 aedf95ea05
			
		
	
	
	aedf95ea05
	
	
	
		
			
			Kmemleak could ignore memory blocks allocated via memblock_alloc() leading to false positives during scanning. This patch adds the corresponding callbacks and removes kmemleak_free_* calls in mm/nobootmem.c to avoid duplication. The kmemleak_alloc() in mm/nobootmem.c is kept since __alloc_memory_core_early() does not use memblock_alloc() directly. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1591 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1591 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Procedures for maintaining information about logical memory blocks.
 | |
|  *
 | |
|  * Peter Bergner, IBM Corp.	June 2001.
 | |
|  * Copyright (C) 2001 Peter Bergner.
 | |
|  *
 | |
|  *      This program is free software; you can redistribute it and/or
 | |
|  *      modify it under the terms of the GNU General Public License
 | |
|  *      as published by the Free Software Foundation; either version
 | |
|  *      2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/memblock.h>
 | |
| 
 | |
| #include <asm-generic/sections.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 | |
| static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | |
| static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
 | |
| #endif
 | |
| 
 | |
| struct memblock memblock __initdata_memblock = {
 | |
| 	.memory.regions		= memblock_memory_init_regions,
 | |
| 	.memory.cnt		= 1,	/* empty dummy entry */
 | |
| 	.memory.max		= INIT_MEMBLOCK_REGIONS,
 | |
| 
 | |
| 	.reserved.regions	= memblock_reserved_init_regions,
 | |
| 	.reserved.cnt		= 1,	/* empty dummy entry */
 | |
| 	.reserved.max		= INIT_MEMBLOCK_REGIONS,
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | |
| 	.physmem.regions	= memblock_physmem_init_regions,
 | |
| 	.physmem.cnt		= 1,	/* empty dummy entry */
 | |
| 	.physmem.max		= INIT_PHYSMEM_REGIONS,
 | |
| #endif
 | |
| 
 | |
| 	.bottom_up		= false,
 | |
| 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 | |
| };
 | |
| 
 | |
| int memblock_debug __initdata_memblock;
 | |
| #ifdef CONFIG_MOVABLE_NODE
 | |
| bool movable_node_enabled __initdata_memblock = false;
 | |
| #endif
 | |
| static int memblock_can_resize __initdata_memblock;
 | |
| static int memblock_memory_in_slab __initdata_memblock = 0;
 | |
| static int memblock_reserved_in_slab __initdata_memblock = 0;
 | |
| 
 | |
| /* inline so we don't get a warning when pr_debug is compiled out */
 | |
| static __init_memblock const char *
 | |
| memblock_type_name(struct memblock_type *type)
 | |
| {
 | |
| 	if (type == &memblock.memory)
 | |
| 		return "memory";
 | |
| 	else if (type == &memblock.reserved)
 | |
| 		return "reserved";
 | |
| 	else
 | |
| 		return "unknown";
 | |
| }
 | |
| 
 | |
| /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 | |
| static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 | |
| {
 | |
| 	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Address comparison utilities
 | |
|  */
 | |
| static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 | |
| 				       phys_addr_t base2, phys_addr_t size2)
 | |
| {
 | |
| 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 | |
| }
 | |
| 
 | |
| static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
 | |
| 					phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < type->cnt; i++) {
 | |
| 		phys_addr_t rgnbase = type->regions[i].base;
 | |
| 		phys_addr_t rgnsize = type->regions[i].size;
 | |
| 		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return (i < type->cnt) ? i : -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __memblock_find_range_bottom_up - find free area utility in bottom-up
 | |
|  * @start: start of candidate range
 | |
|  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 | |
|  * @size: size of free area to find
 | |
|  * @align: alignment of free area to find
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Found address on success, 0 on failure.
 | |
|  */
 | |
| static phys_addr_t __init_memblock
 | |
| __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 | |
| 				phys_addr_t size, phys_addr_t align, int nid)
 | |
| {
 | |
| 	phys_addr_t this_start, this_end, cand;
 | |
| 	u64 i;
 | |
| 
 | |
| 	for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
 | |
| 		this_start = clamp(this_start, start, end);
 | |
| 		this_end = clamp(this_end, start, end);
 | |
| 
 | |
| 		cand = round_up(this_start, align);
 | |
| 		if (cand < this_end && this_end - cand >= size)
 | |
| 			return cand;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memblock_find_range_top_down - find free area utility, in top-down
 | |
|  * @start: start of candidate range
 | |
|  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 | |
|  * @size: size of free area to find
 | |
|  * @align: alignment of free area to find
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Utility called from memblock_find_in_range_node(), find free area top-down.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Found address on success, 0 on failure.
 | |
|  */
 | |
| static phys_addr_t __init_memblock
 | |
| __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 | |
| 			       phys_addr_t size, phys_addr_t align, int nid)
 | |
| {
 | |
| 	phys_addr_t this_start, this_end, cand;
 | |
| 	u64 i;
 | |
| 
 | |
| 	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
 | |
| 		this_start = clamp(this_start, start, end);
 | |
| 		this_end = clamp(this_end, start, end);
 | |
| 
 | |
| 		if (this_end < size)
 | |
| 			continue;
 | |
| 
 | |
| 		cand = round_down(this_end - size, align);
 | |
| 		if (cand >= this_start)
 | |
| 			return cand;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_find_in_range_node - find free area in given range and node
 | |
|  * @size: size of free area to find
 | |
|  * @align: alignment of free area to find
 | |
|  * @start: start of candidate range
 | |
|  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Find @size free area aligned to @align in the specified range and node.
 | |
|  *
 | |
|  * When allocation direction is bottom-up, the @start should be greater
 | |
|  * than the end of the kernel image. Otherwise, it will be trimmed. The
 | |
|  * reason is that we want the bottom-up allocation just near the kernel
 | |
|  * image so it is highly likely that the allocated memory and the kernel
 | |
|  * will reside in the same node.
 | |
|  *
 | |
|  * If bottom-up allocation failed, will try to allocate memory top-down.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Found address on success, 0 on failure.
 | |
|  */
 | |
| phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 | |
| 					phys_addr_t align, phys_addr_t start,
 | |
| 					phys_addr_t end, int nid)
 | |
| {
 | |
| 	int ret;
 | |
| 	phys_addr_t kernel_end;
 | |
| 
 | |
| 	/* pump up @end */
 | |
| 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 | |
| 		end = memblock.current_limit;
 | |
| 
 | |
| 	/* avoid allocating the first page */
 | |
| 	start = max_t(phys_addr_t, start, PAGE_SIZE);
 | |
| 	end = max(start, end);
 | |
| 	kernel_end = __pa_symbol(_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * try bottom-up allocation only when bottom-up mode
 | |
| 	 * is set and @end is above the kernel image.
