Clean up lockdep on-stack-completion initializer. (This also removes the dependency on waitqueue_lock_key.) Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			1293 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1293 lines
		
	
	
	
		
			32 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *	x86 SMP booting functions
 | 
						|
 *
 | 
						|
 *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com>
 | 
						|
 *	(c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
 | 
						|
 *	Copyright 2001 Andi Kleen, SuSE Labs.
 | 
						|
 *
 | 
						|
 *	Much of the core SMP work is based on previous work by Thomas Radke, to
 | 
						|
 *	whom a great many thanks are extended.
 | 
						|
 *
 | 
						|
 *	Thanks to Intel for making available several different Pentium,
 | 
						|
 *	Pentium Pro and Pentium-II/Xeon MP machines.
 | 
						|
 *	Original development of Linux SMP code supported by Caldera.
 | 
						|
 *
 | 
						|
 *	This code is released under the GNU General Public License version 2
 | 
						|
 *
 | 
						|
 *	Fixes
 | 
						|
 *		Felix Koop	:	NR_CPUS used properly
 | 
						|
 *		Jose Renau	:	Handle single CPU case.
 | 
						|
 *		Alan Cox	:	By repeated request 8) - Total BogoMIP report.
 | 
						|
 *		Greg Wright	:	Fix for kernel stacks panic.
 | 
						|
 *		Erich Boleyn	:	MP v1.4 and additional changes.
 | 
						|
 *	Matthias Sattler	:	Changes for 2.1 kernel map.
 | 
						|
 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
 | 
						|
 *	Michael Chastain	:	Change trampoline.S to gnu as.
 | 
						|
 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
 | 
						|
 *		Ingo Molnar	:	Added APIC timers, based on code
 | 
						|
 *					from Jose Renau
 | 
						|
 *		Ingo Molnar	:	various cleanups and rewrites
 | 
						|
 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
 | 
						|
 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
 | 
						|
 *	Andi Kleen		:	Changed for SMP boot into long mode.
 | 
						|
 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
 | 
						|
 *      Andi Kleen              :       Converted to new state machine.
 | 
						|
 *					Various cleanups.
 | 
						|
 *					Probably mostly hotplug CPU ready now.
 | 
						|
 *	Ashok Raj			: CPU hotplug support
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include <linux/init.h>
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/smp_lock.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/thread_info.h>
 | 
						|
#include <linux/module.h>
 | 
						|
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/mc146818rtc.h>
 | 
						|
#include <asm/mtrr.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/desc.h>
 | 
						|
#include <asm/kdebug.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/proto.h>
 | 
						|
#include <asm/nmi.h>
 | 
						|
#include <asm/irq.h>
 | 
						|
#include <asm/hw_irq.h>
 | 
						|
#include <asm/numa.h>
 | 
						|
 | 
						|
/* Number of siblings per CPU package */
 | 
						|
int smp_num_siblings = 1;
 | 
						|
EXPORT_SYMBOL(smp_num_siblings);
 | 
						|
 | 
						|
/* Last level cache ID of each logical CPU */
 | 
						|
u8 cpu_llc_id[NR_CPUS] __cpuinitdata  = {[0 ... NR_CPUS-1] = BAD_APICID};
 | 
						|
EXPORT_SYMBOL(cpu_llc_id);
 | 
						|
 | 
						|
/* Bitmask of currently online CPUs */
 | 
						|
cpumask_t cpu_online_map __read_mostly;
 | 
						|
 | 
						|
EXPORT_SYMBOL(cpu_online_map);
 | 
						|
 | 
						|
/*
 | 
						|
 * Private maps to synchronize booting between AP and BP.
 | 
						|
 * Probably not needed anymore, but it makes for easier debugging. -AK
 | 
						|
 */
 | 
						|
cpumask_t cpu_callin_map;
 | 
						|
cpumask_t cpu_callout_map;
 | 
						|
EXPORT_SYMBOL(cpu_callout_map);
 | 
						|
 | 
						|
cpumask_t cpu_possible_map;
 | 
						|
EXPORT_SYMBOL(cpu_possible_map);
 | 
						|
 | 
						|
/* Per CPU bogomips and other parameters */
 | 
						|
struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
 | 
						|
EXPORT_SYMBOL(cpu_data);
 | 
						|
 | 
						|
/* Set when the idlers are all forked */
 | 
						|
int smp_threads_ready;
 | 
						|
 | 
						|
/* representing HT siblings of each logical CPU */
 | 
						|
cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 | 
						|
EXPORT_SYMBOL(cpu_sibling_map);
 | 
						|
 | 
						|
/* representing HT and core siblings of each logical CPU */
 | 
						|
cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 | 
						|
EXPORT_SYMBOL(cpu_core_map);
 | 
						|
 | 
						|
/*
 | 
						|
 * Trampoline 80x86 program as an array.
 | 
						|
 */
 | 
						|
 | 
						|
extern unsigned char trampoline_data[];
 | 
						|
extern unsigned char trampoline_end[];
 | 
						|
 | 
						|
/* State of each CPU */
 | 
						|
DEFINE_PER_CPU(int, cpu_state) = { 0 };
 | 
						|
 | 
						|
/*
 | 
						|
 * Store all idle threads, this can be reused instead of creating
 | 
						|
 * a new thread. Also avoids complicated thread destroy functionality
 | 
						|
 * for idle threads.
 | 
						|
 */
 | 
						|
struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
 | 
						|
 | 
						|
#define get_idle_for_cpu(x)     (idle_thread_array[(x)])
 | 
						|
#define set_idle_for_cpu(x,p)   (idle_thread_array[(x)] = (p))
 | 
						|
 | 
						|
/*
 | 
						|
 * Currently trivial. Write the real->protected mode
 | 
						|
 * bootstrap into the page concerned. The caller
 | 
						|
 * has made sure it's suitably aligned.
 | 
						|
 */
 | 
						|
 | 
						|
static unsigned long __cpuinit setup_trampoline(void)
 | 
						|
{
 | 
						|
	void *tramp = __va(SMP_TRAMPOLINE_BASE); 
 | 
						|
	memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
 | 
						|
	return virt_to_phys(tramp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The bootstrap kernel entry code has set these up. Save them for
 | 
						|
 * a given CPU
 | 
						|
 */
 | 
						|
 | 
						|
static void __cpuinit smp_store_cpu_info(int id)
 | 
						|
{
 | 
						|
	struct cpuinfo_x86 *c = cpu_data + id;
 | 
						|
 | 
						|
	*c = boot_cpu_data;
 | 
						|
	identify_cpu(c);
 | 
						|
	print_cpu_info(c);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * New Funky TSC sync algorithm borrowed from IA64.
