 01b71917b5
			
		
	
	
	01b71917b5
	
	
	
		
			
			I noticed that srcu_read_lock/unlock both have a memory barrier,
so just by moving srcu_read_unlock earlier we can get rid of
one call to smp_mb() using smp_mb__after_srcu_read_unlock instead.
Unsurprisingly, the gain is small but measureable using the unit test
microbenchmark:
before
        vmcall in the ballpark of 1410 cycles
after
        vmcall in the ballpark of 1360 cycles
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
		
	
			
		
			
				
	
	
		
			7481 lines
		
	
	
	
		
			187 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7481 lines
		
	
	
	
		
			187 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * derived from drivers/kvm/kvm_main.c
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright (C) 2008 Qumranet, Inc.
 | |
|  * Copyright IBM Corporation, 2008
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Amit Shah    <amit.shah@qumranet.com>
 | |
|  *   Ben-Ami Yassour <benami@il.ibm.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include "irq.h"
 | |
| #include "mmu.h"
 | |
| #include "i8254.h"
 | |
| #include "tss.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "x86.h"
 | |
| #include "cpuid.h"
 | |
| 
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kvm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/intel-iommu.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/user-return-notifier.h>
 | |
| #include <linux/srcu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/timekeeper_internal.h>
 | |
| #include <linux/pvclock_gtod.h>
 | |
| #include <trace/events/kvm.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "trace.h"
 | |
| 
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/mtrr.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/i387.h>
 | |
| #include <asm/fpu-internal.h> /* Ugh! */
 | |
| #include <asm/xcr.h>
 | |
| #include <asm/pvclock.h>
 | |
| #include <asm/div64.h>
 | |
| 
 | |
| #define MAX_IO_MSRS 256
 | |
| #define KVM_MAX_MCE_BANKS 32
 | |
| #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
 | |
| 
 | |
| #define emul_to_vcpu(ctxt) \
 | |
| 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
 | |
| 
 | |
| /* EFER defaults:
 | |
|  * - enable syscall per default because its emulated by KVM
 | |
|  * - enable LME and LMA per default on 64 bit KVM
 | |
|  */
 | |
| #ifdef CONFIG_X86_64
 | |
| static
 | |
| u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
 | |
| #else
 | |
| static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
 | |
| #endif
 | |
| 
 | |
| #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
 | |
| #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 | |
| static void process_nmi(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| struct kvm_x86_ops *kvm_x86_ops;
 | |
| EXPORT_SYMBOL_GPL(kvm_x86_ops);
 | |
| 
 | |
| static bool ignore_msrs = 0;
 | |
| module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| bool kvm_has_tsc_control;
 | |
| EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 | |
| u32  kvm_max_guest_tsc_khz;
 | |
| EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 | |
| 
 | |
| /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 | |
| static u32 tsc_tolerance_ppm = 250;
 | |
| module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| #define KVM_NR_SHARED_MSRS 16
 | |
| 
 | |
| struct kvm_shared_msrs_global {
 | |
| 	int nr;
 | |
| 	u32 msrs[KVM_NR_SHARED_MSRS];
 | |
| };
 | |
| 
 | |
| struct kvm_shared_msrs {
 | |
| 	struct user_return_notifier urn;
 | |
| 	bool registered;
 | |
| 	struct kvm_shared_msr_values {
 | |
| 		u64 host;
 | |
| 		u64 curr;
 | |
| 	} values[KVM_NR_SHARED_MSRS];
 | |
| };
 | |
| 
 | |
| static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 | |
| static struct kvm_shared_msrs __percpu *shared_msrs;
 | |
| 
 | |
| struct kvm_stats_debugfs_item debugfs_entries[] = {
 | |
| 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
 | |
| 	{ "pf_guest", VCPU_STAT(pf_guest) },
 | |
| 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
 | |
| 	{ "invlpg", VCPU_STAT(invlpg) },
 | |
| 	{ "exits", VCPU_STAT(exits) },
 | |
| 	{ "io_exits", VCPU_STAT(io_exits) },
 | |
| 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
 | |
| 	{ "signal_exits", VCPU_STAT(signal_exits) },
 | |
| 	{ "irq_window", VCPU_STAT(irq_window_exits) },
 | |
| 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
 | |
| 	{ "halt_exits", VCPU_STAT(halt_exits) },
 | |
| 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
 | |
| 	{ "hypercalls", VCPU_STAT(hypercalls) },
 | |
| 	{ "request_irq", VCPU_STAT(request_irq_exits) },
 | |
| 	{ "irq_exits", VCPU_STAT(irq_exits) },
 | |
| 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
 | |
| 	{ "efer_reload", VCPU_STAT(efer_reload) },
 | |
| 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
 | |
| 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
 | |
| 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 | |
| 	{ "irq_injections", VCPU_STAT(irq_injections) },
 | |
| 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
 | |
| 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 | |
| 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
 | |
| 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 | |
| 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 | |
| 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
 | |
| 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
 | |
| 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 | |
| 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
 | |
| 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 | |
| 	{ "largepages", VM_STAT(lpages) },
 | |
| 	{ NULL }
 | |
| };
 | |
| 
 | |
| u64 __read_mostly host_xcr0;
 | |
| 
 | |
| static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 | |
| 
 | |
| static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 | |
| 		vcpu->arch.apf.gfns[i] = ~0;
 | |
| }
 | |
| 
 | |
| static void kvm_on_user_return(struct user_return_notifier *urn)
 | |
| {
 | |
| 	unsigned slot;
 | |
| 	struct kvm_shared_msrs *locals
 | |
| 		= container_of(urn, struct kvm_shared_msrs, urn);
 | |
| 	struct kvm_shared_msr_values *values;
 | |
| 
 | |
| 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 | |
| 		values = &locals->values[slot];
 | |
| 		if (values->host != values->curr) {
 | |
| 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
 | |
| 			values->curr = values->host;
 | |
| 		}
 | |
| 	}
 | |
| 	locals->registered = false;
 | |
| 	user_return_notifier_unregister(urn);
 | |
| }
 | |
| 
 | |
| static void shared_msr_update(unsigned slot, u32 msr)
 | |
| {
 | |
| 	u64 value;
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 | |
| 
 | |
| 	/* only read, and nobody should modify it at this time,
 | |
| 	 * so don't need lock */
 | |
| 	if (slot >= shared_msrs_global.nr) {
 | |
| 		printk(KERN_ERR "kvm: invalid MSR slot!");
 | |
| 		return;
 | |
| 	}
 | |
| 	rdmsrl_safe(msr, &value);
 | |
| 	smsr->values[slot].host = value;
 | |
| 	smsr->values[slot].curr = value;
 | |
| }
 | |
| 
 | |
| void kvm_define_shared_msr(unsigned slot, u32 msr)
 | |
| {
 | |
| 	if (slot >= shared_msrs_global.nr)
 | |
| 		shared_msrs_global.nr = slot + 1;
 | |
| 	shared_msrs_global.msrs[slot] = msr;
 | |
| 	/* we need ensured the shared_msr_global have been updated */
 | |
| 	smp_wmb();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 | |
| 
 | |
| static void kvm_shared_msr_cpu_online(void)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < shared_msrs_global.nr; ++i)
 | |
| 		shared_msr_update(i, shared_msrs_global.msrs[i]);
 | |
| }
 | |
| 
 | |
| void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 | |
| 
 | |
| 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
 | |
| 		return;
 | |
| 	smsr->values[slot].curr = value;
 | |
| 	wrmsrl(shared_msrs_global.msrs[slot], value);
 | |
| 	if (!smsr->registered) {
 | |
| 		smsr->urn.on_user_return = kvm_on_user_return;
 | |
| 		user_return_notifier_register(&smsr->urn);
 | |
| 		smsr->registered = true;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 | |
| 
 | |
| static void drop_user_return_notifiers(void *ignore)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 | |
| 
 | |
| 	if (smsr->registered)
 | |
| 		kvm_on_user_return(&smsr->urn);
 | |
| }
 | |
| 
 | |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.apic_base;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 | |
| 
 | |
| void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	/* TODO: reserve bits check */
 | |
| 	kvm_lapic_set_base(vcpu, data);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 | |
| 
 | |
| asmlinkage void kvm_spurious_fault(void)
 | |
| {
 | |
| 	/* Fault while not rebooting.  We want the trace. */
 | |
| 	BUG();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 | |
| 
 | |
| #define EXCPT_BENIGN		0
 | |
| #define EXCPT_CONTRIBUTORY	1
 | |
| #define EXCPT_PF		2
 | |
| 
 | |
| static int exception_class(int vector)
 | |
| {
 | |
| 	switch (vector) {
 | |
| 	case PF_VECTOR:
 | |
| 		return EXCPT_PF;
 | |
| 	case DE_VECTOR:
 | |
| 	case TS_VECTOR:
 | |
| 	case NP_VECTOR:
 | |
| 	case SS_VECTOR:
 | |
| 	case GP_VECTOR:
 | |
| 		return EXCPT_CONTRIBUTORY;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return EXCPT_BENIGN;
 | |
| }
 | |
| 
 | |
| static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 | |
| 		unsigned nr, bool has_error, u32 error_code,
 | |
| 		bool reinject)
 | |
| {
 | |
| 	u32 prev_nr;
 | |
| 	int class1, class2;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	if (!vcpu->arch.exception.pending) {
 | |
| 	queue:
 | |
| 		vcpu->arch.exception.pending = true;
 | |
| 		vcpu->arch.exception.has_error_code = has_error;
 | |
| 		vcpu->arch.exception.nr = nr;
 | |
| 		vcpu->arch.exception.error_code = error_code;
 | |
| 		vcpu->arch.exception.reinject = reinject;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* to check exception */
 | |
| 	prev_nr = vcpu->arch.exception.nr;
 | |
| 	if (prev_nr == DF_VECTOR) {
 | |
| 		/* triple fault -> shutdown */
 | |
| 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 	class1 = exception_class(prev_nr);
 | |
| 	class2 = exception_class(nr);
 | |
| 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 | |
| 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 | |
| 		/* generate double fault per SDM Table 5-5 */
 | |
| 		vcpu->arch.exception.pending = true;
 | |
| 		vcpu->arch.exception.has_error_code = true;
 | |
| 		vcpu->arch.exception.nr = DF_VECTOR;
 | |
| 		vcpu->arch.exception.error_code = 0;
 | |
| 	} else
 | |
| 		/* replace previous exception with a new one in a hope
 | |
| 		   that instruction re-execution will regenerate lost
 | |
| 		   exception */
 | |
| 		goto queue;
 | |
| }
 | |
| 
 | |
| void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, false, 0, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception);
 | |
| 
 | |
| void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, false, 0, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 | |
| 
 | |
| void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 | |
| {
 | |
| 	if (err)
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 	else
 | |
| 		kvm_x86_ops->skip_emulated_instruction(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 | |
| 
 | |
| void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 | |
| {
 | |
| 	++vcpu->stat.pf_guest;
 | |
| 	vcpu->arch.cr2 = fault->address;
 | |
| 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 | |
| 
 | |
| void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 | |
| {
 | |
| 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 | |
| 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 | |
| 	else
 | |
| 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 | |
| }
 | |
| 
 | |
| void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	atomic_inc(&vcpu->arch.nmi_queued);
 | |
| 	kvm_make_request(KVM_REQ_NMI, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 | |
| 
 | |
| void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 | |
| 
 | |
| void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 | |
| 
 | |
| /*
 | |
|  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 | |
|  * a #GP and return false.
 | |
|  */
 | |
| bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 | |
| {
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 | |
| 		return true;
 | |
| 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_require_cpl);
 | |
| 
 | |
| /*
 | |
|  * This function will be used to read from the physical memory of the currently
 | |
|  * running guest. The difference to kvm_read_guest_page is that this function
 | |
|  * can read from guest physical or from the guest's guest physical memory.
 | |
|  */
 | |
| int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 			    gfn_t ngfn, void *data, int offset, int len,
 | |
| 			    u32 access)
 | |
| {
 | |
| 	gfn_t real_gfn;
 | |
| 	gpa_t ngpa;
 | |
| 
 | |
| 	ngpa     = gfn_to_gpa(ngfn);
 | |
| 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
 | |
| 	if (real_gfn == UNMAPPED_GVA)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	real_gfn = gpa_to_gfn(real_gfn);
 | |
| 
 | |
| 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 | |
| 
 | |
| int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 			       void *data, int offset, int len, u32 access)
 | |
| {
 | |
| 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 | |
| 				       data, offset, len, access);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load the pae pdptrs.  Return true is they are all valid.
 | |
|  */
 | |
| int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 | |
| {
 | |
| 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 | |
| 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 | |
| 
 | |
| 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 | |
| 				      offset * sizeof(u64), sizeof(pdpte),
 | |
| 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
 | |
| 	if (ret < 0) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 | |
| 		if (is_present_gpte(pdpte[i]) &&
 | |
| 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 1;
 | |
| 
 | |
| 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_avail);
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_dirty);
 | |
| out:
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(load_pdptrs);
 | |
| 
 | |
| static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 | |
| 	bool changed = true;
 | |
| 	int offset;
 | |
| 	gfn_t gfn;
 | |
| 	int r;
 | |
| 
 | |
| 	if (is_long_mode(vcpu) || !is_pae(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!test_bit(VCPU_EXREG_PDPTR,
 | |
| 		      (unsigned long *)&vcpu->arch.regs_avail))
 | |
| 		return true;
 | |
| 
 | |
| 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
 | |
| 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
 | |
| 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 | |
| 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 | |
| out:
 | |
| 
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 | |
| {
 | |
| 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
 | |
| 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
 | |
| 				    X86_CR0_CD | X86_CR0_NW;
 | |
| 
 | |
| 	cr0 |= X86_CR0_ET;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (cr0 & 0xffffffff00000000UL)
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	cr0 &= ~CR0_RESERVED_BITS;
 | |
| 
 | |
| 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 | |
| #ifdef CONFIG_X86_64
 | |
| 		if ((vcpu->arch.efer & EFER_LME)) {
 | |
| 			int cs_db, cs_l;
 | |
| 
 | |
| 			if (!is_pae(vcpu))
 | |
| 				return 1;
 | |
| 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 			if (cs_l)
 | |
| 				return 1;
 | |
| 		} else
 | |
| #endif
 | |
| 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 | |
| 						 kvm_read_cr3(vcpu)))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 | |
| 		return 1;
 | |
| 
 | |
| 	kvm_x86_ops->set_cr0(vcpu, cr0);
 | |
| 
 | |
| 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 | |
| 		kvm_clear_async_pf_completion_queue(vcpu);
 | |
| 		kvm_async_pf_hash_reset(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if ((cr0 ^ old_cr0) & update_bits)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr0);
 | |
| 
 | |
| void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 | |
| {
 | |
| 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_lmsw);
 | |
| 
 | |
| static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
 | |
| 			!vcpu->guest_xcr0_loaded) {
 | |
| 		/* kvm_set_xcr() also depends on this */
 | |
| 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 | |
| 		vcpu->guest_xcr0_loaded = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->guest_xcr0_loaded) {
 | |
| 		if (vcpu->arch.xcr0 != host_xcr0)
 | |
| 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 | |
| 		vcpu->guest_xcr0_loaded = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 | |
| {
 | |
| 	u64 xcr0;
 | |
| 	u64 valid_bits;
 | |
| 
 | |
| 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 | |
| 	if (index != XCR_XFEATURE_ENABLED_MASK)
 | |
| 		return 1;
 | |
| 	xcr0 = xcr;
 | |
| 	if (!(xcr0 & XSTATE_FP))
 | |
| 		return 1;
 | |
| 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not allow the guest to set bits that we do not support
 | |
| 	 * saving.  However, xcr0 bit 0 is always set, even if the
 | |
| 	 * emulated CPU does not support XSAVE (see fx_init).
 | |
| 	 */
 | |
| 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
 | |
| 	if (xcr0 & ~valid_bits)
 | |
| 		return 1;
 | |
| 
 | |
| 	kvm_put_guest_xcr0(vcpu);
 | |
| 	vcpu->arch.xcr0 = xcr0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 | |
| {
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
 | |
| 	    __kvm_set_xcr(vcpu, index, xcr)) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_xcr);
 | |
| 
 | |
| int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
 | |
| 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
 | |
| 				   X86_CR4_PAE | X86_CR4_SMEP;
 | |
| 	if (cr4 & CR4_RESERVED_BITS)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		if (!(cr4 & X86_CR4_PAE))
 | |
| 			return 1;
 | |
| 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 | |
| 		   && ((cr4 ^ old_cr4) & pdptr_bits)
 | |
| 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 | |
| 				   kvm_read_cr3(vcpu)))
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 | |
| 		if (!guest_cpuid_has_pcid(vcpu))
 | |
| 			return 1;
 | |
| 
 | |
| 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 | |
| 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
 | |
| 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
 | |
| 		kvm_update_cpuid(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr4);
 | |
| 
 | |
| int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 | |
| 		kvm_mmu_sync_roots(vcpu);
 | |
| 		kvm_mmu_flush_tlb(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
 | |
| 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
 | |
| 				return 1;
 | |
| 		} else
 | |