 | |
| 	 */
 | |
| 	if (memblock_bottom_up() && end > kernel_end) {
 | |
| 		phys_addr_t bottom_up_start;
 | |
| 
 | |
| 		/* make sure we will allocate above the kernel */
 | |
| 		bottom_up_start = max(start, kernel_end);
 | |
| 
 | |
| 		/* ok, try bottom-up allocation first */
 | |
| 		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 | |
| 						      size, align, nid);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * we always limit bottom-up allocation above the kernel,
 | |
| 		 * but top-down allocation doesn't have the limit, so
 | |
| 		 * retrying top-down allocation may succeed when bottom-up
 | |
| 		 * allocation failed.
 | |
| 		 *
 | |
| 		 * bottom-up allocation is expected to be fail very rarely,
 | |
| 		 * so we use WARN_ONCE() here to see the stack trace if
 | |
| 		 * fail happens.
 | |
| 		 */
 | |
| 		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
 | |
| 			     "memory hotunplug may be affected\n");
 | |
| 	}
 | |
| 
 | |
| 	return __memblock_find_range_top_down(start, end, size, align, nid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_find_in_range - find free area in given range
 | |
|  * @start: start of candidate range
 | |
|  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 | |
|  * @size: size of free area to find
 | |
|  * @align: alignment of free area to find
 | |
|  *
 | |
|  * Find @size free area aligned to @align in the specified range.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Found address on success, 0 on failure.
 | |
|  */
 | |
| phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 | |
| 					phys_addr_t end, phys_addr_t size,
 | |
| 					phys_addr_t align)
 | |
| {
 | |
| 	return memblock_find_in_range_node(size, align, start, end,
 | |
| 					    NUMA_NO_NODE);
 | |
| }
 | |
| 
 | |
| static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 | |
| {
 | |
| 	type->total_size -= type->regions[r].size;
 | |
| 	memmove(&type->regions[r], &type->regions[r + 1],
 | |
| 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 | |
| 	type->cnt--;
 | |
| 
 | |
| 	/* Special case for empty arrays */
 | |
| 	if (type->cnt == 0) {
 | |
| 		WARN_ON(type->total_size != 0);
 | |
| 		type->cnt = 1;
 | |
| 		type->regions[0].base = 0;
 | |
| 		type->regions[0].size = 0;
 | |
| 		type->regions[0].flags = 0;
 | |
| 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 | |
| 
 | |
| phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
 | |
| 					phys_addr_t *addr)
 | |
| {
 | |
| 	if (memblock.reserved.regions == memblock_reserved_init_regions)
 | |
| 		return 0;
 | |
| 
 | |
| 	*addr = __pa(memblock.reserved.regions);
 | |
| 
 | |
| 	return PAGE_ALIGN(sizeof(struct memblock_region) *
 | |
| 			  memblock.reserved.max);
 | |
| }
 | |
| 
 | |
| phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
 | |
| 					phys_addr_t *addr)
 | |
| {
 | |
| 	if (memblock.memory.regions == memblock_memory_init_regions)
 | |
| 		return 0;
 | |
| 
 | |
| 	*addr = __pa(memblock.memory.regions);
 | |
| 
 | |
| 	return PAGE_ALIGN(sizeof(struct memblock_region) *
 | |
| 			  memblock.memory.max);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * memblock_double_array - double the size of the memblock regions array
 | |
|  * @type: memblock type of the regions array being doubled
 | |
|  * @new_area_start: starting address of memory range to avoid overlap with
 | |
|  * @new_area_size: size of memory range to avoid overlap with
 | |
|  *
 | |
|  * Double the size of the @type regions array. If memblock is being used to
 | |
|  * allocate memory for a new reserved regions array and there is a previously
 | |
|  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 | |
|  * waiting to be reserved, ensure the memory used by the new array does
 | |
|  * not overlap.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -1 on failure.
 | |
|  */
 | |
| static int __init_memblock memblock_double_array(struct memblock_type *type,
 | |
| 						phys_addr_t new_area_start,
 | |
| 						phys_addr_t new_area_size)
 | |
| {
 | |
| 	struct memblock_region *new_array, *old_array;
 | |
| 	phys_addr_t old_alloc_size, new_alloc_size;
 | |
| 	phys_addr_t old_size, new_size, addr;
 | |
| 	int use_slab = slab_is_available();
 | |
| 	int *in_slab;
 | |
| 
 | |
| 	/* We don't allow resizing until we know about the reserved regions
 | |
| 	 * of memory that aren't suitable for allocation
 | |
| 	 */
 | |
| 	if (!memblock_can_resize)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Calculate new doubled size */
 | |
| 	old_size = type->max * sizeof(struct memblock_region);
 | |
| 	new_size = old_size << 1;
 | |
| 	/*
 | |
| 	 * We need to allocated new one align to PAGE_SIZE,
 | |
| 	 *   so we can free them completely later.
 | |
| 	 */
 | |
| 	old_alloc_size = PAGE_ALIGN(old_size);
 | |
| 	new_alloc_size = PAGE_ALIGN(new_size);
 | |
| 
 | |
| 	/* Retrieve the slab flag */
 | |
| 	if (type == &memblock.memory)
 | |
| 		in_slab = &memblock_memory_in_slab;
 | |
| 	else
 | |
| 		in_slab = &memblock_reserved_in_slab;
 | |
| 
 | |
| 	/* Try to find some space for it.
 | |
| 	 *
 | |
| 	 * WARNING: We assume that either slab_is_available() and we use it or
 | |
| 	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 | |
| 	 * use when bootmem is currently active (unless bootmem itself is
 | |
| 	 * implemented on top of MEMBLOCK which isn't the case yet)
 | |
| 	 *
 | |
| 	 * This should however not be an issue for now, as we currently only
 | |
| 	 * call into MEMBLOCK while it's still active, or much later when slab
 | |
| 	 * is active for memory hotplug operations
 | |
| 	 */
 | |
| 	if (use_slab) {
 | |
| 		new_array = kmalloc(new_size, GFP_KERNEL);
 | |
| 		addr = new_array ? __pa(new_array) : 0;
 | |
| 	} else {
 | |
| 		/* only exclude range when trying to double reserved.regions */
 | |
| 		if (type != &memblock.reserved)
 | |
| 			new_area_start = new_area_size = 0;
 | |
| 
 | |
| 		addr = memblock_find_in_range(new_area_start + new_area_size,
 | |
| 						memblock.current_limit,
 | |
| 						new_alloc_size, PAGE_SIZE);
 | |
| 		if (!addr && new_area_size)
 | |
| 			addr = memblock_find_in_range(0,
 | |
| 				min(new_area_start, memblock.current_limit),
 | |
| 				new_alloc_size, PAGE_SIZE);
 | |
| 
 | |
| 		new_array = addr ? __va(addr) : NULL;
 | |
| 	}
 | |
| 	if (!addr) {
 | |
| 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 | |
| 		       memblock_type_name(type), type->max, type->max * 2);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 | |
| 			memblock_type_name(type), type->max * 2, (u64)addr,
 | |
| 			(u64)addr + new_size - 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Found space, we now need to move the array over before we add the
 | |
| 	 * reserved region since it may be our reserved array itself that is
 | |
| 	 * full.
