RED_INACTIVE is a slab thing, and reusing it for memblock was
inappropriate, because memblock is dealing with phys_addr_t's which have a
Kconfigurable sizeof().
Create a new poison type for this application.  Fixes the sparse warning
    warning: cast truncates bits from constant value (9f911029d74e35b becomes 9d74e35b)
Reported-by: H Hartley Sweeten <hartleys@visionengravers.com>
Tested-by: H Hartley Sweeten <hartleys@visionengravers.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			863 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			863 lines
		
	
	
	
		
			23 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Procedures for maintaining information about logical memory blocks.
 | 
						|
 *
 | 
						|
 * Peter Bergner, IBM Corp.	June 2001.
 | 
						|
 * Copyright (C) 2001 Peter Bergner.
 | 
						|
 *
 | 
						|
 *      This program is free software; you can redistribute it and/or
 | 
						|
 *      modify it under the terms of the GNU General Public License
 | 
						|
 *      as published by the Free Software Foundation; either version
 | 
						|
 *      2 of the License, or (at your option) any later version.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/poison.h>
 | 
						|
#include <linux/pfn.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/memblock.h>
 | 
						|
 | 
						|
struct memblock memblock __initdata_memblock;
 | 
						|
 | 
						|
int memblock_debug __initdata_memblock;
 | 
						|
int memblock_can_resize __initdata_memblock;
 | 
						|
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
 | 
						|
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
 | 
						|
 | 
						|
/* inline so we don't get a warning when pr_debug is compiled out */
 | 
						|
static inline const char *memblock_type_name(struct memblock_type *type)
 | 
						|
{
 | 
						|
	if (type == &memblock.memory)
 | 
						|
		return "memory";
 | 
						|
	else if (type == &memblock.reserved)
 | 
						|
		return "reserved";
 | 
						|
	else
 | 
						|
		return "unknown";
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Address comparison utilities
 | 
						|
 */
 | 
						|
 | 
						|
static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
 | 
						|
{
 | 
						|
	return addr & ~(size - 1);
 | 
						|
}
 | 
						|
 | 
						|
static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
 | 
						|
{
 | 
						|
	return (addr + (size - 1)) & ~(size - 1);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 | 
						|
				       phys_addr_t base2, phys_addr_t size2)
 | 
						|
{
 | 
						|
	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 | 
						|
}
 | 
						|
 | 
						|
long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
 | 
						|
	for (i = 0; i < type->cnt; i++) {
 | 
						|
		phys_addr_t rgnbase = type->regions[i].base;
 | 
						|
		phys_addr_t rgnsize = type->regions[i].size;
 | 
						|
		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return (i < type->cnt) ? i : -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find, allocate, deallocate or reserve unreserved regions. All allocations
 | 
						|
 * are top-down.
 | 
						|
 */
 | 
						|
 | 
						|
static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
 | 
						|
					  phys_addr_t size, phys_addr_t align)
 | 
						|
{
 | 
						|
	phys_addr_t base, res_base;
 | 
						|
	long j;
 | 
						|
 | 
						|
	/* In case, huge size is requested */
 | 
						|
	if (end < size)
 | 
						|
		return MEMBLOCK_ERROR;
 | 
						|
 | 
						|
	base = memblock_align_down((end - size), align);
 | 
						|
 | 
						|
	/* Prevent allocations returning 0 as it's also used to
 | 
						|
	 * indicate an allocation failure
 | 
						|
	 */
 | 
						|
	if (start == 0)
 | 
						|
		start = PAGE_SIZE;
 | 
						|
 | 
						|
	while (start <= base) {
 | 
						|
		j = memblock_overlaps_region(&memblock.reserved, base, size);
 | 
						|
		if (j < 0)
 | 
						|
			return base;
 | 
						|
		res_base = memblock.reserved.regions[j].base;
 | 
						|
		if (res_base < size)
 | 
						|
			break;
 | 
						|
		base = memblock_align_down(res_base - size, align);
 | 
						|
	}
 | 
						|
 | 
						|
	return MEMBLOCK_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
 | 
						|
			phys_addr_t align, phys_addr_t start, phys_addr_t end)
 | 
						|
{
 | 
						|
	long i;
 | 
						|
 | 
						|
	BUG_ON(0 == size);
 | 
						|
 | 
						|
	/* Pump up max_addr */
 | 
						|
	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 | 
						|
		end = memblock.current_limit;
 | 
						|
 | 
						|
	/* We do a top-down search, this tends to limit memory
 | 
						|
	 * fragmentation by keeping early boot allocs near the
 | 
						|
	 * top of memory
 | 
						|
	 */
 | 
						|
	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
 | 
						|
		phys_addr_t memblockbase = memblock.memory.regions[i].base;
 | 
						|
		phys_addr_t memblocksize = memblock.memory.regions[i].size;
 | 
						|
		phys_addr_t bottom, top, found;
 | 
						|
 | 
						|
		if (memblocksize < size)
 | 
						|
			continue;
 | 
						|
		if ((memblockbase + memblocksize) <= start)
 | 
						|
			break;
 | 
						|
		bottom = max(memblockbase, start);
 | 
						|
		top = min(memblockbase + memblocksize, end);
 | 
						|
		if (bottom >= top)
 | 
						|
			continue;
 | 
						|
		found = memblock_find_region(bottom, top, size, align);
 | 
						|
		if (found != MEMBLOCK_ERROR)
 | 
						|
			return found;
 | 
						|
	}
 | 
						|
	return MEMBLOCK_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find a free area with specified alignment in a specific range.
