
| 			       &rsvd_region[n].end) == 0)
 | |
| 		n++;
 | |
| #endif
 | |
| 
 | |
| 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
 | |
| 	n++;
 | |
| 
 | |
| 	setup_crashkernel(total_memory, &n);
 | |
| 
 | |
| 	/* end of memory marker */
 | |
| 	rsvd_region[n].start = ~0UL;
 | |
| 	rsvd_region[n].end   = ~0UL;
 | |
| 	n++;
 | |
| 
 | |
| 	num_rsvd_regions = n;
 | |
| 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
 | |
| 
 | |
| 	sort_regions(rsvd_region, num_rsvd_regions);
 | |
| 	num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * find_initrd - get initrd parameters from the boot parameter structure
 | |
|  *
 | |
|  * Grab the initrd start and end from the boot parameter struct given us by
 | |
|  * the boot loader.
 | |
|  */
 | |
| void __init
 | |
| find_initrd (void)
 | |
| {
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	if (ia64_boot_param->initrd_start) {
 | |
| 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
 | |
| 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
 | |
| 
 | |
| 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
 | |
| 		       initrd_start, ia64_boot_param->initrd_size);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init
 | |
| io_port_init (void)
 | |
| {
 | |
| 	unsigned long phys_iobase;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set `iobase' based on the EFI memory map or, failing that, the
 | |
| 	 * value firmware left in ar.k0.
 | |
| 	 *
 | |
| 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
 | |
| 	 * the port's virtual address, so ia32_load_state() loads it with a
 | |
| 	 * user virtual address.  But in ia64 mode, glibc uses the
 | |
| 	 * *physical* address in ar.k0 to mmap the appropriate area from
 | |
| 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
 | |
| 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
 | |
| 	 *
 | |
| 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
 | |
| 	 * any of the I/O port spaces and are done via MMIO using the
 | |
| 	 * virtual mmio_base from the appropriate io_space[].
 | |
| 	 */
 | |
| 	phys_iobase = efi_get_iobase();
 | |
| 	if (!phys_iobase) {
 | |
| 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
 | |
| 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
 | |
| 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
 | |
| 	}
 | |
| 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
 | |
| 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 | |
| 
 | |
| 	/* setup legacy IO port space */
 | |
| 	io_space[0].mmio_base = ia64_iobase;
 | |
| 	io_space[0].sparse = 1;
 | |
| 	num_io_spaces = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * early_console_setup - setup debugging console
 | |
|  *
 | |
|  * Consoles started here require little enough setup that we can start using
 | |
|  * them very early in the boot process, either right after the machine
 | |
|  * vector initialization, or even before if the drivers can detect their hw.
 | |
|  *
 | |
|  * Returns non-zero if a console couldn't be setup.
 | |
|  */
 | |
| static inline int __init
 | |
| early_console_setup (char *cmdline)
 | |
| {
 | |
| 	int earlycons = 0;
 | |
| 
 | |
| #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
 | |
| 	{
 | |
| 		extern int sn_serial_console_early_setup(void);
 | |
| 		if (!sn_serial_console_early_setup())
 | |
| 			earlycons++;
 | |
| 	}
 | |
| #endif
 | |
| #ifdef CONFIG_EFI_PCDP
 | |
| 	if (!efi_setup_pcdp_console(cmdline))
 | |
| 		earlycons++;
 | |
| #endif
 | |
| 	if (!simcons_register())
 | |
| 		earlycons++;
 | |
| 
 | |
| 	return (earlycons) ? 0 : -1;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| mark_bsp_online (void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* If we register an early console, allow CPU 0 to printk */
 | |
| 	set_cpu_online(smp_processor_id(), true);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __initdata int nomca;
 | |
| static __init int setup_nomca(char *s)
 | |
| {
 | |
| 	nomca = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nomca", setup_nomca);
 | |
| 
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| int __init reserve_elfcorehdr(u64 *start, u64 *end)
 | |
| {
 | |
| 	u64 length;
 | |
| 
 | |
| 	/* We get the address using the kernel command line,
 | |
| 	 * but the size is extracted from the EFI tables.
 | |
| 	 * Both address and size are required for reservation
 | |
| 	 * to work properly.