 | |
| 	 */
 | |
| 	memcpy(new_array, type->regions, old_size);
 | |
| 	memset(new_array + type->max, 0, old_size);
 | |
| 	old_array = type->regions;
 | |
| 	type->regions = new_array;
 | |
| 	type->max <<= 1;
 | |
| 
 | |
| 	/* Free old array. We needn't free it if the array is the static one */
 | |
| 	if (*in_slab)
 | |
| 		kfree(old_array);
 | |
| 	else if (old_array != memblock_memory_init_regions &&
 | |
| 		 old_array != memblock_reserved_init_regions)
 | |
| 		memblock_free(__pa(old_array), old_alloc_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 | |
| 	 * needn't do it
 | |
| 	 */
 | |
| 	if (!use_slab)
 | |
| 		BUG_ON(memblock_reserve(addr, new_alloc_size));
 | |
| 
 | |
| 	/* Update slab flag */
 | |
| 	*in_slab = use_slab;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_merge_regions - merge neighboring compatible regions
 | |
|  * @type: memblock type to scan
 | |
|  *
 | |
|  * Scan @type and merge neighboring compatible regions.
 | |
|  */
 | |
| static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/* cnt never goes below 1 */
 | |
| 	while (i < type->cnt - 1) {
 | |
| 		struct memblock_region *this = &type->regions[i];
 | |
| 		struct memblock_region *next = &type->regions[i + 1];
 | |
| 
 | |
| 		if (this->base + this->size != next->base ||
 | |
| 		    memblock_get_region_node(this) !=
 | |
| 		    memblock_get_region_node(next) ||
 | |
| 		    this->flags != next->flags) {
 | |
| 			BUG_ON(this->base + this->size > next->base);
 | |
| 			i++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		this->size += next->size;
 | |
| 		/* move forward from next + 1, index of which is i + 2 */
 | |
| 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 | |
| 		type->cnt--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_insert_region - insert new memblock region
 | |
|  * @type:	memblock type to insert into
 | |
|  * @idx:	index for the insertion point
 | |
|  * @base:	base address of the new region
 | |
|  * @size:	size of the new region
 | |
|  * @nid:	node id of the new region
 | |
|  * @flags:	flags of the new region
 | |
|  *
 | |
|  * Insert new memblock region [@base,@base+@size) into @type at @idx.
 | |
|  * @type must already have extra room to accomodate the new region.
 | |
|  */
 | |
| static void __init_memblock memblock_insert_region(struct memblock_type *type,
 | |
| 						   int idx, phys_addr_t base,
 | |
| 						   phys_addr_t size,
 | |
| 						   int nid, unsigned long flags)
 | |
| {
 | |
| 	struct memblock_region *rgn = &type->regions[idx];
 | |
| 
 | |
| 	BUG_ON(type->cnt >= type->max);
 | |
| 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 | |
| 	rgn->base = base;
 | |
| 	rgn->size = size;
 | |
| 	rgn->flags = flags;
 | |
| 	memblock_set_region_node(rgn, nid);
 | |
| 	type->cnt++;
 | |
| 	type->total_size += size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_add_range - add new memblock region
 | |
|  * @type: memblock type to add new region into
 | |
|  * @base: base address of the new region
 | |
|  * @size: size of the new region
 | |
|  * @nid: nid of the new region
 | |
|  * @flags: flags of the new region
 | |
|  *
 | |
|  * Add new memblock region [@base,@base+@size) into @type.  The new region
 | |
|  * is allowed to overlap with existing ones - overlaps don't affect already
 | |
|  * existing regions.  @type is guaranteed to be minimal (all neighbouring
 | |
|  * compatible regions are merged) after the addition.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_add_range(struct memblock_type *type,
 | |
| 				phys_addr_t base, phys_addr_t size,
 | |
| 				int nid, unsigned long flags)
 | |
| {
 | |
| 	bool insert = false;
 | |
| 	phys_addr_t obase = base;
 | |
| 	phys_addr_t end = base + memblock_cap_size(base, &size);
 | |
| 	int i, nr_new;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* special case for empty array */
 | |
| 	if (type->regions[0].size == 0) {
 | |
| 		WARN_ON(type->cnt != 1 || type->total_size);
 | |
| 		type->regions[0].base = base;
 | |
| 		type->regions[0].size = size;
 | |
| 		type->regions[0].flags = flags;
 | |
| 		memblock_set_region_node(&type->regions[0], nid);
 | |
| 		type->total_size = size;
 | |
| 		return 0;
 | |
| 	}
 | |
| repeat:
 | |
| 	/*
 | |
| 	 * The following is executed twice.  Once with %false @insert and
 | |
| 	 * then with %true.  The first counts the number of regions needed
 | |
| 	 * to accomodate the new area.  The second actually inserts them.
 | |
| 	 */
 | |
| 	base = obase;
 | |
| 	nr_new = 0;
 | |
| 
 | |
| 	for (i = 0; i < type->cnt; i++) {
 | |
| 		struct memblock_region *rgn = &type->regions[i];
 | |
| 		phys_addr_t rbase = rgn->base;
 | |
| 		phys_addr_t rend = rbase + rgn->size;
 | |
| 
 | |
| 		if (rbase >= end)
 | |
| 			break;
 | |
| 		if (rend <= base)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * @rgn overlaps.  If it separates the lower part of new
 | |
| 		 * area, insert that portion.
 | |
| 		 */
 | |
| 		if (rbase > base) {
 | |
| 			nr_new++;
 | |
| 			if (insert)
 | |
| 				memblock_insert_region(type, i++, base,
 | |
| 						       rbase - base, nid,
 | |
| 						       flags);
 | |
| 		}
 | |
| 		/* area below @rend is dealt with, forget about it */
 | |
| 		base = min(rend, end);
 | |
| 	}
 | |
| 
 | |
| 	/* insert the remaining portion */
 | |
| 	if (base < end) {
 | |
| 		nr_new++;
 | |
| 		if (insert)
 | |
| 			memblock_insert_region(type, i, base, end - base,
 | |
| 					       nid, flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this was the first round, resize array and repeat for actual
 | |
| 	 * insertions; otherwise, merge and return.