 | 
						|
 */
 | 
						|
u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
 | 
						|
{
 | 
						|
	return memblock_find_base(size, align, start, end);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free memblock.reserved.regions
 | 
						|
 */
 | 
						|
int __init_memblock memblock_free_reserved_regions(void)
 | 
						|
{
 | 
						|
	if (memblock.reserved.regions == memblock_reserved_init_regions)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return memblock_free(__pa(memblock.reserved.regions),
 | 
						|
		 sizeof(struct memblock_region) * memblock.reserved.max);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reserve memblock.reserved.regions
 | 
						|
 */
 | 
						|
int __init_memblock memblock_reserve_reserved_regions(void)
 | 
						|
{
 | 
						|
	if (memblock.reserved.regions == memblock_reserved_init_regions)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return memblock_reserve(__pa(memblock.reserved.regions),
 | 
						|
		 sizeof(struct memblock_region) * memblock.reserved.max);
 | 
						|
}
 | 
						|
 | 
						|
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
 | 
						|
	for (i = r; i < type->cnt - 1; i++) {
 | 
						|
		type->regions[i].base = type->regions[i + 1].base;
 | 
						|
		type->regions[i].size = type->regions[i + 1].size;
 | 
						|
	}
 | 
						|
	type->cnt--;
 | 
						|
 | 
						|
	/* Special case for empty arrays */
 | 
						|
	if (type->cnt == 0) {
 | 
						|
		type->cnt = 1;
 | 
						|
		type->regions[0].base = 0;
 | 
						|
		type->regions[0].size = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Defined below but needed now */
 | 
						|
static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
 | 
						|
 | 
						|
static int __init_memblock memblock_double_array(struct memblock_type *type)
 | 
						|
{
 | 
						|
	struct memblock_region *new_array, *old_array;
 | 
						|
	phys_addr_t old_size, new_size, addr;
 | 
						|
	int use_slab = slab_is_available();
 | 
						|
 | 
						|
	/* We don't allow resizing until we know about the reserved regions
 | 
						|
	 * of memory that aren't suitable for allocation
 | 
						|
	 */
 | 
						|
	if (!memblock_can_resize)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* Calculate new doubled size */
 | 
						|
	old_size = type->max * sizeof(struct memblock_region);
 | 
						|
	new_size = old_size << 1;
 | 
						|
 | 
						|
	/* Try to find some space for it.
 | 
						|
	 *
 | 
						|
	 * WARNING: We assume that either slab_is_available() and we use it or
 | 
						|
	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
 | 
						|
	 * when bootmem is currently active (unless bootmem itself is implemented
 | 
						|
	 * on top of MEMBLOCK which isn't the case yet)
 | 
						|
	 *
 | 
						|
	 * This should however not be an issue for now, as we currently only
 | 
						|
	 * call into MEMBLOCK while it's still active, or much later when slab is
 | 
						|
	 * active for memory hotplug operations
 | 
						|
	 */
 | 
						|
	if (use_slab) {
 | 
						|
		new_array = kmalloc(new_size, GFP_KERNEL);
 | 
						|
		addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
 | 
						|
	} else
 | 
						|
		addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
 | 
						|
	if (addr == MEMBLOCK_ERROR) {
 | 
						|
		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 | 
						|
		       memblock_type_name(type), type->max, type->max * 2);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	new_array = __va(addr);
 | 
						|
 | 
						|
	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
 | 
						|
		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
 | 
						|
 | 
						|
	/* Found space, we now need to move the array over before
 | 
						|
	 * we add the reserved region since it may be our reserved
 | 
						|
	 * array itself that is full.