 | |
| 	 */
 | |
| 
 | |
| 	if (!is_vmcore_usable())
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
 | |
| 		vmcore_unusable();
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	*start = (unsigned long)__va(elfcorehdr_addr);
 | |
| 	*end = *start + length;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PROC_VMCORE */
 | |
| 
 | |
| void __init
 | |
| setup_arch (char **cmdline_p)
 | |
| {
 | |
| 	unw_init();
 | |
| 
 | |
| 	paravirt_arch_setup_early();
 | |
| 
 | |
| 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
 | |
| 	paravirt_patch_apply();
 | |
| 
 | |
| 	*cmdline_p = __va(ia64_boot_param->command_line);
 | |
| 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
 | |
| 
 | |
| 	efi_init();
 | |
| 	io_port_init();
 | |
| 
 | |
| #ifdef CONFIG_IA64_GENERIC
 | |
| 	/* machvec needs to be parsed from the command line
 | |
| 	 * before parse_early_param() is called to ensure
 | |
| 	 * that ia64_mv is initialised before any command line
 | |
| 	 * settings may cause console setup to occur
 | |
| 	 */
 | |
| 	machvec_init_from_cmdline(*cmdline_p);
 | |
| #endif
 | |
| 
 | |
| 	parse_early_param();
 | |
| 
 | |
| 	if (early_console_setup(*cmdline_p) == 0)
 | |
| 		mark_bsp_online();
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 	/* Initialize the ACPI boot-time table parser */
 | |
| 	acpi_table_init();
 | |
| 	early_acpi_boot_init();
 | |
| # ifdef CONFIG_ACPI_NUMA
 | |
| 	acpi_numa_init();
 | |
| #  ifdef CONFIG_ACPI_HOTPLUG_CPU
 | |
| 	prefill_possible_map();
 | |
| #  endif
 | |
| 	per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
 | |
| 		32 : cpus_weight(early_cpu_possible_map)),
 | |
| 		additional_cpus > 0 ? additional_cpus : 0);
 | |
| # endif
 | |
| #endif /* CONFIG_APCI_BOOT */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	smp_build_cpu_map();
 | |
| #endif
 | |
| 	find_memory();
 | |
| 
 | |
| 	/* process SAL system table: */
 | |
| 	ia64_sal_init(__va(efi.sal_systab));
 | |
| 
 | |
| #ifdef CONFIG_ITANIUM
 | |
| 	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 | |
| #else
 | |
| 	{
 | |
| 		unsigned long num_phys_stacked;
 | |
| 
 | |
| 		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
 | |
| 			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	cpu_physical_id(0) = hard_smp_processor_id();
 | |
| #endif
 | |
| 
 | |
| 	cpu_init();	/* initialize the bootstrap CPU */
 | |
| 	mmu_context_init();	/* initialize context_id bitmap */
 | |
| 
 | |
| 	paravirt_banner();
 | |
| 	paravirt_arch_setup_console(cmdline_p);
 | |
| 
 | |
| #ifdef CONFIG_VT
 | |
| 	if (!conswitchp) {
 | |
| # if defined(CONFIG_DUMMY_CONSOLE)
 | |
| 		conswitchp = &dummy_con;
 | |
| # endif
 | |
| # if defined(CONFIG_VGA_CONSOLE)
 | |
| 		/*
 | |
| 		 * Non-legacy systems may route legacy VGA MMIO range to system
 | |
| 		 * memory.  vga_con probes the MMIO hole, so memory looks like
 | |
| 		 * a VGA device to it.  The EFI memory map can tell us if it's
 | |
| 		 * memory so we can avoid this problem.
 | |
| 		 */
 | |
| 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
 | |
| 			conswitchp = &vga_con;
 | |
| # endif
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* enable IA-64 Machine Check Abort Handling unless disabled */
 | |
| 	if (paravirt_arch_setup_nomca())
 | |
| 		nomca = 1;
 | |
| 	if (!nomca)
 | |
| 		ia64_mca_init();
 | |
| 
 | |
| 	platform_setup(cmdline_p);
 | |
| #ifndef CONFIG_IA64_HP_SIM
 | |
| 	check_sal_cache_flush();
 | |
| #endif
 | |
| 	paging_init();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Display cpu info for all CPUs.
