 7f88f88f83
			
		
	
	
	7f88f88f83
	
	
	
		
			
			Commit 248ac0e194 ("mm/vmalloc: remove guard page from between vmap
blocks") had the side effect of making vmap_area.va_end member point to
the next vmap_area.va_start.  This was creating an artificial reference
to vmalloc'ed objects and kmemleak was rarely reporting vmalloc() leaks.
This patch marks the vmap_area containing pointers explicitly and
reduces the min ref_count to 2 as vm_struct still contains a reference
to the vmalloc'ed object.  The kmemleak add_scan_area() function has
been improved to allow a SIZE_MAX argument covering the rest of the
object (for simpler calling sites).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1868 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1868 lines
		
	
	
	
		
			52 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * mm/kmemleak.c
 | |
|  *
 | |
|  * Copyright (C) 2008 ARM Limited
 | |
|  * Written by Catalin Marinas <catalin.marinas@arm.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 | |
|  *
 | |
|  *
 | |
|  * For more information on the algorithm and kmemleak usage, please see
 | |
|  * Documentation/kmemleak.txt.
 | |
|  *
 | |
|  * Notes on locking
 | |
|  * ----------------
 | |
|  *
 | |
|  * The following locks and mutexes are used by kmemleak:
 | |
|  *
 | |
|  * - kmemleak_lock (rwlock): protects the object_list modifications and
 | |
|  *   accesses to the object_tree_root. The object_list is the main list
 | |
|  *   holding the metadata (struct kmemleak_object) for the allocated memory
 | |
|  *   blocks. The object_tree_root is a red black tree used to look-up
 | |
|  *   metadata based on a pointer to the corresponding memory block.  The
 | |
|  *   kmemleak_object structures are added to the object_list and
 | |
|  *   object_tree_root in the create_object() function called from the
 | |
|  *   kmemleak_alloc() callback and removed in delete_object() called from the
 | |
|  *   kmemleak_free() callback
 | |
|  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
 | |
|  *   the metadata (e.g. count) are protected by this lock. Note that some
 | |
|  *   members of this structure may be protected by other means (atomic or
 | |
|  *   kmemleak_lock). This lock is also held when scanning the corresponding
 | |
|  *   memory block to avoid the kernel freeing it via the kmemleak_free()
 | |
|  *   callback. This is less heavyweight than holding a global lock like
 | |
|  *   kmemleak_lock during scanning
 | |
|  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
 | |
|  *   unreferenced objects at a time. The gray_list contains the objects which
 | |
|  *   are already referenced or marked as false positives and need to be
 | |
|  *   scanned. This list is only modified during a scanning episode when the
 | |
|  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
 | |
|  *   Note that the kmemleak_object.use_count is incremented when an object is
 | |
|  *   added to the gray_list and therefore cannot be freed. This mutex also
 | |
|  *   prevents multiple users of the "kmemleak" debugfs file together with
 | |
|  *   modifications to the memory scanning parameters including the scan_thread
 | |
|  *   pointer
 | |
|  *
 | |
|  * The kmemleak_object structures have a use_count incremented or decremented
 | |
|  * using the get_object()/put_object() functions. When the use_count becomes
 | |
|  * 0, this count can no longer be incremented and put_object() schedules the
 | |
|  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
 | |
|  * function must be protected by rcu_read_lock() to avoid accessing a freed
 | |
|  * structure.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/stacktrace.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/thread_info.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/crc32.h>
 | |
| 
 | |
| #include <asm/sections.h>
 | |
| #include <asm/processor.h>
 | |
| #include <linux/atomic.h>
 | |
| 
 | |
| #include <linux/kmemcheck.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| 
 | |
| /*
 | |
|  * Kmemleak configuration and common defines.
 | |
|  */
 | |
| #define MAX_TRACE		16	/* stack trace length */
 | |
| #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 | |
| #define SECS_FIRST_SCAN		60	/* delay before the first scan */
 | |
| #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 | |
| #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 | |
| 
 | |
| #define BYTES_PER_POINTER	sizeof(void *)
 | |
| 
 | |
| /* GFP bitmask for kmemleak internal allocations */
 | |
| #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 | |
| 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 | |
| 				 __GFP_NOWARN)
 | |
| 
 | |
| /* scanning area inside a memory block */
 | |
| struct kmemleak_scan_area {
 | |
| 	struct hlist_node node;
 | |
| 	unsigned long start;
 | |
| 	size_t size;
 | |
| };
 | |
| 
 | |
| #define KMEMLEAK_GREY	0
 | |
| #define KMEMLEAK_BLACK	-1
 | |
| 
 | |
| /*
 | |
|  * Structure holding the metadata for each allocated memory block.
 | |
|  * Modifications to such objects should be made while holding the
 | |
|  * object->lock. Insertions or deletions from object_list, gray_list or
 | |
|  * rb_node are already protected by the corresponding locks or mutex (see
 | |
|  * the notes on locking above). These objects are reference-counted
 | |
|  * (use_count) and freed using the RCU mechanism.
 | |
|  */
 | |
| struct kmemleak_object {
 | |
| 	spinlock_t lock;
 | |
| 	unsigned long flags;		/* object status flags */
 | |
| 	struct list_head object_list;
 | |
| 	struct list_head gray_list;
 | |
| 	struct rb_node rb_node;
 | |
| 	struct rcu_head rcu;		/* object_list lockless traversal */
 | |
| 	/* object usage count; object freed when use_count == 0 */
 | |
| 	atomic_t use_count;
 | |
| 	unsigned long pointer;
 | |
| 	size_t size;
 | |
| 	/* minimum number of a pointers found before it is considered leak */
 | |
| 	int min_count;
 | |
| 	/* the total number of pointers found pointing to this object */
 | |
| 	int count;
 | |
| 	/* checksum for detecting modified objects */
 | |
| 	u32 checksum;
 | |
| 	/* memory ranges to be scanned inside an object (empty for all) */
 | |
| 	struct hlist_head area_list;
 | |
| 	unsigned long trace[MAX_TRACE];
 | |
| 	unsigned int trace_len;
 | |
| 	unsigned long jiffies;		/* creation timestamp */
 | |
| 	pid_t pid;			/* pid of the current task */
 | |
| 	char comm[TASK_COMM_LEN];	/* executable name */
 | |
| };
 | |
| 
 | |
| /* flag representing the memory block allocation status */
 | |
| #define OBJECT_ALLOCATED	(1 << 0)
 | |
| /* flag set after the first reporting of an unreference object */
 | |
| #define OBJECT_REPORTED		(1 << 1)
 | |
| /* flag set to not scan the object */
 | |
| #define OBJECT_NO_SCAN		(1 << 2)
 | |
| 
 | |
| /* number of bytes to print per line; must be 16 or 32 */
 | |
| #define HEX_ROW_SIZE		16
 | |
| /* number of bytes to print at a time (1, 2, 4, 8) */
 | |
| #define HEX_GROUP_SIZE		1
 | |
| /* include ASCII after the hex output */
 | |
| #define HEX_ASCII		1
 | |
| /* max number of lines to be printed */
 | |
| #define HEX_MAX_LINES		2
 | |
| 
 | |
| /* the list of all allocated objects */
 | |
| static LIST_HEAD(object_list);
 | |
| /* the list of gray-colored objects (see color_gray comment below) */
 | |
| static LIST_HEAD(gray_list);
 | |
| /* search tree for object boundaries */
 | |
| static struct rb_root object_tree_root = RB_ROOT;
 | |
| /* rw_lock protecting the access to object_list and object_tree_root */
 | |
| static DEFINE_RWLOCK(kmemleak_lock);
 | |
| 
 | |
| /* allocation caches for kmemleak internal data */
 | |
| static struct kmem_cache *object_cache;
 | |
| static struct kmem_cache *scan_area_cache;
 | |
| 
 | |
| /* set if tracing memory operations is enabled */
 | |
| static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
 | |
| /* set in the late_initcall if there were no errors */
 | |
| static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
 | |
| /* enables or disables early logging of the memory operations */
 | |
| static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
 | |
| /* set if a kmemleak warning was issued */
 | |
| static atomic_t kmemleak_warning = ATOMIC_INIT(0);
 | |
| /* set if a fatal kmemleak error has occurred */
 | |
| static atomic_t kmemleak_error = ATOMIC_INIT(0);
 | |
| 
 | |
| /* minimum and maximum address that may be valid pointers */
 | |
| static unsigned long min_addr = ULONG_MAX;
 | |
| static unsigned long max_addr;
 | |
| 
 | |
| static struct task_struct *scan_thread;
 | |
| /* used to avoid reporting of recently allocated objects */
 | |
| static unsigned long jiffies_min_age;
 | |
| static unsigned long jiffies_last_scan;
 | |
| /* delay between automatic memory scannings */
 | |
| static signed long jiffies_scan_wait;
 | |
| /* enables or disables the task stacks scanning */
 | |
| static int kmemleak_stack_scan = 1;
 | |
| /* protects the memory scanning, parameters and debug/kmemleak file access */
 | |
| static DEFINE_MUTEX(scan_mutex);
 | |
| /* setting kmemleak=on, will set this var, skipping the disable */
 | |
| static int kmemleak_skip_disable;
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Early object allocation/freeing logging. Kmemleak is initialized after the
 | |
|  * kernel allocator. However, both the kernel allocator and kmemleak may
 | |
|  * allocate memory blocks which need to be tracked. Kmemleak defines an
 | |
|  * arbitrary buffer to hold the allocation/freeing information before it is
 | |
|  * fully initialized.