| 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
 | |
| 				return 1;
 | |
| 	} else {
 | |
| 		if (is_pae(vcpu)) {
 | |
| 			if (cr3 & CR3_PAE_RESERVED_BITS)
 | |
| 				return 1;
 | |
| 			if (is_paging(vcpu) &&
 | |
| 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 | |
| 				return 1;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We don't check reserved bits in nonpae mode, because
 | |
| 		 * this isn't enforced, and VMware depends on this.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.cr3 = cr3;
 | |
| 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 | |
| 	kvm_mmu_new_cr3(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr3);
 | |
| 
 | |
| int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 | |
| {
 | |
| 	if (cr8 & CR8_RESERVED_BITS)
 | |
| 		return 1;
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_lapic_set_tpr(vcpu, cr8);
 | |
| 	else
 | |
| 		vcpu->arch.cr8 = cr8;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr8);
 | |
| 
 | |
| unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		return kvm_lapic_get_cr8(vcpu);
 | |
| 	else
 | |
| 		return vcpu->arch.cr8;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_cr8);
 | |
| 
 | |
| static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long dr7;
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 | |
| 		dr7 = vcpu->arch.guest_debug_dr7;
 | |
| 	else
 | |
| 		dr7 = vcpu->arch.dr7;
 | |
| 	kvm_x86_ops->set_dr7(vcpu, dr7);
 | |
| 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
 | |
| }
 | |
| 
 | |
| static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 | |
| {
 | |
| 	switch (dr) {
 | |
| 	case 0 ... 3:
 | |
| 		vcpu->arch.db[dr] = val;
 | |
| 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 | |
| 			vcpu->arch.eff_db[dr] = val;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 			return 1; /* #UD */
 | |
| 		/* fall through */
 | |
| 	case 6:
 | |
| 		if (val & 0xffffffff00000000ULL)
 | |
| 			return -1; /* #GP */
 | |
| 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 			return 1; /* #UD */
 | |
| 		/* fall through */
 | |
| 	default: /* 7 */
 | |
| 		if (val & 0xffffffff00000000ULL)
 | |
| 			return -1; /* #GP */
 | |
| 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 | |
| 		kvm_update_dr7(vcpu);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 | |
| {
 | |
| 	int res;
 | |
| 
 | |
| 	res = __kvm_set_dr(vcpu, dr, val);
 | |
| 	if (res > 0)
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	else if (res < 0)
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_dr);
 | |
| 
 | |
| static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 | |
| {
 | |
| 	switch (dr) {
 | |
| 	case 0 ... 3:
 | |
| 		*val = vcpu->arch.db[dr];
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 			return 1;
 | |
| 		/* fall through */
 | |
| 	case 6:
 | |
| 		*val = vcpu->arch.dr6;
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 			return 1;
 | |
| 		/* fall through */
 | |
| 	default: /* 7 */
 | |
| 		*val = vcpu->arch.dr7;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 | |
| {
 | |
| 	if (_kvm_get_dr(vcpu, dr, val)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_dr);
 | |
| 
 | |
| bool kvm_rdpmc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	u64 data;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_rdpmc);
 | |
| 
 | |
| /*
 | |
|  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 | |
|  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 | |
|  *
 | |
|  * This list is modified at module load time to reflect the
 | |
|  * capabilities of the host cpu. This capabilities test skips MSRs that are
 | |
|  * kvm-specific. Those are put in the beginning of the list.
 | |
|  */
 | |
| 
 | |
| #define KVM_SAVE_MSRS_BEGIN	10
 | |
| static u32 msrs_to_save[] = {
 | |
| 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 | |
| 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 | |
| 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 | |
| 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
 | |
| 	MSR_KVM_PV_EOI_EN,
 | |
| 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 | |
| 	MSR_STAR,
 | |
| #ifdef CONFIG_X86_64
 | |
| 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 | |
| #endif
 | |
| 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
 | |
| 	MSR_IA32_FEATURE_CONTROL
 | |
| };
 | |
| 
 | |
| static unsigned num_msrs_to_save;
 | |
| 
 | |
| static const u32 emulated_msrs[] = {
 | |
| 	MSR_IA32_TSC_ADJUST,
 | |
| 	MSR_IA32_TSCDEADLINE,
 | |
| 	MSR_IA32_MISC_ENABLE,
 | |
| 	MSR_IA32_MCG_STATUS,
 | |
| 	MSR_IA32_MCG_CTL,
 | |
| };
 | |
| 
 | |
| bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	if (efer & efer_reserved_bits)
 | |
| 		return false;
 | |
| 
 | |
| 	if (efer & EFER_FFXSR) {
 | |
| 		struct kvm_cpuid_entry2 *feat;
 | |
| 
 | |
| 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 | |
| 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	if (efer & EFER_SVME) {
 | |
| 		struct kvm_cpuid_entry2 *feat;
 | |
| 
 | |
| 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 | |
| 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_valid_efer);
 | |
| 
 | |
| static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	u64 old_efer = vcpu->arch.efer;
 | |
| 
 | |
| 	if (!kvm_valid_efer(vcpu, efer))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (is_paging(vcpu)
 | |
| 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 | |
| 		return 1;
 | |
| 
 | |
| 	efer &= ~EFER_LMA;
 | |
| 	efer |= vcpu->arch.efer & EFER_LMA;
 | |
| 
 | |
| 	kvm_x86_ops->set_efer(vcpu, efer);
 | |
| 
 | |
| 	/* Update reserved bits */
 | |
| 	if ((efer ^ old_efer) & EFER_NX)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_enable_efer_bits(u64 mask)
 | |
| {
 | |
|        efer_reserved_bits &= ~mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Writes msr value into into the appropriate "register".
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
 | |
| {
 | |
| 	return kvm_x86_ops->set_msr(vcpu, msr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adapt set_msr() to msr_io()'s calling convention
 | |
|  */
 | |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 | |
| {
 | |
| 	struct msr_data msr;
 | |
| 
 | |
| 	msr.data = *data;
 | |
| 	msr.index = index;
 | |
| 	msr.host_initiated = true;
 | |
| 	return kvm_set_msr(vcpu, &msr);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| struct pvclock_gtod_data {
 | |
| 	seqcount_t	seq;
 | |
| 
 | |
| 	struct { /* extract of a clocksource struct */
 | |
| 		int vclock_mode;
 | |
| 		cycle_t	cycle_last;
 | |
| 		cycle_t	mask;
 | |
| 		u32	mult;
 | |
| 		u32	shift;
 | |
| 	} clock;
 | |
| 
 | |
| 	/* open coded 'struct timespec' */
 | |
| 	u64		monotonic_time_snsec;
 | |
| 	time_t		monotonic_time_sec;
 | |
| };
 | |
| 
 | |
| static struct pvclock_gtod_data pvclock_gtod_data;
 | |
| 
 | |
| static void update_pvclock_gtod(struct timekeeper *tk)
 | |
| {
 | |
| 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
 | |
| 
 | |
| 	write_seqcount_begin(&vdata->seq);
 | |
| 
 | |
| 	/* copy pvclock gtod data */
 | |
| 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
 | |
| 	vdata->clock.cycle_last		= tk->clock->cycle_last;
 | |
| 	vdata->clock.mask		= tk->clock->mask;
 | |
| 	vdata->clock.mult		= tk->mult;
 | |
| 	vdata->clock.shift		= tk->shift;
 | |
| 
 | |
| 	vdata->monotonic_time_sec	= tk->xtime_sec
 | |
| 					+ tk->wall_to_monotonic.tv_sec;
 | |
| 	vdata->monotonic_time_snsec	= tk->xtime_nsec
 | |
| 					+ (tk->wall_to_monotonic.tv_nsec
 | |
| 						<< tk->shift);
 | |
| 	while (vdata->monotonic_time_snsec >=
 | |
| 					(((u64)NSEC_PER_SEC) << tk->shift)) {
 | |
| 		vdata->monotonic_time_snsec -=
 | |
| 					((u64)NSEC_PER_SEC) << tk->shift;
 | |
| 		vdata->monotonic_time_sec++;
 | |
| 	}
 | |
| 
 | |
| 	write_seqcount_end(&vdata->seq);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 | |
| {
 | |
| 	int version;
 | |
| 	int r;
 | |
| 	struct pvclock_wall_clock wc;
 | |
| 	struct timespec boot;
 | |
| 
 | |
| 	if (!wall_clock)
 | |
| 		return;
 | |
| 
 | |
| 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| 	if (r)
 | |
| 		return;
 | |
| 
 | |
| 	if (version & 1)
 | |
| 		++version;  /* first time write, random junk */
 | |
| 
 | |
| 	++version;
 | |
| 
 | |
| 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| 
 | |
| 	/*
 | |
| 	 * The guest calculates current wall clock time by adding
 | |
| 	 * system time (updated by kvm_guest_time_update below) to the
 | |
| 	 * wall clock specified here.  guest system time equals host
 | |
| 	 * system time for us, thus we must fill in host boot time here.
 | |
| 	 */
 | |
| 	getboottime(&boot);
 | |
| 
 | |
| 	if (kvm->arch.kvmclock_offset) {
 | |
| 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
 | |
| 		boot = timespec_sub(boot, ts);
 | |
| 	}
 | |
| 	wc.sec = boot.tv_sec;
 | |
| 	wc.nsec = boot.tv_nsec;
 | |
| 	wc.version = version;
 | |
| 
 | |
| 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
 | |
| 
 | |
| 	version++;
 | |
| 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| }
 | |
| 
 | |
| static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
 | |
| {
 | |
| 	uint32_t quotient, remainder;
 | |
| 
 | |
| 	/* Don't try to replace with do_div(), this one calculates
 | |
| 	 * "(dividend << 32) / divisor" */
 | |
| 	__asm__ ( "divl %4"
 | |
| 		  : "=a" (quotient), "=d" (remainder)
 | |
| 		  : "0" (0), "1" (dividend), "r" (divisor) );
 | |
| 	return quotient;
 | |
| }
 | |
| 
 | |
| static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
 | |
| 			       s8 *pshift, u32 *pmultiplier)
 | |
| {
 | |
| 	uint64_t scaled64;
 | |
| 	int32_t  shift = 0;
 | |
| 	uint64_t tps64;
 | |
| 	uint32_t tps32;
 | |
| 
 | |
| 	tps64 = base_khz * 1000LL;
 | |
| 	scaled64 = scaled_khz * 1000LL;
 | |
| 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
 | |
| 		tps64 >>= 1;
 | |
| 		shift--;
 | |
| 	}
 | |
| 
 | |
| 	tps32 = (uint32_t)tps64;
 | |
| 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
 | |
| 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
 | |
| 			scaled64 >>= 1;
 | |
| 		else
 | |
| 			tps32 <<= 1;
 | |
| 		shift++;
 | |
| 	}
 | |
| 
 | |
| 	*pshift = shift;
 | |
| 	*pmultiplier = div_frac(scaled64, tps32);
 | |
| 
 | |
| 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
 | |
| 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
 | |
| }
 | |
| 
 | |
| static inline u64 get_kernel_ns(void)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 
 | |
| 	WARN_ON(preemptible());
 | |
| 	ktime_get_ts(&ts);
 | |
| 	monotonic_to_bootbased(&ts);
 | |
| 	return timespec_to_ns(&ts);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
 | |
| #endif
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
 | |
| unsigned long max_tsc_khz;
 | |
| 
 | |
| static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
 | |
| {
 | |
| 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
 | |
| 				   vcpu->arch.virtual_tsc_shift);
 | |
| }
 | |
| 
 | |
| static u32 adjust_tsc_khz(u32 khz, s32 ppm)
 | |
| {
 | |
| 	u64 v = (u64)khz * (1000000 + ppm);
 | |
| 	do_div(v, 1000000);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
 | |
| {
 | |
| 	u32 thresh_lo, thresh_hi;
 | |
| 	int use_scaling = 0;
 | |
| 
 | |
| 	/* tsc_khz can be zero if TSC calibration fails */
 | |
| 	if (this_tsc_khz == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Compute a scale to convert nanoseconds in TSC cycles */
 | |
| 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
 | |
| 			   &vcpu->arch.virtual_tsc_shift,
 | |
| 			   &vcpu->arch.virtual_tsc_mult);
 | |
| 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the variation in TSC rate which is acceptable
 | |
| 	 * within the range of tolerance and decide if the
 | |
| 	 * rate being applied is within that bounds of the hardware
 | |
| 	 * rate.  If so, no scaling or compensation need be done.
 | |
| 	 */
 | |
| 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
 | |
| 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
 | |
| 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
 | |
| 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
 | |
| 		use_scaling = 1;
 | |
| 	}
 | |
| 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
 | |
| }
 | |
| 
 | |
| static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
 | |
| {
 | |
| 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
 | |
| 				      vcpu->arch.virtual_tsc_mult,
 | |
| 				      vcpu->arch.virtual_tsc_shift);
 | |
| 	tsc += vcpu->arch.this_tsc_write;
 | |
| 	return tsc;
 | |
| }
 | |
| 
 | |
| void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	bool vcpus_matched;
 | |
| 	bool do_request = false;
 | |
| 	struct kvm_arch *ka = &vcpu->kvm->arch;
 | |
| 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
 | |
| 
 | |
| 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
 | |
| 			 atomic_read(&vcpu->kvm->online_vcpus));
 | |
| 
 | |
| 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
 | |
| 		if (!ka->use_master_clock)
 | |
| 			do_request = 1;
 | |
| 
 | |
| 	if (!vcpus_matched && ka->use_master_clock)
 | |
| 			do_request = 1;
 | |
| 
 | |
| 	if (do_request)
 | |
| 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
 | |
| 
 | |
| 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
 | |
| 			    atomic_read(&vcpu->kvm->online_vcpus),
 | |
| 		            ka->use_master_clock, gtod->clock.vclock_mode);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
 | |
| {
 | |
| 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
 | |
| 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
 | |
| }
 | |
| 
 | |
| void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	u64 offset, ns, elapsed;
 | |
| 	unsigned long flags;
 | |
| 	s64 usdiff;
 | |
| 	bool matched;
 | |
| 	u64 data = msr->data;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
 | |
| 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
 | |
| 	ns = get_kernel_ns();
 | |
| 	elapsed = ns - kvm->arch.last_tsc_nsec;
 | |
| 
 | |
| 	if (vcpu->arch.virtual_tsc_khz) {
 | |
| 		int faulted = 0;
 | |
| 
 | |
| 		/* n.b - signed multiplication and division required */
 | |
| 		usdiff = data - kvm->arch.last_tsc_write;
 | |
| #ifdef CONFIG_X86_64
 | |
| 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
 | |
| #else
 | |
| 		/* do_div() only does unsigned */
 | |
| 		asm("1: idivl %[divisor]\n"
 | |
| 		    "2: xor %%edx, %%edx\n"
 | |
| 		    "   movl $0, %[faulted]\n"
 | |
| 		    "3:\n"
 | |
| 		    ".section .fixup,\"ax\"\n"
 | |
| 		    "4: movl $1, %[faulted]\n"
 | |
| 		    "   jmp  3b\n"
 | |
| 		    ".previous\n"
 | |
| 
 | |
| 		_ASM_EXTABLE(1b, 4b)
 | |
| 
 | |
| 		: "=A"(usdiff), [faulted] "=r" (faulted)
 | |
| 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
 | |
| 
 | |
| #endif
 | |
| 		do_div(elapsed, 1000);
 | |
| 		usdiff -= elapsed;
 | |
| 		if (usdiff < 0)
 | |
| 			usdiff = -usdiff;
 | |
| 
 | |
| 		/* idivl overflow => difference is larger than USEC_PER_SEC */
 | |
| 		if (faulted)
 | |
| 			usdiff = USEC_PER_SEC;
 | |
| 	} else
 | |
| 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case: TSC write with a small delta (1 second) of virtual
 | |
| 	 * cycle time against real time is interpreted as an attempt to
 | |
| 	 * synchronize the CPU.
 | |
|          *
 | |
| 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
 | |
| 	 * TSC, we add elapsed time in this computation.  We could let the
 | |
| 	 * compensation code attempt to catch up if we fall behind, but
 | |
| 	 * it's better to try to match offsets from the beginning.
 | |
|          */
 | |
| 	if (usdiff < USEC_PER_SEC &&
 | |
| 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
 | |
| 		if (!check_tsc_unstable()) {
 | |
| 			offset = kvm->arch.cur_tsc_offset;
 | |
| 			pr_debug("kvm: matched tsc offset for %llu\n", data);
 | |
| 		} else {
 | |
| 			u64 delta = nsec_to_cycles(vcpu, elapsed);
 | |
| 			data += delta;
 | |
| 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
 | |
| 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
 | |
| 		}
 | |
| 		matched = true;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We split periods of matched TSC writes into generations.
 | |
| 		 * For each generation, we track the original measured
 | |
| 		 * nanosecond time, offset, and write, so if TSCs are in
 | |
| 		 * sync, we can match exact offset, and if not, we can match
 | |
| 		 * exact software computation in compute_guest_tsc()
 | |
| 		 *
 | |
| 		 * These values are tracked in kvm->arch.cur_xxx variables.
 | |
| 		 */
 | |
| 		kvm->arch.cur_tsc_generation++;
 | |
| 		kvm->arch.cur_tsc_nsec = ns;
 | |
| 		kvm->arch.cur_tsc_write = data;
 | |
| 		kvm->arch.cur_tsc_offset = offset;
 | |
| 		matched = false;
 | |
| 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
 | |
| 			 kvm->arch.cur_tsc_generation, data);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We also track th most recent recorded KHZ, write and time to
 | |
| 	 * allow the matching interval to be extended at each write.
 | |
| 	 */
 | |
| 	kvm->arch.last_tsc_nsec = ns;
 | |
| 	kvm->arch.last_tsc_write = data;
 | |
| 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
 | |
| 
 | |
| 	/* Reset of TSC must disable overshoot protection below */
 | |
| 	vcpu->arch.hv_clock.tsc_timestamp = 0;
 | |
| 	vcpu->arch.last_guest_tsc = data;
 | |
| 
 | |
| 	/* Keep track of which generation this VCPU has synchronized to */
 | |
| 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
 | |
| 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
 | |
| 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
 | |
| 
 | |
| 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
 | |
| 		update_ia32_tsc_adjust_msr(vcpu, offset);
 | |
| 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
 | |
| 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
 | |
| 
 | |
| 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
 | |
| 	if (matched)
 | |
| 		kvm->arch.nr_vcpus_matched_tsc++;
 | |
| 	else
 | |
| 		kvm->arch.nr_vcpus_matched_tsc = 0;
 | |
| 
 | |
| 	kvm_track_tsc_matching(vcpu);
 | |
| 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(kvm_write_tsc);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static cycle_t read_tsc(void)
 | |
| {
 | |
| 	cycle_t ret;
 | |
| 	u64 last;
 | |
| 
 | |
| 	/*
 | |
| 	 * Empirically, a fence (of type that depends on the CPU)
 | |
| 	 * before rdtsc is enough to ensure that rdtsc is ordered
 | |
| 	 * with respect to loads.  The various CPU manuals are unclear
 | |
| 	 * as to whether rdtsc can be reordered with later loads,
 | |
| 	 * but no one has ever seen it happen.
 | |
| 	 */
 | |
| 	rdtsc_barrier();
 | |
| 	ret = (cycle_t)vget_cycles();
 | |
| 
 | |
| 	last = pvclock_gtod_data.clock.cycle_last;
 | |
| 
 | |
| 	if (likely(ret >= last))
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * GCC likes to generate cmov here, but this branch is extremely
 | |
| 	 * predictable (it's just a funciton of time and the likely is
 | |
| 	 * very likely) and there's a data dependence, so force GCC
 | |
| 	 * to generate a branch instead.  I don't barrier() because
