NFS needs to be able to release objects that are stored in the page
cache once the page itself is no longer visible from the page cache.
This patch adds a callback to the address space operations that allows
filesystems to perform page cleanups once the page has been removed
from the page cache.
Original patch by: Linus Torvalds <torvalds@linux-foundation.org>
[trondmy: cover the cases of invalidate_inode_pages2() and
          truncate_inode_pages()]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
		
	
			
		
			
				
	
	
		
			592 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * mm/truncate.c - code for taking down pages from address_spaces
 | 
						|
 *
 | 
						|
 * Copyright (C) 2002, Linus Torvalds
 | 
						|
 *
 | 
						|
 * 10Sep2002	Andrew Morton
 | 
						|
 *		Initial version.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/task_io_accounting_ops.h>
 | 
						|
#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 | 
						|
				   do_invalidatepage */
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * do_invalidatepage - invalidate part or all of a page
 | 
						|
 * @page: the page which is affected
 | 
						|
 * @offset: the index of the truncation point
 | 
						|
 *
 | 
						|
 * do_invalidatepage() is called when all or part of the page has become
 | 
						|
 * invalidated by a truncate operation.
 | 
						|
 *
 | 
						|
 * do_invalidatepage() does not have to release all buffers, but it must
 | 
						|
 * ensure that no dirty buffer is left outside @offset and that no I/O
 | 
						|
 * is underway against any of the blocks which are outside the truncation
 | 
						|
 * point.  Because the caller is about to free (and possibly reuse) those
 | 
						|
 * blocks on-disk.
 | 
						|
 */
 | 
						|
void do_invalidatepage(struct page *page, unsigned long offset)
 | 
						|
{
 | 
						|
	void (*invalidatepage)(struct page *, unsigned long);
 | 
						|
	invalidatepage = page->mapping->a_ops->invalidatepage;
 | 
						|
#ifdef CONFIG_BLOCK
 | 
						|
	if (!invalidatepage)
 | 
						|
		invalidatepage = block_invalidatepage;
 | 
						|
#endif
 | 
						|
	if (invalidatepage)
 | 
						|
		(*invalidatepage)(page, offset);
 | 
						|
}
 | 
						|
 | 
						|
static inline void truncate_partial_page(struct page *page, unsigned partial)
 | 
						|
{
 | 
						|
	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
 | 
						|
	if (page_has_private(page))
 | 
						|
		do_invalidatepage(page, partial);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This cancels just the dirty bit on the kernel page itself, it
 | 
						|
 * does NOT actually remove dirty bits on any mmap's that may be
 | 
						|
 * around. It also leaves the page tagged dirty, so any sync
 | 
						|
 * activity will still find it on the dirty lists, and in particular,
 | 
						|
 * clear_page_dirty_for_io() will still look at the dirty bits in
 | 
						|
 * the VM.
 | 
						|
 *
 | 
						|
 * Doing this should *normally* only ever be done when a page
 | 
						|
 * is truncated, and is not actually mapped anywhere at all. However,
 | 
						|
 * fs/buffer.c does this when it notices that somebody has cleaned
 | 
						|
 * out all the buffers on a page without actually doing it through
 | 
						|
 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
 | 
						|
 */
 | 
						|
void cancel_dirty_page(struct page *page, unsigned int account_size)
 | 
						|
{
 | 
						|
	if (TestClearPageDirty(page)) {
 | 
						|
		struct address_space *mapping = page->mapping;
 | 
						|
		if (mapping && mapping_cap_account_dirty(mapping)) {
 | 
						|
			dec_zone_page_state(page, NR_FILE_DIRTY);
 | 
						|
			dec_bdi_stat(mapping->backing_dev_info,
 | 
						|
					BDI_RECLAIMABLE);
 | 
						|
			if (account_size)
 | 
						|
				task_io_account_cancelled_write(account_size);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(cancel_dirty_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * If truncate cannot remove the fs-private metadata from the page, the page
 | 
						|
 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 | 
						|
 * user pagetables if we're racing with filemap_fault().