 | |
|  */
 | |
| 
 | |
| /* kmemleak operation type for early logging */
 | |
| enum {
 | |
| 	KMEMLEAK_ALLOC,
 | |
| 	KMEMLEAK_ALLOC_PERCPU,
 | |
| 	KMEMLEAK_FREE,
 | |
| 	KMEMLEAK_FREE_PART,
 | |
| 	KMEMLEAK_FREE_PERCPU,
 | |
| 	KMEMLEAK_NOT_LEAK,
 | |
| 	KMEMLEAK_IGNORE,
 | |
| 	KMEMLEAK_SCAN_AREA,
 | |
| 	KMEMLEAK_NO_SCAN
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Structure holding the information passed to kmemleak callbacks during the
 | |
|  * early logging.
 | |
|  */
 | |
| struct early_log {
 | |
| 	int op_type;			/* kmemleak operation type */
 | |
| 	const void *ptr;		/* allocated/freed memory block */
 | |
| 	size_t size;			/* memory block size */
 | |
| 	int min_count;			/* minimum reference count */
 | |
| 	unsigned long trace[MAX_TRACE];	/* stack trace */
 | |
| 	unsigned int trace_len;		/* stack trace length */
 | |
| };
 | |
| 
 | |
| /* early logging buffer and current position */
 | |
| static struct early_log
 | |
| 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
 | |
| static int crt_early_log __initdata;
 | |
| 
 | |
| static void kmemleak_disable(void);
 | |
| 
 | |
| /*
 | |
|  * Print a warning and dump the stack trace.
 | |
|  */
 | |
| #define kmemleak_warn(x...)	do {		\
 | |
| 	pr_warning(x);				\
 | |
| 	dump_stack();				\
 | |
| 	atomic_set(&kmemleak_warning, 1);	\
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * Macro invoked when a serious kmemleak condition occurred and cannot be
 | |
|  * recovered from. Kmemleak will be disabled and further allocation/freeing
 | |
|  * tracing no longer available.
 | |
|  */
 | |
| #define kmemleak_stop(x...)	do {	\
 | |
| 	kmemleak_warn(x);		\
 | |
| 	kmemleak_disable();		\
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * Printing of the objects hex dump to the seq file. The number of lines to be
 | |
|  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 | |
|  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 | |
|  * with the object->lock held.
 | |
|  */
 | |
| static void hex_dump_object(struct seq_file *seq,
 | |
| 			    struct kmemleak_object *object)
 | |
| {
 | |
| 	const u8 *ptr = (const u8 *)object->pointer;
 | |
| 	int i, len, remaining;
 | |
| 	unsigned char linebuf[HEX_ROW_SIZE * 5];
 | |
| 
 | |
| 	/* limit the number of lines to HEX_MAX_LINES */
 | |
| 	remaining = len =
 | |
| 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
 | |
| 
 | |
| 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
 | |
| 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
 | |
| 		int linelen = min(remaining, HEX_ROW_SIZE);
 | |
| 
 | |
| 		remaining -= HEX_ROW_SIZE;
 | |
| 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
 | |
| 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
 | |
| 				   HEX_ASCII);
 | |
| 		seq_printf(seq, "    %s\n", linebuf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Object colors, encoded with count and min_count:
 | |
|  * - white - orphan object, not enough references to it (count < min_count)
 | |
|  * - gray  - not orphan, not marked as false positive (min_count == 0) or
 | |
|  *		sufficient references to it (count >= min_count)
 | |
|  * - black - ignore, it doesn't contain references (e.g. text section)
 | |
|  *		(min_count == -1). No function defined for this color.
 | |
|  * Newly created objects don't have any color assigned (object->count == -1)
 | |
|  * before the next memory scan when they become white.
 | |
|  */
 | |
| static bool color_white(const struct kmemleak_object *object)
 | |
| {
 | |
| 	return object->count != KMEMLEAK_BLACK &&
 | |
| 		object->count < object->min_count;
 | |
| }
 | |
| 
 | |
| static bool color_gray(const struct kmemleak_object *object)
 | |
| {
 | |
| 	return object->min_count != KMEMLEAK_BLACK &&
 | |
| 		object->count >= object->min_count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Objects are considered unreferenced only if their color is white, they have
 | |
|  * not be deleted and have a minimum age to avoid false positives caused by
 | |
|  * pointers temporarily stored in CPU registers.
 | |
|  */
 | |
| static bool unreferenced_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 | |
| 		time_before_eq(object->jiffies + jiffies_min_age,
 | |
| 			       jiffies_last_scan);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Printing of the unreferenced objects information to the seq file. The
 | |
|  * print_unreferenced function must be called with the object->lock held.
 | |
|  */
 | |
| static void print_unreferenced(struct seq_file *seq,
 | |
| 			       struct kmemleak_object *object)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 | |
| 
 | |
| 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 | |
| 		   object->pointer, object->size);
 | |
| 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 | |
| 		   object->comm, object->pid, object->jiffies,
 | |
| 		   msecs_age / 1000, msecs_age % 1000);
 | |
| 	hex_dump_object(seq, object);
 | |
| 	seq_printf(seq, "  backtrace:\n");
 | |
| 
 | |
| 	for (i = 0; i < object->trace_len; i++) {
 | |
| 		void *ptr = (void *)object->trace[i];
 | |
| 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print the kmemleak_object information. This function is used mainly for
 | |
|  * debugging special cases when kmemleak operations. It must be called with
 | |
|  * the object->lock held.