 | |
| 	 * we don't actually need a barrier, and if this function
 | |
| 	 * ever gets inlined it will generate worse code.
 | |
| 	 */
 | |
| 	asm volatile ("");
 | |
| 	return last;
 | |
| }
 | |
| 
 | |
| static inline u64 vgettsc(cycle_t *cycle_now)
 | |
| {
 | |
| 	long v;
 | |
| 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
 | |
| 
 | |
| 	*cycle_now = read_tsc();
 | |
| 
 | |
| 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
 | |
| 	return v * gtod->clock.mult;
 | |
| }
 | |
| 
 | |
| static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
 | |
| {
 | |
| 	unsigned long seq;
 | |
| 	u64 ns;
 | |
| 	int mode;
 | |
| 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
 | |
| 
 | |
| 	ts->tv_nsec = 0;
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(>od->seq);
 | |
| 		mode = gtod->clock.vclock_mode;
 | |
| 		ts->tv_sec = gtod->monotonic_time_sec;
 | |
| 		ns = gtod->monotonic_time_snsec;
 | |
| 		ns += vgettsc(cycle_now);
 | |
| 		ns >>= gtod->clock.shift;
 | |
| 	} while (unlikely(read_seqcount_retry(>od->seq, seq)));
 | |
| 	timespec_add_ns(ts, ns);
 | |
| 
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| /* returns true if host is using tsc clocksource */
 | |
| static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 
 | |
| 	/* checked again under seqlock below */
 | |
| 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
 | |
| 		return false;
 | |
| 
 | |
| 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
 | |
| 		return false;
 | |
| 
 | |
| 	monotonic_to_bootbased(&ts);
 | |
| 	*kernel_ns = timespec_to_ns(&ts);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Assuming a stable TSC across physical CPUS, and a stable TSC
 | |
|  * across virtual CPUs, the following condition is possible.
 | |
|  * Each numbered line represents an event visible to both
 | |
|  * CPUs at the next numbered event.
 | |
|  *
 | |
|  * "timespecX" represents host monotonic time. "tscX" represents
 | |
|  * RDTSC value.
 | |
|  *
 | |
|  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
 | |
|  *
 | |
|  * 1.  read timespec0,tsc0
 | |
|  * 2.					| timespec1 = timespec0 + N
 | |
|  * 					| tsc1 = tsc0 + M
 | |
|  * 3. transition to guest		| transition to guest
 | |
|  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
 | |
|  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
 | |
|  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
 | |
|  *
 | |
|  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
 | |
|  *
 | |
|  * 	- ret0 < ret1
 | |
|  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
 | |
|  *		...
 | |
|  *	- 0 < N - M => M < N
 | |
|  *
 | |
|  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
 | |
|  * always the case (the difference between two distinct xtime instances
 | |
|  * might be smaller then the difference between corresponding TSC reads,
 | |
|  * when updating guest vcpus pvclock areas).
 | |
|  *
 | |
|  * To avoid that problem, do not allow visibility of distinct
 | |
|  * system_timestamp/tsc_timestamp values simultaneously: use a master
 | |
|  * copy of host monotonic time values. Update that master copy
 | |
|  * in lockstep.
 | |
|  *
 | |
|  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	struct kvm_arch *ka = &kvm->arch;
 | |
| 	int vclock_mode;
 | |
| 	bool host_tsc_clocksource, vcpus_matched;
 | |
| 
 | |
| 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
 | |
| 			atomic_read(&kvm->online_vcpus));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the host uses TSC clock, then passthrough TSC as stable
 | |
| 	 * to the guest.
 | |
| 	 */
 | |
| 	host_tsc_clocksource = kvm_get_time_and_clockread(
 | |
| 					&ka->master_kernel_ns,
 | |
| 					&ka->master_cycle_now);
 | |
| 
 | |
| 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
 | |
| 
 | |
| 	if (ka->use_master_clock)
 | |
| 		atomic_set(&kvm_guest_has_master_clock, 1);
 | |
| 
 | |
| 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
 | |
| 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
 | |
| 					vcpus_matched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void kvm_gen_update_masterclock(struct kvm *kvm)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	int i;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	struct kvm_arch *ka = &kvm->arch;
 | |
| 
 | |
| 	spin_lock(&ka->pvclock_gtod_sync_lock);
 | |
| 	kvm_make_mclock_inprogress_request(kvm);
 | |
| 	/* no guest entries from this point */
 | |
| 	pvclock_update_vm_gtod_copy(kvm);
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
 | |
| 
 | |
| 	/* guest entries allowed */
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
 | |
| 
 | |
| 	spin_unlock(&ka->pvclock_gtod_sync_lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int kvm_guest_time_update(struct kvm_vcpu *v)
 | |
| {
 | |
| 	unsigned long flags, this_tsc_khz;
 | |
| 	struct kvm_vcpu_arch *vcpu = &v->arch;
 | |
| 	struct kvm_arch *ka = &v->kvm->arch;
 | |
| 	s64 kernel_ns, max_kernel_ns;
 | |
| 	u64 tsc_timestamp, host_tsc;
 | |
| 	struct pvclock_vcpu_time_info guest_hv_clock;
 | |
| 	u8 pvclock_flags;
 | |
| 	bool use_master_clock;
 | |
| 
 | |
| 	kernel_ns = 0;
 | |
| 	host_tsc = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the host uses TSC clock, then passthrough TSC as stable
 | |
| 	 * to the guest.
 | |
| 	 */
 | |
| 	spin_lock(&ka->pvclock_gtod_sync_lock);
 | |
| 	use_master_clock = ka->use_master_clock;
 | |
| 	if (use_master_clock) {
 | |
| 		host_tsc = ka->master_cycle_now;
 | |
| 		kernel_ns = ka->master_kernel_ns;
 | |
| 	}
 | |
| 	spin_unlock(&ka->pvclock_gtod_sync_lock);
 | |
| 
 | |
| 	/* Keep irq disabled to prevent changes to the clock */
 | |
| 	local_irq_save(flags);
 | |
| 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
 | |
| 	if (unlikely(this_tsc_khz == 0)) {
 | |
| 		local_irq_restore(flags);
 | |
| 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (!use_master_clock) {
 | |
| 		host_tsc = native_read_tsc();
 | |
| 		kernel_ns = get_kernel_ns();
 | |
| 	}
 | |
| 
 | |
| 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have to catch up the TSC to match elapsed wall clock
 | |
| 	 * time for two reasons, even if kvmclock is used.
 | |
| 	 *   1) CPU could have been running below the maximum TSC rate
 | |
| 	 *   2) Broken TSC compensation resets the base at each VCPU
 | |
| 	 *      entry to avoid unknown leaps of TSC even when running
 | |
| 	 *      again on the same CPU.  This may cause apparent elapsed
 | |
| 	 *      time to disappear, and the guest to stand still or run
 | |
| 	 *	very slowly.
 | |
| 	 */
 | |
| 	if (vcpu->tsc_catchup) {
 | |
| 		u64 tsc = compute_guest_tsc(v, kernel_ns);
 | |
| 		if (tsc > tsc_timestamp) {
 | |
| 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
 | |
| 			tsc_timestamp = tsc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (!vcpu->pv_time_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Time as measured by the TSC may go backwards when resetting the base
 | |
| 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
 | |
| 	 * higher than the resolution of the other clock scales.  Thus, many
 | |
| 	 * possible measurments of the TSC correspond to one measurement of any
 | |
| 	 * other clock, and so a spread of values is possible.  This is not a
 | |
| 	 * problem for the computation of the nanosecond clock; with TSC rates
 | |
| 	 * around 1GHZ, there can only be a few cycles which correspond to one
 | |
| 	 * nanosecond value, and any path through this code will inevitably
 | |
| 	 * take longer than that.  However, with the kernel_ns value itself,
 | |
| 	 * the precision may be much lower, down to HZ granularity.  If the
 | |
| 	 * first sampling of TSC against kernel_ns ends in the low part of the
 | |
| 	 * range, and the second in the high end of the range, we can get:
 | |
| 	 *
 | |
| 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
 | |
| 	 *
 | |
| 	 * As the sampling errors potentially range in the thousands of cycles,
 | |
| 	 * it is possible such a time value has already been observed by the
 | |
| 	 * guest.  To protect against this, we must compute the system time as
 | |
| 	 * observed by the guest and ensure the new system time is greater.
 | |
| 	 */
 | |
| 	max_kernel_ns = 0;
 | |
| 	if (vcpu->hv_clock.tsc_timestamp) {
 | |
| 		max_kernel_ns = vcpu->last_guest_tsc -
 | |
| 				vcpu->hv_clock.tsc_timestamp;
 | |
| 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
 | |
| 				    vcpu->hv_clock.tsc_to_system_mul,
 | |
| 				    vcpu->hv_clock.tsc_shift);
 | |
| 		max_kernel_ns += vcpu->last_kernel_ns;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
 | |
| 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
 | |
| 				   &vcpu->hv_clock.tsc_shift,
 | |
| 				   &vcpu->hv_clock.tsc_to_system_mul);
 | |
| 		vcpu->hw_tsc_khz = this_tsc_khz;
 | |
| 	}
 | |
| 
 | |
| 	/* with a master <monotonic time, tsc value> tuple,
 | |
| 	 * pvclock clock reads always increase at the (scaled) rate
 | |
| 	 * of guest TSC - no need to deal with sampling errors.
 | |
| 	 */
 | |
| 	if (!use_master_clock) {
 | |
| 		if (max_kernel_ns > kernel_ns)
 | |
| 			kernel_ns = max_kernel_ns;
 | |
| 	}
 | |
| 	/* With all the info we got, fill in the values */
 | |
| 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
 | |
| 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
 | |
| 	vcpu->last_kernel_ns = kernel_ns;
 | |
| 	vcpu->last_guest_tsc = tsc_timestamp;
 | |
| 
 | |
| 	/*
 | |
| 	 * The interface expects us to write an even number signaling that the
 | |
| 	 * update is finished. Since the guest won't see the intermediate
 | |
| 	 * state, we just increase by 2 at the end.
 | |
| 	 */
 | |
| 	vcpu->hv_clock.version += 2;
 | |
| 
 | |
| 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
 | |
| 		&guest_hv_clock, sizeof(guest_hv_clock))))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
 | |
| 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
 | |
| 
 | |
| 	if (vcpu->pvclock_set_guest_stopped_request) {
 | |
| 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
 | |
| 		vcpu->pvclock_set_guest_stopped_request = false;
 | |
| 	}
 | |
| 
 | |
| 	/* If the host uses TSC clocksource, then it is stable */
 | |
| 	if (use_master_clock)
 | |
| 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
 | |
| 
 | |
| 	vcpu->hv_clock.flags = pvclock_flags;
 | |
| 
 | |
| 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
 | |
| 				&vcpu->hv_clock,
 | |
| 				sizeof(vcpu->hv_clock));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kvmclock updates which are isolated to a given vcpu, such as
 | |
|  * vcpu->cpu migration, should not allow system_timestamp from
 | |
|  * the rest of the vcpus to remain static. Otherwise ntp frequency
 | |
|  * correction applies to one vcpu's system_timestamp but not
 | |
|  * the others.
 | |
|  *
 | |
|  * So in those cases, request a kvmclock update for all vcpus.
 | |
|  * The worst case for a remote vcpu to update its kvmclock
 | |
|  * is then bounded by maximum nohz sleep latency.
 | |
|  */
 | |
| 
 | |
| static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm *kvm = v->kvm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool msr_mtrr_valid(unsigned msr)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 | |
| 	case MSR_MTRRfix64K_00000:
 | |
| 	case MSR_MTRRfix16K_80000:
 | |
| 	case MSR_MTRRfix16K_A0000:
 | |
| 	case MSR_MTRRfix4K_C0000:
 | |
| 	case MSR_MTRRfix4K_C8000:
 | |
| 	case MSR_MTRRfix4K_D0000:
 | |
| 	case MSR_MTRRfix4K_D8000:
 | |
| 	case MSR_MTRRfix4K_E0000:
 | |
| 	case MSR_MTRRfix4K_E8000:
 | |
| 	case MSR_MTRRfix4K_F0000:
 | |
| 	case MSR_MTRRfix4K_F8000:
 | |
| 	case MSR_MTRRdefType:
 | |
| 	case MSR_IA32_CR_PAT:
 | |
| 		return true;
 | |
| 	case 0x2f8:
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool valid_pat_type(unsigned t)
 | |
| {
 | |
| 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
 | |
| }
 | |
| 
 | |
| static bool valid_mtrr_type(unsigned t)
 | |
| {
 | |
| 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 | |
| }
 | |
| 
 | |
| static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!msr_mtrr_valid(msr))
 | |
| 		return false;
 | |
| 
 | |
| 	if (msr == MSR_IA32_CR_PAT) {
 | |
| 		for (i = 0; i < 8; i++)
 | |
| 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	} else if (msr == MSR_MTRRdefType) {
 | |
| 		if (data & ~0xcff)
 | |
| 			return false;
 | |
| 		return valid_mtrr_type(data & 0xff);
 | |
| 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 | |
| 		for (i = 0; i < 8 ; i++)
 | |
| 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* variable MTRRs */
 | |
| 	return valid_mtrr_type(data & 0xff);
 | |
| }
 | |
| 
 | |
| static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
 | |
| 
 | |
| 	if (!mtrr_valid(vcpu, msr, data))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (msr == MSR_MTRRdefType) {
 | |
| 		vcpu->arch.mtrr_state.def_type = data;
 | |
| 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
 | |
| 	} else if (msr == MSR_MTRRfix64K_00000)
 | |
| 		p[0] = data;
 | |
| 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
 | |
| 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
 | |
| 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
 | |
| 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
 | |
| 	else if (msr == MSR_IA32_CR_PAT)
 | |
| 		vcpu->arch.pat = data;
 | |
| 	else {	/* Variable MTRRs */
 | |
| 		int idx, is_mtrr_mask;
 | |
| 		u64 *pt;
 | |
| 
 | |
| 		idx = (msr - 0x200) / 2;
 | |
| 		is_mtrr_mask = msr - 0x200 - 2 * idx;
 | |
| 		if (!is_mtrr_mask)
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
 | |
| 		else
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
 | |
| 		*pt = data;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 		vcpu->arch.mcg_status = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 		if (!(mcg_cap & MCG_CTL_P))
 | |
| 			return 1;
 | |
| 		if (data != 0 && data != ~(u64)0)
 | |
| 			return -1;
 | |
| 		vcpu->arch.mcg_ctl = data;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr >= MSR_IA32_MC0_CTL &&
 | |
| 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
 | |
| 			u32 offset = msr - MSR_IA32_MC0_CTL;
 | |
| 			/* only 0 or all 1s can be written to IA32_MCi_CTL
 | |
| 			 * some Linux kernels though clear bit 10 in bank 4 to
 | |
| 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
 | |
| 			 * this to avoid an uncatched #GP in the guest
 | |
| 			 */
 | |
| 			if ((offset & 0x3) == 0 &&
 | |
| 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
 | |
| 				return -1;
 | |
| 			vcpu->arch.mce_banks[offset] = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	int lm = is_long_mode(vcpu);
 | |
| 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
 | |
| 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
 | |
| 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
 | |
| 		: kvm->arch.xen_hvm_config.blob_size_32;
 | |
| 	u32 page_num = data & ~PAGE_MASK;
 | |
| 	u64 page_addr = data & PAGE_MASK;
 | |
| 	u8 *page;
 | |
| 	int r;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (page_num >= blob_size)
 | |
| 		goto out;
 | |
| 	r = -ENOMEM;
 | |
| 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
 | |
| 	if (IS_ERR(page)) {
 | |
| 		r = PTR_ERR(page);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
 | |
| 		goto out_free;
 | |
| 	r = 0;
 | |
| out_free:
 | |
| 	kfree(page);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
 | |
| {
 | |
| 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
 | |
| }
 | |
| 
 | |
| static bool kvm_hv_msr_partition_wide(u32 msr)
 | |
| {
 | |
| 	bool r = false;
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_GUEST_OS_ID:
 | |
| 	case HV_X64_MSR_HYPERCALL:
 | |
| 		r = true;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_GUEST_OS_ID:
 | |
| 		kvm->arch.hv_guest_os_id = data;
 | |
| 		/* setting guest os id to zero disables hypercall page */
 | |
| 		if (!kvm->arch.hv_guest_os_id)
 | |
| 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
 | |
| 		break;
 | |
| 	case HV_X64_MSR_HYPERCALL: {
 | |
| 		u64 gfn;
 | |
| 		unsigned long addr;
 | |
| 		u8 instructions[4];
 | |
| 
 | |
| 		/* if guest os id is not set hypercall should remain disabled */
 | |
| 		if (!kvm->arch.hv_guest_os_id)
 | |
| 			break;
 | |
| 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
 | |
| 			kvm->arch.hv_hypercall = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
 | |
| 		addr = gfn_to_hva(kvm, gfn);
 | |
| 		if (kvm_is_error_hva(addr))
 | |
| 			return 1;
 | |
| 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
 | |
| 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
 | |
| 		if (__copy_to_user((void __user *)addr, instructions, 4))
 | |
| 			return 1;
 | |
| 		kvm->arch.hv_hypercall = data;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
 | |
| 			    "data 0x%llx\n", msr, data);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
 | |
| 			vcpu->arch.hv_vapic = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		addr = gfn_to_hva(vcpu->kvm, data >>
 | |
| 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
 | |
| 		if (kvm_is_error_hva(addr))
 | |
| 			return 1;
 | |
| 		if (__clear_user((void __user *)addr, PAGE_SIZE))
 | |
| 			return 1;
 | |
| 		vcpu->arch.hv_vapic = data;
 | |
| 		break;
 | |
| 	}
 | |
| 	case HV_X64_MSR_EOI:
 | |
| 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
 | |
| 	case HV_X64_MSR_ICR:
 | |
| 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
 | |
| 	case HV_X64_MSR_TPR:
 | |
| 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
 | |
| 	default:
 | |
| 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
 | |
| 			    "data 0x%llx\n", msr, data);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	gpa_t gpa = data & ~0x3f;
 | |
| 
 | |
| 	/* Bits 2:5 are reserved, Should be zero */
 | |
| 	if (data & 0x3c)
 | |
| 		return 1;
 | |
| 
 | |
| 	vcpu->arch.apf.msr_val = data;
 | |
| 
 | |
| 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
 | |
| 		kvm_clear_async_pf_completion_queue(vcpu);
 | |
| 		kvm_async_pf_hash_reset(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
 | |
| 					sizeof(u32)))
 | |
| 		return 1;
 | |
| 
 | |
| 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
 | |
| 	kvm_async_pf_wakeup_all(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvmclock_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.pv_time_enabled = false;
 | |
| }
 | |
| 
 | |
| static void accumulate_steal_time(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 delta;
 | |
| 
 | |
| 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
 | |
| 		return;
 | |
| 
 | |
| 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
 | |
| 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
 | |
| 	vcpu->arch.st.accum_steal = delta;
 | |
| }
 | |
| 
 | |
| static void record_steal_time(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
 | |
| 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
 | |
| 		return;
 | |
| 
 | |
| 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
 | |
| 	vcpu->arch.st.steal.version += 2;