 | |
| 	 */
 | |
| 	if (!insert) {
 | |
| 		while (type->cnt + nr_new > type->max)
 | |
| 			if (memblock_double_array(type, obase, size) < 0)
 | |
| 				return -ENOMEM;
 | |
| 		insert = true;
 | |
| 		goto repeat;
 | |
| 	} else {
 | |
| 		memblock_merge_regions(type);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 | |
| 				       int nid)
 | |
| {
 | |
| 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_add_range(&memblock.memory, base, size,
 | |
| 				   MAX_NUMNODES, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_isolate_range - isolate given range into disjoint memblocks
 | |
|  * @type: memblock type to isolate range for
 | |
|  * @base: base of range to isolate
 | |
|  * @size: size of range to isolate
 | |
|  * @start_rgn: out parameter for the start of isolated region
 | |
|  * @end_rgn: out parameter for the end of isolated region
 | |
|  *
 | |
|  * Walk @type and ensure that regions don't cross the boundaries defined by
 | |
|  * [@base,@base+@size).  Crossing regions are split at the boundaries,
 | |
|  * which may create at most two more regions.  The index of the first
 | |
|  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 | |
| 					phys_addr_t base, phys_addr_t size,
 | |
| 					int *start_rgn, int *end_rgn)
 | |
| {
 | |
| 	phys_addr_t end = base + memblock_cap_size(base, &size);
 | |
| 	int i;
 | |
| 
 | |
| 	*start_rgn = *end_rgn = 0;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* we'll create at most two more regions */
 | |
| 	while (type->cnt + 2 > type->max)
 | |
| 		if (memblock_double_array(type, base, size) < 0)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < type->cnt; i++) {
 | |
| 		struct memblock_region *rgn = &type->regions[i];
 | |
| 		phys_addr_t rbase = rgn->base;
 | |
| 		phys_addr_t rend = rbase + rgn->size;
 | |
| 
 | |
| 		if (rbase >= end)
 | |
| 			break;
 | |
| 		if (rend <= base)
 | |
| 			continue;
 | |
| 
 | |
| 		if (rbase < base) {
 | |
| 			/*
 | |
| 			 * @rgn intersects from below.  Split and continue
 | |
| 			 * to process the next region - the new top half.
 | |
| 			 */
 | |
| 			rgn->base = base;
 | |
| 			rgn->size -= base - rbase;
 | |
| 			type->total_size -= base - rbase;
 | |
| 			memblock_insert_region(type, i, rbase, base - rbase,
 | |
| 					       memblock_get_region_node(rgn),
 | |
| 					       rgn->flags);
 | |
| 		} else if (rend > end) {
 | |
| 			/*
 | |
| 			 * @rgn intersects from above.  Split and redo the
 | |
| 			 * current region - the new bottom half.
 | |
| 			 */
 | |
| 			rgn->base = end;
 | |
| 			rgn->size -= end - rbase;
 | |
| 			type->total_size -= end - rbase;
 | |
| 			memblock_insert_region(type, i--, rbase, end - rbase,
 | |
| 					       memblock_get_region_node(rgn),
 | |
| 					       rgn->flags);
 | |
| 		} else {
 | |
| 			/* @rgn is fully contained, record it */
 | |
| 			if (!*end_rgn)
 | |
| 				*start_rgn = i;
 | |
| 			*end_rgn = i + 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_remove_range(struct memblock_type *type,
 | |
| 					  phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	int start_rgn, end_rgn;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = end_rgn - 1; i >= start_rgn; i--)
 | |
| 		memblock_remove_region(type, i);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_remove_range(&memblock.memory, base, size);
 | |
| }
 | |
| 
 | |
| 
 | |
| int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
 | |
| 		     (unsigned long long)base,
 | |
| 		     (unsigned long long)base + size - 1,
 | |
| 		     (void *)_RET_IP_);
 | |
| 
 | |
| 	kmemleak_free_part(__va(base), size);
 | |
| 	return memblock_remove_range(&memblock.reserved, base, size);
 | |
| }
 | |
| 
 | |
| static int __init_memblock memblock_reserve_region(phys_addr_t base,
 | |
| 						   phys_addr_t size,
 | |
| 						   int nid,
 | |
| 						   unsigned long flags)
 | |
| {
 | |
| 	struct memblock_type *_rgn = &memblock.reserved;
 | |
| 
 | |
| 	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
 | |
| 		     (unsigned long long)base,
 | |
| 		     (unsigned long long)base + size - 1,
 | |
| 		     flags, (void *)_RET_IP_);
 | |
| 
 | |
| 	return memblock_add_range(_rgn, base, size, nid, flags);
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 | |
|  * @base: the base phys addr of the region
 | |
|  * @size: the size of the region
 | |
|  *
 | |
|  * This function isolates region [@base, @base + @size), and mark it with flag
 | |
|  * MEMBLOCK_HOTPLUG.
 | |
|  *
 | |
|  * Return 0 on succees, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	struct memblock_type *type = &memblock.memory;
 | |
| 	int i, ret, start_rgn, end_rgn;
 | |
| 
 | |
| 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = start_rgn; i < end_rgn; i++)
 | |
| 		memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
 | |
| 
 | |
| 	memblock_merge_regions(type);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 | |
|  * @base: the base phys addr of the region
 | |
|  * @size: the size of the region
 | |
|  *
 | |
|  * This function isolates region [@base, @base + @size), and clear flag
 | |
|  * MEMBLOCK_HOTPLUG for the isolated regions.
 | |
|  *
 | |
|  * Return 0 on succees, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	struct memblock_type *type = &memblock.memory;
 | |
| 	int i, ret, start_rgn, end_rgn;
 | |
| 
 | |
| 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = start_rgn; i < end_rgn; i++)
 | |
| 		memblock_clear_region_flags(&type->regions[i],
 | |
| 					    MEMBLOCK_HOTPLUG);
 | |
| 
 | |
| 	memblock_merge_regions(type);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __next__mem_range - next function for for_each_free_mem_range() etc.
 | |
|  * @idx: pointer to u64 loop variable
 | |
|  * @nid: node selector, %NUMA_NO_NODE for all nodes
 | |
|  * @type_a: pointer to memblock_type from where the range is taken
 | |
|  * @type_b: pointer to memblock_type which excludes memory from being taken
 | |
|  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 | |
|  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 | |
|  * @out_nid: ptr to int for nid of the range, can be %NULL
 | |
|  *
 | |
|  * Find the first area from *@idx which matches @nid, fill the out
 | |
|  * parameters, and update *@idx for the next iteration.  The lower 32bit of
 | |
|  * *@idx contains index into type_a and the upper 32bit indexes the
 | |
|  * areas before each region in type_b.	For example, if type_b regions
 | |
|  * look like the following,
 | |
|  *
 | |
|  *	0:[0-16), 1:[32-48), 2:[128-130)
 | |
|  *
 | |
|  * The upper 32bit indexes the following regions.