 | |
|  */
 | |
| static void dump_object_info(struct kmemleak_object *object)
 | |
| {
 | |
| 	struct stack_trace trace;
 | |
| 
 | |
| 	trace.nr_entries = object->trace_len;
 | |
| 	trace.entries = object->trace;
 | |
| 
 | |
| 	pr_notice("Object 0x%08lx (size %zu):\n",
 | |
| 		  object->pointer, object->size);
 | |
| 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 | |
| 		  object->comm, object->pid, object->jiffies);
 | |
| 	pr_notice("  min_count = %d\n", object->min_count);
 | |
| 	pr_notice("  count = %d\n", object->count);
 | |
| 	pr_notice("  flags = 0x%lx\n", object->flags);
 | |
| 	pr_notice("  checksum = %d\n", object->checksum);
 | |
| 	pr_notice("  backtrace:\n");
 | |
| 	print_stack_trace(&trace, 4);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look-up a memory block metadata (kmemleak_object) in the object search
 | |
|  * tree based on a pointer value. If alias is 0, only values pointing to the
 | |
|  * beginning of the memory block are allowed. The kmemleak_lock must be held
 | |
|  * when calling this function.
 | |
|  */
 | |
| static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 | |
| {
 | |
| 	struct rb_node *rb = object_tree_root.rb_node;
 | |
| 
 | |
| 	while (rb) {
 | |
| 		struct kmemleak_object *object =
 | |
| 			rb_entry(rb, struct kmemleak_object, rb_node);
 | |
| 		if (ptr < object->pointer)
 | |
| 			rb = object->rb_node.rb_left;
 | |
| 		else if (object->pointer + object->size <= ptr)
 | |
| 			rb = object->rb_node.rb_right;
 | |
| 		else if (object->pointer == ptr || alias)
 | |
| 			return object;
 | |
| 		else {
 | |
| 			kmemleak_warn("Found object by alias at 0x%08lx\n",
 | |
| 				      ptr);
 | |
| 			dump_object_info(object);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 | |
|  * that once an object's use_count reached 0, the RCU freeing was already
 | |
|  * registered and the object should no longer be used. This function must be
 | |
|  * called under the protection of rcu_read_lock().
 | |
|  */
 | |
| static int get_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	return atomic_inc_not_zero(&object->use_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RCU callback to free a kmemleak_object.
 | |
|  */
 | |
| static void free_object_rcu(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct hlist_node *tmp;
 | |
| 	struct kmemleak_scan_area *area;
 | |
| 	struct kmemleak_object *object =
 | |
| 		container_of(rcu, struct kmemleak_object, rcu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Once use_count is 0 (guaranteed by put_object), there is no other
 | |
| 	 * code accessing this object, hence no need for locking.
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 | |
| 		hlist_del(&area->node);
 | |
| 		kmem_cache_free(scan_area_cache, area);
 | |
| 	}
 | |
| 	kmem_cache_free(object_cache, object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement the object use_count. Once the count is 0, free the object using
 | |
|  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 | |
|  * delete_object() path, the delayed RCU freeing ensures that there is no
 | |
|  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 | |
|  * is also possible.
 | |
|  */
 | |
| static void put_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&object->use_count))
 | |
| 		return;
 | |
| 
 | |
| 	/* should only get here after delete_object was called */
 | |
| 	WARN_ON(object->flags & OBJECT_ALLOCATED);
 | |
| 
 | |
| 	call_rcu(&object->rcu, free_object_rcu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up an object in the object search tree and increase its use_count.
 | |
|  */
 | |
| static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object = NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	read_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	if (ptr >= min_addr && ptr < max_addr)
 | |
| 		object = lookup_object(ptr, alias);
 | |
| 	read_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| 
 | |
| 	/* check whether the object is still available */
 | |
| 	if (object && !get_object(object))
 | |
| 		object = NULL;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Save stack trace to the given array of MAX_TRACE size.
 | |
|  */
 | |
| static int __save_stack_trace(unsigned long *trace)
 | |
| {
 | |
| 	struct stack_trace stack_trace;
 | |
| 
 | |
| 	stack_trace.max_entries = MAX_TRACE;
 | |
| 	stack_trace.nr_entries = 0;
 | |
| 	stack_trace.entries = trace;
 | |
| 	stack_trace.skip = 2;
 | |
| 	save_stack_trace(&stack_trace);
 | |
| 
 | |
| 	return stack_trace.nr_entries;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the metadata (struct kmemleak_object) corresponding to an allocated
 | |
|  * memory block and add it to the object_list and object_tree_root.
 | |
|  */
 | |
| static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 | |
| 					     int min_count, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object, *parent;
 | |
| 	struct rb_node **link, *rb_parent;
 | |
| 
 | |
| 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 | |
| 	if (!object) {
 | |
| 		pr_warning("Cannot allocate a kmemleak_object structure\n");
 | |
| 		kmemleak_disable();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&object->object_list);
 | |
| 	INIT_LIST_HEAD(&object->gray_list);
 | |
| 	INIT_HLIST_HEAD(&object->area_list);
 | |
| 	spin_lock_init(&object->lock);
 | |
| 	atomic_set(&object->use_count, 1);
 | |
| 	object->flags = OBJECT_ALLOCATED;
 | |
| 	object->pointer = ptr;
 | |
| 	object->size = size;
 | |
| 	object->min_count = min_count;
 | |
| 	object->count = 0;			/* white color initially */
 | |
| 	object->jiffies = jiffies;
 | |
| 	object->checksum = 0;
 | |
| 
 | |
| 	/* task information */
 | |
| 	if (in_irq()) {
 | |
| 		object->pid = 0;
 | |
| 		strncpy(object->comm, "hardirq", sizeof(object->comm));
 | |
| 	} else if (in_softirq()) {
 | |
| 		object->pid = 0;
 | |
| 		strncpy(object->comm, "softirq", sizeof(object->comm));
 | |
| 	} else {
 | |
| 		object->pid = current->pid;
 | |
| 		/*
 | |
| 		 * There is a small chance of a race with set_task_comm(),
 | |
| 		 * however using get_task_comm() here may cause locking
 | |
| 		 * dependency issues with current->alloc_lock. In the worst
 | |
| 		 * case, the command line is not correct.
 | |
| 		 */
 | |
| 		strncpy(object->comm, current->comm, sizeof(object->comm));
 | |
| 	}
 | |
| 
 | |
| 	/* kernel backtrace */
 | |
| 	object->trace_len = __save_stack_trace(object->trace);
 | |
| 
 | |
| 	write_lock_irqsave(&kmemleak_lock, flags);
 | |
| 
 | |
| 	min_addr = min(min_addr, ptr);
 | |
| 	max_addr = max(max_addr, ptr + size);
 | |
| 	link = &object_tree_root.rb_node;
 | |
| 	rb_parent = NULL;
 | |
| 	while (*link) {
 | |
| 		rb_parent = *link;
 | |
| 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 | |
| 		if (ptr + size <= parent->pointer)
 | |
| 			link = &parent->rb_node.rb_left;
 | |
| 		else if (parent->pointer + parent->size <= ptr)
 | |
| 			link = &parent->rb_node.rb_right;
 | |
| 		else {
 | |
| 			kmemleak_stop("Cannot insert 0x%lx into the object "
 | |
| 				      "search tree (overlaps existing)\n",
 | |
| 				      ptr);
 | |
| 			kmem_cache_free(object_cache, object);
 | |
| 			object = parent;
 | |
| 			spin_lock(&object->lock);
 | |
| 			dump_object_info(object);
 | |
| 			spin_unlock(&object->lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	rb_link_node(&object->rb_node, rb_parent, link);
 | |
| 	rb_insert_color(&object->rb_node, &object_tree_root);
 | |
| 
 | |
| 	list_add_tail_rcu(&object->object_list, &object_list);
 | |
| out:
 | |
| 	write_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove the metadata (struct kmemleak_object) for a memory block from the
 | |
|  * object_list and object_tree_root and decrement its use_count.