 | |
| 	vcpu->arch.st.accum_steal = 0;
 | |
| 
 | |
| 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
 | |
| 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
 | |
| }
 | |
| 
 | |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	bool pr = false;
 | |
| 	u32 msr = msr_info->index;
 | |
| 	u64 data = msr_info->data;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_AMD64_NB_CFG:
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 	case MSR_IA32_UCODE_WRITE:
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 	case MSR_AMD64_PATCH_LOADER:
 | |
| 	case MSR_AMD64_BU_CFG2:
 | |
| 		break;
 | |
| 
 | |
| 	case MSR_EFER:
 | |
| 		return set_efer(vcpu, data);
 | |
| 	case MSR_K7_HWCR:
 | |
| 		data &= ~(u64)0x40;	/* ignore flush filter disable */
 | |
| 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
 | |
| 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
 | |
| 		if (data != 0) {
 | |
| 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
 | |
| 				    data);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_FAM10H_MMIO_CONF_BASE:
 | |
| 		if (data != 0) {
 | |
| 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
 | |
| 				    "0x%llx\n", data);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 		if (!data) {
 | |
| 			/* We support the non-activated case already */
 | |
| 			break;
 | |
| 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
 | |
| 			/* Values other than LBR and BTF are vendor-specific,
 | |
| 			   thus reserved and should throw a #GP */
 | |
| 			return 1;
 | |
| 		}
 | |
| 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
 | |
| 			    __func__, data);
 | |
| 		break;
 | |
| 	case 0x200 ... 0x2ff:
 | |
| 		return set_msr_mtrr(vcpu, msr, data);
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		kvm_set_apic_base(vcpu, data);
 | |
| 		break;
 | |
| 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
 | |
| 		return kvm_x2apic_msr_write(vcpu, msr, data);
 | |
| 	case MSR_IA32_TSCDEADLINE:
 | |
| 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC_ADJUST:
 | |
| 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
 | |
| 			if (!msr_info->host_initiated) {
 | |
| 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
 | |
| 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
 | |
| 			}
 | |
| 			vcpu->arch.ia32_tsc_adjust_msr = data;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_IA32_MISC_ENABLE:
 | |
| 		vcpu->arch.ia32_misc_enable_msr = data;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK_NEW:
 | |
| 	case MSR_KVM_WALL_CLOCK:
 | |
| 		vcpu->kvm->arch.wall_clock = data;
 | |
| 		kvm_write_wall_clock(vcpu->kvm, data);
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME_NEW:
 | |
| 	case MSR_KVM_SYSTEM_TIME: {
 | |
| 		u64 gpa_offset;
 | |
| 		kvmclock_reset(vcpu);
 | |
| 
 | |
| 		vcpu->arch.time = data;
 | |
| 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
 | |
| 
 | |
| 		/* we verify if the enable bit is set... */
 | |
| 		if (!(data & 1))
 | |
| 			break;
 | |
| 
 | |
| 		gpa_offset = data & ~(PAGE_MASK | 1);
 | |
| 
 | |
| 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
 | |
| 		     &vcpu->arch.pv_time, data & ~1ULL,
 | |
| 		     sizeof(struct pvclock_vcpu_time_info)))
 | |
| 			vcpu->arch.pv_time_enabled = false;
 | |
| 		else
 | |
| 			vcpu->arch.pv_time_enabled = true;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 	case MSR_KVM_ASYNC_PF_EN:
 | |
| 		if (kvm_pv_enable_async_pf(vcpu, data))
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	case MSR_KVM_STEAL_TIME:
 | |
| 
 | |
| 		if (unlikely(!sched_info_on()))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (data & KVM_STEAL_RESERVED_MASK)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
 | |
| 						data & KVM_STEAL_VALID_BITS,
 | |
| 						sizeof(struct kvm_steal_time)))
 | |
| 			return 1;
 | |
| 
 | |
| 		vcpu->arch.st.msr_val = data;
 | |
| 
 | |
| 		if (!(data & KVM_MSR_ENABLED))
 | |
| 			break;
 | |
| 
 | |
| 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
 | |
| 
 | |
| 		preempt_disable();
 | |
| 		accumulate_steal_time(vcpu);
 | |
| 		preempt_enable();
 | |
| 
 | |
| 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
 | |
| 
 | |
| 		break;
 | |
| 	case MSR_KVM_PV_EOI_EN:
 | |
| 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
 | |
| 			return 1;
 | |
| 		break;
 | |
| 
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
 | |
| 		return set_msr_mce(vcpu, msr, data);
 | |
| 
 | |
| 	/* Performance counters are not protected by a CPUID bit,
 | |
| 	 * so we should check all of them in the generic path for the sake of
 | |
| 	 * cross vendor migration.
 | |
| 	 * Writing a zero into the event select MSRs disables them,
 | |
| 	 * which we perfectly emulate ;-). Any other value should be at least
 | |
| 	 * reported, some guests depend on them.
 | |
| 	 */
 | |
| 	case MSR_K7_EVNTSEL0:
 | |
| 	case MSR_K7_EVNTSEL1:
 | |
| 	case MSR_K7_EVNTSEL2:
 | |
| 	case MSR_K7_EVNTSEL3:
 | |
| 		if (data != 0)
 | |
| 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
 | |
| 				    "0x%x data 0x%llx\n", msr, data);
 | |
| 		break;
 | |
| 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
 | |
| 	 * so we ignore writes to make it happy.
 | |
| 	 */
 | |
| 	case MSR_K7_PERFCTR0:
 | |
| 	case MSR_K7_PERFCTR1:
 | |
| 	case MSR_K7_PERFCTR2:
 | |
| 	case MSR_K7_PERFCTR3:
 | |
| 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
 | |
| 			    "0x%x data 0x%llx\n", msr, data);
 | |
| 		break;
 | |
| 	case MSR_P6_PERFCTR0:
 | |
| 	case MSR_P6_PERFCTR1:
 | |
| 		pr = true;
 | |
| 	case MSR_P6_EVNTSEL0:
 | |
| 	case MSR_P6_EVNTSEL1:
 | |
| 		if (kvm_pmu_msr(vcpu, msr))
 | |
| 			return kvm_pmu_set_msr(vcpu, msr_info);
 | |
| 
 | |
| 		if (pr || data != 0)
 | |
| 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
 | |
| 				    "0x%x data 0x%llx\n", msr, data);
 | |
| 		break;
 | |
| 	case MSR_K7_CLK_CTL:
 | |
| 		/*
 | |
| 		 * Ignore all writes to this no longer documented MSR.
 | |
| 		 * Writes are only relevant for old K7 processors,
 | |
| 		 * all pre-dating SVM, but a recommended workaround from
 | |
| 		 * AMD for these chips. It is possible to specify the
 | |
| 		 * affected processor models on the command line, hence
 | |
| 		 * the need to ignore the workaround.
 | |
| 		 */
 | |
| 		break;
 | |
| 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
 | |
| 		if (kvm_hv_msr_partition_wide(msr)) {
 | |
| 			int r;
 | |
| 			mutex_lock(&vcpu->kvm->lock);
 | |
| 			r = set_msr_hyperv_pw(vcpu, msr, data);
 | |
| 			mutex_unlock(&vcpu->kvm->lock);
 | |
| 			return r;
 | |
| 		} else
 | |
| 			return set_msr_hyperv(vcpu, msr, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_BBL_CR_CTL3:
 | |
| 		/* Drop writes to this legacy MSR -- see rdmsr
 | |
| 		 * counterpart for further detail.
 | |
| 		 */
 | |
| 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
 | |
| 		break;
 | |
| 	case MSR_AMD64_OSVW_ID_LENGTH:
 | |
| 		if (!guest_cpuid_has_osvw(vcpu))
 | |
| 			return 1;
 | |
| 		vcpu->arch.osvw.length = data;
 | |
| 		break;
 | |
| 	case MSR_AMD64_OSVW_STATUS:
 | |
| 		if (!guest_cpuid_has_osvw(vcpu))
 | |
| 			return 1;
 | |
| 		vcpu->arch.osvw.status = data;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
 | |
| 			return xen_hvm_config(vcpu, data);
 | |
| 		if (kvm_pmu_msr(vcpu, msr))
 | |
| 			return kvm_pmu_set_msr(vcpu, msr_info);
 | |
| 		if (!ignore_msrs) {
 | |
| 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
 | |
| 				    msr, data);
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
 | |
| 				    msr, data);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Reads an msr value (of 'msr_index') into 'pdata'.
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
 | |
| }
 | |
| 
 | |
| static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
 | |
| 
 | |
| 	if (!msr_mtrr_valid(msr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (msr == MSR_MTRRdefType)
 | |
| 		*pdata = vcpu->arch.mtrr_state.def_type +
 | |
| 			 (vcpu->arch.mtrr_state.enabled << 10);
 | |
| 	else if (msr == MSR_MTRRfix64K_00000)
 | |
| 		*pdata = p[0];
 | |
| 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
 | |
| 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
 | |
| 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
 | |
| 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
 | |
| 	else if (msr == MSR_IA32_CR_PAT)
 | |
| 		*pdata = vcpu->arch.pat;
 | |
| 	else {	/* Variable MTRRs */
 | |
| 		int idx, is_mtrr_mask;
 | |
| 		u64 *pt;
 | |
| 
 | |
| 		idx = (msr - 0x200) / 2;
 | |
| 		is_mtrr_mask = msr - 0x200 - 2 * idx;
 | |
| 		if (!is_mtrr_mask)
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
 | |
| 		else
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
 | |
| 		*pdata = *pt;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data;
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_P5_MC_ADDR:
 | |
| 	case MSR_IA32_P5_MC_TYPE:
 | |
| 		data = 0;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CAP:
 | |
| 		data = vcpu->arch.mcg_cap;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 		if (!(mcg_cap & MCG_CTL_P))
 | |
| 			return 1;
 | |
| 		data = vcpu->arch.mcg_ctl;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 		data = vcpu->arch.mcg_status;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr >= MSR_IA32_MC0_CTL &&
 | |
| 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
 | |
| 			u32 offset = msr - MSR_IA32_MC0_CTL;
 | |
| 			data = vcpu->arch.mce_banks[offset];
 | |
| 			break;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data = 0;
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_GUEST_OS_ID:
 | |
| 		data = kvm->arch.hv_guest_os_id;
 | |
| 		break;
 | |
| 	case HV_X64_MSR_HYPERCALL:
 | |
| 		data = kvm->arch.hv_hypercall;
 | |
| 		break;
 | |
| 	default:
 | |
| 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data = 0;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case HV_X64_MSR_VP_INDEX: {
 | |
| 		int r;
 | |
| 		struct kvm_vcpu *v;
 | |
| 		kvm_for_each_vcpu(r, v, vcpu->kvm)
 | |
| 			if (v == vcpu)
 | |
| 				data = r;
 | |
| 		break;
 | |
| 	}
 | |
| 	case HV_X64_MSR_EOI:
 | |
| 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
 | |
| 	case HV_X64_MSR_ICR:
 | |
| 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
 | |
| 	case HV_X64_MSR_TPR:
 | |
| 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
 | |
| 	case HV_X64_MSR_APIC_ASSIST_PAGE:
 | |
| 		data = vcpu->arch.hv_vapic;
 | |
| 		break;
 | |
| 	default:
 | |
| 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_PLATFORM_ID:
 | |
| 	case MSR_IA32_EBL_CR_POWERON:
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 	case MSR_IA32_LASTBRANCHFROMIP:
 | |
| 	case MSR_IA32_LASTBRANCHTOIP:
 | |
| 	case MSR_IA32_LASTINTFROMIP:
 | |
| 	case MSR_IA32_LASTINTTOIP:
 | |
| 	case MSR_K8_SYSCFG:
 | |
| 	case MSR_K7_HWCR:
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 	case MSR_K7_EVNTSEL0:
 | |
| 	case MSR_K7_PERFCTR0:
 | |
| 	case MSR_K8_INT_PENDING_MSG:
 | |
| 	case MSR_AMD64_NB_CFG:
 | |
| 	case MSR_FAM10H_MMIO_CONF_BASE:
 | |
| 	case MSR_AMD64_BU_CFG2:
 | |
| 		data = 0;
 | |
| 		break;
 | |
| 	case MSR_P6_PERFCTR0:
 | |
| 	case MSR_P6_PERFCTR1:
 | |
| 	case MSR_P6_EVNTSEL0:
 | |
| 	case MSR_P6_EVNTSEL1:
 | |
| 		if (kvm_pmu_msr(vcpu, msr))
 | |
| 			return kvm_pmu_get_msr(vcpu, msr, pdata);
 | |
| 		data = 0;
 | |
| 		break;
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 		data = 0x100000000ULL;
 | |
| 		break;
 | |
| 	case MSR_MTRRcap:
 | |
| 		data = 0x500 | KVM_NR_VAR_MTRR;
 | |
| 		break;
 | |
| 	case 0x200 ... 0x2ff:
 | |
| 		return get_msr_mtrr(vcpu, msr, pdata);
 | |
| 	case 0xcd: /* fsb frequency */
 | |
| 		data = 3;
 | |
| 		break;
 | |
| 		/*
 | |
| 		 * MSR_EBC_FREQUENCY_ID
 | |
| 		 * Conservative value valid for even the basic CPU models.
 | |
| 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
 | |
| 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
 | |
| 		 * and 266MHz for model 3, or 4. Set Core Clock
 | |
| 		 * Frequency to System Bus Frequency Ratio to 1 (bits
 | |
| 		 * 31:24) even though these are only valid for CPU
 | |
| 		 * models > 2, however guests may end up dividing or
 | |
| 		 * multiplying by zero otherwise.
 | |
| 		 */
 | |
| 	case MSR_EBC_FREQUENCY_ID:
 | |
| 		data = 1 << 24;
 | |
| 		break;
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		data = kvm_get_apic_base(vcpu);
 | |
| 		break;
 | |
| 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
 | |
| 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
 | |
| 		break;
 | |
| 	case MSR_IA32_TSCDEADLINE:
 | |
| 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC_ADJUST:
 | |
| 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
 | |
| 		break;
 | |
| 	case MSR_IA32_MISC_ENABLE:
 | |
| 		data = vcpu->arch.ia32_misc_enable_msr;
 | |
| 		break;
 | |
| 	case MSR_IA32_PERF_STATUS:
 | |
| 		/* TSC increment by tick */
 | |
| 		data = 1000ULL;
 | |
| 		/* CPU multiplier */
 | |
| 		data |= (((uint64_t)4ULL) << 40);
 | |
| 		break;
 | |
| 	case MSR_EFER:
 | |
| 		data = vcpu->arch.efer;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK:
 | |
| 	case MSR_KVM_WALL_CLOCK_NEW:
 | |
| 		data = vcpu->kvm->arch.wall_clock;
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME:
 | |
| 	case MSR_KVM_SYSTEM_TIME_NEW:
 | |
| 		data = vcpu->arch.time;
 | |
| 		break;
 | |
| 	case MSR_KVM_ASYNC_PF_EN:
 | |
| 		data = vcpu->arch.apf.msr_val;
 | |
| 		break;
 | |
| 	case MSR_KVM_STEAL_TIME:
 | |
| 		data = vcpu->arch.st.msr_val;
 | |
| 		break;
 | |
| 	case MSR_KVM_PV_EOI_EN:
 | |
| 		data = vcpu->arch.pv_eoi.msr_val;
 | |
| 		break;
 | |
| 	case MSR_IA32_P5_MC_ADDR:
 | |
| 	case MSR_IA32_P5_MC_TYPE:
 | |
| 	case MSR_IA32_MCG_CAP:
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
 | |
| 		return get_msr_mce(vcpu, msr, pdata);
 | |
| 	case MSR_K7_CLK_CTL:
 | |
| 		/*
 | |
| 		 * Provide expected ramp-up count for K7. All other
 | |
| 		 * are set to zero, indicating minimum divisors for
 | |
| 		 * every field.
 | |
| 		 *
 | |
| 		 * This prevents guest kernels on AMD host with CPU
 | |
| 		 * type 6, model 8 and higher from exploding due to
 | |
| 		 * the rdmsr failing.
 | |
| 		 */
 | |
| 		data = 0x20000000;
 | |
| 		break;
 | |
| 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
 | |
| 		if (kvm_hv_msr_partition_wide(msr)) {
 | |
| 			int r;
 | |
| 			mutex_lock(&vcpu->kvm->lock);
 | |
| 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
 | |
| 			mutex_unlock(&vcpu->kvm->lock);
 | |
| 			return r;
 | |
| 		} else
 | |
| 			return get_msr_hyperv(vcpu, msr, pdata);
 | |
| 		break;
 | |
| 	case MSR_IA32_BBL_CR_CTL3:
 | |
| 		/* This legacy MSR exists but isn't fully documented in current
 | |
| 		 * silicon.  It is however accessed by winxp in very narrow
 | |
| 		 * scenarios where it sets bit #19, itself documented as
 | |
| 		 * a "reserved" bit.  Best effort attempt to source coherent
 | |
| 		 * read data here should the balance of the register be
 | |
| 		 * interpreted by the guest:
 | |
| 		 *
 | |
| 		 * L2 cache control register 3: 64GB range, 256KB size,
 | |
| 		 * enabled, latency 0x1, configured
 | |
| 		 */
 | |
| 		data = 0xbe702111;
 | |
| 		break;
 | |
| 	case MSR_AMD64_OSVW_ID_LENGTH:
 | |
| 		if (!guest_cpuid_has_osvw(vcpu))
 | |
| 			return 1;
 | |
| 		data = vcpu->arch.osvw.length;
 | |
| 		break;
 | |
| 	case MSR_AMD64_OSVW_STATUS:
 | |
| 		if (!guest_cpuid_has_osvw(vcpu))
 | |
| 			return 1;
 | |
| 		data = vcpu->arch.osvw.status;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (kvm_pmu_msr(vcpu, msr))
 | |
| 			return kvm_pmu_get_msr(vcpu, msr, pdata);
 | |
| 		if (!ignore_msrs) {
 | |
| 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
 | |
| 			data = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common);
 | |
| 
 | |
| /*
 | |
|  * Read or write a bunch of msrs. All parameters are kernel addresses.
 | |
|  *
 | |
|  * @return number of msrs set successfully.
 | |
|  */
 | |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
 | |
| 		    struct kvm_msr_entry *entries,
 | |
| 		    int (*do_msr)(struct kvm_vcpu *vcpu,
 | |
| 				  unsigned index, u64 *data))
 | |
| {
 | |
| 	int i, idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	for (i = 0; i < msrs->nmsrs; ++i)
 | |
| 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
 | |
| 			break;
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read or write a bunch of msrs. Parameters are user addresses.
 | |
|  *
 | |
|  * @return number of msrs set successfully.
 | |
|  */
 | |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
 | |
| 		  int (*do_msr)(struct kvm_vcpu *vcpu,
 | |
| 				unsigned index, u64 *data),
 | |
| 		  int writeback)
 | |
| {
 | |
| 	struct kvm_msrs msrs;
 | |
| 	struct kvm_msr_entry *entries;
 | |
| 	int r, n;
 | |
| 	unsigned size;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
 | |
| 		goto out;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (msrs.nmsrs >= MAX_IO_MSRS)
 | |
| 		goto out;
 | |
| 
 | |
| 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
 | |
| 	entries = memdup_user(user_msrs->entries, size);
 | |
| 	if (IS_ERR(entries)) {
 | |
| 		r = PTR_ERR(entries);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
 | |
| 	if (r < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = n;
 | |
| 
 | |
| out_free:
 | |
| 	kfree(entries);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_dev_ioctl_check_extension(long ext)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	switch (ext) {
 | |
| 	case KVM_CAP_IRQCHIP:
 | |
| 	case KVM_CAP_HLT:
 | |
| 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
 | |
| 	case KVM_CAP_SET_TSS_ADDR:
 | |
| 	case KVM_CAP_EXT_CPUID:
 | |
| 	case KVM_CAP_EXT_EMUL_CPUID:
 | |
| 	case KVM_CAP_CLOCKSOURCE:
 | |
| 	case KVM_CAP_PIT:
 | |
| 	case KVM_CAP_NOP_IO_DELAY:
 | |
| 	case KVM_CAP_MP_STATE:
 | |
| 	case KVM_CAP_SYNC_MMU:
 | |
| 	case KVM_CAP_USER_NMI:
 | |
| 	case KVM_CAP_REINJECT_CONTROL:
 | |
| 	case KVM_CAP_IRQ_INJECT_STATUS:
 | |
| 	case KVM_CAP_IRQFD:
 | |
| 	case KVM_CAP_IOEVENTFD:
 | |
| 	case KVM_CAP_PIT2:
 | |
| 	case KVM_CAP_PIT_STATE2:
 | |
| 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
 | |
| 	case KVM_CAP_XEN_HVM:
 | |
| 	case KVM_CAP_ADJUST_CLOCK:
 | |
| 	case KVM_CAP_VCPU_EVENTS:
 | |
| 	case KVM_CAP_HYPERV:
 | |
| 	case KVM_CAP_HYPERV_VAPIC:
 | |
| 	case KVM_CAP_HYPERV_SPIN:
 | |
| 	case KVM_CAP_PCI_SEGMENT:
 | |
| 	case KVM_CAP_DEBUGREGS:
 | |
| 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
 | |
| 	case KVM_CAP_XSAVE:
 | |
| 	case KVM_CAP_ASYNC_PF:
 | |
| 	case KVM_CAP_GET_TSC_KHZ:
 | |
| 	case KVM_CAP_KVMCLOCK_CTRL:
 | |
| 	case KVM_CAP_READONLY_MEM:
 | |
| #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
 | |
| 	case KVM_CAP_ASSIGN_DEV_IRQ:
 | |
| 	case KVM_CAP_PCI_2_3:
 | |
| #endif
 | |
| 		r = 1;
 | |
| 		break;
 | |
| 	case KVM_CAP_COALESCED_MMIO:
 | |
| 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 | |
| 		break;
 | |
| 	case KVM_CAP_VAPIC:
 | |
| 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
 | |
| 		break;
 | |