 | 
						|
 *
 | 
						|
 * We need to bale out if page->mapping is no longer equal to the original
 | 
						|
 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 | 
						|
 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 | 
						|
 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 | 
						|
 */
 | 
						|
static int
 | 
						|
truncate_complete_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	if (page->mapping != mapping)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	if (page_has_private(page))
 | 
						|
		do_invalidatepage(page, 0);
 | 
						|
 | 
						|
	cancel_dirty_page(page, PAGE_CACHE_SIZE);
 | 
						|
 | 
						|
	clear_page_mlock(page);
 | 
						|
	remove_from_page_cache(page);
 | 
						|
	ClearPageMappedToDisk(page);
 | 
						|
	page_cache_release(page);	/* pagecache ref */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is for invalidate_mapping_pages().  That function can be called at
 | 
						|
 * any time, and is not supposed to throw away dirty pages.  But pages can
 | 
						|
 * be marked dirty at any time too, so use remove_mapping which safely
 | 
						|
 * discards clean, unused pages.
 | 
						|
 *
 | 
						|
 * Returns non-zero if the page was successfully invalidated.
 | 
						|
 */
 | 
						|
static int
 | 
						|
invalidate_complete_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (page->mapping != mapping)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (page_has_private(page) && !try_to_release_page(page, 0))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	clear_page_mlock(page);
 | 
						|
	ret = remove_mapping(mapping, page);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int truncate_inode_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	if (page_mapped(page)) {
 | 
						|
		unmap_mapping_range(mapping,
 | 
						|
				   (loff_t)page->index << PAGE_CACHE_SHIFT,
 | 
						|
				   PAGE_CACHE_SIZE, 0);
 | 
						|
	}
 | 
						|
	return truncate_complete_page(mapping, page);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to get rid of pages on hardware memory corruption.
 | 
						|
 */
 | 
						|
int generic_error_remove_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	if (!mapping)
 | 
						|
		return -EINVAL;
 | 
						|
	/*
 | 
						|
	 * Only punch for normal data pages for now.
 | 
						|
	 * Handling other types like directories would need more auditing.
 | 
						|
	 */
 | 
						|
	if (!S_ISREG(mapping->host->i_mode))
 | 
						|
		return -EIO;
 | 
						|
	return truncate_inode_page(mapping, page);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(generic_error_remove_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Safely invalidate one page from its pagecache mapping.
 | 
						|
 * It only drops clean, unused pages. The page must be locked.
 | 
						|
 *
 | 
						|
 * Returns 1 if the page is successfully invalidated, otherwise 0.
 | 
						|
 */
 | 
						|
int invalidate_inode_page(struct page *page)
 | 
						|
{
 | 
						|
	struct address_space *mapping = page_mapping(page);
 | 
						|
	if (!mapping)
 | 
						|
		return 0;
 | 
						|
	if (PageDirty(page) || PageWriteback(page))
 | 
						|
		return 0;
 | 
						|
	if (page_mapped(page))
 | 
						|
		return 0;
 | 
						|
	return invalidate_complete_page(mapping, page);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
 | 
						|
 * @mapping: mapping to truncate
 | 
						|
 * @lstart: offset from which to truncate
 | 
						|
 * @lend: offset to which to truncate
 | 
						|
 *
 | 
						|
 * Truncate the page cache, removing the pages that are between
 | 
						|
 * specified offsets (and zeroing out partial page
 | 
						|
 * (if lstart is not page aligned)).
 | 
						|
 *
 | 
						|
 * Truncate takes two passes - the first pass is nonblocking.  It will not
 | 
						|
 * block on page locks and it will not block on writeback.  The second pass
 | 
						|
 * will wait.  This is to prevent as much IO as possible in the affected region.
 | 
						|
 * The first pass will remove most pages, so the search cost of the second pass
 | 
						|
 * is low.
 | 
						|
 *
 | 
						|
 * When looking at page->index outside the page lock we need to be careful to
 | 
						|
 * copy it into a local to avoid races (it could change at any time).
 | 
						|
 *
 | 
						|
 * We pass down the cache-hot hint to the page freeing code.  Even if the
 | 
						|
 * mapping is large, it is probably the case that the final pages are the most
 | 
						|
 * recently touched, and freeing happens in ascending file offset order.