 | |
|  */
 | |
| static void __delete_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	write_lock_irqsave(&kmemleak_lock, flags);
 | |
| 	rb_erase(&object->rb_node, &object_tree_root);
 | |
| 	list_del_rcu(&object->object_list);
 | |
| 	write_unlock_irqrestore(&kmemleak_lock, flags);
 | |
| 
 | |
| 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 | |
| 	WARN_ON(atomic_read(&object->use_count) < 2);
 | |
| 
 | |
| 	/*
 | |
| 	 * Locking here also ensures that the corresponding memory block
 | |
| 	 * cannot be freed when it is being scanned.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&object->lock, flags);
 | |
| 	object->flags &= ~OBJECT_ALLOCATED;
 | |
| 	spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 | |
|  * delete it.
 | |
|  */
 | |
| static void delete_object_full(unsigned long ptr)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 0);
 | |
| 	if (!object) {
 | |
| #ifdef DEBUG
 | |
| 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 | |
| 			      ptr);
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 	__delete_object(object);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 | |
|  * delete it. If the memory block is partially freed, the function may create
 | |
|  * additional metadata for the remaining parts of the block.
 | |
|  */
 | |
| static void delete_object_part(unsigned long ptr, size_t size)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	unsigned long start, end;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 1);
 | |
| 	if (!object) {
 | |
| #ifdef DEBUG
 | |
| 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
 | |
| 			      "(size %zu)\n", ptr, size);
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 	__delete_object(object);
 | |
| 
 | |
| 	/*
 | |
| 	 * Create one or two objects that may result from the memory block
 | |
| 	 * split. Note that partial freeing is only done by free_bootmem() and
 | |
| 	 * this happens before kmemleak_init() is called. The path below is
 | |
| 	 * only executed during early log recording in kmemleak_init(), so
 | |
| 	 * GFP_KERNEL is enough.
 | |
| 	 */
 | |
| 	start = object->pointer;
 | |
| 	end = object->pointer + object->size;
 | |
| 	if (ptr > start)
 | |
| 		create_object(start, ptr - start, object->min_count,
 | |
| 			      GFP_KERNEL);
 | |
| 	if (ptr + size < end)
 | |
| 		create_object(ptr + size, end - ptr - size, object->min_count,
 | |
| 			      GFP_KERNEL);
 | |
| 
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| static void __paint_it(struct kmemleak_object *object, int color)
 | |
| {
 | |
| 	object->min_count = color;
 | |
| 	if (color == KMEMLEAK_BLACK)
 | |
| 		object->flags |= OBJECT_NO_SCAN;
 | |
| }
 | |
| 
 | |
| static void paint_it(struct kmemleak_object *object, int color)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&object->lock, flags);
 | |
| 	__paint_it(object, color);
 | |
| 	spin_unlock_irqrestore(&object->lock, flags);
 | |
| }
 | |
| 
 | |
| static void paint_ptr(unsigned long ptr, int color)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 0);
 | |
| 	if (!object) {
 | |
| 		kmemleak_warn("Trying to color unknown object "
 | |
| 			      "at 0x%08lx as %s\n", ptr,
 | |
| 			      (color == KMEMLEAK_GREY) ? "Grey" :
 | |
| 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 | |
| 		return;
 | |
| 	}
 | |
| 	paint_it(object, color);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark an object permanently as gray-colored so that it can no longer be
 | |
|  * reported as a leak. This is used in general to mark a false positive.
 | |
|  */
 | |
| static void make_gray_object(unsigned long ptr)
 | |
| {
 | |
| 	paint_ptr(ptr, KMEMLEAK_GREY);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the object as black-colored so that it is ignored from scans and
 | |
|  * reporting.
 | |
|  */
 | |
| static void make_black_object(unsigned long ptr)
 | |
| {
 | |
| 	paint_ptr(ptr, KMEMLEAK_BLACK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a scanning area to the object. If at least one such area is added,
 | |
|  * kmemleak will only scan these ranges rather than the whole memory block.
 | |
|  */
 | |
| static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 	struct kmemleak_scan_area *area;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 1);
 | |
| 	if (!object) {
 | |
| 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 | |
| 			      ptr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 | |
| 	if (!area) {
 | |
| 		pr_warning("Cannot allocate a scan area\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&object->lock, flags);
 | |
| 	if (size == SIZE_MAX) {
 | |
| 		size = object->pointer + object->size - ptr;
 | |
| 	} else if (ptr + size > object->pointer + object->size) {
 | |
| 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 | |
| 		dump_object_info(object);
 | |
| 		kmem_cache_free(scan_area_cache, area);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	INIT_HLIST_NODE(&area->node);
 | |
| 	area->start = ptr;
 | |
| 	area->size = size;
 | |
| 
 | |
| 	hlist_add_head(&area->node, &object->area_list);
 | |
| out_unlock:
 | |
| 	spin_unlock_irqrestore(&object->lock, flags);
 | |
| out:
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 | |
|  * pointer. Such object will not be scanned by kmemleak but references to it
 | |
|  * are searched.
 | |
|  */
 | |
| static void object_no_scan(unsigned long ptr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 
 | |
| 	object = find_and_get_object(ptr, 0);
 | |
| 	if (!object) {
 | |
| 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&object->lock, flags);
 | |
| 	object->flags |= OBJECT_NO_SCAN;
 | |
| 	spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	put_object(object);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Log an early kmemleak_* call to the early_log buffer. These calls will be
 | |
|  * processed later once kmemleak is fully initialized.
 | |
|  */
 | |
| static void __init log_early(int op_type, const void *ptr, size_t size,
 | |
| 			     int min_count)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct early_log *log;
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_error)) {
 | |
| 		/* kmemleak stopped recording, just count the requests */
 | |
| 		crt_early_log++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
 | |
| 		kmemleak_disable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no need for locking since the kernel is still in UP mode
 | |
| 	 * at this stage. Disabling the IRQs is enough.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	log = &early_log[crt_early_log];
 | |
| 	log->op_type = op_type;
 | |
| 	log->ptr = ptr;
 | |
| 	log->size = size;
 | |
| 	log->min_count = min_count;
 | |
| 	log->trace_len = __save_stack_trace(log->trace);
 | |
| 	crt_early_log++;
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Log an early allocated block and populate the stack trace.
 | |
|  */
 | |
| static void early_alloc(struct early_log *log)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * RCU locking needed to ensure object is not freed via put_object().