 | 
						|
 * Main advantage is that it doesn't reset the TSCs fully and
 | 
						|
 * in general looks more robust and it works better than my earlier
 | 
						|
 * attempts. I believe it was written by David Mosberger. Some minor
 | 
						|
 * adjustments for x86-64 by me -AK
 | 
						|
 *
 | 
						|
 * Original comment reproduced below.
 | 
						|
 *
 | 
						|
 * Synchronize TSC of the current (slave) CPU with the TSC of the
 | 
						|
 * MASTER CPU (normally the time-keeper CPU).  We use a closed loop to
 | 
						|
 * eliminate the possibility of unaccounted-for errors (such as
 | 
						|
 * getting a machine check in the middle of a calibration step).  The
 | 
						|
 * basic idea is for the slave to ask the master what itc value it has
 | 
						|
 * and to read its own itc before and after the master responds.  Each
 | 
						|
 * iteration gives us three timestamps:
 | 
						|
 *
 | 
						|
 *	slave		master
 | 
						|
 *
 | 
						|
 *	t0 ---\
 | 
						|
 *             ---\
 | 
						|
 *		   --->
 | 
						|
 *			tm
 | 
						|
 *		   /---
 | 
						|
 *	       /---
 | 
						|
 *	t1 <---
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * The goal is to adjust the slave's TSC such that tm falls exactly
 | 
						|
 * half-way between t0 and t1.  If we achieve this, the clocks are
 | 
						|
 * synchronized provided the interconnect between the slave and the
 | 
						|
 * master is symmetric.  Even if the interconnect were asymmetric, we
 | 
						|
 * would still know that the synchronization error is smaller than the
 | 
						|
 * roundtrip latency (t0 - t1).
 | 
						|
 *
 | 
						|
 * When the interconnect is quiet and symmetric, this lets us
 | 
						|
 * synchronize the TSC to within one or two cycles.  However, we can
 | 
						|
 * only *guarantee* that the synchronization is accurate to within a
 | 
						|
 * round-trip time, which is typically in the range of several hundred
 | 
						|
 * cycles (e.g., ~500 cycles).  In practice, this means that the TSCs
 | 
						|
 * are usually almost perfectly synchronized, but we shouldn't assume
 | 
						|
 * that the accuracy is much better than half a micro second or so.
 | 
						|
 *
 | 
						|
 * [there are other errors like the latency of RDTSC and of the
 | 
						|
 * WRMSR. These can also account to hundreds of cycles. So it's
 | 
						|
 * probably worse. It claims 153 cycles error on a dual Opteron,
 | 
						|
 * but I suspect the numbers are actually somewhat worse -AK]
 | 
						|
 */
 | 
						|
 | 
						|
#define MASTER	0
 | 
						|
#define SLAVE	(SMP_CACHE_BYTES/8)
 | 
						|
 | 
						|
/* Intentionally don't use cpu_relax() while TSC synchronization
 | 
						|
   because we don't want to go into funky power save modi or cause
 | 
						|
   hypervisors to schedule us away.  Going to sleep would likely affect
 | 
						|
   latency and low latency is the primary objective here. -AK */
 | 
						|
#define no_cpu_relax() barrier()
 | 
						|
 | 
						|
static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
 | 
						|
static volatile __cpuinitdata unsigned long go[SLAVE + 1];
 | 
						|
static int notscsync __cpuinitdata;
 | 
						|
 | 
						|
#undef DEBUG_TSC_SYNC
 | 
						|
 | 
						|
#define NUM_ROUNDS	64	/* magic value */
 | 
						|
#define NUM_ITERS	5	/* likewise */
 | 
						|
 | 
						|
/* Callback on boot CPU */
 | 
						|
static __cpuinit void sync_master(void *arg)
 | 
						|
{
 | 
						|
	unsigned long flags, i;
 | 
						|
 | 
						|
	go[MASTER] = 0;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	{
 | 
						|
		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
 | 
						|
			while (!go[MASTER])
 | 
						|
				no_cpu_relax();
 | 
						|
			go[MASTER] = 0;
 | 
						|
			rdtscll(go[SLAVE]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of cycles by which our tsc differs from the tsc
 | 
						|
 * on the master (time-keeper) CPU.  A positive number indicates our
 | 
						|
 * tsc is ahead of the master, negative that it is behind.
 | 
						|
 */
 | 
						|
static inline long
 | 
						|
get_delta(long *rt, long *master)
 | 
						|
{
 | 
						|
	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 | 
						|
	unsigned long tcenter, t0, t1, tm;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < NUM_ITERS; ++i) {
 | 
						|
		rdtscll(t0);
 | 
						|
		go[MASTER] = 1;
 | 
						|
		while (!(tm = go[SLAVE]))
 | 
						|
			no_cpu_relax();
 | 
						|
		go[SLAVE] = 0;
 | 
						|
		rdtscll(t1);
 | 
						|
 | 
						|
		if (t1 - t0 < best_t1 - best_t0)
 | 
						|
			best_t0 = t0, best_t1 = t1, best_tm = tm;
 | 
						|
	}
 | 
						|
 | 
						|
	*rt = best_t1 - best_t0;
 | 
						|
	*master = best_tm - best_t0;
 | 
						|
 | 
						|
	/* average best_t0 and best_t1 without overflow: */
 | 
						|
	tcenter = (best_t0/2 + best_t1/2);
 | 
						|
	if (best_t0 % 2 + best_t1 % 2 == 2)
 | 
						|
		++tcenter;
 | 
						|
	return tcenter - best_tm;
 | 
						|
}
 | 
						|
 | 
						|
static __cpuinit void sync_tsc(unsigned int master)
 | 
						|
{
 | 
						|
	int i, done = 0;
 | 
						|
	long delta, adj, adjust_latency = 0;
 | 
						|
	unsigned long flags, rt, master_time_stamp, bound;
 | 
						|
#ifdef DEBUG_TSC_SYNC
 | 
						|
	static struct syncdebug {
 | 
						|
		long rt;	/* roundtrip time */
 | 
						|
		long master;	/* master's timestamp */
 | 
						|
		long diff;	/* difference between midpoint and master's timestamp */
 | 
						|
		long lat;	/* estimate of tsc adjustment latency */
 | 
						|
	} t[NUM_ROUNDS] __cpuinitdata;
 | 
						|
#endif
 | 
						|
 | 
						|
	printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
 | 
						|
		smp_processor_id(), master);
 | 
						|
 | 
						|
	go[MASTER] = 1;
 | 
						|
 | 
						|
	/* It is dangerous to broadcast IPI as cpus are coming up,
 | 
						|
	 * as they may not be ready to accept them.  So since
 | 
						|
	 * we only need to send the ipi to the boot cpu direct
 | 
						|
	 * the message, and avoid the race.
