-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
453 lines
10 KiB
C
453 lines
10 KiB
C
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/fixmap.h>
|
|
|
|
#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
#define PGALLOC_USER_GFP __GFP_HIGHMEM
|
|
#else
|
|
#define PGALLOC_USER_GFP 0
|
|
#endif
|
|
|
|
gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
|
|
|
|
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
return (pte_t *)__get_free_page(PGALLOC_GFP);
|
|
}
|
|
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
struct page *pte;
|
|
|
|
pte = alloc_pages(__userpte_alloc_gfp, 0);
|
|
if (pte)
|
|
pgtable_page_ctor(pte);
|
|
return pte;
|
|
}
|
|
|
|
static int __init setup_userpte(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* "userpte=nohigh" disables allocation of user pagetables in
|
|
* high memory.
|
|
*/
|
|
if (strcmp(arg, "nohigh") == 0)
|
|
__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
|
|
else
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
early_param("userpte", setup_userpte);
|
|
|
|
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
|
|
{
|
|
pgtable_page_dtor(pte);
|
|
paravirt_release_pte(page_to_pfn(pte));
|
|
tlb_remove_page(tlb, pte);
|
|
}
|
|
|
|
#if PAGETABLE_LEVELS > 2
|
|
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
|
|
{
|
|
paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
|
|
tlb_remove_page(tlb, virt_to_page(pmd));
|
|
}
|
|
|
|
#if PAGETABLE_LEVELS > 3
|
|
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
|
|
{
|
|
paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
|
|
tlb_remove_page(tlb, virt_to_page(pud));
|
|
}
|
|
#endif /* PAGETABLE_LEVELS > 3 */
|
|
#endif /* PAGETABLE_LEVELS > 2 */
|
|
|
|
static inline void pgd_list_add(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_add(&page->lru, &pgd_list);
|
|
}
|
|
|
|
static inline void pgd_list_del(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
#define UNSHARED_PTRS_PER_PGD \
|
|
(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
|
|
|
|
|
|
static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
|
|
{
|
|
BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
|
|
virt_to_page(pgd)->index = (pgoff_t)mm;
|
|
}
|
|
|
|
struct mm_struct *pgd_page_get_mm(struct page *page)
|
|
{
|
|
return (struct mm_struct *)page->index;
|
|
}
|
|
|
|
static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
/* If the pgd points to a shared pagetable level (either the
|
|
ptes in non-PAE, or shared PMD in PAE), then just copy the
|
|
references from swapper_pg_dir. */
|
|
if (PAGETABLE_LEVELS == 2 ||
|
|
(PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
|
|
PAGETABLE_LEVELS == 4) {
|
|
clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
|
|
swapper_pg_dir + KERNEL_PGD_BOUNDARY,
|
|
KERNEL_PGD_PTRS);
|
|
}
|
|
|
|
/* list required to sync kernel mapping updates */
|
|
if (!SHARED_KERNEL_PMD) {
|
|
pgd_set_mm(pgd, mm);
|
|
pgd_list_add(pgd);
|
|
}
|
|
}
|
|
|
|
static void pgd_dtor(pgd_t *pgd)
|
|
{
|
|
if (SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
spin_lock(&pgd_lock);
|
|
pgd_list_del(pgd);
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
|
|
/*
|
|
* List of all pgd's needed for non-PAE so it can invalidate entries
|
|
* in both cached and uncached pgd's; not needed for PAE since the
|
|
* kernel pmd is shared. If PAE were not to share the pmd a similar
|
|
* tactic would be needed. This is essentially codepath-based locking
|
|
* against pageattr.c; it is the unique case in which a valid change
|
|
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
|
|
* vmalloc faults work because attached pagetables are never freed.
|
|
* -- nyc
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
/*
|
|
* In PAE mode, we need to do a cr3 reload (=tlb flush) when
|
|
* updating the top-level pagetable entries to guarantee the
|
|
* processor notices the update. Since this is expensive, and
|
|
* all 4 top-level entries are used almost immediately in a
|
|
* new process's life, we just pre-populate them here.
|
|
*
|
|
* Also, if we're in a paravirt environment where the kernel pmd is
|
|
* not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
|
|
* and initialize the kernel pmds here.
|
|
*/
|
|
#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
|
|
|
|
void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
|
|
{
|
|
paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
|
|
|
|
/* Note: almost everything apart from _PAGE_PRESENT is
|
|
reserved at the pmd (PDPT) level. */
|
|
set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
|
|
|
|
/*
|
|
* According to Intel App note "TLBs, Paging-Structure Caches,
|
|
* and Their Invalidation", April 2007, document 317080-001,
|
|
* section 8.1: in PAE mode we explicitly have to flush the
|
|
* TLB via cr3 if the top-level pgd is changed...
|
|
*/
|
|
flush_tlb_mm(mm);
|
|
}
|
|
#else /* !CONFIG_X86_PAE */
|
|
|
|
/* No need to prepopulate any pagetable entries in non-PAE modes. */
|
|
#define PREALLOCATED_PMDS 0
|
|
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
static void free_pmds(pmd_t *pmds[])
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++)
|
|
if (pmds[i])
|
|
free_page((unsigned long)pmds[i]);
|
|
}
|
|
|
|
static int preallocate_pmds(pmd_t *pmds[])
|
|
{
|
|
int i;
|
|
bool failed = false;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++) {
|
|
pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
|
|
if (pmd == NULL)
|
|
failed = true;
|
|
pmds[i] = pmd;
|
|
}
|
|
|
|
if (failed) {
|
|
free_pmds(pmds);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mop up any pmd pages which may still be attached to the pgd.