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	object = create_object((unsigned long)log->ptr, log->size,
 | |
| 			       log->min_count, GFP_ATOMIC);
 | |
| 	if (!object)
 | |
| 		goto out;
 | |
| 	spin_lock_irqsave(&object->lock, flags);
 | |
| 	for (i = 0; i < log->trace_len; i++)
 | |
| 		object->trace[i] = log->trace[i];
 | |
| 	object->trace_len = log->trace_len;
 | |
| 	spin_unlock_irqrestore(&object->lock, flags);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Log an early allocated block and populate the stack trace.
 | |
|  */
 | |
| static void early_alloc_percpu(struct early_log *log)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	const void __percpu *ptr = log->ptr;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		log->ptr = per_cpu_ptr(ptr, cpu);
 | |
| 		early_alloc(log);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmemleak_alloc - register a newly allocated object
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  * @size:	size of the object
 | |
|  * @min_count:	minimum number of references to this object. If during memory
 | |
|  *		scanning a number of references less than @min_count is found,
 | |
|  *		the object is reported as a memory leak. If @min_count is 0,
 | |
|  *		the object is never reported as a leak. If @min_count is -1,
 | |
|  *		the object is ignored (not scanned and not reported as a leak)
 | |
|  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 | |
|  *
 | |
|  * This function is called from the kernel allocators when a new object
 | |
|  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
 | |
|  */
 | |
| void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 | |
| 			  gfp_t gfp)
 | |
| {
 | |
| 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 | |
| 		create_object((unsigned long)ptr, size, min_count, gfp);
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_alloc);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_alloc_percpu - register a newly allocated __percpu object
 | |
|  * @ptr:	__percpu pointer to beginning of the object
 | |
|  * @size:	size of the object
 | |
|  *
 | |
|  * This function is called from the kernel percpu allocator when a new object
 | |
|  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
 | |
|  * allocation.
 | |
|  */
 | |
| void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Percpu allocations are only scanned and not reported as leaks
 | |
| 	 * (min_count is set to 0).
 | |
| 	 */
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 | |
| 				      size, 0, GFP_KERNEL);
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_free - unregister a previously registered object
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * This function is called from the kernel allocators when an object (memory
 | |
|  * block) is freed (kmem_cache_free, kfree, vfree etc.).
 | |
|  */
 | |
| void __ref kmemleak_free(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%p)\n", __func__, ptr);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 | |
| 		delete_object_full((unsigned long)ptr);
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_free);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_free_part - partially unregister a previously registered object
 | |
|  * @ptr:	pointer to the beginning or inside the object. This also
 | |
|  *		represents the start of the range to be freed
 | |
|  * @size:	size to be unregistered
 | |
|  *
 | |
|  * This function is called when only a part of a memory block is freed
 | |
|  * (usually from the bootmem allocator).
 | |
|  */
 | |
| void __ref kmemleak_free_part(const void *ptr, size_t size)
 | |
| {
 | |
| 	pr_debug("%s(0x%p)\n", __func__, ptr);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 | |
| 		delete_object_part((unsigned long)ptr, size);
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_free_part);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_free_percpu - unregister a previously registered __percpu object
 | |
|  * @ptr:	__percpu pointer to beginning of the object
 | |
|  *
 | |
|  * This function is called from the kernel percpu allocator when an object
 | |
|  * (memory block) is freed (free_percpu).
 | |
|  */
 | |
| void __ref kmemleak_free_percpu(const void __percpu *ptr)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	pr_debug("%s(0x%p)\n", __func__, ptr);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
 | |
| 								      cpu));
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_not_leak - mark an allocated object as false positive
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * Calling this function on an object will cause the memory block to no longer
 | |
|  * be reported as leak and always be scanned.
 | |
|  */
 | |
| void __ref kmemleak_not_leak(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%p)\n", __func__, ptr);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 | |
| 		make_gray_object((unsigned long)ptr);
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_not_leak);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_ignore - ignore an allocated object
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * Calling this function on an object will cause the memory block to be
 | |
|  * ignored (not scanned and not reported as a leak). This is usually done when
 | |
|  * it is known that the corresponding block is not a leak and does not contain
 | |
|  * any references to other allocated memory blocks.
 | |
|  */
 | |
| void __ref kmemleak_ignore(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%p)\n", __func__, ptr);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 | |
| 		make_black_object((unsigned long)ptr);
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_ignore);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_scan_area - limit the range to be scanned in an allocated object
 | |
|  * @ptr:	pointer to beginning or inside the object. This also
 | |
|  *		represents the start of the scan area
 | |
|  * @size:	size of the scan area
 | |
|  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 | |
|  *
 | |
|  * This function is used when it is known that only certain parts of an object
 | |
|  * contain references to other objects. Kmemleak will only scan these areas
 | |
|  * reducing the number false negatives.
 | |
|  */
 | |
| void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	pr_debug("%s(0x%p)\n", __func__, ptr);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
 | |
| 		add_scan_area((unsigned long)ptr, size, gfp);
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_scan_area);
 | |
| 
 | |
| /**
 | |
|  * kmemleak_no_scan - do not scan an allocated object
 | |
|  * @ptr:	pointer to beginning of the object
 | |
|  *
 | |
|  * This function notifies kmemleak not to scan the given memory block. Useful
 | |
|  * in situations where it is known that the given object does not contain any
 | |
|  * references to other objects. Kmemleak will not scan such objects reducing
 | |
|  * the number of false negatives.
 | |
|  */
 | |
| void __ref kmemleak_no_scan(const void *ptr)
 | |
| {
 | |
| 	pr_debug("%s(0x%p)\n", __func__, ptr);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 | |
| 		object_no_scan((unsigned long)ptr);
 | |
| 	else if (atomic_read(&kmemleak_early_log))
 | |
| 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(kmemleak_no_scan);
 | |
| 
 | |
| /*
 | |
|  * Update an object's checksum and return true if it was modified.
 | |
|  */
 | |
| static bool update_checksum(struct kmemleak_object *object)
 | |
| {
 | |
| 	u32 old_csum = object->checksum;
 | |
| 
 | |
| 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
 | |
| 		return false;
 | |
| 
 | |
| 	object->checksum = crc32(0, (void *)object->pointer, object->size);
 | |
| 	return object->checksum != old_csum;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memory scanning is a long process and it needs to be interruptable. This
 | |
|  * function checks whether such interrupt condition occurred.
 | |
|  */
 | |
| static int scan_should_stop(void)
 | |
| {
 | |
| 	if (!atomic_read(&kmemleak_enabled))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function may be called from either process or kthread context,
 | |
| 	 * hence the need to check for both stop conditions.
 | |
| 	 */
 | |
| 	if (current->mm)
 | |
| 		return signal_pending(current);
 | |
| 	else
 | |
| 		return kthread_should_stop();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan a memory block (exclusive range) for valid pointers and add those
 | |
|  * found to the gray list.
 | |
|  */
 | |
| static void scan_block(void *_start, void *_end,
 | |
| 		       struct kmemleak_object *scanned, int allow_resched)
 | |
| {
 | |
| 	unsigned long *ptr;
 | |
| 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
 | |
| 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
 | |
| 
 | |
| 	for (ptr = start; ptr < end; ptr++) {
 | |
| 		struct kmemleak_object *object;
 | |
| 		unsigned long flags;
 | |
| 		unsigned long pointer;
 | |
| 
 | |
| 		if (allow_resched)
 | |
| 			cond_resched();
 | |
| 		if (scan_should_stop())
 | |
| 			break;
 | |
| 
 | |
| 		/* don't scan uninitialized memory */
 | |
| 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
 | |
| 						  BYTES_PER_POINTER))
 | |
| 			continue;
 | |
| 
 | |
| 		pointer = *ptr;
 | |
| 
 | |
| 		object = find_and_get_object(pointer, 1);
 | |
| 		if (!object)
 | |
| 			continue;
 | |
| 		if (object == scanned) {
 | |
| 			/* self referenced, ignore */
 | |
| 			put_object(object);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid the lockdep recursive warning on object->lock being
 | |
| 		 * previously acquired in scan_object(). These locks are
 | |
| 		 * enclosed by scan_mutex.