| 	case KVM_CAP_NR_VCPUS:
 | |
| 		r = KVM_SOFT_MAX_VCPUS;
 | |
| 		break;
 | |
| 	case KVM_CAP_MAX_VCPUS:
 | |
| 		r = KVM_MAX_VCPUS;
 | |
| 		break;
 | |
| 	case KVM_CAP_NR_MEMSLOTS:
 | |
| 		r = KVM_USER_MEM_SLOTS;
 | |
| 		break;
 | |
| 	case KVM_CAP_PV_MMU:	/* obsolete */
 | |
| 		r = 0;
 | |
| 		break;
 | |
| #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
 | |
| 	case KVM_CAP_IOMMU:
 | |
| 		r = iommu_present(&pci_bus_type);
 | |
| 		break;
 | |
| #endif
 | |
| 	case KVM_CAP_MCE:
 | |
| 		r = KVM_MAX_MCE_BANKS;
 | |
| 		break;
 | |
| 	case KVM_CAP_XCRS:
 | |
| 		r = cpu_has_xsave;
 | |
| 		break;
 | |
| 	case KVM_CAP_TSC_CONTROL:
 | |
| 		r = kvm_has_tsc_control;
 | |
| 		break;
 | |
| 	case KVM_CAP_TSC_DEADLINE_TIMER:
 | |
| 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| 
 | |
| }
 | |
| 
 | |
| long kvm_arch_dev_ioctl(struct file *filp,
 | |
| 			unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	long r;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_GET_MSR_INDEX_LIST: {
 | |
| 		struct kvm_msr_list __user *user_msr_list = argp;
 | |
| 		struct kvm_msr_list msr_list;
 | |
| 		unsigned n;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
 | |
| 			goto out;
 | |
| 		n = msr_list.nmsrs;
 | |
| 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
 | |
| 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
 | |
| 			goto out;
 | |
| 		r = -E2BIG;
 | |
| 		if (n < msr_list.nmsrs)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
 | |
| 				 num_msrs_to_save * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
 | |
| 				 &emulated_msrs,
 | |
| 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_SUPPORTED_CPUID:
 | |
| 	case KVM_GET_EMULATED_CPUID: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 
 | |
| 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
 | |
| 					    ioctl);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
 | |
| 		u64 mce_cap;
 | |
| 
 | |
| 		mce_cap = KVM_MCE_CAP_SUPPORTED;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void wbinvd_ipi(void *garbage)
 | |
| {
 | |
| 	wbinvd();
 | |
| }
 | |
| 
 | |
| static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	/* Address WBINVD may be executed by guest */
 | |
| 	if (need_emulate_wbinvd(vcpu)) {
 | |
| 		if (kvm_x86_ops->has_wbinvd_exit())
 | |
| 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
 | |
| 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
 | |
| 			smp_call_function_single(vcpu->cpu,
 | |
| 					wbinvd_ipi, NULL, 1);
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->vcpu_load(vcpu, cpu);
 | |
| 
 | |
| 	/* Apply any externally detected TSC adjustments (due to suspend) */
 | |
| 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
 | |
| 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
 | |
| 		vcpu->arch.tsc_offset_adjustment = 0;
 | |
| 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
 | |
| 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
 | |
| 				native_read_tsc() - vcpu->arch.last_host_tsc;
 | |
| 		if (tsc_delta < 0)
 | |
| 			mark_tsc_unstable("KVM discovered backwards TSC");
 | |
| 		if (check_tsc_unstable()) {
 | |
| 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
 | |
| 						vcpu->arch.last_guest_tsc);
 | |
| 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
 | |
| 			vcpu->arch.tsc_catchup = 1;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * On a host with synchronized TSC, there is no need to update
 | |
| 		 * kvmclock on vcpu->cpu migration
 | |
| 		 */
 | |
| 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
 | |
| 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
 | |
| 		if (vcpu->cpu != cpu)
 | |
| 			kvm_migrate_timers(vcpu);
 | |
| 		vcpu->cpu = cpu;
 | |
| 	}
 | |
| 
 | |
| 	accumulate_steal_time(vcpu);
 | |
| 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_x86_ops->vcpu_put(vcpu);
 | |
| 	kvm_put_guest_fpu(vcpu);
 | |
| 	vcpu->arch.last_host_tsc = native_read_tsc();
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_lapic_state *s)
 | |
| {
 | |
| 	kvm_x86_ops->sync_pir_to_irr(vcpu);
 | |
| 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_lapic_state *s)
 | |
| {
 | |
| 	kvm_apic_post_state_restore(vcpu, s);
 | |
| 	update_cr8_intercept(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_interrupt *irq)
 | |
| {
 | |
| 	if (irq->irq >= KVM_NR_INTERRUPTS)
 | |
| 		return -EINVAL;
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	kvm_queue_interrupt(vcpu, irq->irq, false);
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_inject_nmi(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
 | |
| 					   struct kvm_tpr_access_ctl *tac)
 | |
| {
 | |
| 	if (tac->flags)
 | |
| 		return -EINVAL;
 | |
| 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
 | |
| 					u64 mcg_cap)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned bank_num = mcg_cap & 0xff, bank;
 | |
| 
 | |
| 	r = -EINVAL;
 | |
| 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
 | |
| 		goto out;
 | |
| 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
 | |
| 		goto out;
 | |
| 	r = 0;
 | |
| 	vcpu->arch.mcg_cap = mcg_cap;
 | |
| 	/* Init IA32_MCG_CTL to all 1s */
 | |
| 	if (mcg_cap & MCG_CTL_P)
 | |
| 		vcpu->arch.mcg_ctl = ~(u64)0;
 | |
| 	/* Init IA32_MCi_CTL to all 1s */
 | |
| 	for (bank = 0; bank < bank_num; bank++)
 | |
| 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
 | |
| 				      struct kvm_x86_mce *mce)
 | |
| {
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 	u64 *banks = vcpu->arch.mce_banks;
 | |
| 
 | |
| 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
 | |
| 	 * reporting is disabled
 | |
| 	 */
 | |
| 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
 | |
| 	    vcpu->arch.mcg_ctl != ~(u64)0)
 | |
| 		return 0;
 | |
| 	banks += 4 * mce->bank;
 | |
| 	/*
 | |
| 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
 | |
| 	 * reporting is disabled for the bank
 | |
| 	 */
 | |
| 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
 | |
| 		return 0;
 | |
| 	if (mce->status & MCI_STATUS_UC) {
 | |
| 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
 | |
| 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
 | |
| 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (banks[1] & MCI_STATUS_VAL)
 | |
| 			mce->status |= MCI_STATUS_OVER;
 | |
| 		banks[2] = mce->addr;
 | |
| 		banks[3] = mce->misc;
 | |
| 		vcpu->arch.mcg_status = mce->mcg_status;
 | |
| 		banks[1] = mce->status;
 | |
| 		kvm_queue_exception(vcpu, MC_VECTOR);
 | |
| 	} else if (!(banks[1] & MCI_STATUS_VAL)
 | |
| 		   || !(banks[1] & MCI_STATUS_UC)) {
 | |
| 		if (banks[1] & MCI_STATUS_VAL)
 | |
| 			mce->status |= MCI_STATUS_OVER;
 | |
| 		banks[2] = mce->addr;
 | |
| 		banks[3] = mce->misc;
 | |
| 		banks[1] = mce->status;
 | |
| 	} else
 | |
| 		banks[1] |= MCI_STATUS_OVER;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
 | |
| 					       struct kvm_vcpu_events *events)
 | |
| {
 | |
| 	process_nmi(vcpu);
 | |
| 	events->exception.injected =
 | |
| 		vcpu->arch.exception.pending &&
 | |
| 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
 | |
| 	events->exception.nr = vcpu->arch.exception.nr;
 | |
| 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
 | |
| 	events->exception.pad = 0;
 | |
| 	events->exception.error_code = vcpu->arch.exception.error_code;
 | |
| 
 | |
| 	events->interrupt.injected =
 | |
| 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
 | |
| 	events->interrupt.nr = vcpu->arch.interrupt.nr;
 | |
| 	events->interrupt.soft = 0;
 | |
| 	events->interrupt.shadow =
 | |
| 		kvm_x86_ops->get_interrupt_shadow(vcpu,
 | |
| 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
 | |
| 
 | |
| 	events->nmi.injected = vcpu->arch.nmi_injected;
 | |
| 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
 | |
| 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
 | |
| 	events->nmi.pad = 0;
 | |
| 
 | |
| 	events->sipi_vector = 0; /* never valid when reporting to user space */
 | |
| 
 | |
| 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
 | |
| 			 | KVM_VCPUEVENT_VALID_SHADOW);
 | |
| 	memset(&events->reserved, 0, sizeof(events->reserved));
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
 | |
| 					      struct kvm_vcpu_events *events)
 | |
| {
 | |
| 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
 | |
| 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
 | |
| 			      | KVM_VCPUEVENT_VALID_SHADOW))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	process_nmi(vcpu);
 | |
| 	vcpu->arch.exception.pending = events->exception.injected;
 | |
| 	vcpu->arch.exception.nr = events->exception.nr;
 | |
| 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
 | |
| 	vcpu->arch.exception.error_code = events->exception.error_code;
 | |
| 
 | |
| 	vcpu->arch.interrupt.pending = events->interrupt.injected;
 | |
| 	vcpu->arch.interrupt.nr = events->interrupt.nr;
 | |
| 	vcpu->arch.interrupt.soft = events->interrupt.soft;
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
 | |
| 		kvm_x86_ops->set_interrupt_shadow(vcpu,
 | |
| 						  events->interrupt.shadow);
 | |
| 
 | |
| 	vcpu->arch.nmi_injected = events->nmi.injected;
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
 | |
| 		vcpu->arch.nmi_pending = events->nmi.pending;
 | |
| 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
 | |
| 
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
 | |
| 	    kvm_vcpu_has_lapic(vcpu))
 | |
| 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
 | |
| 					     struct kvm_debugregs *dbgregs)
 | |
| {
 | |
| 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
 | |
| 	dbgregs->dr6 = vcpu->arch.dr6;
 | |
| 	dbgregs->dr7 = vcpu->arch.dr7;
 | |
| 	dbgregs->flags = 0;
 | |
| 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
 | |
| 					    struct kvm_debugregs *dbgregs)
 | |
| {
 | |
| 	if (dbgregs->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
 | |
| 	vcpu->arch.dr6 = dbgregs->dr6;
 | |
| 	vcpu->arch.dr7 = dbgregs->dr7;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
 | |
| 					 struct kvm_xsave *guest_xsave)
 | |
| {
 | |
| 	if (cpu_has_xsave) {
 | |
| 		memcpy(guest_xsave->region,
 | |
| 			&vcpu->arch.guest_fpu.state->xsave,
 | |
| 			vcpu->arch.guest_xstate_size);
 | |
| 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
 | |
| 			vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
 | |
| 	} else {
 | |
| 		memcpy(guest_xsave->region,
 | |
| 			&vcpu->arch.guest_fpu.state->fxsave,
 | |
| 			sizeof(struct i387_fxsave_struct));
 | |
| 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
 | |
| 			XSTATE_FPSSE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_xsave *guest_xsave)
 | |
| {
 | |
| 	u64 xstate_bv =
 | |
| 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
 | |
| 
 | |
| 	if (cpu_has_xsave) {
 | |
| 		/*
 | |
| 		 * Here we allow setting states that are not present in
 | |
| 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
 | |
| 		 * with old userspace.
 | |
| 		 */
 | |
| 		if (xstate_bv & ~KVM_SUPPORTED_XCR0)
 | |
| 			return -EINVAL;
 | |
| 		if (xstate_bv & ~host_xcr0)
 | |
| 			return -EINVAL;
 | |
| 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
 | |
| 			guest_xsave->region, vcpu->arch.guest_xstate_size);
 | |
| 	} else {
 | |
| 		if (xstate_bv & ~XSTATE_FPSSE)
 | |
| 			return -EINVAL;
 | |
| 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
 | |
| 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_xcrs *guest_xcrs)
 | |
| {
 | |
| 	if (!cpu_has_xsave) {
 | |
| 		guest_xcrs->nr_xcrs = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	guest_xcrs->nr_xcrs = 1;
 | |
| 	guest_xcrs->flags = 0;
 | |
| 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
 | |
| 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
 | |
| 				       struct kvm_xcrs *guest_xcrs)
 | |
| {
 | |
| 	int i, r = 0;
 | |
| 
 | |
| 	if (!cpu_has_xsave)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
 | |
| 		/* Only support XCR0 currently */
 | |
| 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
 | |
| 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
 | |
| 				guest_xcrs->xcrs[i].value);
 | |
| 			break;
 | |
| 		}
 | |
| 	if (r)
 | |
| 		r = -EINVAL;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kvm_set_guest_paused() indicates to the guest kernel that it has been
 | |
|  * stopped by the hypervisor.  This function will be called from the host only.
 | |
|  * EINVAL is returned when the host attempts to set the flag for a guest that
 | |
|  * does not support pv clocks.
 | |
|  */
 | |
| static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!vcpu->arch.pv_time_enabled)
 | |
| 		return -EINVAL;
 | |
| 	vcpu->arch.pvclock_set_guest_stopped_request = true;
 | |
| 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long kvm_arch_vcpu_ioctl(struct file *filp,
 | |
| 			 unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = filp->private_data;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int r;
 | |
| 	union {
 | |
| 		struct kvm_lapic_state *lapic;
 | |
| 		struct kvm_xsave *xsave;
 | |
| 		struct kvm_xcrs *xcrs;
 | |
| 		void *buffer;
 | |
| 	} u;
 | |
| 
 | |
| 	u.buffer = NULL;
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_GET_LAPIC: {
 | |
| 		r = -EINVAL;
 | |
| 		if (!vcpu->arch.apic)
 | |
| 			goto out;
 | |
| 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.lapic)
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_LAPIC: {
 | |
| 		r = -EINVAL;
 | |
| 		if (!vcpu->arch.apic)
 | |
| 			goto out;
 | |
| 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
 | |
| 		if (IS_ERR(u.lapic))
 | |
| 			return PTR_ERR(u.lapic);
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_INTERRUPT: {
 | |
| 		struct kvm_interrupt irq;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&irq, argp, sizeof irq))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_NMI: {
 | |
| 		r = kvm_vcpu_ioctl_nmi(vcpu);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CPUID: {
 | |
| 		struct kvm_cpuid __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CPUID2: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
 | |
| 					      cpuid_arg->entries);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_CPUID2: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
 | |
| 					      cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_MSRS:
 | |
| 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
 | |
| 		break;
 | |
| 	case KVM_SET_MSRS:
 | |
| 		r = msr_io(vcpu, argp, do_set_msr, 0);
 | |
| 		break;
 | |
| 	case KVM_TPR_ACCESS_REPORTING: {
 | |
| 		struct kvm_tpr_access_ctl tac;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&tac, argp, sizeof tac))
 | |
| 			goto out;
 | |
| 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &tac, sizeof tac))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	};
 | |
| 	case KVM_SET_VAPIC_ADDR: {
 | |
| 		struct kvm_vapic_addr va;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (!irqchip_in_kernel(vcpu->kvm))
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&va, argp, sizeof va))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_SETUP_MCE: {
 | |
| 		u64 mcg_cap;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_SET_MCE: {
 | |
| 		struct kvm_x86_mce mce;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&mce, argp, sizeof mce))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_VCPU_EVENTS: {
 | |
| 		struct kvm_vcpu_events events;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_VCPU_EVENTS: {
 | |
| 		struct kvm_vcpu_events events;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_DEBUGREGS: {
 | |
| 		struct kvm_debugregs dbgregs;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &dbgregs,
 | |
| 				 sizeof(struct kvm_debugregs)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_DEBUGREGS: {
 | |
| 		struct kvm_debugregs dbgregs;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&dbgregs, argp,
 | |
| 				   sizeof(struct kvm_debugregs)))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_XSAVE: {
 | |
| 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xsave)
 | |
| 			break;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_XSAVE: {
 | |
| 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
 | |
| 		if (IS_ERR(u.xsave))
 | |
| 			return PTR_ERR(u.xsave);
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_XCRS: {
 | |
| 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xcrs)
 | |
| 			break;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.xcrs,
 | |
| 				 sizeof(struct kvm_xcrs)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_XCRS: {
 | |
| 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
 | |
| 		if (IS_ERR(u.xcrs))
 | |
| 			return PTR_ERR(u.xcrs);
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_TSC_KHZ: {
 | |
| 		u32 user_tsc_khz;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		user_tsc_khz = (u32)arg;
 | |
| 
 | |
| 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (user_tsc_khz == 0)
 | |
| 			user_tsc_khz = tsc_khz;
 | |
| 
 | |
| 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
 | |
| 
 | |
| 		r = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	case KVM_GET_TSC_KHZ: {
 | |
| 		r = vcpu->arch.virtual_tsc_khz;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	case KVM_KVMCLOCK_CTRL: {
 | |
| 		r = kvm_set_guest_paused(vcpu);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	kfree(u.buffer);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 | |
| {
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
 | |
| 		return -EINVAL;
 | |
| 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
 | |
| 					      u64 ident_addr)
 | |
| {
 | |
| 	kvm->arch.ept_identity_map_addr = ident_addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
 | |
| 					  u32 kvm_nr_mmu_pages)
 | |
| {
 | |
| 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 
 | |
| 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
 | |
| 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
 | |
| 
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
 | |
| {
 | |
| 	return kvm->arch.n_max_mmu_pages;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = 0;
 | |
| 	switch (chip->chip_id) {
 | |
| 	case KVM_IRQCHIP_PIC_MASTER:
 | |
| 		memcpy(&chip->chip.pic,
 | |
| 			&pic_irqchip(kvm)->pics[0],
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_PIC_SLAVE:
 | |
| 		memcpy(&chip->chip.pic,
 | |
| 			&pic_irqchip(kvm)->pics[1],
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_IOAPIC:
 | |
| 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = 0;
 | |
| 	switch (chip->chip_id) {
 | |
| 	case KVM_IRQCHIP_PIC_MASTER:
 | |
| 		spin_lock(&pic_irqchip(kvm)->lock);
 | |
| 		memcpy(&pic_irqchip(kvm)->pics[0],
 | |
| 			&chip->chip.pic,
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		spin_unlock(&pic_irqchip(kvm)->lock);
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_PIC_SLAVE:
 | |
| 		spin_lock(&pic_irqchip(kvm)->lock);
 | |
| 		memcpy(&pic_irqchip(kvm)->pics[1],
 | |
| 			&chip->chip.pic,
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		spin_unlock(&pic_irqchip(kvm)->lock);