 | 
						|
 */
 | 
						|
void truncate_inode_pages_range(struct address_space *mapping,
 | 
						|
				loff_t lstart, loff_t lend)
 | 
						|
{
 | 
						|
	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 | 
						|
	pgoff_t end;
 | 
						|
	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
 | 
						|
	struct pagevec pvec;
 | 
						|
	pgoff_t next;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (mapping->nrpages == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
 | 
						|
	end = (lend >> PAGE_CACHE_SHIFT);
 | 
						|
 | 
						|
	pagevec_init(&pvec, 0);
 | 
						|
	next = start;
 | 
						|
	while (next <= end &&
 | 
						|
	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 | 
						|
		for (i = 0; i < pagevec_count(&pvec); i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
			pgoff_t page_index = page->index;
 | 
						|
 | 
						|
			if (page_index > end) {
 | 
						|
				next = page_index;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			if (page_index > next)
 | 
						|
				next = page_index;
 | 
						|
			next++;
 | 
						|
			if (!trylock_page(page))
 | 
						|
				continue;
 | 
						|
			if (PageWriteback(page)) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			truncate_inode_page(mapping, page);
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	if (partial) {
 | 
						|
		struct page *page = find_lock_page(mapping, start - 1);
 | 
						|
		if (page) {
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			truncate_partial_page(page, partial);
 | 
						|
			unlock_page(page);
 | 
						|
			page_cache_release(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	next = start;
 | 
						|
	for ( ; ; ) {
 | 
						|
		cond_resched();
 | 
						|
		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 | 
						|
			if (next == start)
 | 
						|
				break;
 | 
						|
			next = start;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (pvec.pages[0]->index > end) {
 | 
						|
			pagevec_release(&pvec);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		mem_cgroup_uncharge_start();
 | 
						|
		for (i = 0; i < pagevec_count(&pvec); i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
 | 
						|
			if (page->index > end)
 | 
						|
				break;
 | 
						|
			lock_page(page);
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			truncate_inode_page(mapping, page);
 | 
						|
			if (page->index > next)
 | 
						|
				next = page->index;
 | 
						|
			next++;
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		mem_cgroup_uncharge_end();
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_inode_pages_range);
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_inode_pages - truncate *all* the pages from an offset
 | 
						|
 * @mapping: mapping to truncate
 | 
						|
 * @lstart: offset from which to truncate
 | 
						|
 *
 | 
						|
 * Called under (and serialised by) inode->i_mutex.
 | 
						|
 */
 | 
						|
void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 | 
						|
{
 | 
						|
	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_inode_pages);
 | 
						|
 | 
						|
/**
 | 
						|
 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 | 
						|
 * @mapping: the address_space which holds the pages to invalidate
 | 
						|
 * @start: the offset 'from' which to invalidate
 | 
						|
 * @end: the offset 'to' which to invalidate (inclusive)
 | 
						|
 *
 | 
						|
 * This function only removes the unlocked pages, if you want to
 | 
						|
 * remove all the pages of one inode, you must call truncate_inode_pages.
 | 
						|
 *
 | 
						|
 * invalidate_mapping_pages() will not block on IO activity. It will not
 | 
						|
 * invalidate pages which are dirty, locked, under writeback or mapped into
 | 
						|
 * pagetables.
 | 
						|
 */
 | 
						|
unsigned long invalidate_mapping_pages(struct address_space *mapping,
 | 
						|
				       pgoff_t start, pgoff_t end)
 | 
						|
{
 | 
						|
	struct pagevec pvec;
 | 
						|
	pgoff_t next = start;
 | 
						|
	unsigned long ret = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	pagevec_init(&pvec, 0);
 | 
						|
	while (next <= end &&
 | 
						|
			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
 | 
						|
		mem_cgroup_uncharge_start();
 | 
						|
		for (i = 0; i < pagevec_count(&pvec); i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
			pgoff_t index;
 | 
						|
			int lock_failed;
 | 
						|
 | 
						|
			lock_failed = !trylock_page(page);
 | 
						|
 | 
						|
			/*
 | 
						|
			 * We really shouldn't be looking at the ->index of an
 | 
						|
			 * unlocked page.  But we're not allowed to lock these
 | 
						|
			 * pages.  So we rely upon nobody altering the ->index
 | 
						|
			 * of this (pinned-by-us) page.