 | 
						|
	 */
 | 
						|
	smp_call_function_single(master, sync_master, NULL, 1, 0);
 | 
						|
 | 
						|
	while (go[MASTER])	/* wait for master to be ready */
 | 
						|
		no_cpu_relax();
 | 
						|
 | 
						|
	spin_lock_irqsave(&tsc_sync_lock, flags);
 | 
						|
	{
 | 
						|
		for (i = 0; i < NUM_ROUNDS; ++i) {
 | 
						|
			delta = get_delta(&rt, &master_time_stamp);
 | 
						|
			if (delta == 0) {
 | 
						|
				done = 1;	/* let's lock on to this... */
 | 
						|
				bound = rt;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!done) {
 | 
						|
				unsigned long t;
 | 
						|
				if (i > 0) {
 | 
						|
					adjust_latency += -delta;
 | 
						|
					adj = -delta + adjust_latency/4;
 | 
						|
				} else
 | 
						|
					adj = -delta;
 | 
						|
 | 
						|
				rdtscll(t);
 | 
						|
				wrmsrl(MSR_IA32_TSC, t + adj);
 | 
						|
			}
 | 
						|
#ifdef DEBUG_TSC_SYNC
 | 
						|
			t[i].rt = rt;
 | 
						|
			t[i].master = master_time_stamp;
 | 
						|
			t[i].diff = delta;
 | 
						|
			t[i].lat = adjust_latency/4;
 | 
						|
#endif
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&tsc_sync_lock, flags);
 | 
						|
 | 
						|
#ifdef DEBUG_TSC_SYNC
 | 
						|
	for (i = 0; i < NUM_ROUNDS; ++i)
 | 
						|
		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 | 
						|
		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 | 
						|
#endif
 | 
						|
 | 
						|
	printk(KERN_INFO
 | 
						|
	       "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
 | 
						|
	       "maxerr %lu cycles)\n",
 | 
						|
	       smp_processor_id(), master, delta, rt);
 | 
						|
}
 | 
						|
 | 
						|
static void __cpuinit tsc_sync_wait(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * When the CPU has synchronized TSCs assume the BIOS
 | 
						|
  	 * or the hardware already synced.  Otherwise we could
 | 
						|
	 * mess up a possible perfect synchronization with a
 | 
						|
	 * not-quite-perfect algorithm.
 | 
						|
	 */
 | 
						|
	if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
 | 
						|
		return;
 | 
						|
	sync_tsc(0);
 | 
						|
}
 | 
						|
 | 
						|
static __init int notscsync_setup(char *s)
 | 
						|
{
 | 
						|
	notscsync = 1;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("notscsync", notscsync_setup);
 | 
						|
 | 
						|
static atomic_t init_deasserted __cpuinitdata;
 | 
						|
 | 
						|
/*
 | 
						|
 * Report back to the Boot Processor.
 | 
						|
 * Running on AP.
 | 
						|
 */
 | 
						|
void __cpuinit smp_callin(void)
 | 
						|
{
 | 
						|
	int cpuid, phys_id;
 | 
						|
	unsigned long timeout;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If waken up by an INIT in an 82489DX configuration
 | 
						|
	 * we may get here before an INIT-deassert IPI reaches
 | 
						|
	 * our local APIC.  We have to wait for the IPI or we'll
 | 
						|
	 * lock up on an APIC access.
 | 
						|
	 */
 | 
						|
	while (!atomic_read(&init_deasserted))
 | 
						|
		cpu_relax();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * (This works even if the APIC is not enabled.)
 | 
						|
	 */
 | 
						|
	phys_id = GET_APIC_ID(apic_read(APIC_ID));
 | 
						|
	cpuid = smp_processor_id();
 | 
						|
	if (cpu_isset(cpuid, cpu_callin_map)) {
 | 
						|
		panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
 | 
						|
					phys_id, cpuid);
 | 
						|
	}
 | 
						|
	Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * STARTUP IPIs are fragile beasts as they might sometimes
 | 
						|
	 * trigger some glue motherboard logic. Complete APIC bus
 | 
						|
	 * silence for 1 second, this overestimates the time the
 | 
						|
	 * boot CPU is spending to send the up to 2 STARTUP IPIs
 | 
						|
	 * by a factor of two. This should be enough.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Waiting 2s total for startup (udelay is not yet working)
 | 
						|
	 */
 | 
						|
	timeout = jiffies + 2*HZ;
 | 
						|
	while (time_before(jiffies, timeout)) {
 | 
						|
		/*
 | 
						|
		 * Has the boot CPU finished it's STARTUP sequence?
 | 
						|
		 */
 | 
						|
		if (cpu_isset(cpuid, cpu_callout_map))
 | 
						|
			break;
 | 
						|
		cpu_relax();
 | 
						|
	}
 | 
						|
 | 
						|
	if (!time_before(jiffies, timeout)) {
 | 
						|
		panic("smp_callin: CPU%d started up but did not get a callout!\n",
 | 
						|
			cpuid);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * the boot CPU has finished the init stage and is spinning
 | 
						|
	 * on callin_map until we finish. We are free to set up this
 | 
						|
	 * CPU, first the APIC. (this is probably redundant on most
 | 
						|
	 * boards)
 | 
						|
	 */
 | 
						|
 | 
						|
	Dprintk("CALLIN, before setup_local_APIC().\n");
 | 
						|
	setup_local_APIC();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Get our bogomips.
 | 
						|
 	 *
 | 
						|
 	 * Need to enable IRQs because it can take longer and then
 | 
						|
	 * the NMI watchdog might kill us.
