Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
		
			
				
	
	
		
			702 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			702 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
#ifndef _ASM_M32R_BITOPS_H
 | 
						|
#define _ASM_M32R_BITOPS_H
 | 
						|
 | 
						|
/*
 | 
						|
 *  linux/include/asm-m32r/bitops.h
 | 
						|
 *
 | 
						|
 *  Copyright 1992, Linus Torvalds.
 | 
						|
 *
 | 
						|
 *  M32R version:
 | 
						|
 *    Copyright (C) 2001, 2002  Hitoshi Yamamoto
 | 
						|
 *    Copyright (C) 2004  Hirokazu Takata <takata at linux-m32r.org>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/config.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <asm/assembler.h>
 | 
						|
#include <asm/system.h>
 | 
						|
#include <asm/byteorder.h>
 | 
						|
#include <asm/types.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * These have to be done with inline assembly: that way the bit-setting
 | 
						|
 * is guaranteed to be atomic. All bit operations return 0 if the bit
 | 
						|
 * was cleared before the operation and != 0 if it was not.
 | 
						|
 *
 | 
						|
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * set_bit - Atomically set a bit in memory
 | 
						|
 * @nr: the bit to set
 | 
						|
 * @addr: the address to start counting from
 | 
						|
 *
 | 
						|
 * This function is atomic and may not be reordered.  See __set_bit()
 | 
						|
 * if you do not require the atomic guarantees.
 | 
						|
 * Note that @nr may be almost arbitrarily large; this function is not
 | 
						|
 * restricted to acting on a single-word quantity.
 | 
						|
 */
 | 
						|
static __inline__ void set_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	__asm__ __volatile__ (
 | 
						|
		DCACHE_CLEAR("%0", "r6", "%1")
 | 
						|
		M32R_LOCK" %0, @%1;		\n\t"
 | 
						|
		"or	%0, %2;			\n\t"
 | 
						|
		M32R_UNLOCK" %0, @%1;		\n\t"
 | 
						|
		: "=&r" (tmp)
 | 
						|
		: "r" (a), "r" (mask)
 | 
						|
		: "memory"
 | 
						|
#ifdef CONFIG_CHIP_M32700_TS1
 | 
						|
		, "r6"
 | 
						|
#endif	/* CONFIG_CHIP_M32700_TS1 */
 | 
						|
	);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __set_bit - Set a bit in memory
 | 
						|
 * @nr: the bit to set
 | 
						|
 * @addr: the address to start counting from
 | 
						|
 *
 | 
						|
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 | 
						|
 * If it's called on the same region of memory simultaneously, the effect
 | 
						|
 * may be that only one operation succeeds.
 | 
						|
 */
 | 
						|
static __inline__ void __set_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
	*a |= mask;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * clear_bit - Clears a bit in memory
 | 
						|
 * @nr: Bit to clear
 | 
						|
 * @addr: Address to start counting from
 | 
						|
 *
 | 
						|
 * clear_bit() is atomic and may not be reordered.  However, it does
 | 
						|
 * not contain a memory barrier, so if it is used for locking purposes,
 | 
						|
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 | 
						|
 * in order to ensure changes are visible on other processors.
 | 
						|
 */
 | 
						|
static __inline__ void clear_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
 | 
						|
	__asm__ __volatile__ (
 | 
						|
		DCACHE_CLEAR("%0", "r6", "%1")
 | 
						|
		M32R_LOCK" %0, @%1;		\n\t"
 | 
						|
		"and	%0, %2;			\n\t"
 | 
						|
		M32R_UNLOCK" %0, @%1;		\n\t"
 | 
						|
		: "=&r" (tmp)
 | 
						|
		: "r" (a), "r" (~mask)
 | 
						|
		: "memory"
 | 
						|
#ifdef CONFIG_CHIP_M32700_TS1
 | 
						|
		, "r6"
 | 
						|
#endif	/* CONFIG_CHIP_M32700_TS1 */
 | 
						|
	);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
 | 
						|
{
 | 
						|
	unsigned long mask;
 | 
						|
	volatile unsigned long *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
	*a &= ~mask;
 | 
						|
}
 | 
						|
 | 
						|
#define smp_mb__before_clear_bit()	barrier()
 | 
						|
#define smp_mb__after_clear_bit()	barrier()
 | 
						|
 | 
						|
/**
 | 
						|
 * __change_bit - Toggle a bit in memory
 | 
						|
 * @nr: the bit to set
 | 
						|
 * @addr: the address to start counting from
 | 
						|
 *
 | 
						|
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 | 
						|
 * If it's called on the same region of memory simultaneously, the effect
 | 
						|
 * may be that only one operation succeeds.