 | |
| 		 */
 | |
| 		spin_lock_irqsave_nested(&object->lock, flags,
 | |
| 					 SINGLE_DEPTH_NESTING);
 | |
| 		if (!color_white(object)) {
 | |
| 			/* non-orphan, ignored or new */
 | |
| 			spin_unlock_irqrestore(&object->lock, flags);
 | |
| 			put_object(object);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Increase the object's reference count (number of pointers
 | |
| 		 * to the memory block). If this count reaches the required
 | |
| 		 * minimum, the object's color will become gray and it will be
 | |
| 		 * added to the gray_list.
 | |
| 		 */
 | |
| 		object->count++;
 | |
| 		if (color_gray(object)) {
 | |
| 			list_add_tail(&object->gray_list, &gray_list);
 | |
| 			spin_unlock_irqrestore(&object->lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irqrestore(&object->lock, flags);
 | |
| 		put_object(object);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan a memory block corresponding to a kmemleak_object. A condition is
 | |
|  * that object->use_count >= 1.
 | |
|  */
 | |
| static void scan_object(struct kmemleak_object *object)
 | |
| {
 | |
| 	struct kmemleak_scan_area *area;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once the object->lock is acquired, the corresponding memory block
 | |
| 	 * cannot be freed (the same lock is acquired in delete_object).
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&object->lock, flags);
 | |
| 	if (object->flags & OBJECT_NO_SCAN)
 | |
| 		goto out;
 | |
| 	if (!(object->flags & OBJECT_ALLOCATED))
 | |
| 		/* already freed object */
 | |
| 		goto out;
 | |
| 	if (hlist_empty(&object->area_list)) {
 | |
| 		void *start = (void *)object->pointer;
 | |
| 		void *end = (void *)(object->pointer + object->size);
 | |
| 
 | |
| 		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
 | |
| 		       !(object->flags & OBJECT_NO_SCAN)) {
 | |
| 			scan_block(start, min(start + MAX_SCAN_SIZE, end),
 | |
| 				   object, 0);
 | |
| 			start += MAX_SCAN_SIZE;
 | |
| 
 | |
| 			spin_unlock_irqrestore(&object->lock, flags);
 | |
| 			cond_resched();
 | |
| 			spin_lock_irqsave(&object->lock, flags);
 | |
| 		}
 | |
| 	} else
 | |
| 		hlist_for_each_entry(area, &object->area_list, node)
 | |
| 			scan_block((void *)area->start,
 | |
| 				   (void *)(area->start + area->size),
 | |
| 				   object, 0);
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&object->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the objects already referenced (gray objects). More objects will be
 | |
|  * referenced and, if there are no memory leaks, all the objects are scanned.
 | |
|  */
 | |
| static void scan_gray_list(void)
 | |
| {
 | |
| 	struct kmemleak_object *object, *tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * The list traversal is safe for both tail additions and removals
 | |
| 	 * from inside the loop. The kmemleak objects cannot be freed from
 | |
| 	 * outside the loop because their use_count was incremented.
 | |
| 	 */
 | |
| 	object = list_entry(gray_list.next, typeof(*object), gray_list);
 | |
| 	while (&object->gray_list != &gray_list) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/* may add new objects to the list */
 | |
| 		if (!scan_should_stop())
 | |
| 			scan_object(object);
 | |
| 
 | |
| 		tmp = list_entry(object->gray_list.next, typeof(*object),
 | |
| 				 gray_list);
 | |
| 
 | |
| 		/* remove the object from the list and release it */
 | |
| 		list_del(&object->gray_list);
 | |
| 		put_object(object);
 | |
| 
 | |
| 		object = tmp;
 | |
| 	}
 | |
| 	WARN_ON(!list_empty(&gray_list));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan data sections and all the referenced memory blocks allocated via the
 | |
|  * kernel's standard allocators. This function must be called with the
 | |
|  * scan_mutex held.
 | |
|  */
 | |
| static void kmemleak_scan(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 	int i;
 | |
| 	int new_leaks = 0;
 | |
| 
 | |
| 	jiffies_last_scan = jiffies;
 | |
| 
 | |
| 	/* prepare the kmemleak_object's */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		spin_lock_irqsave(&object->lock, flags);
 | |
| #ifdef DEBUG
 | |
| 		/*
 | |
| 		 * With a few exceptions there should be a maximum of
 | |
| 		 * 1 reference to any object at this point.
 | |
| 		 */
 | |
| 		if (atomic_read(&object->use_count) > 1) {
 | |
| 			pr_debug("object->use_count = %d\n",
 | |
| 				 atomic_read(&object->use_count));
 | |
| 			dump_object_info(object);
 | |
| 		}
 | |
| #endif
 | |
| 		/* reset the reference count (whiten the object) */
 | |
| 		object->count = 0;
 | |
| 		if (color_gray(object) && get_object(object))
 | |
| 			list_add_tail(&object->gray_list, &gray_list);
 | |
| 
 | |
| 		spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* data/bss scanning */
 | |
| 	scan_block(_sdata, _edata, NULL, 1);
 | |
| 	scan_block(__bss_start, __bss_stop, NULL, 1);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* per-cpu sections scanning */
 | |
| 	for_each_possible_cpu(i)
 | |
| 		scan_block(__per_cpu_start + per_cpu_offset(i),
 | |
| 			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Struct page scanning for each node.
 | |
| 	 */
 | |
| 	lock_memory_hotplug();
 | |
| 	for_each_online_node(i) {
 | |
| 		unsigned long start_pfn = node_start_pfn(i);
 | |
| 		unsigned long end_pfn = node_end_pfn(i);
 | |
| 		unsigned long pfn;
 | |
| 
 | |
| 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 | |
| 			struct page *page;
 | |
| 
 | |
| 			if (!pfn_valid(pfn))
 | |
| 				continue;
 | |
| 			page = pfn_to_page(pfn);
 | |
| 			/* only scan if page is in use */
 | |
| 			if (page_count(page) == 0)
 | |
| 				continue;
 | |
| 			scan_block(page, page + 1, NULL, 1);
 | |
| 		}
 | |
| 	}
 | |
| 	unlock_memory_hotplug();
 | |
| 
 | |
| 	/*
 | |
| 	 * Scanning the task stacks (may introduce false negatives).
 | |
| 	 */
 | |
| 	if (kmemleak_stack_scan) {
 | |
| 		struct task_struct *p, *g;
 | |
| 
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		do_each_thread(g, p) {
 | |
| 			scan_block(task_stack_page(p), task_stack_page(p) +
 | |
| 				   THREAD_SIZE, NULL, 0);
 | |
| 		} while_each_thread(g, p);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Scan the objects already referenced from the sections scanned
 | |
| 	 * above.
 | |
| 	 */
 | |
| 	scan_gray_list();
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for new or unreferenced objects modified since the previous
 | |
| 	 * scan and color them gray until the next scan.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		spin_lock_irqsave(&object->lock, flags);
 | |
| 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
 | |
| 		    && update_checksum(object) && get_object(object)) {
 | |
| 			/* color it gray temporarily */
 | |
| 			object->count = object->min_count;
 | |
| 			list_add_tail(&object->gray_list, &gray_list);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-scan the gray list for modified unreferenced objects.
 | |
| 	 */
 | |
| 	scan_gray_list();
 | |
| 
 | |
| 	/*
 | |
| 	 * If scanning was stopped do not report any new unreferenced objects.