 | 
						|
	 */
 | 
						|
	local_irq_enable();
 | 
						|
	calibrate_delay();
 | 
						|
	local_irq_disable();
 | 
						|
	Dprintk("Stack at about %p\n",&cpuid);
 | 
						|
 | 
						|
	disable_APIC_timer();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Save our processor parameters
 | 
						|
	 */
 | 
						|
 	smp_store_cpu_info(cpuid);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allow the master to continue.
 | 
						|
	 */
 | 
						|
	cpu_set(cpuid, cpu_callin_map);
 | 
						|
}
 | 
						|
 | 
						|
/* maps the cpu to the sched domain representing multi-core */
 | 
						|
cpumask_t cpu_coregroup_map(int cpu)
 | 
						|
{
 | 
						|
	struct cpuinfo_x86 *c = cpu_data + cpu;
 | 
						|
	/*
 | 
						|
	 * For perf, we return last level cache shared map.
 | 
						|
	 * And for power savings, we return cpu_core_map
 | 
						|
	 */
 | 
						|
	if (sched_mc_power_savings || sched_smt_power_savings)
 | 
						|
		return cpu_core_map[cpu];
 | 
						|
	else
 | 
						|
		return c->llc_shared_map;
 | 
						|
}
 | 
						|
 | 
						|
/* representing cpus for which sibling maps can be computed */
 | 
						|
static cpumask_t cpu_sibling_setup_map;
 | 
						|
 | 
						|
static inline void set_cpu_sibling_map(int cpu)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct cpuinfo_x86 *c = cpu_data;
 | 
						|
 | 
						|
	cpu_set(cpu, cpu_sibling_setup_map);
 | 
						|
 | 
						|
	if (smp_num_siblings > 1) {
 | 
						|
		for_each_cpu_mask(i, cpu_sibling_setup_map) {
 | 
						|
			if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
 | 
						|
			    c[cpu].cpu_core_id == c[i].cpu_core_id) {
 | 
						|
				cpu_set(i, cpu_sibling_map[cpu]);
 | 
						|
				cpu_set(cpu, cpu_sibling_map[i]);
 | 
						|
				cpu_set(i, cpu_core_map[cpu]);
 | 
						|
				cpu_set(cpu, cpu_core_map[i]);
 | 
						|
				cpu_set(i, c[cpu].llc_shared_map);
 | 
						|
				cpu_set(cpu, c[i].llc_shared_map);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		cpu_set(cpu, cpu_sibling_map[cpu]);
 | 
						|
	}
 | 
						|
 | 
						|
	cpu_set(cpu, c[cpu].llc_shared_map);
 | 
						|
 | 
						|
	if (current_cpu_data.x86_max_cores == 1) {
 | 
						|
		cpu_core_map[cpu] = cpu_sibling_map[cpu];
 | 
						|
		c[cpu].booted_cores = 1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_cpu_mask(i, cpu_sibling_setup_map) {
 | 
						|
		if (cpu_llc_id[cpu] != BAD_APICID &&
 | 
						|
		    cpu_llc_id[cpu] == cpu_llc_id[i]) {
 | 
						|
			cpu_set(i, c[cpu].llc_shared_map);
 | 
						|
			cpu_set(cpu, c[i].llc_shared_map);
 | 
						|
		}
 | 
						|
		if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
 | 
						|
			cpu_set(i, cpu_core_map[cpu]);
 | 
						|
			cpu_set(cpu, cpu_core_map[i]);
 | 
						|
			/*
 | 
						|
			 *  Does this new cpu bringup a new core?
 | 
						|
			 */
 | 
						|
			if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
 | 
						|
				/*
 | 
						|
				 * for each core in package, increment
 | 
						|
				 * the booted_cores for this new cpu
 | 
						|
				 */
 | 
						|
				if (first_cpu(cpu_sibling_map[i]) == i)
 | 
						|
					c[cpu].booted_cores++;
 | 
						|
				/*
 | 
						|
				 * increment the core count for all
 | 
						|
				 * the other cpus in this package
 | 
						|
				 */
 | 
						|
				if (i != cpu)
 | 
						|
					c[i].booted_cores++;
 | 
						|
			} else if (i != cpu && !c[cpu].booted_cores)
 | 
						|
				c[cpu].booted_cores = c[i].booted_cores;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Setup code on secondary processor (after comming out of the trampoline)
 | 
						|
 */
 | 
						|
void __cpuinit start_secondary(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Dont put anything before smp_callin(), SMP
 | 
						|
	 * booting is too fragile that we want to limit the
 | 
						|
	 * things done here to the most necessary things.
 | 
						|
	 */
 | 
						|
	cpu_init();
 | 
						|
	preempt_disable();
 | 
						|
	smp_callin();
 | 
						|
 | 
						|
	/* otherwise gcc will move up the smp_processor_id before the cpu_init */
 | 
						|
	barrier();
 | 
						|
 | 
						|
	Dprintk("cpu %d: setting up apic clock\n", smp_processor_id()); 	
 | 
						|
	setup_secondary_APIC_clock();
 | 
						|
 | 
						|
	Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
 | 
						|
 | 
						|
	if (nmi_watchdog == NMI_IO_APIC) {
 | 
						|
		disable_8259A_irq(0);
 | 
						|
		enable_NMI_through_LVT0(NULL);
 | 
						|
		enable_8259A_irq(0);
 | 
						|
	}
 | 
						|
 | 
						|
	enable_APIC_timer();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The sibling maps must be set before turing the online map on for
 | 
						|
	 * this cpu
 | 
						|
	 */
 | 
						|
	set_cpu_sibling_map(smp_processor_id());
 | 
						|
 | 
						|
	/* 
 | 
						|
  	 * Wait for TSC sync to not schedule things before.
 | 
						|
	 * We still process interrupts, which could see an inconsistent
 | 
						|
	 * time in that window unfortunately. 
 | 
						|
	 * Do this here because TSC sync has global unprotected state.
 | 
						|
 	 */
 | 
						|
	tsc_sync_wait();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to hold call_lock, so there is no inconsistency
 | 
						|
	 * between the time smp_call_function() determines number of
 | 
						|
	 * IPI receipients, and the time when the determination is made
 | 
						|
	 * for which cpus receive the IPI in genapic_flat.c. Holding this
 | 
						|
	 * lock helps us to not include this cpu in a currently in progress
 | 
						|
	 * smp_call_function().