 | |
|  */
 | |
| static int
 | |
| show_cpuinfo (struct seq_file *m, void *v)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| #	define lpj	c->loops_per_jiffy
 | |
| #	define cpunum	c->cpu
 | |
| #else
 | |
| #	define lpj	loops_per_jiffy
 | |
| #	define cpunum	0
 | |
| #endif
 | |
| 	static struct {
 | |
| 		unsigned long mask;
 | |
| 		const char *feature_name;
 | |
| 	} feature_bits[] = {
 | |
| 		{ 1UL << 0, "branchlong" },
 | |
| 		{ 1UL << 1, "spontaneous deferral"},
 | |
| 		{ 1UL << 2, "16-byte atomic ops" }
 | |
| 	};
 | |
| 	char features[128], *cp, *sep;
 | |
| 	struct cpuinfo_ia64 *c = v;
 | |
| 	unsigned long mask;
 | |
| 	unsigned long proc_freq;
 | |
| 	int i, size;
 | |
| 
 | |
| 	mask = c->features;
 | |
| 
 | |
| 	/* build the feature string: */
 | |
| 	memcpy(features, "standard", 9);
 | |
| 	cp = features;
 | |
| 	size = sizeof(features);
 | |
| 	sep = "";
 | |
| 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
 | |
| 		if (mask & feature_bits[i].mask) {
 | |
| 			cp += snprintf(cp, size, "%s%s", sep,
 | |
| 				       feature_bits[i].feature_name),
 | |
| 			sep = ", ";
 | |
| 			mask &= ~feature_bits[i].mask;
 | |
| 			size = sizeof(features) - (cp - features);
 | |
| 		}
 | |
| 	}
 | |
| 	if (mask && size > 1) {
 | |
| 		/* print unknown features as a hex value */
 | |
| 		snprintf(cp, size, "%s0x%lx", sep, mask);
 | |
| 	}
 | |
| 
 | |
| 	proc_freq = cpufreq_quick_get(cpunum);
 | |
| 	if (!proc_freq)
 | |
| 		proc_freq = c->proc_freq / 1000;
 | |
| 
 | |
| 	seq_printf(m,
 | |
| 		   "processor  : %d\n"
 | |
| 		   "vendor     : %s\n"
 | |
| 		   "arch       : IA-64\n"
 | |
| 		   "family     : %u\n"
 | |
| 		   "model      : %u\n"
 | |
| 		   "model name : %s\n"
 | |
| 		   "revision   : %u\n"
 | |
| 		   "archrev    : %u\n"
 | |
| 		   "features   : %s\n"
 | |
| 		   "cpu number : %lu\n"
 | |
| 		   "cpu regs   : %u\n"
 | |
| 		   "cpu MHz    : %lu.%03lu\n"
 | |
| 		   "itc MHz    : %lu.%06lu\n"
 | |
| 		   "BogoMIPS   : %lu.%02lu\n",
 | |
| 		   cpunum, c->vendor, c->family, c->model,
 | |
| 		   c->model_name, c->revision, c->archrev,
 | |
| 		   features, c->ppn, c->number,
 | |
| 		   proc_freq / 1000, proc_freq % 1000,
 | |
| 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
 | |
| 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
 | |
| #ifdef CONFIG_SMP
 | |
| 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
 | |
| 	if (c->socket_id != -1)
 | |
| 		seq_printf(m, "physical id: %u\n", c->socket_id);
 | |
| 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
 | |
| 		seq_printf(m,
 | |
| 			   "core id    : %u\n"
 | |
| 			   "thread id  : %u\n",
 | |
| 			   c->core_id, c->thread_id);
 | |
| #endif
 | |
| 	seq_printf(m,"\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *
 | |
| c_start (struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	while (*pos < nr_cpu_ids && !cpu_online(*pos))
 | |
| 		++*pos;
 | |
| #endif
 | |
| 	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
 | |
| }
 | |
| 
 | |
| static void *
 | |
| c_next (struct seq_file *m, void *v, loff_t *pos)
 | |
| {
 | |
| 	++*pos;
 | |
| 	return c_start(m, pos);
 | |
| }
 | |
| 
 | |
| static void
 | |
| c_stop (struct seq_file *m, void *v)
 | |
| {
 | |
| }
 | |
| 
 | |
| const struct seq_operations cpuinfo_op = {