 | |
|  *
 | |
|  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 | |
|  *
 | |
|  * As both region arrays are sorted, the function advances the two indices
 | |
|  * in lockstep and returns each intersection.
 | |
|  */
 | |
| void __init_memblock __next_mem_range(u64 *idx, int nid,
 | |
| 				      struct memblock_type *type_a,
 | |
| 				      struct memblock_type *type_b,
 | |
| 				      phys_addr_t *out_start,
 | |
| 				      phys_addr_t *out_end, int *out_nid)
 | |
| {
 | |
| 	int idx_a = *idx & 0xffffffff;
 | |
| 	int idx_b = *idx >> 32;
 | |
| 
 | |
| 	if (WARN_ONCE(nid == MAX_NUMNODES,
 | |
| 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 | |
| 		nid = NUMA_NO_NODE;
 | |
| 
 | |
| 	for (; idx_a < type_a->cnt; idx_a++) {
 | |
| 		struct memblock_region *m = &type_a->regions[idx_a];
 | |
| 
 | |
| 		phys_addr_t m_start = m->base;
 | |
| 		phys_addr_t m_end = m->base + m->size;
 | |
| 		int	    m_nid = memblock_get_region_node(m);
 | |
| 
 | |
| 		/* only memory regions are associated with nodes, check it */
 | |
| 		if (nid != NUMA_NO_NODE && nid != m_nid)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!type_b) {
 | |
| 			if (out_start)
 | |
| 				*out_start = m_start;
 | |
| 			if (out_end)
 | |
| 				*out_end = m_end;
 | |
| 			if (out_nid)
 | |
| 				*out_nid = m_nid;
 | |
| 			idx_a++;
 | |
| 			*idx = (u32)idx_a | (u64)idx_b << 32;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* scan areas before each reservation */
 | |
| 		for (; idx_b < type_b->cnt + 1; idx_b++) {
 | |
| 			struct memblock_region *r;
 | |
| 			phys_addr_t r_start;
 | |
| 			phys_addr_t r_end;
 | |
| 
 | |
| 			r = &type_b->regions[idx_b];
 | |
| 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 | |
| 			r_end = idx_b < type_b->cnt ?
 | |
| 				r->base : ULLONG_MAX;
 | |
| 
 | |
| 			/*
 | |
| 			 * if idx_b advanced past idx_a,
 | |
| 			 * break out to advance idx_a
 | |
| 			 */
 | |
| 			if (r_start >= m_end)
 | |
| 				break;
 | |
| 			/* if the two regions intersect, we're done */
 | |
| 			if (m_start < r_end) {
 | |
| 				if (out_start)
 | |
| 					*out_start =
 | |
| 						max(m_start, r_start);
 | |
| 				if (out_end)
 | |
| 					*out_end = min(m_end, r_end);
 | |
| 				if (out_nid)
 | |
| 					*out_nid = m_nid;
 | |
| 				/*
 | |
| 				 * The region which ends first is
 | |
| 				 * advanced for the next iteration.
 | |
| 				 */
 | |
| 				if (m_end <= r_end)
 | |
| 					idx_a++;
 | |
| 				else
 | |
| 					idx_b++;
 | |
| 				*idx = (u32)idx_a | (u64)idx_b << 32;
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* signal end of iteration */
 | |
| 	*idx = ULLONG_MAX;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 | |
|  *
 | |
|  * Finds the next range from type_a which is not marked as unsuitable
 | |
|  * in type_b.
 | |
|  *
 | |
|  * @idx: pointer to u64 loop variable
 | |
|  * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
 | |
|  * @type_a: pointer to memblock_type from where the range is taken
 | |
|  * @type_b: pointer to memblock_type which excludes memory from being taken
 | |
|  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 | |
|  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 | |
|  * @out_nid: ptr to int for nid of the range, can be %NULL
 | |
|  *
 | |
|  * Reverse of __next_mem_range().
 | |
|  */
 | |
| void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
 | |
| 					  struct memblock_type *type_a,
 | |
| 					  struct memblock_type *type_b,
 | |
| 					  phys_addr_t *out_start,
 | |
| 					  phys_addr_t *out_end, int *out_nid)
 | |
| {
 | |
| 	int idx_a = *idx & 0xffffffff;
 | |
| 	int idx_b = *idx >> 32;
 | |
| 
 | |
| 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 | |
| 		nid = NUMA_NO_NODE;
 | |
| 
 | |
| 	if (*idx == (u64)ULLONG_MAX) {
 | |
| 		idx_a = type_a->cnt - 1;
 | |
| 		idx_b = type_b->cnt;
 | |
| 	}
 | |
| 
 | |
| 	for (; idx_a >= 0; idx_a--) {
 | |
| 		struct memblock_region *m = &type_a->regions[idx_a];
 | |
| 
 | |
| 		phys_addr_t m_start = m->base;
 | |
| 		phys_addr_t m_end = m->base + m->size;
 | |
| 		int m_nid = memblock_get_region_node(m);
 | |
| 
 | |
| 		/* only memory regions are associated with nodes, check it */
 | |
| 		if (nid != NUMA_NO_NODE && nid != m_nid)
 | |
| 			continue;
 | |
| 
 | |
| 		/* skip hotpluggable memory regions if needed */
 | |
| 		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!type_b) {
 | |
| 			if (out_start)
 | |
| 				*out_start = m_start;
 | |
| 			if (out_end)
 | |
| 				*out_end = m_end;
 | |
| 			if (out_nid)
 | |
| 				*out_nid = m_nid;
 | |
| 			idx_a++;
 | |
| 			*idx = (u32)idx_a | (u64)idx_b << 32;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* scan areas before each reservation */
 | |
| 		for (; idx_b >= 0; idx_b--) {
 | |
| 			struct memblock_region *r;
 | |
| 			phys_addr_t r_start;
 | |
| 			phys_addr_t r_end;
 | |
| 
 | |
| 			r = &type_b->regions[idx_b];
 | |
| 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 | |
| 			r_end = idx_b < type_b->cnt ?