 | 
						|
	 */
 | 
						|
	lock_ipi_call_lock();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allow the master to continue.
 | 
						|
	 */
 | 
						|
	cpu_set(smp_processor_id(), cpu_online_map);
 | 
						|
	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 | 
						|
	unlock_ipi_call_lock();
 | 
						|
 | 
						|
	cpu_idle();
 | 
						|
}
 | 
						|
 | 
						|
extern volatile unsigned long init_rsp;
 | 
						|
extern void (*initial_code)(void);
 | 
						|
 | 
						|
#ifdef APIC_DEBUG
 | 
						|
static void inquire_remote_apic(int apicid)
 | 
						|
{
 | 
						|
	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 | 
						|
	char *names[] = { "ID", "VERSION", "SPIV" };
 | 
						|
	int timeout, status;
 | 
						|
 | 
						|
	printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
 | 
						|
 | 
						|
	for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
 | 
						|
		printk("... APIC #%d %s: ", apicid, names[i]);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Wait for idle.
 | 
						|
		 */
 | 
						|
		apic_wait_icr_idle();
 | 
						|
 | 
						|
		apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
 | 
						|
		apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
 | 
						|
 | 
						|
		timeout = 0;
 | 
						|
		do {
 | 
						|
			udelay(100);
 | 
						|
			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 | 
						|
		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 | 
						|
 | 
						|
		switch (status) {
 | 
						|
		case APIC_ICR_RR_VALID:
 | 
						|
			status = apic_read(APIC_RRR);
 | 
						|
			printk("%08x\n", status);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			printk("failed\n");
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Kick the secondary to wake up.
 | 
						|
 */
 | 
						|
static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
 | 
						|
{
 | 
						|
	unsigned long send_status = 0, accept_status = 0;
 | 
						|
	int maxlvt, timeout, num_starts, j;
 | 
						|
 | 
						|
	Dprintk("Asserting INIT.\n");
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Turn INIT on target chip
 | 
						|
	 */
 | 
						|
	apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Send IPI
 | 
						|
	 */
 | 
						|
	apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
 | 
						|
				| APIC_DM_INIT);
 | 
						|
 | 
						|
	Dprintk("Waiting for send to finish...\n");
 | 
						|
	timeout = 0;
 | 
						|
	do {
 | 
						|
		Dprintk("+");
 | 
						|
		udelay(100);
 | 
						|
		send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
 | 
						|
	} while (send_status && (timeout++ < 1000));
 | 
						|
 | 
						|
	mdelay(10);
 | 
						|
 | 
						|
	Dprintk("Deasserting INIT.\n");
 | 
						|
 | 
						|
	/* Target chip */
 | 
						|
	apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
 | 
						|
 | 
						|
	/* Send IPI */
 | 
						|
	apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
 | 
						|
 | 
						|
	Dprintk("Waiting for send to finish...\n");
 | 
						|
	timeout = 0;
 | 
						|
	do {
 | 
						|
		Dprintk("+");
 | 
						|
		udelay(100);
 | 
						|
		send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
 | 
						|
	} while (send_status && (timeout++ < 1000));
 | 
						|
 | 
						|
	mb();
 | 
						|
	atomic_set(&init_deasserted, 1);
 | 
						|
 | 
						|
	num_starts = 2;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Run STARTUP IPI loop.
 | 
						|
	 */
 | 
						|
	Dprintk("#startup loops: %d.\n", num_starts);
 | 
						|
 | 
						|
	maxlvt = get_maxlvt();
 | 
						|
 | 
						|
	for (j = 1; j <= num_starts; j++) {
 | 
						|
		Dprintk("Sending STARTUP #%d.\n",j);
 | 
						|
		apic_write(APIC_ESR, 0);
 | 
						|
		apic_read(APIC_ESR);
 | 
						|
		Dprintk("After apic_write.\n");
 | 
						|
 | 
						|
		/*
 | 
						|
		 * STARTUP IPI
 | 
						|
		 */
 | 
						|
 | 
						|
		/* Target chip */
 | 
						|
		apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
 | 
						|
 | 
						|
		/* Boot on the stack */
 | 
						|
		/* Kick the second */
 | 
						|
		apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Give the other CPU some time to accept the IPI.
 | 
						|
		 */
 | 
						|
		udelay(300);
 | 
						|
 | 
						|
		Dprintk("Startup point 1.\n");
 | 
						|
 | 
						|
		Dprintk("Waiting for send to finish...\n");
 | 
						|
		timeout = 0;
 | 
						|
		do {
 | 
						|
			Dprintk("+");
 | 
						|
			udelay(100);
 | 
						|
			send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
 | 
						|
		} while (send_status && (timeout++ < 1000));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Give the other CPU some time to accept the IPI.
 | 
						|
		 */
 | 
						|
		udelay(200);
 | 
						|
		/*
 | 
						|
		 * Due to the Pentium erratum 3AP.
 | 
						|
		 */
 | 
						|
		if (maxlvt > 3) {
 | 
						|
			apic_write(APIC_ESR, 0);
 | 
						|
		}
 | 
						|
		accept_status = (apic_read(APIC_ESR) & 0xEF);
 | 
						|
		if (send_status || accept_status)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	Dprintk("After Startup.\n");
 | 
						|
 | 
						|
	if (send_status)
 | 
						|
		printk(KERN_ERR "APIC never delivered???\n");
 | 
						|
	if (accept_status)
 | 
						|
		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
 | 
						|
 | 
						|
	return (send_status | accept_status);
 | 
						|
}
 | 
						|
 | 
						|
struct create_idle {
 | 
						|
	struct task_struct *idle;
 | 
						|
	struct completion done;
 | 
						|
	int cpu;
 | 
						|
};
 | 
						|
 | 
						|
void do_fork_idle(void *_c_idle)
 | 
						|
{
 | 
						|
	struct create_idle *c_idle = _c_idle;
 | 
						|
 | 
						|
	c_idle->idle = fork_idle(c_idle->cpu);
 | 
						|
	complete(&c_idle->done);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Boot one CPU.