 | 
						|
 */
 | 
						|
static __inline__ void __change_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
	*a ^= mask;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * change_bit - Toggle a bit in memory
 | 
						|
 * @nr: Bit to clear
 | 
						|
 * @addr: Address to start counting from
 | 
						|
 *
 | 
						|
 * change_bit() is atomic and may not be reordered.
 | 
						|
 * Note that @nr may be almost arbitrarily large; this function is not
 | 
						|
 * restricted to acting on a single-word quantity.
 | 
						|
 */
 | 
						|
static __inline__ void change_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32  mask;
 | 
						|
	volatile __u32  *a = addr;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	__asm__ __volatile__ (
 | 
						|
		DCACHE_CLEAR("%0", "r6", "%1")
 | 
						|
		M32R_LOCK" %0, @%1;		\n\t"
 | 
						|
		"xor	%0, %2;			\n\t"
 | 
						|
		M32R_UNLOCK" %0, @%1;		\n\t"
 | 
						|
		: "=&r" (tmp)
 | 
						|
		: "r" (a), "r" (mask)
 | 
						|
		: "memory"
 | 
						|
#ifdef CONFIG_CHIP_M32700_TS1
 | 
						|
		, "r6"
 | 
						|
#endif	/* CONFIG_CHIP_M32700_TS1 */
 | 
						|
	);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * test_and_set_bit - Set a bit and return its old value
 | 
						|
 * @nr: Bit to set
 | 
						|
 * @addr: Address to count from
 | 
						|
 *
 | 
						|
 * This operation is atomic and cannot be reordered.
 | 
						|
 * It also implies a memory barrier.
 | 
						|
 */
 | 
						|
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask, oldbit;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	__asm__ __volatile__ (
 | 
						|
		DCACHE_CLEAR("%0", "%1", "%2")
 | 
						|
		M32R_LOCK" %0, @%2;		\n\t"
 | 
						|
		"mv	%1, %0;			\n\t"
 | 
						|
		"and	%0, %3;			\n\t"
 | 
						|
		"or	%1, %3;			\n\t"
 | 
						|
		M32R_UNLOCK" %1, @%2;		\n\t"
 | 
						|
		: "=&r" (oldbit), "=&r" (tmp)
 | 
						|
		: "r" (a), "r" (mask)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	return (oldbit != 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __test_and_set_bit - Set a bit and return its old value
 | 
						|
 * @nr: Bit to set
 | 
						|
 * @addr: Address to count from
 | 
						|
 *
 | 
						|
 * This operation is non-atomic and can be reordered.
 | 
						|
 * If two examples of this operation race, one can appear to succeed
 | 
						|
 * but actually fail.  You must protect multiple accesses with a lock.
 | 
						|
 */
 | 
						|
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask, oldbit;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
	oldbit = (*a & mask);
 | 
						|
	*a |= mask;
 | 
						|
 | 
						|
	return (oldbit != 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * test_and_clear_bit - Clear a bit and return its old value
 | 
						|
 * @nr: Bit to set
 | 
						|
 * @addr: Address to count from
 | 
						|
 *
 | 
						|
 * This operation is atomic and cannot be reordered.
 | 
						|
 * It also implies a memory barrier.