 | 
						|
	 */
 | 
						|
	memcpy(new_array, type->regions, old_size);
 | 
						|
	memset(new_array + type->max, 0, old_size);
 | 
						|
	old_array = type->regions;
 | 
						|
	type->regions = new_array;
 | 
						|
	type->max <<= 1;
 | 
						|
 | 
						|
	/* If we use SLAB that's it, we are done */
 | 
						|
	if (use_slab)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Add the new reserved region now. Should not fail ! */
 | 
						|
	BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
 | 
						|
 | 
						|
	/* If the array wasn't our static init one, then free it. We only do
 | 
						|
	 * that before SLAB is available as later on, we don't know whether
 | 
						|
	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
 | 
						|
	 * anyways
 | 
						|
	 */
 | 
						|
	if (old_array != memblock_memory_init_regions &&
 | 
						|
	    old_array != memblock_reserved_init_regions)
 | 
						|
		memblock_free(__pa(old_array), old_size);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
 | 
						|
					  phys_addr_t addr2, phys_addr_t size2)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static long __init_memblock memblock_add_region(struct memblock_type *type,
 | 
						|
						phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	phys_addr_t end = base + size;
 | 
						|
	int i, slot = -1;
 | 
						|
 | 
						|
	/* First try and coalesce this MEMBLOCK with others */
 | 
						|
	for (i = 0; i < type->cnt; i++) {
 | 
						|
		struct memblock_region *rgn = &type->regions[i];
 | 
						|
		phys_addr_t rend = rgn->base + rgn->size;
 | 
						|
 | 
						|
		/* Exit if there's no possible hits */
 | 
						|
		if (rgn->base > end || rgn->size == 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* Check if we are fully enclosed within an existing
 | 
						|
		 * block
 | 
						|
		 */
 | 
						|
		if (rgn->base <= base && rend >= end)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		/* Check if we overlap or are adjacent with the bottom
 | 
						|
		 * of a block.
 | 
						|
		 */
 | 
						|
		if (base < rgn->base && end >= rgn->base) {
 | 
						|
			/* If we can't coalesce, create a new block */
 | 
						|
			if (!memblock_memory_can_coalesce(base, size,
 | 
						|
							  rgn->base,
 | 
						|
							  rgn->size)) {
 | 
						|
				/* Overlap & can't coalesce are mutually
 | 
						|
				 * exclusive, if you do that, be prepared
 | 
						|
				 * for trouble
 | 
						|
				 */
 | 
						|
				WARN_ON(end != rgn->base);
 | 
						|
				goto new_block;
 | 
						|
			}
 | 
						|
			/* We extend the bottom of the block down to our
 | 
						|
			 * base
 | 
						|
			 */
 | 
						|
			rgn->base = base;
 | 
						|
			rgn->size = rend - base;
 | 
						|
 | 
						|
			/* Return if we have nothing else to allocate
 | 
						|
			 * (fully coalesced)
 | 
						|
			 */
 | 
						|
			if (rend >= end)
 | 
						|
				return 0;
 | 
						|
 | 
						|
			/* We continue processing from the end of the
 | 
						|
			 * coalesced block.
 | 
						|
			 */
 | 
						|
			base = rend;
 | 
						|
			size = end - base;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Now check if we overlap or are adjacent with the
 | 
						|
		 * top of a block
 | 
						|
		 */
 | 
						|
		if (base <= rend && end >= rend) {
 | 
						|
			/* If we can't coalesce, create a new block */
 | 
						|
			if (!memblock_memory_can_coalesce(rgn->base,
 | 
						|
							  rgn->size,
 | 
						|
							  base, size)) {
 | 
						|
				/* Overlap & can't coalesce are mutually
 | 
						|
				 * exclusive, if you do that, be prepared
 | 
						|
				 * for trouble
 | 
						|
				 */
 | 
						|
				WARN_ON(rend != base);
 | 
						|
				goto new_block;
 | 
						|
			}
 | 
						|
			/* We adjust our base down to enclose the
 | 
						|
			 * original block and destroy it. It will be
 | 
						|
			 * part of our new allocation. Since we've
 | 
						|
			 * freed an entry, we know we won't fail
 | 
						|
			 * to allocate one later, so we won't risk
 | 
						|
			 * losing the original block allocation.