 | |
| 	.start =	c_start,
 | |
| 	.next =		c_next,
 | |
| 	.stop =		c_stop,
 | |
| 	.show =		show_cpuinfo
 | |
| };
 | |
| 
 | |
| #define MAX_BRANDS	8
 | |
| static char brandname[MAX_BRANDS][128];
 | |
| 
 | |
| static char *
 | |
| get_model_name(__u8 family, __u8 model)
 | |
| {
 | |
| 	static int overflow;
 | |
| 	char brand[128];
 | |
| 	int i;
 | |
| 
 | |
| 	memcpy(brand, "Unknown", 8);
 | |
| 	if (ia64_pal_get_brand_info(brand)) {
 | |
| 		if (family == 0x7)
 | |
| 			memcpy(brand, "Merced", 7);
 | |
| 		else if (family == 0x1f) switch (model) {
 | |
| 			case 0: memcpy(brand, "McKinley", 9); break;
 | |
| 			case 1: memcpy(brand, "Madison", 8); break;
 | |
| 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < MAX_BRANDS; i++)
 | |
| 		if (strcmp(brandname[i], brand) == 0)
 | |
| 			return brandname[i];
 | |
| 	for (i = 0; i < MAX_BRANDS; i++)
 | |
| 		if (brandname[i][0] == '\0')
 | |
| 			return strcpy(brandname[i], brand);
 | |
| 	if (overflow++ == 0)
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: Table overflow. Some processor model information will be missing\n",
 | |
| 		       __func__);
 | |
| 	return "Unknown";
 | |
| }
 | |
| 
 | |
| static void
 | |
| identify_cpu (struct cpuinfo_ia64 *c)
 | |
| {
 | |
| 	union {
 | |
| 		unsigned long bits[5];
 | |
| 		struct {
 | |
| 			/* id 0 & 1: */
 | |
| 			char vendor[16];
 | |
| 
 | |
| 			/* id 2 */
 | |
| 			u64 ppn;		/* processor serial number */
 | |
| 
 | |
| 			/* id 3: */
 | |
| 			unsigned number		:  8;
 | |
| 			unsigned revision	:  8;
 | |
| 			unsigned model		:  8;
 | |
| 			unsigned family		:  8;
 | |
| 			unsigned archrev	:  8;
 | |
| 			unsigned reserved	: 24;
 | |
| 
 | |
| 			/* id 4: */
 | |
| 			u64 features;
 | |
| 		} field;
 | |
| 	} cpuid;
 | |
| 	pal_vm_info_1_u_t vm1;
 | |
| 	pal_vm_info_2_u_t vm2;
 | |
| 	pal_status_t status;
 | |
| 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
 | |
| 	int i;
 | |
| 	for (i = 0; i < 5; ++i)
 | |
| 		cpuid.bits[i] = ia64_get_cpuid(i);
 | |
| 
 | |
| 	memcpy(c->vendor, cpuid.field.vendor, 16);
 | |
| #ifdef CONFIG_SMP
 | |
| 	c->cpu = smp_processor_id();
 | |
| 
 | |
| 	/* below default values will be overwritten  by identify_siblings() 
 | |
| 	 * for Multi-Threading/Multi-Core capable CPUs
 | |
| 	 */
 | |
| 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
 | |
| 	c->socket_id = -1;
 | |
| 
 | |
| 	identify_siblings(c);
 | |
| 
 | |
| 	if (c->threads_per_core > smp_num_siblings)
 | |
| 		smp_num_siblings = c->threads_per_core;
 | |
| #endif
 | |
| 	c->ppn = cpuid.field.ppn;
 | |
| 	c->number = cpuid.field.number;
 | |
| 	c->revision = cpuid.field.revision;
 | |
| 	c->model = cpuid.field.model;
 | |
| 	c->family = cpuid.field.family;
 | |
| 	c->archrev = cpuid.field.archrev;
 | |
| 	c->features = cpuid.field.features;
 | |
| 	c->model_name = get_model_name(c->family, c->model);
 | |
| 
 | |
| 	status = ia64_pal_vm_summary(&vm1, &vm2);
 | |
| 	if (status == PAL_STATUS_SUCCESS) {
 | |
| 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
 | |
| 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
 | |
| 	}
 | |
| 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
 | |
| 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the following calculations:
 | |
|  *
 | |
|  * 1. the max. cache line size.