 | 
						|
 */
 | 
						|
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask, oldbit;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
 | 
						|
	__asm__ __volatile__ (
 | 
						|
		DCACHE_CLEAR("%0", "%1", "%3")
 | 
						|
		M32R_LOCK" %0, @%3;		\n\t"
 | 
						|
		"mv	%1, %0;			\n\t"
 | 
						|
		"and	%0, %2;			\n\t"
 | 
						|
		"not	%2, %2;			\n\t"
 | 
						|
		"and	%1, %2;			\n\t"
 | 
						|
		M32R_UNLOCK" %1, @%3;		\n\t"
 | 
						|
		: "=&r" (oldbit), "=&r" (tmp), "+r" (mask)
 | 
						|
		: "r" (a)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	return (oldbit != 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __test_and_clear_bit - Clear a bit and return its old value
 | 
						|
 * @nr: Bit to set
 | 
						|
 * @addr: Address to count from
 | 
						|
 *
 | 
						|
 * This operation is non-atomic and can be reordered.
 | 
						|
 * If two examples of this operation race, one can appear to succeed
 | 
						|
 * but actually fail.  You must protect multiple accesses with a lock.
 | 
						|
 */
 | 
						|
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask, oldbit;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
	oldbit = (*a & mask);
 | 
						|
	*a &= ~mask;
 | 
						|
 | 
						|
	return (oldbit != 0);
 | 
						|
}
 | 
						|
 | 
						|
/* WARNING: non atomic and it can be reordered! */
 | 
						|
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask, oldbit;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
	oldbit = (*a & mask);
 | 
						|
	*a ^= mask;
 | 
						|
 | 
						|
	return (oldbit != 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * test_and_change_bit - Change a bit and return its old value
 | 
						|
 * @nr: Bit to set
 | 
						|
 * @addr: Address to count from
 | 
						|
 *
 | 
						|
 * This operation is atomic and cannot be reordered.
 | 
						|
 * It also implies a memory barrier.
 | 
						|
 */
 | 
						|
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask, oldbit;
 | 
						|
	volatile __u32 *a = addr;
 | 
						|
	unsigned long flags;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	__asm__ __volatile__ (
 | 
						|
		DCACHE_CLEAR("%0", "%1", "%2")
 | 
						|
		M32R_LOCK" %0, @%2;		\n\t"
 | 
						|
		"mv	%1, %0;			\n\t"
 | 
						|
		"and	%0, %3;			\n\t"
 | 
						|
		"xor	%1, %3;			\n\t"
 | 
						|
		M32R_UNLOCK" %1, @%2;		\n\t"
 | 
						|
		: "=&r" (oldbit), "=&r" (tmp)
 | 
						|
		: "r" (a), "r" (mask)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
	local_irq_restore(flags);
 | 
						|
 | 
						|
	return (oldbit != 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * test_bit - Determine whether a bit is set
 | 
						|
 * @nr: bit number to test
 | 
						|
 * @addr: Address to start counting from
 | 
						|
 */
 | 
						|
static __inline__ int test_bit(int nr, const volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask;
 | 
						|
	const volatile __u32 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 5);
 | 
						|
	mask = (1 << (nr & 0x1F));
 | 
						|
 | 
						|
	return ((*a & mask) != 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ffz - find first zero in word.
 | 
						|
 * @word: The word to search
 | 
						|
 *
 | 
						|
 * Undefined if no zero exists, so code should check against ~0UL first.
 | 
						|
 */
 | 
						|
static __inline__ unsigned long ffz(unsigned long word)
 | 
						|
{
 | 
						|
	int k;
 | 
						|
 | 
						|
	word = ~word;
 | 
						|
	k = 0;
 | 
						|
	if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
 | 
						|
	if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
 | 
						|
	if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
 | 
						|
	if (!(word & 0x00000003)) { k += 2; word >>= 2; }
 | 
						|
	if (!(word & 0x00000001)) { k += 1; }
 | 
						|
 | 
						|
	return k;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * find_first_zero_bit - find the first zero bit in a memory region
 | 
						|
 * @addr: The address to start the search at
 | 
						|
 * @size: The maximum size to search
 | 
						|
 *
 | 
						|
 * Returns the bit-number of the first zero bit, not the number of the byte
 | 
						|
 * containing a bit.