 | 
						|
			 */
 | 
						|
			index = page->index;
 | 
						|
			if (index > next)
 | 
						|
				next = index;
 | 
						|
			next++;
 | 
						|
			if (lock_failed)
 | 
						|
				continue;
 | 
						|
 | 
						|
			ret += invalidate_inode_page(page);
 | 
						|
 | 
						|
			unlock_page(page);
 | 
						|
			if (next > end)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		mem_cgroup_uncharge_end();
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(invalidate_mapping_pages);
 | 
						|
 | 
						|
/*
 | 
						|
 * This is like invalidate_complete_page(), except it ignores the page's
 | 
						|
 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 | 
						|
 * invalidation guarantees, and cannot afford to leave pages behind because
 | 
						|
 * shrink_page_list() has a temp ref on them, or because they're transiently
 | 
						|
 * sitting in the lru_cache_add() pagevecs.
 | 
						|
 */
 | 
						|
static int
 | 
						|
invalidate_complete_page2(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	if (page->mapping != mapping)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	spin_lock_irq(&mapping->tree_lock);
 | 
						|
	if (PageDirty(page))
 | 
						|
		goto failed;
 | 
						|
 | 
						|
	clear_page_mlock(page);
 | 
						|
	BUG_ON(page_has_private(page));
 | 
						|
	__remove_from_page_cache(page);
 | 
						|
	spin_unlock_irq(&mapping->tree_lock);
 | 
						|
	mem_cgroup_uncharge_cache_page(page);
 | 
						|
 | 
						|
	if (mapping->a_ops->freepage)
 | 
						|
		mapping->a_ops->freepage(page);
 | 
						|
 | 
						|
	page_cache_release(page);	/* pagecache ref */
 | 
						|
	return 1;
 | 
						|
failed:
 | 
						|
	spin_unlock_irq(&mapping->tree_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int do_launder_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	if (!PageDirty(page))
 | 
						|
		return 0;
 | 
						|
	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 | 
						|
		return 0;
 | 
						|
	return mapping->a_ops->launder_page(page);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * invalidate_inode_pages2_range - remove range of pages from an address_space
 | 
						|
 * @mapping: the address_space
 | 
						|
 * @start: the page offset 'from' which to invalidate
 | 
						|
 * @end: the page offset 'to' which to invalidate (inclusive)
 | 
						|
 *
 | 
						|
 * Any pages which are found to be mapped into pagetables are unmapped prior to
 | 
						|
 * invalidation.
 | 
						|
 *
 | 
						|
 * Returns -EBUSY if any pages could not be invalidated.
 | 
						|
 */
 | 
						|
int invalidate_inode_pages2_range(struct address_space *mapping,
 | 
						|
				  pgoff_t start, pgoff_t end)
 | 
						|
{
 | 
						|
	struct pagevec pvec;
 | 
						|
	pgoff_t next;
 | 
						|
	int i;
 | 
						|
	int ret = 0;
 | 
						|
	int ret2 = 0;
 | 
						|
	int did_range_unmap = 0;
 | 
						|
	int wrapped = 0;
 | 
						|
 | 
						|
	pagevec_init(&pvec, 0);
 | 
						|
	next = start;
 | 
						|
	while (next <= end && !wrapped &&
 | 
						|
		pagevec_lookup(&pvec, mapping, next,
 | 
						|
			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
 | 
						|
		mem_cgroup_uncharge_start();
 | 
						|
		for (i = 0; i < pagevec_count(&pvec); i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
			pgoff_t page_index;
 | 
						|
 | 
						|
			lock_page(page);
 | 
						|
			if (page->mapping != mapping) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			page_index = page->index;
 | 
						|
			next = page_index + 1;
 | 
						|
			if (next == 0)
 | 
						|
				wrapped = 1;
 | 
						|
			if (page_index > end) {
 | 
						|
				unlock_page(page);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			if (page_mapped(page)) {
 | 
						|
				if (!did_range_unmap) {
 | 
						|
					/*
 | 
						|
					 * Zap the rest of the file in one hit.