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_IOAPIC:
 | |
| 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	kvm_pic_update_irq(pic_irqchip(kvm));
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
 | |
| 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
 | |
| 		sizeof(ps->channels));
 | |
| 	ps->flags = kvm->arch.vpit->pit_state.flags;
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memset(&ps->reserved, 0, sizeof(ps->reserved));
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
 | |
| {
 | |
| 	int r = 0, start = 0;
 | |
| 	u32 prev_legacy, cur_legacy;
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
 | |
| 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
 | |
| 	if (!prev_legacy && cur_legacy)
 | |
| 		start = 1;
 | |
| 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
 | |
| 	       sizeof(kvm->arch.vpit->pit_state.channels));
 | |
| 	kvm->arch.vpit->pit_state.flags = ps->flags;
 | |
| 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_reinject(struct kvm *kvm,
 | |
| 				 struct kvm_reinject_control *control)
 | |
| {
 | |
| 	if (!kvm->arch.vpit)
 | |
| 		return -ENXIO;
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 | |
|  * @kvm: kvm instance
 | |
|  * @log: slot id and address to which we copy the log
 | |
|  *
 | |
|  * We need to keep it in mind that VCPU threads can write to the bitmap
 | |
|  * concurrently.  So, to avoid losing data, we keep the following order for
 | |
|  * each bit:
 | |
|  *
 | |
|  *   1. Take a snapshot of the bit and clear it if needed.
 | |
|  *   2. Write protect the corresponding page.
 | |
|  *   3. Flush TLB's if needed.
 | |
|  *   4. Copy the snapshot to the userspace.
 | |
|  *
 | |
|  * Between 2 and 3, the guest may write to the page using the remaining TLB
 | |
|  * entry.  This is not a problem because the page will be reported dirty at
 | |
|  * step 4 using the snapshot taken before and step 3 ensures that successive
 | |
|  * writes will be logged for the next call.
 | |
|  */
 | |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 | |
| {
 | |
| 	int r;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	unsigned long n, i;
 | |
| 	unsigned long *dirty_bitmap;
 | |
| 	unsigned long *dirty_bitmap_buffer;
 | |
| 	bool is_dirty = false;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 
 | |
| 	r = -EINVAL;
 | |
| 	if (log->slot >= KVM_USER_MEM_SLOTS)
 | |
| 		goto out;
 | |
| 
 | |
| 	memslot = id_to_memslot(kvm->memslots, log->slot);
 | |
| 
 | |
| 	dirty_bitmap = memslot->dirty_bitmap;
 | |
| 	r = -ENOENT;
 | |
| 	if (!dirty_bitmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	n = kvm_dirty_bitmap_bytes(memslot);
 | |
| 
 | |
| 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
 | |
| 	memset(dirty_bitmap_buffer, 0, n);
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	for (i = 0; i < n / sizeof(long); i++) {
 | |
| 		unsigned long mask;
 | |
| 		gfn_t offset;
 | |
| 
 | |
| 		if (!dirty_bitmap[i])
 | |
| 			continue;
 | |
| 
 | |
| 		is_dirty = true;
 | |
| 
 | |
| 		mask = xchg(&dirty_bitmap[i], 0);
 | |
| 		dirty_bitmap_buffer[i] = mask;
 | |
| 
 | |
| 		offset = i * BITS_PER_LONG;
 | |
| 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
 | |
| 	}
 | |
| 	if (is_dirty)
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
 | |
| 		goto out;
 | |
| 
 | |
| 	r = 0;
 | |
| out:
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
 | |
| 			bool line_status)
 | |
| {
 | |
| 	if (!irqchip_in_kernel(kvm))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
 | |
| 					irq_event->irq, irq_event->level,
 | |
| 					line_status);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long kvm_arch_vm_ioctl(struct file *filp,
 | |
| 		       unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	struct kvm *kvm = filp->private_data;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int r = -ENOTTY;
 | |
| 	/*
 | |
| 	 * This union makes it completely explicit to gcc-3.x
 | |
| 	 * that these two variables' stack usage should be
 | |
| 	 * combined, not added together.
 | |
| 	 */
 | |
| 	union {
 | |
| 		struct kvm_pit_state ps;
 | |
| 		struct kvm_pit_state2 ps2;
 | |
| 		struct kvm_pit_config pit_config;
 | |
| 	} u;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_SET_TSS_ADDR:
 | |
| 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
 | |
| 		break;
 | |
| 	case KVM_SET_IDENTITY_MAP_ADDR: {
 | |
| 		u64 ident_addr;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_NR_MMU_PAGES:
 | |
| 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
 | |
| 		break;
 | |
| 	case KVM_GET_NR_MMU_PAGES:
 | |
| 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
 | |
| 		break;
 | |
| 	case KVM_CREATE_IRQCHIP: {
 | |
| 		struct kvm_pic *vpic;
 | |
| 
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		r = -EEXIST;
 | |
| 		if (kvm->arch.vpic)
 | |
| 			goto create_irqchip_unlock;
 | |
| 		r = -EINVAL;
 | |
| 		if (atomic_read(&kvm->online_vcpus))
 | |
| 			goto create_irqchip_unlock;
 | |
| 		r = -ENOMEM;
 | |
| 		vpic = kvm_create_pic(kvm);
 | |
| 		if (vpic) {
 | |
| 			r = kvm_ioapic_init(kvm);
 | |
| 			if (r) {
 | |
| 				mutex_lock(&kvm->slots_lock);
 | |
| 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
 | |
| 							  &vpic->dev_master);
 | |
| 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
 | |
| 							  &vpic->dev_slave);
 | |
| 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
 | |
| 							  &vpic->dev_eclr);
 | |
| 				mutex_unlock(&kvm->slots_lock);
 | |
| 				kfree(vpic);
 | |
| 				goto create_irqchip_unlock;
 | |
| 			}
 | |
| 		} else
 | |
| 			goto create_irqchip_unlock;
 | |
| 		smp_wmb();
 | |
| 		kvm->arch.vpic = vpic;
 | |
| 		smp_wmb();
 | |
| 		r = kvm_setup_default_irq_routing(kvm);
 | |
| 		if (r) {
 | |
| 			mutex_lock(&kvm->slots_lock);
 | |
| 			mutex_lock(&kvm->irq_lock);
 | |
| 			kvm_ioapic_destroy(kvm);
 | |
| 			kvm_destroy_pic(kvm);
 | |
| 			mutex_unlock(&kvm->irq_lock);
 | |
| 			mutex_unlock(&kvm->slots_lock);
 | |
| 		}
 | |
| 	create_irqchip_unlock:
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_CREATE_PIT:
 | |
| 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
 | |
| 		goto create_pit;
 | |
| 	case KVM_CREATE_PIT2:
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.pit_config, argp,
 | |
| 				   sizeof(struct kvm_pit_config)))
 | |
| 			goto out;
 | |
| 	create_pit:
 | |
| 		mutex_lock(&kvm->slots_lock);
 | |
| 		r = -EEXIST;
 | |
| 		if (kvm->arch.vpit)
 | |
| 			goto create_pit_unlock;
 | |
| 		r = -ENOMEM;
 | |
| 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
 | |
| 		if (kvm->arch.vpit)
 | |
| 			r = 0;
 | |
| 	create_pit_unlock:
 | |
| 		mutex_unlock(&kvm->slots_lock);
 | |
| 		break;
 | |
| 	case KVM_GET_IRQCHIP: {
 | |
| 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
 | |
| 		struct kvm_irqchip *chip;
 | |
| 
 | |
| 		chip = memdup_user(argp, sizeof(*chip));
 | |
| 		if (IS_ERR(chip)) {
 | |
| 			r = PTR_ERR(chip);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		r = -ENXIO;
 | |
| 		if (!irqchip_in_kernel(kvm))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
 | |
| 		if (r)
 | |
| 			goto get_irqchip_out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, chip, sizeof *chip))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = 0;
 | |
| 	get_irqchip_out:
 | |
| 		kfree(chip);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_IRQCHIP: {
 | |
| 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
 | |
| 		struct kvm_irqchip *chip;
 | |
| 
 | |
| 		chip = memdup_user(argp, sizeof(*chip));
 | |
| 		if (IS_ERR(chip)) {
 | |
| 			r = PTR_ERR(chip);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		r = -ENXIO;
 | |
| 		if (!irqchip_in_kernel(kvm))
 | |
| 			goto set_irqchip_out;
 | |
| 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
 | |
| 		if (r)
 | |
| 			goto set_irqchip_out;
 | |
| 		r = 0;
 | |
| 	set_irqchip_out:
 | |
| 		kfree(chip);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_PIT: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PIT: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_PIT2: {
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PIT2: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_REINJECT_CONTROL: {
 | |
| 		struct kvm_reinject_control control;
 | |
| 		r =  -EFAULT;
 | |
| 		if (copy_from_user(&control, argp, sizeof(control)))
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_reinject(kvm, &control);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_XEN_HVM_CONFIG: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
 | |
| 				   sizeof(struct kvm_xen_hvm_config)))
 | |
| 			goto out;
 | |
| 		r = -EINVAL;
 | |
| 		if (kvm->arch.xen_hvm_config.flags)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CLOCK: {
 | |
| 		struct kvm_clock_data user_ns;
 | |
| 		u64 now_ns;
 | |
| 		s64 delta;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (user_ns.flags)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = 0;
 | |
| 		local_irq_disable();
 | |
| 		now_ns = get_kernel_ns();
 | |
| 		delta = user_ns.clock - now_ns;
 | |
| 		local_irq_enable();
 | |
| 		kvm->arch.kvmclock_offset = delta;
 | |
| 		kvm_gen_update_masterclock(kvm);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_CLOCK: {
 | |
| 		struct kvm_clock_data user_ns;
 | |
| 		u64 now_ns;
 | |
| 
 | |
| 		local_irq_disable();
 | |
| 		now_ns = get_kernel_ns();
 | |
| 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
 | |
| 		local_irq_enable();
 | |
| 		user_ns.flags = 0;
 | |
| 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void kvm_init_msr_list(void)
 | |
| {
 | |
| 	u32 dummy[2];
 | |
| 	unsigned i, j;
 | |
| 
 | |
| 	/* skip the first msrs in the list. KVM-specific */
 | |
| 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
 | |
| 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
 | |
| 			continue;
 | |
| 		if (j < i)
 | |
| 			msrs_to_save[j] = msrs_to_save[i];
 | |
| 		j++;
 | |
| 	}
 | |
| 	num_msrs_to_save = j;
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
 | |
| 			   const void *v)
 | |
| {
 | |
| 	int handled = 0;
 | |
| 	int n;
 | |
| 
 | |
| 	do {
 | |
| 		n = min(len, 8);
 | |
| 		if (!(vcpu->arch.apic &&
 | |
| 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
 | |
| 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
 | |
| 			break;
 | |
| 		handled += n;
 | |
| 		addr += n;
 | |
| 		len -= n;
 | |
| 		v += n;
 | |
| 	} while (len);
 | |
| 
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
 | |
| {
 | |
| 	int handled = 0;
 | |
| 	int n;
 | |
| 
 | |
| 	do {
 | |
| 		n = min(len, 8);
 | |
| 		if (!(vcpu->arch.apic &&
 | |
| 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
 | |
| 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
 | |
| 			break;
 | |
| 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
 | |
| 		handled += n;
 | |
| 		addr += n;
 | |
| 		len -= n;
 | |
| 		v += n;
 | |
| 	} while (len);
 | |
| 
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| static void kvm_set_segment(struct kvm_vcpu *vcpu,
 | |
| 			struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	kvm_x86_ops->set_segment(vcpu, var, seg);
 | |
| }
 | |
| 
 | |
| void kvm_get_segment(struct kvm_vcpu *vcpu,
 | |
| 		     struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	kvm_x86_ops->get_segment(vcpu, var, seg);
 | |
| }
 | |
| 
 | |
| gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
 | |
| {
 | |
| 	gpa_t t_gpa;
 | |
| 	struct x86_exception exception;
 | |
| 
 | |
| 	BUG_ON(!mmu_is_nested(vcpu));
 | |
| 
 | |
| 	/* NPT walks are always user-walks */
 | |
| 	access |= PFERR_USER_MASK;
 | |
| 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
 | |
| 
 | |
| 	return t_gpa;
 | |
| }
 | |
| 
 | |
| gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 			      struct x86_exception *exception)
 | |
| {
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
 | |
| }
 | |
| 
 | |
|  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 				struct x86_exception *exception)
 | |
| {
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	access |= PFERR_FETCH_MASK;
 | |
| 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
 | |
| }
 | |
| 
 | |
| gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 			       struct x86_exception *exception)
 | |
| {
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	access |= PFERR_WRITE_MASK;
 | |
| 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
 | |
| }
 | |
| 
 | |
| /* uses this to access any guest's mapped memory without checking CPL */
 | |
| gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 				struct x86_exception *exception)
 | |
| {
 | |
| 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
 | |
| }
 | |
| 
 | |
| static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
 | |
| 				      struct kvm_vcpu *vcpu, u32 access,
 | |
| 				      struct x86_exception *exception)
 | |
| {
 | |
| 	void *data = val;
 | |
| 	int r = X86EMUL_CONTINUE;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
 | |
| 							    exception);
 | |
| 		unsigned offset = addr & (PAGE_SIZE-1);
 | |
| 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA)
 | |
| 			return X86EMUL_PROPAGATE_FAULT;
 | |
| 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
 | |
| 		if (ret < 0) {
 | |
| 			r = X86EMUL_IO_NEEDED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes -= toread;
 | |
| 		data += toread;
 | |
| 		addr += toread;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /* used for instruction fetching */
 | |
| static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
 | |
| 				gva_t addr, void *val, unsigned int bytes,
 | |
| 				struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 
 | |
| 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
 | |
| 					  access | PFERR_FETCH_MASK,
 | |
| 					  exception);
 | |
| }
 | |
| 
 | |
| int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
 | |
| 			       gva_t addr, void *val, unsigned int bytes,
 | |
| 			       struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 
 | |
| 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
 | |
| 					  exception);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
 | |
| 
 | |
| static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
 | |
| 				      gva_t addr, void *val, unsigned int bytes,
 | |
| 				      struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
 | |
| }
 | |
| 
 | |
| int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
 | |
| 				       gva_t addr, void *val,
 | |
| 				       unsigned int bytes,
 | |
| 				       struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	void *data = val;
 | |
| 	int r = X86EMUL_CONTINUE;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
 | |
| 							     PFERR_WRITE_MASK,
 | |
| 							     exception);
 | |
| 		unsigned offset = addr & (PAGE_SIZE-1);
 | |
| 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA)
 | |
| 			return X86EMUL_PROPAGATE_FAULT;
 | |
| 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
 | |
| 		if (ret < 0) {
 | |
| 			r = X86EMUL_IO_NEEDED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes -= towrite;
 | |
| 		data += towrite;
 | |
| 		addr += towrite;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
 | |
| 
 | |
| static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
 | |
| 				gpa_t *gpa, struct x86_exception *exception,
 | |
| 				bool write)
 | |
| {
 | |
| 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
 | |
| 		| (write ? PFERR_WRITE_MASK : 0);
 | |
| 
 | |
| 	if (vcpu_match_mmio_gva(vcpu, gva)
 | |
| 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
 | |
| 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
 | |
| 					(gva & (PAGE_SIZE - 1));
 | |
| 		trace_vcpu_match_mmio(gva, *gpa, write, false);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
 | |
| 
 | |
| 	if (*gpa == UNMAPPED_GVA)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* For APIC access vmexit */
 | |
| 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
 | |
| 		trace_vcpu_match_mmio(gva, *gpa, write, true);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			const void *val, int bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
 | |
| 	if (ret < 0)
 | |
| 		return 0;
 | |
| 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| struct read_write_emulator_ops {
 | |
| 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
 | |
| 				  int bytes);
 | |
| 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 				  void *val, int bytes);
 | |
| 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			       int bytes, void *val);
 | |
| 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 				    void *val, int bytes);
 | |
| 	bool write;
 | |
| };
 | |
| 
 | |
| static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
 | |
| {
 | |
| 	if (vcpu->mmio_read_completed) {
 | |
| 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
 | |
| 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
 | |
| 		vcpu->mmio_read_completed = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			void *val, int bytes)
 | |
| {
 | |
| 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
 | |
| }
 | |
| 
 | |
| static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			 void *val, int bytes)
 | |
| {
 | |
| 	return emulator_write_phys(vcpu, gpa, val, bytes);
 | |
| }
 | |
| 
 | |
| static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
 | |
| {
 | |
| 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
 | |
| 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
 | |
| }
 | |
| 
 | |
| static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			  void *val, int bytes)
 | |
| {
 | |
| 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
 | |
| 	return X86EMUL_IO_NEEDED;
 | |
| }
 | |
| 
 | |
| static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			   void *val, int bytes)
 | |
| {
 | |
| 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
 | |
| 
 | |
| 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| static const struct read_write_emulator_ops read_emultor = {
 | |
| 	.read_write_prepare = read_prepare,
 | |
| 	.read_write_emulate = read_emulate,
 | |
| 	.read_write_mmio = vcpu_mmio_read,
 | |
| 	.read_write_exit_mmio = read_exit_mmio,
 | |
| };
 | |
| 
 | |
| static const struct read_write_emulator_ops write_emultor = {
 | |
| 	.read_write_emulate = write_emulate,
 | |
| 	.read_write_mmio = write_mmio,
 | |
| 	.read_write_exit_mmio = write_exit_mmio,
 | |
| 	.write = true,
 | |
| };
 | |
| 
 | |
| static int emulator_read_write_onepage(unsigned long addr, void *val,
 | |
| 				       unsigned int bytes,
 | |
| 				       struct x86_exception *exception,
 | |
| 				       struct kvm_vcpu *vcpu,
 | |
| 				       const struct read_write_emulator_ops *ops)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 	int handled, ret;
 | |
| 	bool write = ops->write;
 | |
| 	struct kvm_mmio_fragment *frag;
 | |
| 
 | |
| 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return X86EMUL_PROPAGATE_FAULT;
 | |
| 
 | |
| 	/* For APIC access vmexit */
 | |