 | 
						|
			 */
 | 
						|
			size += (base - rgn->base);
 | 
						|
			base = rgn->base;
 | 
						|
			memblock_remove_region(type, i--);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* If the array is empty, special case, replace the fake
 | 
						|
	 * filler region and return
 | 
						|
	 */
 | 
						|
	if ((type->cnt == 1) && (type->regions[0].size == 0)) {
 | 
						|
		type->regions[0].base = base;
 | 
						|
		type->regions[0].size = size;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
 new_block:
 | 
						|
	/* If we are out of space, we fail. It's too late to resize the array
 | 
						|
	 * but then this shouldn't have happened in the first place.
 | 
						|
	 */
 | 
						|
	if (WARN_ON(type->cnt >= type->max))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
 | 
						|
	for (i = type->cnt - 1; i >= 0; i--) {
 | 
						|
		if (base < type->regions[i].base) {
 | 
						|
			type->regions[i+1].base = type->regions[i].base;
 | 
						|
			type->regions[i+1].size = type->regions[i].size;
 | 
						|
		} else {
 | 
						|
			type->regions[i+1].base = base;
 | 
						|
			type->regions[i+1].size = size;
 | 
						|
			slot = i + 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (base < type->regions[0].base) {
 | 
						|
		type->regions[0].base = base;
 | 
						|
		type->regions[0].size = size;
 | 
						|
		slot = 0;
 | 
						|
	}
 | 
						|
	type->cnt++;
 | 
						|
 | 
						|
	/* The array is full ? Try to resize it. If that fails, we undo
 | 
						|
	 * our allocation and return an error
 | 
						|
	 */
 | 
						|
	if (type->cnt == type->max && memblock_double_array(type)) {
 | 
						|
		BUG_ON(slot < 0);
 | 
						|
		memblock_remove_region(type, slot);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return memblock_add_region(&memblock.memory, base, size);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static long __init_memblock __memblock_remove(struct memblock_type *type,
 | 
						|
					      phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	phys_addr_t end = base + size;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Walk through the array for collisions */
 | 
						|
	for (i = 0; i < type->cnt; i++) {
 | 
						|
		struct memblock_region *rgn = &type->regions[i];
 | 
						|
		phys_addr_t rend = rgn->base + rgn->size;
 | 
						|
 | 
						|
		/* Nothing more to do, exit */
 | 
						|
		if (rgn->base > end || rgn->size == 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* If we fully enclose the block, drop it */
 | 
						|
		if (base <= rgn->base && end >= rend) {
 | 
						|
			memblock_remove_region(type, i--);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* If we are fully enclosed within a block
 | 
						|
		 * then we need to split it and we are done
 | 
						|
		 */
 | 
						|
		if (base > rgn->base && end < rend) {
 | 
						|
			rgn->size = base - rgn->base;
 | 
						|
			if (!memblock_add_region(type, end, rend - end))
 | 
						|
				return 0;
 | 
						|
			/* Failure to split is bad, we at least
 | 
						|
			 * restore the block before erroring
 | 
						|
			 */
 | 
						|
			rgn->size = rend - rgn->base;
 | 
						|
			WARN_ON(1);
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Check if we need to trim the bottom of a block */
 | 
						|
		if (rgn->base < end && rend > end) {
 | 
						|
			rgn->size -= end - rgn->base;
 | 
						|
			rgn->base = end;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* And check if we need to trim the top of a block */
 | 
						|
		if (base < rend)
 | 
						|
			rgn->size -= rend - base;
 | 
						|
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return __memblock_remove(&memblock.memory, base, size);
 | 
						|
}
 | 
						|
 | 
						|
long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return __memblock_remove(&memblock.reserved, base, size);
 | 
						|
}
 | 
						|
 | 
						|
long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	struct memblock_type *_rgn = &memblock.reserved;
 | 
						|
 | 
						|
	BUG_ON(0 == size);
 | 
						|
 | 
						|
	return memblock_add_region(_rgn, base, size);
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 | 
						|
{
 | 
						|
	phys_addr_t found;
 | 
						|
 | 
						|
	/* We align the size to limit fragmentation. Without this, a lot of
 | 
						|
	 * small allocs quickly eat up the whole reserve array on sparc
 | 
						|
	 */
 | 
						|
	size = memblock_align_up(size, align);
 | 
						|
 | 
						|
	found = memblock_find_base(size, align, 0, max_addr);
 | 
						|
	if (found != MEMBLOCK_ERROR &&
 | 
						|
	    !memblock_add_region(&memblock.reserved, found, size))
 | 
						|
		return found;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 | 
						|
{
 | 
						|
	phys_addr_t alloc;
 | 
						|
 | 
						|
	alloc = __memblock_alloc_base(size, align, max_addr);
 | 
						|
 | 
						|
	if (alloc == 0)
 | 
						|
		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
 | 
						|
		      (unsigned long long) size, (unsigned long long) max_addr);
 | 
						|
 | 
						|
	return alloc;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 | 
						|
{
 | 
						|
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Additional node-local allocators. Search for node memory is bottom up
 | 
						|
 * and walks memblock regions within that node bottom-up as well, but allocation
 | 
						|
 * within an memblock region is top-down. XXX I plan to fix that at some stage
 | 
						|
 *
 | 
						|
 * WARNING: Only available after early_node_map[] has been populated,
 | 
						|
 * on some architectures, that is after all the calls to add_active_range()
 | 
						|
 * have been done to populate it.