 | |
| 				r->base : ULLONG_MAX;
 | |
| 			/*
 | |
| 			 * if idx_b advanced past idx_a,
 | |
| 			 * break out to advance idx_a
 | |
| 			 */
 | |
| 
 | |
| 			if (r_end <= m_start)
 | |
| 				break;
 | |
| 			/* if the two regions intersect, we're done */
 | |
| 			if (m_end > r_start) {
 | |
| 				if (out_start)
 | |
| 					*out_start = max(m_start, r_start);
 | |
| 				if (out_end)
 | |
| 					*out_end = min(m_end, r_end);
 | |
| 				if (out_nid)
 | |
| 					*out_nid = m_nid;
 | |
| 				if (m_start >= r_start)
 | |
| 					idx_a--;
 | |
| 				else
 | |
| 					idx_b--;
 | |
| 				*idx = (u32)idx_a | (u64)idx_b << 32;
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* signal end of iteration */
 | |
| 	*idx = ULLONG_MAX;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| /*
 | |
|  * Common iterator interface used to define for_each_mem_range().
 | |
|  */
 | |
| void __init_memblock __next_mem_pfn_range(int *idx, int nid,
 | |
| 				unsigned long *out_start_pfn,
 | |
| 				unsigned long *out_end_pfn, int *out_nid)
 | |
| {
 | |
| 	struct memblock_type *type = &memblock.memory;
 | |
| 	struct memblock_region *r;
 | |
| 
 | |
| 	while (++*idx < type->cnt) {
 | |
| 		r = &type->regions[*idx];
 | |
| 
 | |
| 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
 | |
| 			continue;
 | |
| 		if (nid == MAX_NUMNODES || nid == r->nid)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (*idx >= type->cnt) {
 | |
| 		*idx = -1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (out_start_pfn)
 | |
| 		*out_start_pfn = PFN_UP(r->base);
 | |
| 	if (out_end_pfn)
 | |
| 		*out_end_pfn = PFN_DOWN(r->base + r->size);
 | |
| 	if (out_nid)
 | |
| 		*out_nid = r->nid;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_set_node - set node ID on memblock regions
 | |
|  * @base: base of area to set node ID for
 | |
|  * @size: size of area to set node ID for
 | |
|  * @type: memblock type to set node ID for
 | |
|  * @nid: node ID to set
 | |
|  *
 | |
|  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
 | |
|  * Regions which cross the area boundaries are split as necessary.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
 | |
| 				      struct memblock_type *type, int nid)
 | |
| {
 | |
| 	int start_rgn, end_rgn;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = start_rgn; i < end_rgn; i++)
 | |
| 		memblock_set_region_node(&type->regions[i], nid);
 | |
| 
 | |
| 	memblock_merge_regions(type);
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 
 | |
| static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
 | |
| 					phys_addr_t align, phys_addr_t start,
 | |
| 					phys_addr_t end, int nid)
 | |
| {
 | |
| 	phys_addr_t found;
 | |
| 
 | |
| 	if (!align)
 | |
| 		align = SMP_CACHE_BYTES;
 | |
| 
 | |
| 	found = memblock_find_in_range_node(size, align, start, end, nid);
 | |
| 	if (found && !memblock_reserve(found, size)) {
 | |
| 		/*
 | |
| 		 * The min_count is set to 0 so that memblock allocations are
 | |
| 		 * never reported as leaks.
 | |
| 		 */
 | |
| 		kmemleak_alloc(__va(found), size, 0, 0);
 | |
| 		return found;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
 | |
| 					phys_addr_t start, phys_addr_t end)
 | |
| {
 | |
| 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
 | |
| }
 | |
| 
 | |
| static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
 | |
| 					phys_addr_t align, phys_addr_t max_addr,
 | |
| 					int nid)
 | |
| {
 | |
| 	return memblock_alloc_range_nid(size, align, 0, max_addr, nid);
 | |
| }
 | |
| 
 | |
| phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 | |
| {
 | |
| 	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 | |
| }
 | |
| 
 | |
| phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 | |
| {
 | |
| 	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
 | |
| }
 | |
| 
 | |
| phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 | |
| {
 | |
| 	phys_addr_t alloc;
 | |
| 
 | |
| 	alloc = __memblock_alloc_base(size, align, max_addr);
 | |
| 
 | |
| 	if (alloc == 0)
 | |
| 		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
 | |
| 		      (unsigned long long) size, (unsigned long long) max_addr);
 | |
| 
 | |
| 	return alloc;
 | |
| }
 | |
| 
 | |
| phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 | |
| {
 | |
| 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 | |
| }
 | |
| 
 | |
| phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 | |
| {
 | |
| 	phys_addr_t res = memblock_alloc_nid(size, align, nid);
 | |
| 
 | |
| 	if (res)
 | |
| 		return res;
 | |
| 	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_virt_alloc_internal - allocate boot memory block
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @min_addr: the lower bound of the memory region to allocate (phys address)
 | |
|  * @max_addr: the upper bound of the memory region to allocate (phys address)
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * The @min_addr limit is dropped if it can not be satisfied and the allocation
 | |
|  * will fall back to memory below @min_addr. Also, allocation may fall back
 | |
|  * to any node in the system if the specified node can not
 | |
|  * hold the requested memory.
 | |
|  *
 | |
|  * The allocation is performed from memory region limited by
 | |
|  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
 | |
|  *
 | |
|  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
 | |
|  *
 | |
|  * The phys address of allocated boot memory block is converted to virtual and
 | |
|  * allocated memory is reset to 0.
 | |
|  *
 | |
|  * In addition, function sets the min_count to 0 using kmemleak_alloc for
 | |
|  * allocated boot memory block, so that it is never reported as leaks.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Virtual address of allocated memory block on success, NULL on failure.
 | |
|  */
 | |
| static void * __init memblock_virt_alloc_internal(
 | |
| 				phys_addr_t size, phys_addr_t align,
 | |
| 				phys_addr_t min_addr, phys_addr_t max_addr,
 | |
| 				int nid)
 | |
| {
 | |
| 	phys_addr_t alloc;
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 | |
| 		nid = NUMA_NO_NODE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect any accidental use of these APIs after slab is ready, as at
 | |
| 	 * this moment memblock may be deinitialized already and its
 | |
| 	 * internal data may be destroyed (after execution of free_all_bootmem)
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(slab_is_available()))
 | |
| 		return kzalloc_node(size, GFP_NOWAIT, nid);
 | |
| 
 | |
| 	if (!align)
 | |
| 		align = SMP_CACHE_BYTES;
 | |
| 
 | |
| 	if (max_addr > memblock.current_limit)
 | |
| 		max_addr = memblock.current_limit;
 | |
| 
 | |
| again:
 | |
| 	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
 | |
| 					    nid);
 | |
| 	if (alloc)
 | |
| 		goto done;
 | |
| 
 | |
| 	if (nid != NUMA_NO_NODE) {
 | |
| 		alloc = memblock_find_in_range_node(size, align, min_addr,
 | |
| 						    max_addr,  NUMA_NO_NODE);
 | |
| 		if (alloc)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (min_addr) {
 | |
| 		min_addr = 0;
 | |
| 		goto again;
 | |
| 	} else {
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	memblock_reserve(alloc, size);
 | |
| 	ptr = phys_to_virt(alloc);
 | |
| 	memset(ptr, 0, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * The min_count is set to 0 so that bootmem allocated blocks
 | |
| 	 * are never reported as leaks. This is because many of these blocks
 | |
| 	 * are only referred via the physical address which is not
 | |
| 	 * looked up by kmemleak.