| 	if (ret)
 | |
| 		goto mmio;
 | |
| 
 | |
| 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| mmio:
 | |
| 	/*
 | |
| 	 * Is this MMIO handled locally?
 | |
| 	 */
 | |
| 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
 | |
| 	if (handled == bytes)
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	gpa += handled;
 | |
| 	bytes -= handled;
 | |
| 	val += handled;
 | |
| 
 | |
| 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
 | |
| 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
 | |
| 	frag->gpa = gpa;
 | |
| 	frag->data = val;
 | |
| 	frag->len = bytes;
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
 | |
| 			void *val, unsigned int bytes,
 | |
| 			struct x86_exception *exception,
 | |
| 			const struct read_write_emulator_ops *ops)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	gpa_t gpa;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (ops->read_write_prepare &&
 | |
| 		  ops->read_write_prepare(vcpu, val, bytes))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	vcpu->mmio_nr_fragments = 0;
 | |
| 
 | |
| 	/* Crossing a page boundary? */
 | |
| 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
 | |
| 		int now;
 | |
| 
 | |
| 		now = -addr & ~PAGE_MASK;
 | |
| 		rc = emulator_read_write_onepage(addr, val, now, exception,
 | |
| 						 vcpu, ops);
 | |
| 
 | |
| 		if (rc != X86EMUL_CONTINUE)
 | |
| 			return rc;
 | |
| 		addr += now;
 | |
| 		val += now;
 | |
| 		bytes -= now;
 | |
| 	}
 | |
| 
 | |
| 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
 | |
| 					 vcpu, ops);
 | |
| 	if (rc != X86EMUL_CONTINUE)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (!vcpu->mmio_nr_fragments)
 | |
| 		return rc;
 | |
| 
 | |
| 	gpa = vcpu->mmio_fragments[0].gpa;
 | |
| 
 | |
| 	vcpu->mmio_needed = 1;
 | |
| 	vcpu->mmio_cur_fragment = 0;
 | |
| 
 | |
| 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
 | |
| 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
 | |
| 	vcpu->run->mmio.phys_addr = gpa;
 | |
| 
 | |
| 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
 | |
| }
 | |
| 
 | |
| static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 				  unsigned long addr,
 | |
| 				  void *val,
 | |
| 				  unsigned int bytes,
 | |
| 				  struct x86_exception *exception)
 | |
| {
 | |
| 	return emulator_read_write(ctxt, addr, val, bytes,
 | |
| 				   exception, &read_emultor);
 | |
| }
 | |
| 
 | |
| int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 			    unsigned long addr,
 | |
| 			    const void *val,
 | |
| 			    unsigned int bytes,
 | |
| 			    struct x86_exception *exception)
 | |
| {
 | |
| 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
 | |
| 				   exception, &write_emultor);
 | |
| }
 | |
| 
 | |
| #define CMPXCHG_TYPE(t, ptr, old, new) \
 | |
| 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
 | |
| #else
 | |
| #  define CMPXCHG64(ptr, old, new) \
 | |
| 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
 | |
| #endif
 | |
| 
 | |
| static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 				     unsigned long addr,
 | |
| 				     const void *old,
 | |
| 				     const void *new,
 | |
| 				     unsigned int bytes,
 | |
| 				     struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	gpa_t gpa;
 | |
| 	struct page *page;
 | |
| 	char *kaddr;
 | |
| 	bool exchanged;
 | |
| 
 | |
| 	/* guests cmpxchg8b have to be emulated atomically */
 | |
| 	if (bytes > 8 || (bytes & (bytes - 1)))
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA ||
 | |
| 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 	if (is_error_page(page))
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	kaddr = kmap_atomic(page);
 | |
| 	kaddr += offset_in_page(gpa);
 | |
| 	switch (bytes) {
 | |
| 	case 1:
 | |
| 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		exchanged = CMPXCHG64(kaddr, old, new);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 	kunmap_atomic(kaddr);
 | |
| 	kvm_release_page_dirty(page);
 | |
| 
 | |
| 	if (!exchanged)
 | |
| 		return X86EMUL_CMPXCHG_FAILED;
 | |
| 
 | |
| 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
 | |
| 
 | |
| 	return X86EMUL_CONTINUE;
 | |
| 
 | |
| emul_write:
 | |
| 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
 | |
| 
 | |
| 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
 | |
| }
 | |
| 
 | |
| static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
 | |
| {
 | |
| 	/* TODO: String I/O for in kernel device */
 | |
| 	int r;
 | |
| 
 | |
| 	if (vcpu->arch.pio.in)
 | |
| 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
 | |
| 				    vcpu->arch.pio.size, pd);
 | |
| 	else
 | |
| 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
 | |
| 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
 | |
| 				     pd);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
 | |
| 			       unsigned short port, void *val,
 | |
| 			       unsigned int count, bool in)
 | |
| {
 | |
| 	trace_kvm_pio(!in, port, size, count);
 | |
| 
 | |
| 	vcpu->arch.pio.port = port;
 | |
| 	vcpu->arch.pio.in = in;
 | |
| 	vcpu->arch.pio.count  = count;
 | |
| 	vcpu->arch.pio.size = size;
 | |
| 
 | |
| 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
 | |
| 		vcpu->arch.pio.count = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_IO;
 | |
| 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
 | |
| 	vcpu->run->io.size = size;
 | |
| 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
 | |
| 	vcpu->run->io.count = count;
 | |
| 	vcpu->run->io.port = port;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 				    int size, unsigned short port, void *val,
 | |
| 				    unsigned int count)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (vcpu->arch.pio.count)
 | |
| 		goto data_avail;
 | |
| 
 | |
| 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
 | |
| 	if (ret) {
 | |
| data_avail:
 | |
| 		memcpy(val, vcpu->arch.pio_data, size * count);
 | |
| 		vcpu->arch.pio.count = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 				     int size, unsigned short port,
 | |
| 				     const void *val, unsigned int count)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 
 | |
| 	memcpy(vcpu->arch.pio_data, val, size * count);
 | |
| 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
 | |
| }
 | |
| 
 | |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	return kvm_x86_ops->get_segment_base(vcpu, seg);
 | |
| }
 | |
| 
 | |
| static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
 | |
| {
 | |
| 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
 | |
| }
 | |
| 
 | |
| int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!need_emulate_wbinvd(vcpu))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	if (kvm_x86_ops->has_wbinvd_exit()) {
 | |
| 		int cpu = get_cpu();
 | |
| 
 | |
| 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
 | |
| 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
 | |
| 				wbinvd_ipi, NULL, 1);
 | |
| 		put_cpu();
 | |
| 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
 | |
| 	} else
 | |
| 		wbinvd();
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
 | |
| 
 | |
| static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
 | |
| }
 | |
| 
 | |
| int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
 | |
| {
 | |
| 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
 | |
| }
 | |
| 
 | |
| int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
 | |
| {
 | |
| 
 | |
| 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
 | |
| }
 | |
| 
 | |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val)
 | |
| {
 | |
| 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
 | |
| }
 | |
| 
 | |
| static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		value = kvm_read_cr0(vcpu);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		value = vcpu->arch.cr2;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		value = kvm_read_cr3(vcpu);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		value = kvm_read_cr4(vcpu);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		value = kvm_get_cr8(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	int res = 0;
 | |
| 
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		vcpu->arch.cr2 = val;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		res = kvm_set_cr3(vcpu, val);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		res = kvm_set_cr8(vcpu, val);
 | |
| 		break;
 | |
| 	default:
 | |
| 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
 | |
| 		res = -1;
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
 | |
| {
 | |
| 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
 | |
| }
 | |
| 
 | |
| static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
 | |
| }
 | |
| 
 | |
| static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
 | |
| {
 | |
| 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
 | |
| }
 | |
| 
 | |
| static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
 | |
| {
 | |
| 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
 | |
| }
 | |
| 
 | |
| static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
 | |
| {
 | |
| 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
 | |
| }
 | |
| 
 | |
| static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
 | |
| {
 | |
| 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
 | |
| }
 | |
| 
 | |
| static unsigned long emulator_get_cached_segment_base(
 | |
| 	struct x86_emulate_ctxt *ctxt, int seg)
 | |
| {
 | |
| 	return get_segment_base(emul_to_vcpu(ctxt), seg);
 | |
| }
 | |
| 
 | |
| static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
 | |
| 				 struct desc_struct *desc, u32 *base3,
 | |
| 				 int seg)
 | |
| {
 | |
| 	struct kvm_segment var;
 | |
| 
 | |
| 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
 | |
| 	*selector = var.selector;
 | |
| 
 | |
| 	if (var.unusable) {
 | |
| 		memset(desc, 0, sizeof(*desc));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (var.g)
 | |
| 		var.limit >>= 12;
 | |
| 	set_desc_limit(desc, var.limit);
 | |
| 	set_desc_base(desc, (unsigned long)var.base);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (base3)
 | |
| 		*base3 = var.base >> 32;
 | |
| #endif
 | |
| 	desc->type = var.type;
 | |
| 	desc->s = var.s;
 | |
| 	desc->dpl = var.dpl;
 | |
| 	desc->p = var.present;
 | |
| 	desc->avl = var.avl;
 | |
| 	desc->l = var.l;
 | |
| 	desc->d = var.db;
 | |
| 	desc->g = var.g;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
 | |
| 				 struct desc_struct *desc, u32 base3,
 | |
| 				 int seg)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	struct kvm_segment var;
 | |
| 
 | |
| 	var.selector = selector;
 | |
| 	var.base = get_desc_base(desc);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	var.base |= ((u64)base3) << 32;
 | |
| #endif
 | |
| 	var.limit = get_desc_limit(desc);
 | |
| 	if (desc->g)
 | |
| 		var.limit = (var.limit << 12) | 0xfff;
 | |
| 	var.type = desc->type;
 | |
| 	var.present = desc->p;
 | |
| 	var.dpl = desc->dpl;
 | |
| 	var.db = desc->d;
 | |
| 	var.s = desc->s;
 | |
| 	var.l = desc->l;
 | |
| 	var.g = desc->g;
 | |
| 	var.avl = desc->avl;
 | |
| 	var.present = desc->p;
 | |
| 	var.unusable = !var.present;
 | |
| 	var.padding = 0;
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &var, seg);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
 | |
| 			    u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
 | |
| }
 | |
| 
 | |
| static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
 | |
| 			    u32 msr_index, u64 data)
 | |
| {
 | |
| 	struct msr_data msr;
 | |
| 
 | |
| 	msr.data = data;
 | |
| 	msr.index = msr_index;
 | |
| 	msr.host_initiated = false;
 | |
| 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
 | |
| }
 | |
| 
 | |
| static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
 | |
| 			     u32 pmc, u64 *pdata)
 | |
| {
 | |
| 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
 | |
| }
 | |
| 
 | |
| static void emulator_halt(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
 | |
| }
 | |
| 
 | |
| static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
 | |
| 	/*
 | |
| 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
 | |
| 	 * so it may be clear at this point.
 | |
| 	 */
 | |
| 	clts();
 | |
| }
 | |
| 
 | |
| static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
 | |
| 			      struct x86_instruction_info *info,
 | |
| 			      enum x86_intercept_stage stage)
 | |
| {
 | |
| 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
 | |
| }
 | |
| 
 | |
| static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
 | |
| 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
 | |
| {
 | |
| 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
 | |
| }
 | |
| 
 | |
| static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
 | |
| {
 | |
| 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
 | |
| }
 | |
| 
 | |
| static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
 | |
| {
 | |
| 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
 | |
| }
 | |
| 
 | |
| static const struct x86_emulate_ops emulate_ops = {
 | |
| 	.read_gpr            = emulator_read_gpr,
 | |
| 	.write_gpr           = emulator_write_gpr,
 | |
| 	.read_std            = kvm_read_guest_virt_system,
 | |
| 	.write_std           = kvm_write_guest_virt_system,
 | |
| 	.fetch               = kvm_fetch_guest_virt,
 | |
| 	.read_emulated       = emulator_read_emulated,
 | |
| 	.write_emulated      = emulator_write_emulated,
 | |
| 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
 | |
| 	.invlpg              = emulator_invlpg,
 | |
| 	.pio_in_emulated     = emulator_pio_in_emulated,
 | |
| 	.pio_out_emulated    = emulator_pio_out_emulated,
 | |
| 	.get_segment         = emulator_get_segment,
 | |
| 	.set_segment         = emulator_set_segment,
 | |
| 	.get_cached_segment_base = emulator_get_cached_segment_base,
 | |
| 	.get_gdt             = emulator_get_gdt,
 | |
| 	.get_idt	     = emulator_get_idt,
 | |
| 	.set_gdt             = emulator_set_gdt,
 | |
| 	.set_idt	     = emulator_set_idt,
 | |
| 	.get_cr              = emulator_get_cr,
 | |
| 	.set_cr              = emulator_set_cr,
 | |
| 	.set_rflags          = emulator_set_rflags,
 | |
| 	.cpl                 = emulator_get_cpl,
 | |
| 	.get_dr              = emulator_get_dr,
 | |
| 	.set_dr              = emulator_set_dr,
 | |
| 	.set_msr             = emulator_set_msr,
 | |
| 	.get_msr             = emulator_get_msr,
 | |
| 	.read_pmc            = emulator_read_pmc,
 | |
| 	.halt                = emulator_halt,
 | |
| 	.wbinvd              = emulator_wbinvd,
 | |
| 	.fix_hypercall       = emulator_fix_hypercall,
 | |
| 	.get_fpu             = emulator_get_fpu,
 | |
| 	.put_fpu             = emulator_put_fpu,
 | |
| 	.intercept           = emulator_intercept,
 | |
| 	.get_cpuid           = emulator_get_cpuid,
 | |
| };
 | |
| 
 | |
| static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
 | |
| {
 | |
| 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
 | |
| 	/*
 | |
| 	 * an sti; sti; sequence only disable interrupts for the first
 | |
| 	 * instruction. So, if the last instruction, be it emulated or
 | |
| 	 * not, left the system with the INT_STI flag enabled, it
 | |
| 	 * means that the last instruction is an sti. We should not
 | |
| 	 * leave the flag on in this case. The same goes for mov ss
 | |
| 	 */
 | |
| 	if (!(int_shadow & mask))
 | |
| 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
 | |
| }
 | |
| 
 | |
| static void inject_emulated_exception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
 | |
| 	if (ctxt->exception.vector == PF_VECTOR)
 | |
| 		kvm_propagate_fault(vcpu, &ctxt->exception);
 | |
| 	else if (ctxt->exception.error_code_valid)
 | |
| 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
 | |
| 				      ctxt->exception.error_code);
 | |
| 	else
 | |
| 		kvm_queue_exception(vcpu, ctxt->exception.vector);
 | |
| }
 | |
| 
 | |
| static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	memset(&ctxt->opcode_len, 0,
 | |
| 	       (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
 | |
| 
 | |
| 	ctxt->fetch.start = 0;
 | |
| 	ctxt->fetch.end = 0;
 | |
| 	ctxt->io_read.pos = 0;
 | |
| 	ctxt->io_read.end = 0;
 | |
| 	ctxt->mem_read.pos = 0;
 | |
| 	ctxt->mem_read.end = 0;
 | |
| }
 | |
| 
 | |
| static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
 | |
| 	int cs_db, cs_l;
 | |
| 
 | |
| 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 
 | |
| 	ctxt->eflags = kvm_get_rflags(vcpu);
 | |
| 	ctxt->eip = kvm_rip_read(vcpu);
 | |
| 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
 | |
| 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
 | |
| 		     cs_l				? X86EMUL_MODE_PROT64 :
 | |
| 		     cs_db				? X86EMUL_MODE_PROT32 :
 | |
| 							  X86EMUL_MODE_PROT16;
 | |
| 	ctxt->guest_mode = is_guest_mode(vcpu);
 | |
| 
 | |
| 	init_decode_cache(ctxt);
 | |
| 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
 | |
| }
 | |
| 
 | |
| int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
 | |
| 	int ret;
 | |
| 
 | |
| 	init_emulate_ctxt(vcpu);
 | |
| 
 | |
| 	ctxt->op_bytes = 2;
 | |
| 	ctxt->ad_bytes = 2;
 | |
| 	ctxt->_eip = ctxt->eip + inc_eip;
 | |
| 	ret = emulate_int_real(ctxt, irq);
 | |
| 
 | |
| 	if (ret != X86EMUL_CONTINUE)
 | |
| 		return EMULATE_FAIL;
 | |
| 
 | |
| 	ctxt->eip = ctxt->_eip;
 | |
| 	kvm_rip_write(vcpu, ctxt->eip);
 | |
| 	kvm_set_rflags(vcpu, ctxt->eflags);
 | |
| 
 | |
| 	if (irq == NMI_VECTOR)
 | |
| 		vcpu->arch.nmi_pending = 0;
 | |
| 	else
 | |
| 		vcpu->arch.interrupt.pending = false;
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
 | |
| 
 | |
| static int handle_emulation_failure(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r = EMULATE_DONE;
 | |
| 
 | |
| 	++vcpu->stat.insn_emulation_fail;
 | |
| 	trace_kvm_emulate_insn_failed(vcpu);
 | |
| 	if (!is_guest_mode(vcpu)) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
 | |
| 		vcpu->run->internal.ndata = 0;
 | |
| 		r = EMULATE_FAIL;
 | |
| 	}
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
 | |
| 				  bool write_fault_to_shadow_pgtable,
 | |
| 				  int emulation_type)
 | |
| {
 | |
| 	gpa_t gpa = cr2;
 | |
| 	pfn_t pfn;
 | |
| 
 | |
| 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!vcpu->arch.mmu.direct_map) {
 | |
| 		/*
 | |
| 		 * Write permission should be allowed since only
 | |
| 		 * write access need to be emulated.
 | |
| 		 */
 | |
| 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the mapping is invalid in guest, let cpu retry
 | |
| 		 * it to generate fault.
 | |
| 		 */
 | |
| 		if (gpa == UNMAPPED_GVA)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not retry the unhandleable instruction if it faults on the
 | |
| 	 * readonly host memory, otherwise it will goto a infinite loop:
 | |
| 	 * retry instruction -> write #PF -> emulation fail -> retry
 | |
| 	 * instruction -> ...
 | |
| 	 */
 | |
| 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the instruction failed on the error pfn, it can not be fixed,
 | |
| 	 * report the error to userspace.
 | |
| 	 */
 | |