 | 
						|
 */
 | 
						|
 | 
						|
phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
 | 
						|
{
 | 
						|
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 | 
						|
	/*
 | 
						|
	 * This code originates from sparc which really wants use to walk by addresses
 | 
						|
	 * and returns the nid. This is not very convenient for early_pfn_map[] users
 | 
						|
	 * as the map isn't sorted yet, and it really wants to be walked by nid.
 | 
						|
	 *
 | 
						|
	 * For now, I implement the inefficient method below which walks the early
 | 
						|
	 * map multiple times. Eventually we may want to use an ARCH config option
 | 
						|
	 * to implement a completely different method for both case.
 | 
						|
	 */
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < MAX_NUMNODES; i++) {
 | 
						|
		get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
 | 
						|
		if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
 | 
						|
			continue;
 | 
						|
		*nid = i;
 | 
						|
		return min(end, PFN_PHYS(end_pfn));
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	*nid = 0;
 | 
						|
 | 
						|
	return end;
 | 
						|
}
 | 
						|
 | 
						|
static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
 | 
						|
					       phys_addr_t size,
 | 
						|
					       phys_addr_t align, int nid)
 | 
						|
{
 | 
						|
	phys_addr_t start, end;
 | 
						|
 | 
						|
	start = mp->base;
 | 
						|
	end = start + mp->size;
 | 
						|
 | 
						|
	start = memblock_align_up(start, align);
 | 
						|
	while (start < end) {
 | 
						|
		phys_addr_t this_end;
 | 
						|
		int this_nid;
 | 
						|
 | 
						|
		this_end = memblock_nid_range(start, end, &this_nid);
 | 
						|
		if (this_nid == nid) {
 | 
						|
			phys_addr_t ret = memblock_find_region(start, this_end, size, align);
 | 
						|
			if (ret != MEMBLOCK_ERROR &&
 | 
						|
			    !memblock_add_region(&memblock.reserved, ret, size))
 | 
						|
				return ret;
 | 
						|
		}
 | 
						|
		start = this_end;
 | 
						|
	}
 | 
						|
 | 
						|
	return MEMBLOCK_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 | 
						|
{
 | 
						|
	struct memblock_type *mem = &memblock.memory;
 | 
						|
	int i;
 | 
						|
 | 
						|
	BUG_ON(0 == size);
 | 
						|
 | 
						|
	/* We align the size to limit fragmentation. Without this, a lot of
 | 
						|
	 * small allocs quickly eat up the whole reserve array on sparc
 | 
						|
	 */
 | 
						|
	size = memblock_align_up(size, align);
 | 
						|
 | 
						|
	/* We do a bottom-up search for a region with the right
 | 
						|
	 * nid since that's easier considering how memblock_nid_range()
 | 
						|
	 * works
 | 
						|
	 */
 | 
						|
	for (i = 0; i < mem->cnt; i++) {
 | 
						|
		phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
 | 
						|
					       size, align, nid);
 | 
						|
		if (ret != MEMBLOCK_ERROR)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 | 
						|
{
 | 
						|
	phys_addr_t res = memblock_alloc_nid(size, align, nid);
 | 
						|
 | 
						|
	if (res)
 | 
						|
		return res;
 | 
						|
	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Remaining API functions
 | 
						|
 */
 | 
						|
 | 
						|
/* You must call memblock_analyze() before this. */
 | 
						|
phys_addr_t __init memblock_phys_mem_size(void)
 | 
						|
{
 | 
						|
	return memblock.memory_size;
 | 
						|
}
 | 
						|
 | 
						|
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
 | 
						|
{
 | 
						|
	int idx = memblock.memory.cnt - 1;
 | 
						|
 | 
						|
	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
 | 
						|
}
 | 
						|
 | 
						|
/* You must call memblock_analyze() after this. */
 | 
						|
void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
 | 