 | |
| 	 */
 | |
| 	kmemleak_alloc(ptr, size, 0, 0);
 | |
| 
 | |
| 	return ptr;
 | |
| 
 | |
| error:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @min_addr: the lower bound of the memory region from where the allocation
 | |
|  *	  is preferred (phys address)
 | |
|  * @max_addr: the upper bound of the memory region from where the allocation
 | |
|  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 | |
|  *	      allocate only from memory limited by memblock.current_limit value
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
 | |
|  * additional debug information (including caller info), if enabled.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Virtual address of allocated memory block on success, NULL on failure.
 | |
|  */
 | |
| void * __init memblock_virt_alloc_try_nid_nopanic(
 | |
| 				phys_addr_t size, phys_addr_t align,
 | |
| 				phys_addr_t min_addr, phys_addr_t max_addr,
 | |
| 				int nid)
 | |
| {
 | |
| 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
 | |
| 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
 | |
| 		     (u64)max_addr, (void *)_RET_IP_);
 | |
| 	return memblock_virt_alloc_internal(size, align, min_addr,
 | |
| 					     max_addr, nid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
 | |
|  * @size: size of memory block to be allocated in bytes
 | |
|  * @align: alignment of the region and block's size
 | |
|  * @min_addr: the lower bound of the memory region from where the allocation
 | |
|  *	  is preferred (phys address)
 | |
|  * @max_addr: the upper bound of the memory region from where the allocation
 | |
|  *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
 | |
|  *	      allocate only from memory limited by memblock.current_limit value
 | |
|  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 | |
|  *
 | |
|  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
 | |
|  * which provides debug information (including caller info), if enabled,
 | |
|  * and panics if the request can not be satisfied.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * Virtual address of allocated memory block on success, NULL on failure.
 | |
|  */
 | |
| void * __init memblock_virt_alloc_try_nid(
 | |
| 			phys_addr_t size, phys_addr_t align,
 | |
| 			phys_addr_t min_addr, phys_addr_t max_addr,
 | |
| 			int nid)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
 | |
| 		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
 | |
| 		     (u64)max_addr, (void *)_RET_IP_);
 | |
| 	ptr = memblock_virt_alloc_internal(size, align,
 | |
| 					   min_addr, max_addr, nid);
 | |
| 	if (ptr)
 | |
| 		return ptr;
 | |
| 
 | |
| 	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
 | |
| 	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
 | |
| 	      (u64)max_addr);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __memblock_free_early - free boot memory block
 | |
|  * @base: phys starting address of the  boot memory block
 | |
|  * @size: size of the boot memory block in bytes
 | |
|  *
 | |
|  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
 | |
|  * The freeing memory will not be released to the buddy allocator.
 | |
|  */
 | |
| void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
 | |
| 		     __func__, (u64)base, (u64)base + size - 1,
 | |
| 		     (void *)_RET_IP_);
 | |
| 	kmemleak_free_part(__va(base), size);
 | |
| 	memblock_remove_range(&memblock.reserved, base, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __memblock_free_late - free bootmem block pages directly to buddy allocator
 | |
|  * @addr: phys starting address of the  boot memory block
 | |
|  * @size: size of the boot memory block in bytes
 | |
|  *
 | |
|  * This is only useful when the bootmem allocator has already been torn
 | |
|  * down, but we are still initializing the system.  Pages are released directly
 | |
|  * to the buddy allocator, no bootmem metadata is updated because it is gone.
 | |
|  */
 | |
| void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	u64 cursor, end;
 | |
| 
 | |
| 	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
 | |
| 		     __func__, (u64)base, (u64)base + size - 1,
 | |
| 		     (void *)_RET_IP_);
 | |
| 	kmemleak_free_part(__va(base), size);
 | |
| 	cursor = PFN_UP(base);
 | |
| 	end = PFN_DOWN(base + size);
 | |
| 
 | |
| 	for (; cursor < end; cursor++) {
 | |
| 		__free_pages_bootmem(pfn_to_page(cursor), 0);
 | |
| 		totalram_pages++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remaining API functions
 | |
|  */
 | |
| 
 | |
| phys_addr_t __init memblock_phys_mem_size(void)
 | |
| {
 | |
| 	return memblock.memory.total_size;
 | |
| }
 | |
| 
 | |
| phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
 | |
| {
 | |
| 	unsigned long pages = 0;
 | |
| 	struct memblock_region *r;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 
 | |
| 	for_each_memblock(memory, r) {
 | |
| 		start_pfn = memblock_region_memory_base_pfn(r);
 | |
| 		end_pfn = memblock_region_memory_end_pfn(r);
 | |
| 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
 | |
| 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
 | |
| 		pages += end_pfn - start_pfn;
 | |
| 	}
 | |
| 
 | |
| 	return PFN_PHYS(pages);
 | |
| }
 | |
| 
 | |
| /* lowest address */
 | |
| phys_addr_t __init_memblock memblock_start_of_DRAM(void)
 | |
| {
 | |
| 	return memblock.memory.regions[0].base;
 | |
| }
 | |
| 
 | |
| phys_addr_t __init_memblock memblock_end_of_DRAM(void)
 | |
| {
 | |
| 	int idx = memblock.memory.cnt - 1;
 | |
| 
 | |
| 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
 | |
| }
 | |
| 
 | |
| void __init memblock_enforce_memory_limit(phys_addr_t limit)
 | |
| {
 | |
| 	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
 | |
| 	struct memblock_region *r;
 | |
| 
 | |
| 	if (!limit)
 | |
| 		return;
 | |
| 
 | |
| 	/* find out max address */
 | |
| 	for_each_memblock(memory, r) {
 | |
| 		if (limit <= r->size) {
 | |
| 			max_addr = r->base + limit;
 | |
| 			break;
 | |
| 		}
 | |
| 		limit -= r->size;
 | |
| 	}
 | |
| 
 | |
| 	/* truncate both memory and reserved regions */
 | |
| 	memblock_remove_range(&memblock.memory, max_addr,
 | |
| 			      (phys_addr_t)ULLONG_MAX);
 | |
| 	memblock_remove_range(&memblock.reserved, max_addr,
 | |
| 			      (phys_addr_t)ULLONG_MAX);
 | |
| }
 | |
| 
 | |
| static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
 | |
| {
 | |
| 	unsigned int left = 0, right = type->cnt;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int mid = (right + left) / 2;