 | |
|  * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
 | |
|  * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
 | |
|  */
 | |
| static void
 | |
| get_cache_info(void)
 | |
| {
 | |
| 	unsigned long line_size, max = 1;
 | |
| 	unsigned long l, levels, unique_caches;
 | |
| 	pal_cache_config_info_t cci;
 | |
| 	long status;
 | |
| 
 | |
|         status = ia64_pal_cache_summary(&levels, &unique_caches);
 | |
|         if (status != 0) {
 | |
|                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
 | |
|                        __func__, status);
 | |
|                 max = SMP_CACHE_BYTES;
 | |
| 		/* Safest setup for "flush_icache_range()" */
 | |
| 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
 | |
| 		/* Safest setup for "clflush_cache_range()" */
 | |
| 		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 | |
| 		goto out;
 | |
|         }
 | |
| 
 | |
| 	for (l = 0; l < levels; ++l) {
 | |
| 		/* cache_type (data_or_unified)=2 */
 | |
| 		status = ia64_pal_cache_config_info(l, 2, &cci);
 | |
| 		if (status != 0) {
 | |
| 			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 | |
| 				"(l=%lu, 2) failed (status=%ld)\n",
 | |
| 				__func__, l, status);
 | |
| 			max = SMP_CACHE_BYTES;
 | |
| 			/* The safest setup for "flush_icache_range()" */
 | |
| 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 | |
| 			/* The safest setup for "clflush_cache_range()" */
 | |
| 			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 | |
| 			cci.pcci_unified = 1;
 | |
| 		} else {
 | |
| 			if (cci.pcci_stride < ia64_cache_stride_shift)
 | |
| 				ia64_cache_stride_shift = cci.pcci_stride;
 | |
| 
 | |
| 			line_size = 1 << cci.pcci_line_size;
 | |
| 			if (line_size > max)
 | |
| 				max = line_size;
 | |
| 		}
 | |
| 
 | |
| 		if (!cci.pcci_unified) {
 | |
| 			/* cache_type (instruction)=1*/
 | |
| 			status = ia64_pal_cache_config_info(l, 1, &cci);
 | |
| 			if (status != 0) {
 | |
| 				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 | |
| 					"(l=%lu, 1) failed (status=%ld)\n",
 | |
| 					__func__, l, status);
 | |
| 				/* The safest setup for flush_icache_range() */
 | |
| 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 | |
| 			}
 | |
| 		}
 | |
| 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
 | |
| 			ia64_i_cache_stride_shift = cci.pcci_stride;
 | |
| 	}
 | |
|   out:
 | |
| 	if (max > ia64_max_cacheline_size)
 | |
| 		ia64_max_cacheline_size = max;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cpu_init() initializes state that is per-CPU.  This function acts
 | |
|  * as a 'CPU state barrier', nothing should get across.
 | |
|  */
 | |
| void
 | |
| cpu_init (void)
 | |
| {
 | |
| 	extern void ia64_mmu_init(void *);
 | |
| 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
 | |
| 	unsigned long num_phys_stacked;
 | |
| 	pal_vm_info_2_u_t vmi;
 | |
| 	unsigned int max_ctx;
 | |
| 	struct cpuinfo_ia64 *cpu_info;
 | |
| 	void *cpu_data;
 | |
| 
 | |
| 	cpu_data = per_cpu_init();
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * insert boot cpu into sibling and core mapes
 | |
| 	 * (must be done after per_cpu area is setup)
 | |
| 	 */
 | |
| 	if (smp_processor_id() == 0) {
 | |
| 		cpu_set(0, per_cpu(cpu_sibling_map, 0));
 | |
| 		cpu_set(0, cpu_core_map[0]);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Set ar.k3 so that assembly code in MCA handler can compute
 | |
| 		 * physical addresses of per cpu variables with a simple:
 | |
| 		 *   phys = ar.k3 + &per_cpu_var
 | |
| 		 * and the alt-dtlb-miss handler can set per-cpu mapping into
 | |
| 		 * the TLB when needed. head.S already did this for cpu0.