 | |
| 	 */
 | |
| 	if (scan_should_stop())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scanning result reporting.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		spin_lock_irqsave(&object->lock, flags);
 | |
| 		if (unreferenced_object(object) &&
 | |
| 		    !(object->flags & OBJECT_REPORTED)) {
 | |
| 			object->flags |= OBJECT_REPORTED;
 | |
| 			new_leaks++;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (new_leaks)
 | |
| 		pr_info("%d new suspected memory leaks (see "
 | |
| 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Thread function performing automatic memory scanning. Unreferenced objects
 | |
|  * at the end of a memory scan are reported but only the first time.
 | |
|  */
 | |
| static int kmemleak_scan_thread(void *arg)
 | |
| {
 | |
| 	static int first_run = 1;
 | |
| 
 | |
| 	pr_info("Automatic memory scanning thread started\n");
 | |
| 	set_user_nice(current, 10);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait before the first scan to allow the system to fully initialize.
 | |
| 	 */
 | |
| 	if (first_run) {
 | |
| 		first_run = 0;
 | |
| 		ssleep(SECS_FIRST_SCAN);
 | |
| 	}
 | |
| 
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		signed long timeout = jiffies_scan_wait;
 | |
| 
 | |
| 		mutex_lock(&scan_mutex);
 | |
| 		kmemleak_scan();
 | |
| 		mutex_unlock(&scan_mutex);
 | |
| 
 | |
| 		/* wait before the next scan */
 | |
| 		while (timeout && !kthread_should_stop())
 | |
| 			timeout = schedule_timeout_interruptible(timeout);
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Automatic memory scanning thread ended\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start the automatic memory scanning thread. This function must be called
 | |
|  * with the scan_mutex held.
 | |
|  */
 | |
| static void start_scan_thread(void)
 | |
| {
 | |
| 	if (scan_thread)
 | |
| 		return;
 | |
| 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
 | |
| 	if (IS_ERR(scan_thread)) {
 | |
| 		pr_warning("Failed to create the scan thread\n");
 | |
| 		scan_thread = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop the automatic memory scanning thread. This function must be called
 | |
|  * with the scan_mutex held.
 | |
|  */
 | |
| static void stop_scan_thread(void)
 | |
| {
 | |
| 	if (scan_thread) {
 | |
| 		kthread_stop(scan_thread);
 | |
| 		scan_thread = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate over the object_list and return the first valid object at or after
 | |
|  * the required position with its use_count incremented. The function triggers
 | |
|  * a memory scanning when the pos argument points to the first position.
 | |
|  */
 | |
| static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	loff_t n = *pos;
 | |
| 	int err;
 | |
| 
 | |
| 	err = mutex_lock_interruptible(&scan_mutex);
 | |
| 	if (err < 0)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		if (n-- > 0)
 | |
| 			continue;
 | |
| 		if (get_object(object))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	object = NULL;
 | |
| out:
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the next object in the object_list. The function decrements the
 | |
|  * use_count of the previous object and increases that of the next one.
 | |
|  */
 | |
| static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct kmemleak_object *prev_obj = v;
 | |
| 	struct kmemleak_object *next_obj = NULL;
 | |
| 	struct kmemleak_object *obj = prev_obj;
 | |
| 
 | |
| 	++(*pos);
 | |
| 
 | |
| 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
 | |
| 		if (get_object(obj)) {
 | |
| 			next_obj = obj;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	put_object(prev_obj);
 | |
| 	return next_obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement the use_count of the last object required, if any.
 | |
|  */
 | |
| static void kmemleak_seq_stop(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	if (!IS_ERR(v)) {
 | |
| 		/*
 | |
| 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
 | |
| 		 * waiting was interrupted, so only release it if !IS_ERR.
 | |
| 		 */
 | |
| 		rcu_read_unlock();
 | |
| 		mutex_unlock(&scan_mutex);
 | |
| 		if (v)
 | |
| 			put_object(v);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print the information for an unreferenced object to the seq file.
 | |
|  */
 | |
| static int kmemleak_seq_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct kmemleak_object *object = v;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&object->lock, flags);
 | |
| 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
 | |
| 		print_unreferenced(seq, object);
 | |
| 	spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations kmemleak_seq_ops = {
 | |
| 	.start = kmemleak_seq_start,
 | |
| 	.next  = kmemleak_seq_next,
 | |
| 	.stop  = kmemleak_seq_stop,
 | |
| 	.show  = kmemleak_seq_show,
 | |
| };
 | |
| 
 | |
| static int kmemleak_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &kmemleak_seq_ops);
 | |
| }
 | |
| 
 | |
| static int kmemleak_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_release(inode, file);
 | |
| }
 | |
| 
 | |
| static int dump_str_object_info(const char *str)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kmemleak_object *object;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (kstrtoul(str, 0, &addr))
 | |
| 		return -EINVAL;
 | |
| 	object = find_and_get_object(addr, 0);
 | |
| 	if (!object) {
 | |
| 		pr_info("Unknown object at 0x%08lx\n", addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&object->lock, flags);
 | |
| 	dump_object_info(object);
 | |
| 	spin_unlock_irqrestore(&object->lock, flags);
 | |
| 
 | |
| 	put_object(object);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use grey instead of black to ensure we can do future scans on the same
 | |
|  * objects. If we did not do future scans these black objects could
 | |
|  * potentially contain references to newly allocated objects in the future and
 | |
|  * we'd end up with false positives.
 | |
|  */
 | |
| static void kmemleak_clear(void)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(object, &object_list, object_list) {
 | |
| 		spin_lock_irqsave(&object->lock, flags);
 | |
| 		if ((object->flags & OBJECT_REPORTED) &&
 | |
| 		    unreferenced_object(object))
 | |
| 			__paint_it(object, KMEMLEAK_GREY);
 | |
| 		spin_unlock_irqrestore(&object->lock, flags);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * File write operation to configure kmemleak at run-time. The following
 | |
|  * commands can be written to the /sys/kernel/debug/kmemleak file:
 | |
|  *   off	- disable kmemleak (irreversible)
 | |
|  *   stack=on	- enable the task stacks scanning
 | |
|  *   stack=off	- disable the tasks stacks scanning
 | |
|  *   scan=on	- start the automatic memory scanning thread
 | |
|  *   scan=off	- stop the automatic memory scanning thread
 | |
|  *   scan=...	- set the automatic memory scanning period in seconds (0 to
 | |
|  *		  disable it)
 | |
|  *   scan	- trigger a memory scan
 | |
|  *   clear	- mark all current reported unreferenced kmemleak objects as
 | |
|  *		  grey to ignore printing them
 | |
|  *   dump=...	- dump information about the object found at the given address
 | |
|  */
 | |
| static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
 | |
| 			      size_t size, loff_t *ppos)
 | |
| {
 | |
| 	char buf[64];
 | |
| 	int buf_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!atomic_read(&kmemleak_enabled))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	buf_size = min(size, (sizeof(buf) - 1));
 | |
| 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
 | |
| 		return -EFAULT;
 | |
| 	buf[buf_size] = 0;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&scan_mutex);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (strncmp(buf, "off", 3) == 0)
 | |
| 		kmemleak_disable();
 | |
| 	else if (strncmp(buf, "stack=on", 8) == 0)
 | |
| 		kmemleak_stack_scan = 1;
 | |
| 	else if (strncmp(buf, "stack=off", 9) == 0)
 | |
| 		kmemleak_stack_scan = 0;
 | |
| 	else if (strncmp(buf, "scan=on", 7) == 0)
 | |
| 		start_scan_thread();
 | |
| 	else if (strncmp(buf, "scan=off", 8) == 0)
 | |
| 		stop_scan_thread();
 | |
| 	else if (strncmp(buf, "scan=", 5) == 0) {
 | |
| 		unsigned long secs;
 | |
| 
 | |
| 		ret = kstrtoul(buf + 5, 0, &secs);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		stop_scan_thread();
 | |
| 		if (secs) {
 | |
| 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
 | |
| 			start_scan_thread();
 | |
| 		}
 | |
| 	} else if (strncmp(buf, "scan", 4) == 0)
 | |
| 		kmemleak_scan();
 | |
| 	else if (strncmp(buf, "clear", 5) == 0)
 | |
| 		kmemleak_clear();
 | |
| 	else if (strncmp(buf, "dump=", 5) == 0)
 | |
| 		ret = dump_str_object_info(buf + 5);
 | |
| 	else
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&scan_mutex);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* ignore the rest of the buffer, only one command at a time */
 | |
| 	*ppos += size;
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static const struct file_operations kmemleak_fops = {
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.open		= kmemleak_open,
 | |
| 	.read		= seq_read,
 | |
| 	.write		= kmemleak_write,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= kmemleak_release,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Stop the memory scanning thread and free the kmemleak internal objects if
 | |
|  * no previous scan thread (otherwise, kmemleak may still have some useful
 | |
|  * information on memory leaks).