 | 
						|
					 */
 | 
						|
					unmap_mapping_range(mapping,
 | 
						|
					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
 | 
						|
					   (loff_t)(end - page_index + 1)
 | 
						|
							<< PAGE_CACHE_SHIFT,
 | 
						|
					    0);
 | 
						|
					did_range_unmap = 1;
 | 
						|
				} else {
 | 
						|
					/*
 | 
						|
					 * Just zap this page
 | 
						|
					 */
 | 
						|
					unmap_mapping_range(mapping,
 | 
						|
					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
 | 
						|
					  PAGE_CACHE_SIZE, 0);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			BUG_ON(page_mapped(page));
 | 
						|
			ret2 = do_launder_page(mapping, page);
 | 
						|
			if (ret2 == 0) {
 | 
						|
				if (!invalidate_complete_page2(mapping, page))
 | 
						|
					ret2 = -EBUSY;
 | 
						|
			}
 | 
						|
			if (ret2 < 0)
 | 
						|
				ret = ret2;
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		mem_cgroup_uncharge_end();
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 | 
						|
 | 
						|
/**
 | 
						|
 * invalidate_inode_pages2 - remove all pages from an address_space
 | 
						|
 * @mapping: the address_space
 | 
						|
 *
 | 
						|
 * Any pages which are found to be mapped into pagetables are unmapped prior to
 | 
						|
 * invalidation.
 | 
						|
 *
 | 
						|
 * Returns -EBUSY if any pages could not be invalidated.
 | 
						|
 */
 | 
						|
int invalidate_inode_pages2(struct address_space *mapping)
 | 
						|
{
 | 
						|
	return invalidate_inode_pages2_range(mapping, 0, -1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_pagecache - unmap and remove pagecache that has been truncated
 | 
						|
 * @inode: inode
 | 
						|
 * @old: old file offset
 | 
						|
 * @new: new file offset
 | 
						|
 *
 | 
						|
 * inode's new i_size must already be written before truncate_pagecache
 | 
						|
 * is called.
 | 
						|
 *
 | 
						|
 * This function should typically be called before the filesystem
 | 
						|
 * releases resources associated with the freed range (eg. deallocates
 | 
						|
 * blocks). This way, pagecache will always stay logically coherent
 | 
						|
 * with on-disk format, and the filesystem would not have to deal with
 | 
						|
 * situations such as writepage being called for a page that has already
 | 
						|
 * had its underlying blocks deallocated.
 | 
						|
 */
 | 
						|
void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
 | 
						|
{
 | 
						|
	struct address_space *mapping = inode->i_mapping;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * unmap_mapping_range is called twice, first simply for
 | 
						|
	 * efficiency so that truncate_inode_pages does fewer
 | 
						|
	 * single-page unmaps.  However after this first call, and
 | 
						|
	 * before truncate_inode_pages finishes, it is possible for
 | 
						|
	 * private pages to be COWed, which remain after
 | 
						|
	 * truncate_inode_pages finishes, hence the second
 | 
						|
	 * unmap_mapping_range call must be made for correctness.
 | 
						|
	 */
 | 
						|
	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 | 
						|
	truncate_inode_pages(mapping, new);
 | 
						|
	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_pagecache);
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_setsize - update inode and pagecache for a new file size
 | 
						|
 * @inode: inode
 | 
						|
 * @newsize: new file size
 | 
						|
 *
 | 
						|
 * truncate_setsize updastes i_size update and performs pagecache
 | 
						|
 * truncation (if necessary) for a file size updates. It will be
 | 
						|
 * typically be called from the filesystem's setattr function when
 | 
						|
 * ATTR_SIZE is passed in.
 | 
						|
 *
 | 
						|
 * Must be called with inode_mutex held and after all filesystem
 | 
						|
 * specific block truncation has been performed.
 | 
						|
 */
 | 
						|
void truncate_setsize(struct inode *inode, loff_t newsize)
 | 
						|
{
 | 
						|
	loff_t oldsize;
 | 
						|
 | 
						|
	oldsize = inode->i_size;
 | 
						|
	i_size_write(inode, newsize);
 | 
						|
 | 
						|
	truncate_pagecache(inode, oldsize, newsize);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_setsize);
 | 
						|
 | 
						|
/**
 | 
						|
 * vmtruncate - unmap mappings "freed" by truncate() syscall
 | 
						|
 * @inode: inode of the file used
 | 
						|
 * @offset: file offset to start truncating
 | 
						|
 *
 | 
						|
 * This function is deprecated and truncate_setsize or truncate_pagecache
 | 
						|
 * should be used instead, together with filesystem specific block truncation.
 | 
						|
 */
 | 
						|
int vmtruncate(struct inode *inode, loff_t offset)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
 | 
						|
	error = inode_newsize_ok(inode, offset);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	truncate_setsize(inode, offset);
 | 
						|
	if (inode->i_op->truncate)
 | 
						|
		inode->i_op->truncate(inode);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(vmtruncate);
 |