						|
{
 | 
						|
	unsigned long i;
 | 
						|
	phys_addr_t limit;
 | 
						|
	struct memblock_region *p;
 | 
						|
 | 
						|
	if (!memory_limit)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Truncate the memblock regions to satisfy the memory limit. */
 | 
						|
	limit = memory_limit;
 | 
						|
	for (i = 0; i < memblock.memory.cnt; i++) {
 | 
						|
		if (limit > memblock.memory.regions[i].size) {
 | 
						|
			limit -= memblock.memory.regions[i].size;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		memblock.memory.regions[i].size = limit;
 | 
						|
		memblock.memory.cnt = i + 1;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	memory_limit = memblock_end_of_DRAM();
 | 
						|
 | 
						|
	/* And truncate any reserves above the limit also. */
 | 
						|
	for (i = 0; i < memblock.reserved.cnt; i++) {
 | 
						|
		p = &memblock.reserved.regions[i];
 | 
						|
 | 
						|
		if (p->base > memory_limit)
 | 
						|
			p->size = 0;
 | 
						|
		else if ((p->base + p->size) > memory_limit)
 | 
						|
			p->size = memory_limit - p->base;
 | 
						|
 | 
						|
		if (p->size == 0) {
 | 
						|
			memblock_remove_region(&memblock.reserved, i);
 | 
						|
			i--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
 | 
						|
{
 | 
						|
	unsigned int left = 0, right = type->cnt;
 | 
						|
 | 
						|
	do {
 | 
						|
		unsigned int mid = (right + left) / 2;
 | 
						|
 | 
						|
		if (addr < type->regions[mid].base)
 | 
						|
			right = mid;
 | 
						|
		else if (addr >= (type->regions[mid].base +
 | 
						|
				  type->regions[mid].size))
 | 
						|
			left = mid + 1;
 | 
						|
		else
 | 
						|
			return mid;
 | 
						|
	} while (left < right);
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
int __init memblock_is_reserved(phys_addr_t addr)
 | 
						|
{
 | 
						|
	return memblock_search(&memblock.reserved, addr) != -1;
 | 
						|
}
 | 
						|
 | 
						|
int __init_memblock memblock_is_memory(phys_addr_t addr)
 | 
						|
{
 | 
						|
	return memblock_search(&memblock.memory, addr) != -1;
 | 
						|
}
 | 
						|
 | 
						|
int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	int idx = memblock_search(&memblock.memory, base);
 | 
						|
 | 
						|
	if (idx == -1)
 | 
						|
		return 0;
 | 
						|
	return memblock.memory.regions[idx].base <= base &&
 | 
						|
		(memblock.memory.regions[idx].base +
 | 
						|
		 memblock.memory.regions[idx].size) >= (base + size);
 | 
						|
}
 | 
						|
 | 
						|
int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 | 
						|
{
 | 
						|
	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
 | 
						|
{
 | 
						|
	memblock.current_limit = limit;
 | 
						|
}
 | 
						|
 | 
						|
static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
 | 
						|
{
 | 
						|
	unsigned long long base, size;
 | 
						|
	int i;
 | 
						|
 | 
						|
	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
 | 
						|
 | 
						|
	for (i = 0; i < region->cnt; i++) {
 | 
						|
		base = region->regions[i].base;
 | 
						|
		size = region->regions[i].size;
 | 
						|
 | 
						|
		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
 | 
						|
		    name, i, base, base + size - 1, size);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init_memblock memblock_dump_all(void)
 | 
						|
{
 | 
						|
	if (!memblock_debug)
 | 
						|
		return;
 | 
						|
 | 
						|
	pr_info("MEMBLOCK configuration:\n");
 | 
						|
	pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
 | 
						|
 | 
						|
	memblock_dump(&memblock.memory, "memory");
 | 
						|
	memblock_dump(&memblock.reserved, "reserved");
 | 
						|
}
 | 
						|
 | 
						|
void __init memblock_analyze(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Check marker in the unused last array entry */