 | 
						|
 */
 | 
						|
static int __cpuinit do_boot_cpu(int cpu, int apicid)
 | 
						|
{
 | 
						|
	unsigned long boot_error;
 | 
						|
	int timeout;
 | 
						|
	unsigned long start_rip;
 | 
						|
	struct create_idle c_idle = {
 | 
						|
		.cpu = cpu,
 | 
						|
		.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
 | 
						|
	};
 | 
						|
	DECLARE_WORK(work, do_fork_idle, &c_idle);
 | 
						|
 | 
						|
	/* allocate memory for gdts of secondary cpus. Hotplug is considered */
 | 
						|
	if (!cpu_gdt_descr[cpu].address &&
 | 
						|
		!(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
 | 
						|
		printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Allocate node local memory for AP pdas */
 | 
						|
	if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
 | 
						|
		struct x8664_pda *newpda, *pda;
 | 
						|
		int node = cpu_to_node(cpu);
 | 
						|
		pda = cpu_pda(cpu);
 | 
						|
		newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
 | 
						|
				      node);
 | 
						|
		if (newpda) {
 | 
						|
			memcpy(newpda, pda, sizeof (struct x8664_pda));
 | 
						|
			cpu_pda(cpu) = newpda;
 | 
						|
		} else
 | 
						|
			printk(KERN_ERR
 | 
						|
		"Could not allocate node local PDA for CPU %d on node %d\n",
 | 
						|
				cpu, node);
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	alternatives_smp_switch(1);
 | 
						|
 | 
						|
	c_idle.idle = get_idle_for_cpu(cpu);
 | 
						|
 | 
						|
	if (c_idle.idle) {
 | 
						|
		c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
 | 
						|
			(THREAD_SIZE +  task_stack_page(c_idle.idle))) - 1);
 | 
						|
		init_idle(c_idle.idle, cpu);
 | 
						|
		goto do_rest;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * During cold boot process, keventd thread is not spun up yet.
 | 
						|
	 * When we do cpu hot-add, we create idle threads on the fly, we should
 | 
						|
	 * not acquire any attributes from the calling context. Hence the clean
 | 
						|
	 * way to create kernel_threads() is to do that from keventd().
 | 
						|
	 * We do the current_is_keventd() due to the fact that ACPI notifier
 | 
						|
	 * was also queuing to keventd() and when the caller is already running
 | 
						|
	 * in context of keventd(), we would end up with locking up the keventd
 | 
						|
	 * thread.
 | 
						|
	 */
 | 
						|
	if (!keventd_up() || current_is_keventd())
 | 
						|
		work.func(work.data);
 | 
						|
	else {
 | 
						|
		schedule_work(&work);
 | 
						|
		wait_for_completion(&c_idle.done);
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_ERR(c_idle.idle)) {
 | 
						|
		printk("failed fork for CPU %d\n", cpu);
 | 
						|
		return PTR_ERR(c_idle.idle);
 | 
						|
	}
 | 
						|
 | 
						|
	set_idle_for_cpu(cpu, c_idle.idle);
 | 
						|
 | 
						|
do_rest:
 | 
						|
 | 
						|
	cpu_pda(cpu)->pcurrent = c_idle.idle;
 | 
						|
 | 
						|
	start_rip = setup_trampoline();
 | 
						|
 | 
						|
	init_rsp = c_idle.idle->thread.rsp;
 | 
						|
	per_cpu(init_tss,cpu).rsp0 = init_rsp;
 | 
						|
	initial_code = start_secondary;
 | 
						|
	clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
 | 
						|
 | 
						|
	printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
 | 
						|
		cpus_weight(cpu_present_map),
 | 
						|
		apicid);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This grunge runs the startup process for
 | 
						|
	 * the targeted processor.
 | 
						|
	 */
 | 
						|
 | 
						|
	atomic_set(&init_deasserted, 0);
 | 
						|
 | 
						|
	Dprintk("Setting warm reset code and vector.\n");
 | 
						|
 | 
						|
	CMOS_WRITE(0xa, 0xf);
 | 
						|
	local_flush_tlb();
 | 
						|
	Dprintk("1.\n");
 | 
						|
	*((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
 | 
						|
	Dprintk("2.\n");
 | 
						|
	*((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
 | 
						|
	Dprintk("3.\n");
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Be paranoid about clearing APIC errors.
 | 
						|
	 */
 | 
						|
	apic_write(APIC_ESR, 0);
 | 
						|
	apic_read(APIC_ESR);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Status is now clean
 | 
						|
	 */
 | 
						|
	boot_error = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Starting actual IPI sequence...
 | 
						|
	 */
 | 
						|
	boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
 | 
						|
 | 
						|
	if (!boot_error) {
 | 
						|
		/*
 | 
						|
		 * allow APs to start initializing.
 | 
						|
		 */
 | 
						|
		Dprintk("Before Callout %d.\n", cpu);
 | 
						|
		cpu_set(cpu, cpu_callout_map);
 | 
						|
		Dprintk("After Callout %d.\n", cpu);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Wait 5s total for a response
 | 
						|
		 */
 | 
						|
		for (timeout = 0; timeout < 50000; timeout++) {
 | 
						|
			if (cpu_isset(cpu, cpu_callin_map))
 | 
						|
				break;	/* It has booted */
 | 
						|
			udelay(100);
 | 
						|
		}
 | 
						|
 | 
						|
		if (cpu_isset(cpu, cpu_callin_map)) {
 | 
						|
			/* number CPUs logically, starting from 1 (BSP is 0) */
 | 
						|
			Dprintk("CPU has booted.\n");
 | 
						|
		} else {
 | 
						|
			boot_error = 1;
 | 
						|
			if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
 | 
						|
					== 0xA5)
 | 
						|
				/* trampoline started but...? */
 | 
						|
				printk("Stuck ??\n");
 | 
						|
			else
 | 
						|
				/* trampoline code not run */
 | 
						|
				printk("Not responding.\n");
 | 
						|
#ifdef APIC_DEBUG
 | 
						|
			inquire_remote_apic(apicid);
 | 
						|
#endif
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (boot_error) {
 | 
						|
		cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
 | 
						|
		clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
 | 
						|
		clear_node_cpumask(cpu); /* was set by numa_add_cpu */
 | 
						|
		cpu_clear(cpu, cpu_present_map);
 | 
						|
		cpu_clear(cpu, cpu_possible_map);
 | 
						|
		x86_cpu_to_apicid[cpu] = BAD_APICID;
 | 
						|
		x86_cpu_to_log_apicid[cpu] = BAD_APICID;
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
cycles_t cacheflush_time;
 | 
						|
unsigned long cache_decay_ticks;
 | 
						|
 | 
						|
/*
 | 
						|
 * Cleanup possible dangling ends...