 | 
						|
 */
 | 
						|
 | 
						|
#define find_first_zero_bit(addr, size) \
 | 
						|
	find_next_zero_bit((addr), (size), 0)
 | 
						|
 | 
						|
/**
 | 
						|
 * find_next_zero_bit - find the first zero bit in a memory region
 | 
						|
 * @addr: The address to base the search on
 | 
						|
 * @offset: The bitnumber to start searching at
 | 
						|
 * @size: The maximum size to search
 | 
						|
 */
 | 
						|
static __inline__ int find_next_zero_bit(const unsigned long *addr,
 | 
						|
					 int size, int offset)
 | 
						|
{
 | 
						|
	const unsigned long *p = addr + (offset >> 5);
 | 
						|
	unsigned long result = offset & ~31UL;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	if (offset >= size)
 | 
						|
		return size;
 | 
						|
	size -= result;
 | 
						|
	offset &= 31UL;
 | 
						|
	if (offset) {
 | 
						|
		tmp = *(p++);
 | 
						|
		tmp |= ~0UL >> (32-offset);
 | 
						|
		if (size < 32)
 | 
						|
			goto found_first;
 | 
						|
		if (~tmp)
 | 
						|
			goto found_middle;
 | 
						|
		size -= 32;
 | 
						|
		result += 32;
 | 
						|
	}
 | 
						|
	while (size & ~31UL) {
 | 
						|
		if (~(tmp = *(p++)))
 | 
						|
			goto found_middle;
 | 
						|
		result += 32;
 | 
						|
		size -= 32;
 | 
						|
	}
 | 
						|
	if (!size)
 | 
						|
		return result;
 | 
						|
	tmp = *p;
 | 
						|
 | 
						|
found_first:
 | 
						|
	tmp |= ~0UL << size;
 | 
						|
found_middle:
 | 
						|
	return result + ffz(tmp);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __ffs - find first bit in word.
 | 
						|
 * @word: The word to search
 | 
						|
 *
 | 
						|
 * Undefined if no bit exists, so code should check against 0 first.
 | 
						|
 */
 | 
						|
static __inline__ unsigned long __ffs(unsigned long word)
 | 
						|
{
 | 
						|
	int k = 0;
 | 
						|
 | 
						|
	if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
 | 
						|
	if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
 | 
						|
	if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
 | 
						|
	if (!(word & 0x00000003)) { k += 2; word >>= 2; }
 | 
						|
	if (!(word & 0x00000001)) { k += 1;}
 | 
						|
 | 
						|
	return k;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fls: find last bit set.
 | 
						|
 */
 | 
						|
#define fls(x) generic_fls(x)
 | 
						|
 | 
						|
#ifdef __KERNEL__
 | 
						|
 | 
						|
/*
 | 
						|
 * Every architecture must define this function. It's the fastest
 | 
						|
 * way of searching a 140-bit bitmap where the first 100 bits are
 | 
						|
 * unlikely to be set. It's guaranteed that at least one of the 140
 | 
						|
 * bits is cleared.
 | 
						|
 */
 | 
						|
static inline int sched_find_first_bit(unsigned long *b)
 | 
						|
{
 | 
						|
	if (unlikely(b[0]))
 | 
						|
		return __ffs(b[0]);
 | 
						|
	if (unlikely(b[1]))
 | 
						|
		return __ffs(b[1]) + 32;
 | 
						|
	if (unlikely(b[2]))
 | 
						|
		return __ffs(b[2]) + 64;
 | 
						|
	if (b[3])
 | 
						|
		return __ffs(b[3]) + 96;
 | 
						|
	return __ffs(b[4]) + 128;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * find_next_bit - find the first set bit in a memory region
 | 
						|
 * @addr: The address to base the search on
 | 
						|
 * @offset: The bitnumber to start searching at
 | 
						|
 * @size: The maximum size to search
 | 
						|
 */
 | 
						|
static inline unsigned long find_next_bit(const unsigned long *addr,
 | 
						|
	unsigned long size, unsigned long offset)