 | |
|  */
 | |
| static void kmemleak_do_cleanup(struct work_struct *work)
 | |
| {
 | |
| 	struct kmemleak_object *object;
 | |
| 	bool cleanup = scan_thread == NULL;
 | |
| 
 | |
| 	mutex_lock(&scan_mutex);
 | |
| 	stop_scan_thread();
 | |
| 
 | |
| 	if (cleanup) {
 | |
| 		rcu_read_lock();
 | |
| 		list_for_each_entry_rcu(object, &object_list, object_list)
 | |
| 			delete_object_full(object->pointer);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	mutex_unlock(&scan_mutex);
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
 | |
| 
 | |
| /*
 | |
|  * Disable kmemleak. No memory allocation/freeing will be traced once this
 | |
|  * function is called. Disabling kmemleak is an irreversible operation.
 | |
|  */
 | |
| static void kmemleak_disable(void)
 | |
| {
 | |
| 	/* atomically check whether it was already invoked */
 | |
| 	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
 | |
| 		return;
 | |
| 
 | |
| 	/* stop any memory operation tracing */
 | |
| 	atomic_set(&kmemleak_enabled, 0);
 | |
| 
 | |
| 	/* check whether it is too early for a kernel thread */
 | |
| 	if (atomic_read(&kmemleak_initialized))
 | |
| 		schedule_work(&cleanup_work);
 | |
| 
 | |
| 	pr_info("Kernel memory leak detector disabled\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allow boot-time kmemleak disabling (enabled by default).
 | |
|  */
 | |
| static int kmemleak_boot_config(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return -EINVAL;
 | |
| 	if (strcmp(str, "off") == 0)
 | |
| 		kmemleak_disable();
 | |
| 	else if (strcmp(str, "on") == 0)
 | |
| 		kmemleak_skip_disable = 1;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("kmemleak", kmemleak_boot_config);
 | |
| 
 | |
| static void __init print_log_trace(struct early_log *log)
 | |
| {
 | |
| 	struct stack_trace trace;
 | |
| 
 | |
| 	trace.nr_entries = log->trace_len;
 | |
| 	trace.entries = log->trace;
 | |
| 
 | |
| 	pr_notice("Early log backtrace:\n");
 | |
| 	print_stack_trace(&trace, 2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kmemleak initialization.
 | |
|  */
 | |
| void __init kmemleak_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
 | |
| 	if (!kmemleak_skip_disable) {
 | |
| 		atomic_set(&kmemleak_early_log, 0);
 | |
| 		kmemleak_disable();
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
 | |
| 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
 | |
| 
 | |
| 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
 | |
| 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
 | |
| 
 | |
| 	if (crt_early_log >= ARRAY_SIZE(early_log))
 | |
| 		pr_warning("Early log buffer exceeded (%d), please increase "
 | |
| 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
 | |
| 
 | |
| 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
 | |
| 	local_irq_save(flags);
 | |
| 	atomic_set(&kmemleak_early_log, 0);
 | |
| 	if (atomic_read(&kmemleak_error)) {
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	} else
 | |
| 		atomic_set(&kmemleak_enabled, 1);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is the point where tracking allocations is safe. Automatic
 | |
| 	 * scanning is started during the late initcall. Add the early logged
 | |
| 	 * callbacks to the kmemleak infrastructure.
 | |
| 	 */
 | |
| 	for (i = 0; i < crt_early_log; i++) {
 | |
| 		struct early_log *log = &early_log[i];
 | |
| 
 | |
| 		switch (log->op_type) {
 | |
| 		case KMEMLEAK_ALLOC:
 | |
| 			early_alloc(log);
 | |
| 			break;
 | |
| 		case KMEMLEAK_ALLOC_PERCPU:
 | |
| 			early_alloc_percpu(log);
 | |
| 			break;
 | |
| 		case KMEMLEAK_FREE:
 | |
| 			kmemleak_free(log->ptr);
 | |
| 			break;
 | |
| 		case KMEMLEAK_FREE_PART:
 | |
| 			kmemleak_free_part(log->ptr, log->size);
 | |
| 			break;
 | |
| 		case KMEMLEAK_FREE_PERCPU:
 | |
| 			kmemleak_free_percpu(log->ptr);
 | |
| 			break;
 | |
| 		case KMEMLEAK_NOT_LEAK:
 | |
| 			kmemleak_not_leak(log->ptr);
 | |
| 			break;
 | |
| 		case KMEMLEAK_IGNORE:
 | |
| 			kmemleak_ignore(log->ptr);
 | |
| 			break;
 | |
| 		case KMEMLEAK_SCAN_AREA:
 | |
| 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
 | |
| 			break;
 | |
| 		case KMEMLEAK_NO_SCAN:
 | |
| 			kmemleak_no_scan(log->ptr);
 | |
| 			break;
 | |
| 		default:
 | |
| 			kmemleak_warn("Unknown early log operation: %d\n",
 | |
| 				      log->op_type);
 | |
| 		}
 | |
| 
 | |
| 		if (atomic_read(&kmemleak_warning)) {
 | |
| 			print_log_trace(log);
 | |
| 			atomic_set(&kmemleak_warning, 0);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Late initialization function.
 | |
|  */
 | |
| static int __init kmemleak_late_init(void)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	atomic_set(&kmemleak_initialized, 1);
 | |
| 
 | |
| 	if (atomic_read(&kmemleak_error)) {
 | |
| 		/*
 | |
| 		 * Some error occurred and kmemleak was disabled. There is a
 | |
| 		 * small chance that kmemleak_disable() was called immediately
 | |
| 		 * after setting kmemleak_initialized and we may end up with
 | |
| 		 * two clean-up threads but serialized by scan_mutex.
 | |
| 		 */
 | |
| 		schedule_work(&cleanup_work);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
 | |
| 				     &kmemleak_fops);
 | |
| 	if (!dentry)
 | |
| 		pr_warning("Failed to create the debugfs kmemleak file\n");
 | |
| 	mutex_lock(&scan_mutex);
 | |
| 	start_scan_thread();
 | |
| 	mutex_unlock(&scan_mutex);
 | |
| 
 | |
| 	pr_info("Kernel memory leak detector initialized\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(kmemleak_late_init);
 |