 | 
						|
 */
 | 
						|
static __cpuinit void smp_cleanup_boot(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Paranoid:  Set warm reset code and vector here back
 | 
						|
	 * to default values.
 | 
						|
	 */
 | 
						|
	CMOS_WRITE(0, 0xf);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reset trampoline flag
 | 
						|
	 */
 | 
						|
	*((volatile int *) phys_to_virt(0x467)) = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fall back to non SMP mode after errors.
 | 
						|
 *
 | 
						|
 * RED-PEN audit/test this more. I bet there is more state messed up here.
 | 
						|
 */
 | 
						|
static __init void disable_smp(void)
 | 
						|
{
 | 
						|
	cpu_present_map = cpumask_of_cpu(0);
 | 
						|
	cpu_possible_map = cpumask_of_cpu(0);
 | 
						|
	if (smp_found_config)
 | 
						|
		phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
 | 
						|
	else
 | 
						|
		phys_cpu_present_map = physid_mask_of_physid(0);
 | 
						|
	cpu_set(0, cpu_sibling_map[0]);
 | 
						|
	cpu_set(0, cpu_core_map[0]);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
 | 
						|
int additional_cpus __initdata = -1;
 | 
						|
 | 
						|
/*
 | 
						|
 * cpu_possible_map should be static, it cannot change as cpu's
 | 
						|
 * are onlined, or offlined. The reason is per-cpu data-structures
 | 
						|
 * are allocated by some modules at init time, and dont expect to
 | 
						|
 * do this dynamically on cpu arrival/departure.
 | 
						|
 * cpu_present_map on the other hand can change dynamically.
 | 
						|
 * In case when cpu_hotplug is not compiled, then we resort to current
 | 
						|
 * behaviour, which is cpu_possible == cpu_present.
 | 
						|
 * - Ashok Raj
 | 
						|
 *
 | 
						|
 * Three ways to find out the number of additional hotplug CPUs:
 | 
						|
 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
 | 
						|
 * - The user can overwrite it with additional_cpus=NUM
 | 
						|
 * - Otherwise don't reserve additional CPUs.
 | 
						|
 * We do this because additional CPUs waste a lot of memory.
 | 
						|
 * -AK
 | 
						|
 */
 | 
						|
__init void prefill_possible_map(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int possible;
 | 
						|
 | 
						|
 	if (additional_cpus == -1) {
 | 
						|
 		if (disabled_cpus > 0)
 | 
						|
 			additional_cpus = disabled_cpus;
 | 
						|
 		else
 | 
						|
			additional_cpus = 0;
 | 
						|
 	}
 | 
						|
	possible = num_processors + additional_cpus;
 | 
						|
	if (possible > NR_CPUS) 
 | 
						|
		possible = NR_CPUS;
 | 
						|
 | 
						|
	printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
 | 
						|
		possible,
 | 
						|
	        max_t(int, possible - num_processors, 0));
 | 
						|
 | 
						|
	for (i = 0; i < possible; i++)
 | 
						|
		cpu_set(i, cpu_possible_map);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Various sanity checks.
 | 
						|
 */
 | 
						|
static int __init smp_sanity_check(unsigned max_cpus)
 | 
						|
{
 | 
						|
	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
 | 
						|
		printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
 | 
						|
		       hard_smp_processor_id());
 | 
						|
		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we couldn't find an SMP configuration at boot time,
 | 
						|
	 * get out of here now!
 | 
						|
	 */
 | 
						|
	if (!smp_found_config) {
 | 
						|
		printk(KERN_NOTICE "SMP motherboard not detected.\n");
 | 
						|
		disable_smp();
 | 
						|
		if (APIC_init_uniprocessor())
 | 
						|
			printk(KERN_NOTICE "Local APIC not detected."
 | 
						|
					   " Using dummy APIC emulation.\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Should not be necessary because the MP table should list the boot
 | 
						|
	 * CPU too, but we do it for the sake of robustness anyway.
 | 
						|
	 */
 | 
						|
	if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
 | 
						|
		printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
 | 
						|
								 boot_cpu_id);
 | 
						|
		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we couldn't find a local APIC, then get out of here now!
 | 
						|
	 */
 | 
						|
	if (!cpu_has_apic) {
 | 
						|
		printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
 | 
						|
			boot_cpu_id);
 | 
						|
		printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
 | 
						|
		nr_ioapics = 0;
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If SMP should be disabled, then really disable it!
 | 
						|
	 */
 | 
						|
	if (!max_cpus) {
 | 
						|
		printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
 | 
						|
		nr_ioapics = 0;
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Prepare for SMP bootup.  The MP table or ACPI has been read
 | 
						|
 * earlier.  Just do some sanity checking here and enable APIC mode.
 | 
						|
 */
 | 
						|
void __init smp_prepare_cpus(unsigned int max_cpus)
 | 
						|
{
 | 
						|
	nmi_watchdog_default();
 | 
						|
	current_cpu_data = boot_cpu_data;
 | 
						|
	current_thread_info()->cpu = 0;  /* needed? */
 | 
						|
	set_cpu_sibling_map(0);
 | 
						|
 | 
						|
	if (smp_sanity_check(max_cpus) < 0) {
 | 
						|
		printk(KERN_INFO "SMP disabled\n");
 | 
						|
		disable_smp();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Switch from PIC to APIC mode.
 | 
						|
	 */
 | 
						|
	connect_bsp_APIC();
 | 
						|
	setup_local_APIC();
 | 
						|
 | 
						|
	if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
 | 
						|
		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
 | 
						|
		      GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
 | 
						|
		/* Or can we switch back to PIC here? */
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now start the IO-APICs
 | 
						|
	 */
 | 
						|
	if (!skip_ioapic_setup && nr_ioapics)
 | 
						|
		setup_IO_APIC();
 | 
						|
	else
 | 
						|
		nr_ioapics = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set up local APIC timer on boot CPU.
 | 
						|
	 */
 | 
						|
 | 
						|
	setup_boot_APIC_clock();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Early setup to make printk work.