 | 
						|
{
 | 
						|
	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
 | 
						|
	unsigned int result = offset & ~31UL;
 | 
						|
	unsigned int tmp;
 | 
						|
 | 
						|
	if (offset >= size)
 | 
						|
		return size;
 | 
						|
	size -= result;
 | 
						|
	offset &= 31UL;
 | 
						|
	if (offset) {
 | 
						|
		tmp = *p++;
 | 
						|
		tmp &= ~0UL << offset;
 | 
						|
		if (size < 32)
 | 
						|
			goto found_first;
 | 
						|
		if (tmp)
 | 
						|
			goto found_middle;
 | 
						|
		size -= 32;
 | 
						|
		result += 32;
 | 
						|
	}
 | 
						|
	while (size >= 32) {
 | 
						|
		if ((tmp = *p++) != 0)
 | 
						|
			goto found_middle;
 | 
						|
		result += 32;
 | 
						|
		size -= 32;
 | 
						|
	}
 | 
						|
	if (!size)
 | 
						|
		return result;
 | 
						|
	tmp = *p;
 | 
						|
 | 
						|
found_first:
 | 
						|
	tmp &= ~0UL >> (32 - size);
 | 
						|
	if (tmp == 0UL)        /* Are any bits set? */
 | 
						|
		return result + size; /* Nope. */
 | 
						|
found_middle:
 | 
						|
	return result + __ffs(tmp);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * find_first_bit - find the first set bit in a memory region
 | 
						|
 * @addr: The address to start the search at
 | 
						|
 * @size: The maximum size to search
 | 
						|
 *
 | 
						|
 * Returns the bit-number of the first set bit, not the number of the byte
 | 
						|
 * containing a bit.
 | 
						|
 */
 | 
						|
#define find_first_bit(addr, size) \
 | 
						|
	find_next_bit((addr), (size), 0)
 | 
						|
 | 
						|
/**
 | 
						|
 * ffs - find first bit set
 | 
						|
 * @x: the word to search
 | 
						|
 *
 | 
						|
 * This is defined the same way as
 | 
						|
 * the libc and compiler builtin ffs routines, therefore
 | 
						|
 * differs in spirit from the above ffz (man ffs).
 | 
						|
 */
 | 
						|
#define ffs(x)	generic_ffs(x)
 | 
						|
 | 
						|
/**
 | 
						|
 * hweightN - returns the hamming weight of a N-bit word
 | 
						|
 * @x: the word to weigh
 | 
						|
 *
 | 
						|
 * The Hamming Weight of a number is the total number of bits set in it.
 | 
						|
 */
 | 
						|
 | 
						|
#define hweight32(x)	generic_hweight32(x)
 | 
						|
#define hweight16(x)	generic_hweight16(x)
 | 
						|
#define hweight8(x)	generic_hweight8(x)
 | 
						|
 | 
						|
#endif /* __KERNEL__ */
 | 
						|
 | 
						|
#ifdef __KERNEL__
 | 
						|
 | 
						|
/*
 | 
						|
 * ext2_XXXX function
 | 
						|
 * orig: include/asm-sh/bitops.h
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef __LITTLE_ENDIAN__
 | 
						|
#define ext2_set_bit			test_and_set_bit
 | 
						|
#define ext2_clear_bit			__test_and_clear_bit
 | 
						|
#define ext2_test_bit			test_bit
 | 
						|
#define ext2_find_first_zero_bit	find_first_zero_bit
 | 
						|
#define ext2_find_next_zero_bit		find_next_zero_bit
 | 
						|
#else
 | 
						|
static inline int ext2_set_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u8 mask, oldbit;
 | 
						|
	volatile __u8 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 3);
 | 
						|
	mask = (1 << (nr & 0x07));
 | 
						|
	oldbit = (*a & mask);
 | 
						|
	*a |= mask;
 | 
						|
 | 
						|
	return (oldbit != 0);
 | 
						|
}
 | 
						|
 | 
						|
static inline int ext2_clear_bit(int nr, volatile void * addr)
 | 
						|
{
 | 
						|
	__u8 mask, oldbit;
 | 
						|
	volatile __u8 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 3);
 | 
						|
	mask = (1 << (nr & 0x07));
