Pull timer and time updates from Thomas Gleixner:
"A rather large update of timers, timekeeping & co
- Core timekeeping code is year-2038 safe now for 32bit machines.
Now we just need to fix all in kernel users and the gazillion of
user space interfaces which rely on timespec/timeval :)
- Better cache layout for the timekeeping internal data structures.
- Proper nanosecond based interfaces for in kernel users.
- Tree wide cleanup of code which wants nanoseconds but does hoops
and loops to convert back and forth from timespecs. Some of it
definitely belongs into the ugly code museum.
- Consolidation of the timekeeping interface zoo.
- A fast NMI safe accessor to clock monotonic for tracing. This is a
long standing request to support correlated user/kernel space
traces. With proper NTP frequency correction it's also suitable
for correlation of traces accross separate machines.
- Checkpoint/restart support for timerfd.
- A few NOHZ[_FULL] improvements in the [hr]timer code.
- Code move from kernel to kernel/time of all time* related code.
- New clocksource/event drivers from the ARM universe. I'm really
impressed that despite an architected timer in the newer chips SoC
manufacturers insist on inventing new and differently broken SoC
specific timers.
[ Ed. "Impressed"? I don't think that word means what you think it means ]
- Another round of code move from arch to drivers. Looks like most
of the legacy mess in ARM regarding timers is sorted out except for
a few obnoxious strongholds.
- The usual updates and fixlets all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
timekeeping: Fixup typo in update_vsyscall_old definition
clocksource: document some basic timekeeping concepts
timekeeping: Use cached ntp_tick_length when accumulating error
timekeeping: Rework frequency adjustments to work better w/ nohz
timekeeping: Minor fixup for timespec64->timespec assignment
ftrace: Provide trace clocks monotonic
timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC
seqcount: Add raw_write_seqcount_latch()
seqcount: Provide raw_read_seqcount()
timekeeping: Use tk_read_base as argument for timekeeping_get_ns()
timekeeping: Create struct tk_read_base and use it in struct timekeeper
timekeeping: Restructure the timekeeper some more
clocksource: Get rid of cycle_last
clocksource: Move cycle_last validation to core code
clocksource: Make delta calculation a function
wireless: ath9k: Get rid of timespec conversions
drm: vmwgfx: Use nsec based interfaces
drm: i915: Use nsec based interfaces
timekeeping: Provide ktime_get_raw()
hangcheck-timer: Use ktime_get_ns()
...
************************************************************
* For the very latest on DRI development, please see: *
* http://dri.freedesktop.org/ *
************************************************************
The Direct Rendering Manager (drm) is a device-independent kernel-level
device driver that provides support for the XFree86 Direct Rendering
Infrastructure (DRI).
The DRM supports the Direct Rendering Infrastructure (DRI) in four major
ways:
1. The DRM provides synchronized access to the graphics hardware via
the use of an optimized two-tiered lock.
2. The DRM enforces the DRI security policy for access to the graphics
hardware by only allowing authenticated X11 clients access to
restricted regions of memory.
3. The DRM provides a generic DMA engine, complete with multiple
queues and the ability to detect the need for an OpenGL context
switch.
4. The DRM is extensible via the use of small device-specific modules
that rely extensively on the API exported by the DRM module.
Documentation on the DRI is available from:
http://dri.freedesktop.org/wiki/Documentation
http://sourceforge.net/project/showfiles.php?group_id=387
http://dri.sourceforge.net/doc/
For specific information about kernel-level support, see:
The Direct Rendering Manager, Kernel Support for the Direct Rendering
Infrastructure
http://dri.sourceforge.net/doc/drm_low_level.html
Hardware Locking for the Direct Rendering Infrastructure
http://dri.sourceforge.net/doc/hardware_locking_low_level.html
A Security Analysis of the Direct Rendering Infrastructure
http://dri.sourceforge.net/doc/security_low_level.html