 | 
						|
 */
 | 
						|
void __init smp_prepare_boot_cpu(void)
 | 
						|
{
 | 
						|
	int me = smp_processor_id();
 | 
						|
	cpu_set(me, cpu_online_map);
 | 
						|
	cpu_set(me, cpu_callout_map);
 | 
						|
	per_cpu(cpu_state, me) = CPU_ONLINE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Entry point to boot a CPU.
 | 
						|
 */
 | 
						|
int __cpuinit __cpu_up(unsigned int cpu)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	int apicid = cpu_present_to_apicid(cpu);
 | 
						|
 | 
						|
	WARN_ON(irqs_disabled());
 | 
						|
 | 
						|
	Dprintk("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 | 
						|
 | 
						|
	if (apicid == BAD_APICID || apicid == boot_cpu_id ||
 | 
						|
	    !physid_isset(apicid, phys_cpu_present_map)) {
 | 
						|
		printk("__cpu_up: bad cpu %d\n", cpu);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Already booted CPU?
 | 
						|
	 */
 | 
						|
 	if (cpu_isset(cpu, cpu_callin_map)) {
 | 
						|
		Dprintk("do_boot_cpu %d Already started\n", cpu);
 | 
						|
 		return -ENOSYS;
 | 
						|
	}
 | 
						|
 | 
						|
	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 | 
						|
	/* Boot it! */
 | 
						|
	err = do_boot_cpu(cpu, apicid);
 | 
						|
	if (err < 0) {
 | 
						|
		Dprintk("do_boot_cpu failed %d\n", err);
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Unleash the CPU! */
 | 
						|
	Dprintk("waiting for cpu %d\n", cpu);
 | 
						|
 | 
						|
	while (!cpu_isset(cpu, cpu_online_map))
 | 
						|
		cpu_relax();
 | 
						|
	err = 0;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Finish the SMP boot.
 | 
						|
 */
 | 
						|
void __init smp_cpus_done(unsigned int max_cpus)
 | 
						|
{
 | 
						|
	smp_cleanup_boot();
 | 
						|
 | 
						|
#ifdef CONFIG_X86_IO_APIC
 | 
						|
	setup_ioapic_dest();
 | 
						|
#endif
 | 
						|
 | 
						|
	check_nmi_watchdog();
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
 | 
						|
static void remove_siblinginfo(int cpu)
 | 
						|
{
 | 
						|
	int sibling;
 | 
						|
	struct cpuinfo_x86 *c = cpu_data;
 | 
						|
 | 
						|
	for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
 | 
						|
		cpu_clear(cpu, cpu_core_map[sibling]);
 | 
						|
		/*
 | 
						|
		 * last thread sibling in this cpu core going down
 | 
						|
		 */
 | 
						|
		if (cpus_weight(cpu_sibling_map[cpu]) == 1)
 | 
						|
			c[sibling].booted_cores--;
 | 
						|
	}
 | 
						|
			
 | 
						|
	for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
 | 
						|
		cpu_clear(cpu, cpu_sibling_map[sibling]);
 | 
						|
	cpus_clear(cpu_sibling_map[cpu]);
 | 
						|
	cpus_clear(cpu_core_map[cpu]);
 | 
						|
	c[cpu].phys_proc_id = 0;
 | 
						|
	c[cpu].cpu_core_id = 0;
 | 
						|
	cpu_clear(cpu, cpu_sibling_setup_map);
 | 
						|
}
 | 
						|
 | 
						|
void remove_cpu_from_maps(void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
 | 
						|
	cpu_clear(cpu, cpu_callout_map);
 | 
						|
	cpu_clear(cpu, cpu_callin_map);
 | 
						|
	clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
 | 
						|
	clear_node_cpumask(cpu);
 | 
						|
}
 | 
						|
 | 
						|
int __cpu_disable(void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Perhaps use cpufreq to drop frequency, but that could go
 | 
						|
	 * into generic code.
 | 
						|
 	 *
 | 
						|
	 * We won't take down the boot processor on i386 due to some
 | 
						|
	 * interrupts only being able to be serviced by the BSP.
 | 
						|
	 * Especially so if we're not using an IOAPIC	-zwane
 | 
						|
	 */
 | 
						|
	if (cpu == 0)
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	clear_local_APIC();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * HACK:
 | 
						|
	 * Allow any queued timer interrupts to get serviced
 | 
						|
	 * This is only a temporary solution until we cleanup
 | 
						|
	 * fixup_irqs as we do for IA64.
 | 
						|
	 */
 | 
						|
	local_irq_enable();
 | 
						|
	mdelay(1);
 | 
						|
 | 
						|
	local_irq_disable();
 | 
						|
	remove_siblinginfo(cpu);
 | 
						|
 | 
						|
	/* It's now safe to remove this processor from the online map */
 | 
						|
	cpu_clear(cpu, cpu_online_map);
 | 
						|
	remove_cpu_from_maps();
 | 
						|
	fixup_irqs(cpu_online_map);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void __cpu_die(unsigned int cpu)
 | 
						|
{
 | 
						|
	/* We don't do anything here: idle task is faking death itself. */
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < 10; i++) {
 | 
						|
		/* They ack this in play_dead by setting CPU_DEAD */
 | 
						|
		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
 | 
						|
			printk ("CPU %d is now offline\n", cpu);
 | 
						|
			if (1 == num_online_cpus())
 | 
						|
				alternatives_smp_switch(0);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		msleep(100);
 | 
						|
	}
 | 
						|
 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
 | 
						|
}
 | 
						|
 | 
						|
__init int setup_additional_cpus(char *s)
 | 
						|
{
 | 
						|
	return get_option(&s, &additional_cpus);
 | 
						|
}
 | 
						|
__setup("additional_cpus=", setup_additional_cpus);
 | 
						|
 | 
						|
#else /* ... !CONFIG_HOTPLUG_CPU */
 | 
						|
 | 
						|
int __cpu_disable(void)
 | 
						|
{
 | 
						|
	return -ENOSYS;
 | 
						|
}
 | 
						|
 | 
						|
void __cpu_die(unsigned int cpu)
 | 
						|
{
 | 
						|
	/* We said "no" in __cpu_disable */
 | 
						|
	BUG();
 | 
						|
}
 | 
						|
#endif /* CONFIG_HOTPLUG_CPU */
 |