 | |
| 		 */
 | |
| 		ia64_set_kr(IA64_KR_PER_CPU_DATA,
 | |
| 			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	get_cache_info();
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
 | |
| 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
 | |
| 	 * depends on the data returned by identify_cpu().  We break the dependency by
 | |
| 	 * accessing cpu_data() through the canonical per-CPU address.
 | |
| 	 */
 | |
| 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
 | |
| 	identify_cpu(cpu_info);
 | |
| 
 | |
| #ifdef CONFIG_MCKINLEY
 | |
| 	{
 | |
| #		define FEATURE_SET 16
 | |
| 		struct ia64_pal_retval iprv;
 | |
| 
 | |
| 		if (cpu_info->family == 0x1f) {
 | |
| 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
 | |
| 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
 | |
| 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
 | |
| 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Clear the stack memory reserved for pt_regs: */
 | |
| 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
 | |
| 
 | |
| 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the page-table base register to a global
 | |
| 	 * directory with all zeroes.  This ensure that we can handle
 | |
| 	 * TLB-misses to user address-space even before we created the
 | |
| 	 * first user address-space.  This may happen, e.g., due to
 | |
| 	 * aggressive use of lfetch.fault.
 | |
| 	 */
 | |
| 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize default control register to defer speculative faults except
 | |
| 	 * for those arising from TLB misses, which are not deferred.  The
 | |
| 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
 | |
| 	 * the kernel must have recovery code for all speculative accesses).  Turn on
 | |
| 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
 | |
| 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
 | |
| 	 * be fine).
 | |
| 	 */
 | |
| 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
 | |
| 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
 | |
| 	atomic_inc(&init_mm.mm_count);
 | |
| 	current->active_mm = &init_mm;
 | |
| 	BUG_ON(current->mm);
 | |
| 
 | |
| 	ia64_mmu_init(ia64_imva(cpu_data));
 | |
| 	ia64_mca_cpu_init(ia64_imva(cpu_data));
 | |
| 
 | |
| 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
 | |
| 	ia64_set_itc(0);
 | |
| 
 | |
| 	/* disable all local interrupt sources: */
 | |
| 	ia64_set_itv(1 << 16);
 | |
| 	ia64_set_lrr0(1 << 16);
 | |
| 	ia64_set_lrr1(1 << 16);
 | |
| 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
 | |
| 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
 | |
| 
 | |
| 	/* clear TPR & XTP to enable all interrupt classes: */
 | |
| 	ia64_setreg(_IA64_REG_CR_TPR, 0);
 | |
| 
 | |
| 	/* Clear any pending interrupts left by SAL/EFI */
 | |
| 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
 | |
| 		ia64_eoi();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	normal_xtp();
 | |
| #endif
 | |
| 
 | |
| 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
 | |
| 	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
 | |
| 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
 | |
| 		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
 | |
| 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
 | |
| 	}
 | |
| 	while (max_ctx < ia64_ctx.max_ctx) {
 | |
| 		unsigned int old = ia64_ctx.max_ctx;
 | |
| 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
 | |
| 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
 | |
| 		       "stacked regs\n");
 | |
| 		num_phys_stacked = 96;
 | |
| 	}
 | |
| 	/* size of physical stacked register partition plus 8 bytes: */
 | |
| 	if (num_phys_stacked > max_num_phys_stacked) {
 | |
| 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
 | |
| 		max_num_phys_stacked = num_phys_stacked;
 | |
| 	}
 | |
| 	platform_cpu_init();
 | |
| }
 | |
| 
 | |
| void __init
 | |
| check_bugs (void)
 | |
| {
 | |
| 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
 | |
| 			       (unsigned long) __end___mckinley_e9_bundles);
 | |
| }
 | |
| 
 | |
| static int __init run_dmi_scan(void)
 | |
| {
 | |
| 	dmi_scan_machine();
 | |
| 	dmi_memdev_walk();
 | |
| 	dmi_set_dump_stack_arch_desc();
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(run_dmi_scan);
 |