 | 
						|
	oldbit = (*a & mask);
 | 
						|
	*a &= ~mask;
 | 
						|
 | 
						|
	return (oldbit != 0);
 | 
						|
}
 | 
						|
 | 
						|
static inline int ext2_test_bit(int nr, const volatile void * addr)
 | 
						|
{
 | 
						|
	__u32 mask;
 | 
						|
	const volatile __u8 *a = addr;
 | 
						|
 | 
						|
	a += (nr >> 3);
 | 
						|
	mask = (1 << (nr & 0x07));
 | 
						|
 | 
						|
	return ((mask & *a) != 0);
 | 
						|
}
 | 
						|
 | 
						|
#define ext2_find_first_zero_bit(addr, size) \
 | 
						|
	ext2_find_next_zero_bit((addr), (size), 0)
 | 
						|
 | 
						|
static inline unsigned long ext2_find_next_zero_bit(void *addr,
 | 
						|
	unsigned long size, unsigned long offset)
 | 
						|
{
 | 
						|
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
 | 
						|
	unsigned long result = offset & ~31UL;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	if (offset >= size)
 | 
						|
		return size;
 | 
						|
	size -= result;
 | 
						|
	offset &= 31UL;
 | 
						|
	if(offset) {
 | 
						|
		/* We hold the little endian value in tmp, but then the
 | 
						|
		 * shift is illegal. So we could keep a big endian value
 | 
						|
		 * in tmp, like this:
 | 
						|
		 *
 | 
						|
		 * tmp = __swab32(*(p++));
 | 
						|
		 * tmp |= ~0UL >> (32-offset);
 | 
						|
		 *
 | 
						|
		 * but this would decrease preformance, so we change the
 | 
						|
		 * shift:
 | 
						|
		 */
 | 
						|
		tmp = *(p++);
 | 
						|
		tmp |= __swab32(~0UL >> (32-offset));
 | 
						|
		if(size < 32)
 | 
						|
			goto found_first;
 | 
						|
		if(~tmp)
 | 
						|
			goto found_middle;
 | 
						|
		size -= 32;
 | 
						|
		result += 32;
 | 
						|
	}
 | 
						|
	while(size & ~31UL) {
 | 
						|
		if(~(tmp = *(p++)))
 | 
						|
			goto found_middle;
 | 
						|
		result += 32;
 | 
						|
		size -= 32;
 | 
						|
	}
 | 
						|
	if(!size)
 | 
						|
		return result;
 | 
						|
	tmp = *p;
 | 
						|
 | 
						|
found_first:
 | 
						|
	/* tmp is little endian, so we would have to swab the shift,
 | 
						|
	 * see above. But then we have to swab tmp below for ffz, so
 | 
						|
	 * we might as well do this here.
 | 
						|
	 */
 | 
						|
	return result + ffz(__swab32(tmp) | (~0UL << size));
 | 
						|
found_middle:
 | 
						|
	return result + ffz(__swab32(tmp));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#define ext2_set_bit_atomic(lock, nr, addr)		\
 | 
						|
	({						\
 | 
						|
		int ret;				\
 | 
						|
		spin_lock(lock);			\
 | 
						|
		ret = ext2_set_bit((nr), (addr));	\
 | 
						|
		spin_unlock(lock);			\
 | 
						|
		ret;					\
 | 
						|
	})
 | 
						|
 | 
						|
#define ext2_clear_bit_atomic(lock, nr, addr)		\
 | 
						|
	({						\
 | 
						|
		int ret;				\
 | 
						|
		spin_lock(lock);			\
 | 
						|
		ret = ext2_clear_bit((nr), (addr));	\
 | 
						|
		spin_unlock(lock);			\
 | 
						|
		ret;					\
 | 
						|
	})
 | 
						|
 | 
						|
/* Bitmap functions for the minix filesystem.  */
 | 
						|
#define minix_test_and_set_bit(nr,addr)		__test_and_set_bit(nr,addr)
 | 
						|
#define minix_set_bit(nr,addr)			__set_bit(nr,addr)
 | 
						|
#define minix_test_and_clear_bit(nr,addr)	__test_and_clear_bit(nr,addr)
 | 
						|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
 | 
						|
#define minix_find_first_zero_bit(addr,size)	find_first_zero_bit(addr,size)
 | 
						|
 | 
						|
#endif /* __KERNEL__ */
 | 
						|
 | 
						|
#endif /* _ASM_M32R_BITOPS_H */
 |