|
|
* Normally they will be freed by munmap/exit_mmap, but any pmd we
|
|
* preallocate which never got a corresponding vma will need to be
|
|
* freed manually.
|
|
*/
|
|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++) {
|
|
pgd_t pgd = pgdp[i];
|
|
|
|
if (pgd_val(pgd) != 0) {
|
|
pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
|
|
|
|
pgdp[i] = native_make_pgd(0);
|
|
|
|
paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
|
|
pmd_free(mm, pmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
|
|
{
|
|
pud_t *pud;
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
|
|
return;
|
|
|
|
pud = pud_offset(pgd, 0);
|
|
|
|
for (addr = i = 0; i < PREALLOCATED_PMDS;
|
|
i++, pud++, addr += PUD_SIZE) {
|
|
pmd_t *pmd = pmds[i];
|
|
|
|
if (i >= KERNEL_PGD_BOUNDARY)
|
|
memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
|
|
sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
pud_populate(mm, pud, pmd);
|
|
}
|
|
}
|
|
|
|
pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd;
|
|
pmd_t *pmds[PREALLOCATED_PMDS];
|
|
|
|
pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
|
|
|
|
if (pgd == NULL)
|
|
goto out;
|
|
|
|
mm->pgd = pgd;
|
|
|
|
if (preallocate_pmds(pmds) != 0)
|
|
goto out_free_pgd;
|
|
|
|
if (paravirt_pgd_alloc(mm) != 0)
|
|
goto out_free_pmds;
|
|
|
|
/*
|
|
* Make sure that pre-populating the pmds is atomic with
|
|
* respect to anything walking the pgd_list, so that they
|
|
* never see a partially populated pgd.
|
|
*/
|
|
spin_lock(&pgd_lock);
|
|
|
|
pgd_ctor(mm, pgd);
|
|
pgd_prepopulate_pmd(mm, pgd, pmds);
|
|
|
|
spin_unlock(&pgd_lock);
|
|
|
|
return pgd;
|
|
|
|
out_free_pmds:
|
|
free_pmds(pmds);
|
|
out_free_pgd:
|
|
free_page((unsigned long)pgd);
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
pgd_mop_up_pmds(mm, pgd);
|
|
pgd_dtor(pgd);
|
|
paravirt_pgd_free(mm, pgd);
|
|
free_page((unsigned long)pgd);
|
|
}
|
|
|
|
/*
|
|
* Used to set accessed or dirty bits in the page table entries
|
|
* on other architectures. On x86, the accessed and dirty bits
|
|
* are tracked by hardware. However, do_wp_page calls this function
|
|
* to also make the pte writeable at the same time the dirty bit is
|
|
* set. In that case we do actually need to write the PTE.
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
int changed = !pte_same(*ptep, entry);
|
|
|
|
if (changed && dirty) {
|
|
*ptep = entry;
|
|
pte_update_defer(vma->vm_mm, address, ptep);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp,
|
|
pmd_t entry, int dirty)
|
|
{
|
|
int changed = !pmd_same(*pmdp, entry);
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
if (changed && dirty) {
|
|
*pmdp = entry;
|
|
pmd_update_defer(vma->vm_mm, address, pmdp);
|
|
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
#endif
|
|
|
|
int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pte_young(*ptep))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *) &ptep->pte);
|
|
|
|
if (ret)
|
|
pte_update(vma->vm_mm, addr, ptep);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pmd_young(*pmdp))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *)pmdp);
|
|
|
|
if (ret)
|
|
pmd_update(vma->vm_mm, addr, pmdp);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
int young;
|
|
|
|
young = ptep_test_and_clear_young(vma, address, ptep);
|
|
if (young)
|
|
flush_tlb_page(vma, address);
|
|
|
|
return young;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
int young;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
young = pmdp_test_and_clear_young(vma, address, pmdp);
|
|
if (young)
|
|
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
|
|
return young;
|
|
}
|
|
|
|
void pmdp_splitting_flush(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
int set;
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
|
|
(unsigned long *)pmdp);
|
|
if (set) {
|
|
pmd_update(vma->vm_mm, address, pmdp);
|
|
/* need tlb flush only to serialize against gup-fast */
|
|
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* reserve_top_address - reserves a hole in the top of kernel address space
|
|
* @reserve - size of hole to reserve
|
|
*
|
|
* Can be used to relocate the fixmap area and poke a hole in the top
|
|
* of kernel address space to make room for a hypervisor.
|
|
*/
|
|
void __init reserve_top_address(unsigned long reserve)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
BUG_ON(fixmaps_set > 0);
|
|
printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
|
|
(int)-reserve);
|
|
__FIXADDR_TOP = -reserve - PAGE_SIZE;
|
|
#endif
|
|
}
|
|
|
|
int fixmaps_set;
|
|
|
|
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
|
|
{
|
|
unsigned long address = __fix_to_virt(idx);
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
set_pte_vaddr(address, pte);
|
|
fixmaps_set++;
|
|
}
|
|
|
|
void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
|
|
pgprot_t flags)
|
|
{
|
|
__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
}
|