 | 
						|
	WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
 | 
						|
		!= MEMBLOCK_INACTIVE);
 | 
						|
	WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
 | 
						|
		!= MEMBLOCK_INACTIVE);
 | 
						|
 | 
						|
	memblock.memory_size = 0;
 | 
						|
 | 
						|
	for (i = 0; i < memblock.memory.cnt; i++)
 | 
						|
		memblock.memory_size += memblock.memory.regions[i].size;
 | 
						|
 | 
						|
	/* We allow resizing from there */
 | 
						|
	memblock_can_resize = 1;
 | 
						|
}
 | 
						|
 | 
						|
void __init memblock_init(void)
 | 
						|
{
 | 
						|
	static int init_done __initdata = 0;
 | 
						|
 | 
						|
	if (init_done)
 | 
						|
		return;
 | 
						|
	init_done = 1;
 | 
						|
 | 
						|
	/* Hookup the initial arrays */
 | 
						|
	memblock.memory.regions	= memblock_memory_init_regions;
 | 
						|
	memblock.memory.max		= INIT_MEMBLOCK_REGIONS;
 | 
						|
	memblock.reserved.regions	= memblock_reserved_init_regions;
 | 
						|
	memblock.reserved.max	= INIT_MEMBLOCK_REGIONS;
 | 
						|
 | 
						|
	/* Write a marker in the unused last array entry */
 | 
						|
	memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
 | 
						|
	memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
 | 
						|
 | 
						|
	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
 | 
						|
	 * This simplifies the memblock_add() code below...
 | 
						|
	 */
 | 
						|
	memblock.memory.regions[0].base = 0;
 | 
						|
	memblock.memory.regions[0].size = 0;
 | 
						|
	memblock.memory.cnt = 1;
 | 
						|
 | 
						|
	/* Ditto. */
 | 
						|
	memblock.reserved.regions[0].base = 0;
 | 
						|
	memblock.reserved.regions[0].size = 0;
 | 
						|
	memblock.reserved.cnt = 1;
 | 
						|
 | 
						|
	memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
 | 
						|
}
 | 
						|
 | 
						|
static int __init early_memblock(char *p)
 | 
						|
{
 | 
						|
	if (p && strstr(p, "debug"))
 | 
						|
		memblock_debug = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("memblock", early_memblock);
 | 
						|
 | 
						|
#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
 | 
						|
 | 
						|
static int memblock_debug_show(struct seq_file *m, void *private)
 | 
						|
{
 | 
						|
	struct memblock_type *type = m->private;
 | 
						|
	struct memblock_region *reg;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < type->cnt; i++) {
 | 
						|
		reg = &type->regions[i];
 | 
						|
		seq_printf(m, "%4d: ", i);
 | 
						|
		if (sizeof(phys_addr_t) == 4)
 | 
						|
			seq_printf(m, "0x%08lx..0x%08lx\n",
 | 
						|
				   (unsigned long)reg->base,
 | 
						|
				   (unsigned long)(reg->base + reg->size - 1));
 | 
						|
		else
 | 
						|
			seq_printf(m, "0x%016llx..0x%016llx\n",
 | 
						|
				   (unsigned long long)reg->base,
 | 
						|
				   (unsigned long long)(reg->base + reg->size - 1));
 | 
						|
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int memblock_debug_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return single_open(file, memblock_debug_show, inode->i_private);
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations memblock_debug_fops = {
 | 
						|
	.open = memblock_debug_open,
 | 
						|
	.read = seq_read,
 | 
						|
	.llseek = seq_lseek,
 | 
						|
	.release = single_release,
 | 
						|
};
 | 
						|
 | 
						|
static int __init memblock_init_debugfs(void)
 | 
						|
{
 | 
						|
	struct dentry *root = debugfs_create_dir("memblock", NULL);
 | 
						|
	if (!root)
 | 
						|
		return -ENXIO;
 | 
						|
	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
 | 
						|
	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
__initcall(memblock_init_debugfs);
 | 
						|
 | 
						|
#endif /* CONFIG_DEBUG_FS */
 |