 | |
| 
 | |
| 		if (addr < type->regions[mid].base)
 | |
| 			right = mid;
 | |
| 		else if (addr >= (type->regions[mid].base +
 | |
| 				  type->regions[mid].size))
 | |
| 			left = mid + 1;
 | |
| 		else
 | |
| 			return mid;
 | |
| 	} while (left < right);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int __init memblock_is_reserved(phys_addr_t addr)
 | |
| {
 | |
| 	return memblock_search(&memblock.reserved, addr) != -1;
 | |
| }
 | |
| 
 | |
| int __init_memblock memblock_is_memory(phys_addr_t addr)
 | |
| {
 | |
| 	return memblock_search(&memblock.memory, addr) != -1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
 | |
| 			 unsigned long *start_pfn, unsigned long *end_pfn)
 | |
| {
 | |
| 	struct memblock_type *type = &memblock.memory;
 | |
| 	int mid = memblock_search(type, PFN_PHYS(pfn));
 | |
| 
 | |
| 	if (mid == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	*start_pfn = PFN_DOWN(type->regions[mid].base);
 | |
| 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
 | |
| 
 | |
| 	return type->regions[mid].nid;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * memblock_is_region_memory - check if a region is a subset of memory
 | |
|  * @base: base of region to check
 | |
|  * @size: size of region to check
 | |
|  *
 | |
|  * Check if the region [@base, @base+@size) is a subset of a memory block.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 if false, non-zero if true
 | |
|  */
 | |
| int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	int idx = memblock_search(&memblock.memory, base);
 | |
| 	phys_addr_t end = base + memblock_cap_size(base, &size);
 | |
| 
 | |
| 	if (idx == -1)
 | |
| 		return 0;
 | |
| 	return memblock.memory.regions[idx].base <= base &&
 | |
| 		(memblock.memory.regions[idx].base +
 | |
| 		 memblock.memory.regions[idx].size) >= end;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memblock_is_region_reserved - check if a region intersects reserved memory
 | |
|  * @base: base of region to check
 | |
|  * @size: size of region to check
 | |
|  *
 | |
|  * Check if the region [@base, @base+@size) intersects a reserved memory block.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 if false, non-zero if true
 | |
|  */
 | |
| int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 | |
| {
 | |
| 	memblock_cap_size(base, &size);
 | |
| 	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
 | |
| }
 | |
| 
 | |
| void __init_memblock memblock_trim_memory(phys_addr_t align)
 | |
| {
 | |
| 	phys_addr_t start, end, orig_start, orig_end;
 | |
| 	struct memblock_region *r;
 | |
| 
 | |
| 	for_each_memblock(memory, r) {
 | |
| 		orig_start = r->base;
 | |
| 		orig_end = r->base + r->size;
 | |
| 		start = round_up(orig_start, align);
 | |
| 		end = round_down(orig_end, align);
 | |
| 
 | |
| 		if (start == orig_start && end == orig_end)
 | |
| 			continue;
 | |
| 
 | |
| 		if (start < end) {
 | |
| 			r->base = start;
 | |
| 			r->size = end - start;
 | |
| 		} else {
 | |
| 			memblock_remove_region(&memblock.memory,
 | |
| 					       r - memblock.memory.regions);
 | |
| 			r--;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init_memblock memblock_set_current_limit(phys_addr_t limit)
 | |
| {
 | |
| 	memblock.current_limit = limit;
 | |
| }
 | |
| 
 | |
| phys_addr_t __init_memblock memblock_get_current_limit(void)
 | |
| {
 | |
| 	return memblock.current_limit;
 | |
| }
 | |
| 
 | |
| static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
 | |
| {
 | |
| 	unsigned long long base, size;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
 | |
| 
 | |
| 	for (i = 0; i < type->cnt; i++) {
 | |
| 		struct memblock_region *rgn = &type->regions[i];
 | |
| 		char nid_buf[32] = "";
 | |
| 
 | |
| 		base = rgn->base;
 | |
| 		size = rgn->size;
 | |
| 		flags = rgn->flags;
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
 | |
| 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
 | |
| 				 memblock_get_region_node(rgn));
 | |
| #endif
 | |
| 		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
 | |
| 			name, i, base, base + size - 1, size, nid_buf, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init_memblock __memblock_dump_all(void)
 | |
| {
 | |
| 	pr_info("MEMBLOCK configuration:\n");
 | |
| 	pr_info(" memory size = %#llx reserved size = %#llx\n",
 | |
| 		(unsigned long long)memblock.memory.total_size,
 | |
| 		(unsigned long long)memblock.reserved.total_size);
 | |
| 
 | |
| 	memblock_dump(&memblock.memory, "memory");
 | |
| 	memblock_dump(&memblock.reserved, "reserved");
 | |
| }
 | |
| 
 | |
| void __init memblock_allow_resize(void)
 | |
| {
 | |
| 	memblock_can_resize = 1;
 | |
| }
 | |
| 
 | |
| static int __init early_memblock(char *p)
 | |
| {
 | |
| 	if (p && strstr(p, "debug"))
 | |
| 		memblock_debug = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("memblock", early_memblock);
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
 | |
| 
 | |
| static int memblock_debug_show(struct seq_file *m, void *private)
 | |
| {
 | |
| 	struct memblock_type *type = m->private;
 | |
| 	struct memblock_region *reg;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < type->cnt; i++) {
 | |
| 		reg = &type->regions[i];
 | |
| 		seq_printf(m, "%4d: ", i);
 | |
| 		if (sizeof(phys_addr_t) == 4)
 | |
| 			seq_printf(m, "0x%08lx..0x%08lx\n",
 | |
| 				   (unsigned long)reg->base,
 | |
| 				   (unsigned long)(reg->base + reg->size - 1));
 | |
| 		else
 | |
| 			seq_printf(m, "0x%016llx..0x%016llx\n",
 | |
| 				   (unsigned long long)reg->base,
 | |
| 				   (unsigned long long)(reg->base + reg->size - 1));
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int memblock_debug_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, memblock_debug_show, inode->i_private);
 | |
| }
 | |
| 
 | |
| static const struct file_operations memblock_debug_fops = {
 | |
| 	.open = memblock_debug_open,
 | |
| 	.read = seq_read,
 | |
| 	.llseek = seq_lseek,
 | |
| 	.release = single_release,
 | |
| };
 | |
| 
 | |
| static int __init memblock_init_debugfs(void)
 | |
| {
 | |
| 	struct dentry *root = debugfs_create_dir("memblock", NULL);
 | |
| 	if (!root)
 | |
| 		return -ENXIO;
 | |
| 	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
 | |
| 	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 | |
| 	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(memblock_init_debugfs);
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_FS */
 |