| 	if (is_error_noslot_pfn(pfn))
 | |
| 		return false;
 | |
| 
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 
 | |
| 	/* The instructions are well-emulated on direct mmu. */
 | |
| 	if (vcpu->arch.mmu.direct_map) {
 | |
| 		unsigned int indirect_shadow_pages;
 | |
| 
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 		if (indirect_shadow_pages)
 | |
| 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if emulation was due to access to shadowed page table
 | |
| 	 * and it failed try to unshadow page and re-enter the
 | |
| 	 * guest to let CPU execute the instruction.
 | |
| 	 */
 | |
| 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the access faults on its page table, it can not
 | |
| 	 * be fixed by unprotecting shadow page and it should
 | |
| 	 * be reported to userspace.
 | |
| 	 */
 | |
| 	return !write_fault_to_shadow_pgtable;
 | |
| }
 | |
| 
 | |
| static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
 | |
| 			      unsigned long cr2,  int emulation_type)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
 | |
| 
 | |
| 	last_retry_eip = vcpu->arch.last_retry_eip;
 | |
| 	last_retry_addr = vcpu->arch.last_retry_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the emulation is caused by #PF and it is non-page_table
 | |
| 	 * writing instruction, it means the VM-EXIT is caused by shadow
 | |
| 	 * page protected, we can zap the shadow page and retry this
 | |
| 	 * instruction directly.
 | |
| 	 *
 | |
| 	 * Note: if the guest uses a non-page-table modifying instruction
 | |
| 	 * on the PDE that points to the instruction, then we will unmap
 | |
| 	 * the instruction and go to an infinite loop. So, we cache the
 | |
| 	 * last retried eip and the last fault address, if we meet the eip
 | |
| 	 * and the address again, we can break out of the potential infinite
 | |
| 	 * loop.
 | |
| 	 */
 | |
| 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
 | |
| 
 | |
| 	if (!(emulation_type & EMULTYPE_RETRY))
 | |
| 		return false;
 | |
| 
 | |
| 	if (x86_page_table_writing_insn(ctxt))
 | |
| 		return false;
 | |
| 
 | |
| 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
 | |
| 		return false;
 | |
| 
 | |
| 	vcpu->arch.last_retry_eip = ctxt->eip;
 | |
| 	vcpu->arch.last_retry_addr = cr2;
 | |
| 
 | |
| 	if (!vcpu->arch.mmu.direct_map)
 | |
| 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
 | |
| 
 | |
| 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
 | |
| static int complete_emulated_pio(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
 | |
| 				unsigned long *db)
 | |
| {
 | |
| 	u32 dr6 = 0;
 | |
| 	int i;
 | |
| 	u32 enable, rwlen;
 | |
| 
 | |
| 	enable = dr7;
 | |
| 	rwlen = dr7 >> 16;
 | |
| 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
 | |
| 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
 | |
| 			dr6 |= (1 << i);
 | |
| 	return dr6;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the "raw" value to see if TF was passed to the processor.
 | |
| 	 * Note that the new value of the flags has not been saved yet.
 | |
| 	 *
 | |
| 	 * This is correct even for TF set by the guest, because "the
 | |
| 	 * processor will not generate this exception after the instruction
 | |
| 	 * that sets the TF flag".
 | |
| 	 */
 | |
| 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 
 | |
| 	if (unlikely(rflags & X86_EFLAGS_TF)) {
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
 | |
| 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
 | |
| 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
 | |
| 			kvm_run->debug.arch.exception = DB_VECTOR;
 | |
| 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 			*r = EMULATE_USER_EXIT;
 | |
| 		} else {
 | |
| 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
 | |
| 			/*
 | |
| 			 * "Certain debug exceptions may clear bit 0-3.  The
 | |
| 			 * remaining contents of the DR6 register are never
 | |
| 			 * cleared by the processor".
 | |
| 			 */
 | |
| 			vcpu->arch.dr6 &= ~15;
 | |
| 			vcpu->arch.dr6 |= DR6_BS;
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 	unsigned long eip = vcpu->arch.emulate_ctxt.eip;
 | |
| 	u32 dr6 = 0;
 | |
| 
 | |
| 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
 | |
| 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
 | |
| 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
 | |
| 					   vcpu->arch.guest_debug_dr7,
 | |
| 					   vcpu->arch.eff_db);
 | |
| 
 | |
| 		if (dr6 != 0) {
 | |
| 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
 | |
| 			kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
 | |
| 				get_segment_base(vcpu, VCPU_SREG_CS);
 | |
| 
 | |
| 			kvm_run->debug.arch.exception = DB_VECTOR;
 | |
| 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 			*r = EMULATE_USER_EXIT;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
 | |
| 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
 | |
| 					   vcpu->arch.dr7,
 | |
| 					   vcpu->arch.db);
 | |
| 
 | |
| 		if (dr6 != 0) {
 | |
| 			vcpu->arch.dr6 &= ~15;
 | |
| 			vcpu->arch.dr6 |= dr6;
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 			*r = EMULATE_DONE;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int x86_emulate_instruction(struct kvm_vcpu *vcpu,
 | |
| 			    unsigned long cr2,
 | |
| 			    int emulation_type,
 | |
| 			    void *insn,
 | |
| 			    int insn_len)
 | |
| {
 | |
| 	int r;
 | |
| 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
 | |
| 	bool writeback = true;
 | |
| 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
 | |
| 	 * never reused.
 | |
| 	 */
 | |
| 	vcpu->arch.write_fault_to_shadow_pgtable = false;
 | |
| 	kvm_clear_exception_queue(vcpu);
 | |
| 
 | |
| 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
 | |
| 		init_emulate_ctxt(vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * We will reenter on the same instruction since
 | |
| 		 * we do not set complete_userspace_io.  This does not
 | |
| 		 * handle watchpoints yet, those would be handled in
 | |
| 		 * the emulate_ops.
 | |
| 		 */
 | |
| 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
 | |
| 			return r;
 | |
| 
 | |
| 		ctxt->interruptibility = 0;
 | |
| 		ctxt->have_exception = false;
 | |
| 		ctxt->perm_ok = false;
 | |
| 
 | |
| 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
 | |
| 
 | |
| 		r = x86_decode_insn(ctxt, insn, insn_len);
 | |
| 
 | |
| 		trace_kvm_emulate_insn_start(vcpu);
 | |
| 		++vcpu->stat.insn_emulation;
 | |
| 		if (r != EMULATION_OK)  {
 | |
| 			if (emulation_type & EMULTYPE_TRAP_UD)
 | |
| 				return EMULATE_FAIL;
 | |
| 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
 | |
| 						emulation_type))
 | |
| 				return EMULATE_DONE;
 | |
| 			if (emulation_type & EMULTYPE_SKIP)
 | |
| 				return EMULATE_FAIL;
 | |
| 			return handle_emulation_failure(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (emulation_type & EMULTYPE_SKIP) {
 | |
| 		kvm_rip_write(vcpu, ctxt->_eip);
 | |
| 		return EMULATE_DONE;
 | |
| 	}
 | |
| 
 | |
| 	if (retry_instruction(ctxt, cr2, emulation_type))
 | |
| 		return EMULATE_DONE;
 | |
| 
 | |
| 	/* this is needed for vmware backdoor interface to work since it
 | |
| 	   changes registers values  during IO operation */
 | |
| 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
 | |
| 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
 | |
| 		emulator_invalidate_register_cache(ctxt);
 | |
| 	}
 | |
| 
 | |
| restart:
 | |
| 	r = x86_emulate_insn(ctxt);
 | |
| 
 | |
| 	if (r == EMULATION_INTERCEPTED)
 | |
| 		return EMULATE_DONE;
 | |
| 
 | |
| 	if (r == EMULATION_FAILED) {
 | |
| 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
 | |
| 					emulation_type))
 | |
| 			return EMULATE_DONE;
 | |
| 
 | |
| 		return handle_emulation_failure(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (ctxt->have_exception) {
 | |
| 		inject_emulated_exception(vcpu);
 | |
| 		r = EMULATE_DONE;
 | |
| 	} else if (vcpu->arch.pio.count) {
 | |
| 		if (!vcpu->arch.pio.in) {
 | |
| 			/* FIXME: return into emulator if single-stepping.  */
 | |
| 			vcpu->arch.pio.count = 0;
 | |
| 		} else {
 | |
| 			writeback = false;
 | |
| 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
 | |
| 		}
 | |
| 		r = EMULATE_USER_EXIT;
 | |
| 	} else if (vcpu->mmio_needed) {
 | |
| 		if (!vcpu->mmio_is_write)
 | |
| 			writeback = false;
 | |
| 		r = EMULATE_USER_EXIT;
 | |
| 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
 | |
| 	} else if (r == EMULATION_RESTART)
 | |
| 		goto restart;
 | |
| 	else
 | |
| 		r = EMULATE_DONE;
 | |
| 
 | |
| 	if (writeback) {
 | |
| 		toggle_interruptibility(vcpu, ctxt->interruptibility);
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
 | |
| 		kvm_rip_write(vcpu, ctxt->eip);
 | |
| 		if (r == EMULATE_DONE)
 | |
| 			kvm_vcpu_check_singlestep(vcpu, &r);
 | |
| 		kvm_set_rflags(vcpu, ctxt->eflags);
 | |
| 	} else
 | |
| 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(x86_emulate_instruction);
 | |
| 
 | |
| int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
 | |
| {
 | |
| 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
 | |
| 					    size, port, &val, 1);
 | |
| 	/* do not return to emulator after return from userspace */
 | |
| 	vcpu->arch.pio.count = 0;
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
 | |
| 
 | |
| static void tsc_bad(void *info)
 | |
| {
 | |
| 	__this_cpu_write(cpu_tsc_khz, 0);
 | |
| }
 | |
| 
 | |
| static void tsc_khz_changed(void *data)
 | |
| {
 | |
| 	struct cpufreq_freqs *freq = data;
 | |
| 	unsigned long khz = 0;
 | |
| 
 | |
| 	if (data)
 | |
| 		khz = freq->new;
 | |
| 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 | |
| 		khz = cpufreq_quick_get(raw_smp_processor_id());
 | |
| 	if (!khz)
 | |
| 		khz = tsc_khz;
 | |
| 	__this_cpu_write(cpu_tsc_khz, khz);
 | |
| }
 | |
| 
 | |
| static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 | |
| 				     void *data)
 | |
| {
 | |
| 	struct cpufreq_freqs *freq = data;
 | |
| 	struct kvm *kvm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	int i, send_ipi = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We allow guests to temporarily run on slowing clocks,
 | |
| 	 * provided we notify them after, or to run on accelerating
 | |
| 	 * clocks, provided we notify them before.  Thus time never
 | |
| 	 * goes backwards.
 | |
| 	 *
 | |
| 	 * However, we have a problem.  We can't atomically update
 | |
| 	 * the frequency of a given CPU from this function; it is
 | |
| 	 * merely a notifier, which can be called from any CPU.
 | |
| 	 * Changing the TSC frequency at arbitrary points in time
 | |
| 	 * requires a recomputation of local variables related to
 | |
| 	 * the TSC for each VCPU.  We must flag these local variables
 | |
| 	 * to be updated and be sure the update takes place with the
 | |
| 	 * new frequency before any guests proceed.
 | |
| 	 *
 | |
| 	 * Unfortunately, the combination of hotplug CPU and frequency
 | |
| 	 * change creates an intractable locking scenario; the order
 | |
| 	 * of when these callouts happen is undefined with respect to
 | |
| 	 * CPU hotplug, and they can race with each other.  As such,
 | |
| 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
 | |
| 	 * undefined; you can actually have a CPU frequency change take
 | |
| 	 * place in between the computation of X and the setting of the
 | |
| 	 * variable.  To protect against this problem, all updates of
 | |
| 	 * the per_cpu tsc_khz variable are done in an interrupt
 | |
| 	 * protected IPI, and all callers wishing to update the value
 | |
| 	 * must wait for a synchronous IPI to complete (which is trivial
 | |
| 	 * if the caller is on the CPU already).  This establishes the
 | |
| 	 * necessary total order on variable updates.
 | |
| 	 *
 | |
| 	 * Note that because a guest time update may take place
 | |
| 	 * anytime after the setting of the VCPU's request bit, the
 | |
| 	 * correct TSC value must be set before the request.  However,
 | |
| 	 * to ensure the update actually makes it to any guest which
 | |
| 	 * starts running in hardware virtualization between the set
 | |
| 	 * and the acquisition of the spinlock, we must also ping the
 | |
| 	 * CPU after setting the request bit.
 | |
| 	 *
 | |
| 	 */
 | |
| 
 | |
| 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
 | |
| 		return 0;
 | |
| 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
 | |
| 		return 0;
 | |
| 
 | |
| 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
 | |
| 
 | |
| 	spin_lock(&kvm_lock);
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 			if (vcpu->cpu != freq->cpu)
 | |
| 				continue;
 | |
| 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 			if (vcpu->cpu != smp_processor_id())
 | |
| 				send_ipi = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&kvm_lock);
 | |
| 
 | |
| 	if (freq->old < freq->new && send_ipi) {
 | |
| 		/*
 | |
| 		 * We upscale the frequency.  Must make the guest
 | |
| 		 * doesn't see old kvmclock values while running with
 | |
| 		 * the new frequency, otherwise we risk the guest sees
 | |
| 		 * time go backwards.
 | |
| 		 *
 | |
| 		 * In case we update the frequency for another cpu
 | |
| 		 * (which might be in guest context) send an interrupt
 | |
| 		 * to kick the cpu out of guest context.  Next time
 | |
| 		 * guest context is entered kvmclock will be updated,
 | |
| 		 * so the guest will not see stale values.
 | |
| 		 */
 | |
| 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block kvmclock_cpufreq_notifier_block = {
 | |
| 	.notifier_call  = kvmclock_cpufreq_notifier
 | |
| };
 | |
| 
 | |
| static int kvmclock_cpu_notifier(struct notifier_block *nfb,
 | |
| 					unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (unsigned long)hcpu;
 | |
| 
 | |
| 	switch (action) {
 | |
| 		case CPU_ONLINE:
 | |
| 		case CPU_DOWN_FAILED:
 | |
| 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
 | |
| 			break;
 | |
| 		case CPU_DOWN_PREPARE:
 | |
| 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
 | |
| 			break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block kvmclock_cpu_notifier_block = {
 | |
| 	.notifier_call  = kvmclock_cpu_notifier,
 | |
| 	.priority = -INT_MAX
 | |
| };
 | |
| 
 | |
| static void kvm_timer_init(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	max_tsc_khz = tsc_khz;
 | |
| 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| 		struct cpufreq_policy policy;
 | |
| 		memset(&policy, 0, sizeof(policy));
 | |
| 		cpu = get_cpu();
 | |
| 		cpufreq_get_policy(&policy, cpu);
 | |
| 		if (policy.cpuinfo.max_freq)
 | |
| 			max_tsc_khz = policy.cpuinfo.max_freq;
 | |
| 		put_cpu();
 | |
| #endif
 | |
| 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
 | |
| 					  CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 	}
 | |
| 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
 | |
| 
 | |
| int kvm_is_in_guest(void)
 | |
| {
 | |
| 	return __this_cpu_read(current_vcpu) != NULL;
 | |
| }
 | |
| 
 | |
| static int kvm_is_user_mode(void)
 | |
| {
 | |
| 	int user_mode = 3;
 | |
| 
 | |
| 	if (__this_cpu_read(current_vcpu))
 | |
| 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
 | |
| 
 | |
| 	return user_mode != 0;
 | |
| }
 | |
| 
 | |
| static unsigned long kvm_get_guest_ip(void)
 | |
| {
 | |
| 	unsigned long ip = 0;
 | |
| 
 | |
| 	if (__this_cpu_read(current_vcpu))
 | |
| 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
 | |
| 
 | |
| 	return ip;
 | |
| }
 | |
| 
 | |
| static struct perf_guest_info_callbacks kvm_guest_cbs = {
 | |
| 	.is_in_guest		= kvm_is_in_guest,
 | |
| 	.is_user_mode		= kvm_is_user_mode,
 | |
| 	.get_guest_ip		= kvm_get_guest_ip,
 | |
| };
 | |
| 
 | |
| void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	__this_cpu_write(current_vcpu, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
 | |
| 
 | |
| void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	__this_cpu_write(current_vcpu, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
 | |
| 
 | |
| static void kvm_set_mmio_spte_mask(void)
 | |
| {
 | |
| 	u64 mask;
 | |
| 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the reserved bits and the present bit of an paging-structure
 | |
| 	 * entry to generate page fault with PFER.RSV = 1.
 | |
| 	 */
 | |
| 	 /* Mask the reserved physical address bits. */
 | |
| 	mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
 | |
| 
 | |
| 	/* Bit 62 is always reserved for 32bit host. */
 | |
| 	mask |= 0x3ull << 62;
 | |
| 
 | |
| 	/* Set the present bit. */
 | |
| 	mask |= 1ull;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * If reserved bit is not supported, clear the present bit to disable
 | |
| 	 * mmio page fault.
 | |
| 	 */
 | |
| 	if (maxphyaddr == 52)
 | |
| 		mask &= ~1ull;
 | |
| #endif
 | |
| 
 | |
| 	kvm_mmu_set_mmio_spte_mask(mask);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void pvclock_gtod_update_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&kvm_lock);
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list)
 | |
| 		kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
 | |
| 	atomic_set(&kvm_guest_has_master_clock, 0);
 | |
| 	spin_unlock(&kvm_lock);
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
 | |
| 
 | |
| /*
 | |
|  * Notification about pvclock gtod data update.
 | |
|  */
 | |
| static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
 | |
| 			       void *priv)
 | |
| {
 | |
| 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
 | |
| 	struct timekeeper *tk = priv;
 | |
| 
 | |
| 	update_pvclock_gtod(tk);
 | |
| 
 | |
| 	/* disable master clock if host does not trust, or does not
 | |
| 	 * use, TSC clocksource
 | |
| 	 */
 | |
| 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
 | |
| 	    atomic_read(&kvm_guest_has_master_clock) != 0)
 | |
| 		queue_work(system_long_wq, &pvclock_gtod_work);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block pvclock_gtod_notifier = {
 | |
| 	.notifier_call = pvclock_gtod_notify,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| int kvm_arch_init(void *opaque)
 | |
| {
 | |
| 	int r;
 | |
| 	struct kvm_x86_ops *ops = opaque;
 | |
| 
 | |
| 	if (kvm_x86_ops) {
 | |
| 		printk(KERN_ERR "kvm: already loaded the other module\n");
 | |
| 		r = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!ops->cpu_has_kvm_support()) {
 | |
| 		printk(KERN_ERR "kvm: no hardware support\n");
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (ops->disabled_by_bios()) {
 | |
| 		printk(KERN_ERR "kvm: disabled by bios\n");
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = -ENOMEM;
 | |
| 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
 | |
| 	if (!shared_msrs) {
 | |
| 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_mmu_module_init();
 | |
| 	if (r)
 | |
| 		goto out_free_percpu;
 | |
| 
 | |
| 	kvm_set_mmio_spte_mask();
 | |
| 	kvm_init_msr_list();
 | |
| 
 | |
| 	kvm_x86_ops = ops;
 | |
| 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
 | |
| 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
 | |
| 
 | |
| 	kvm_timer_init();
 | |
| 
 | |
| 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
 | |
| 
 | |
| 	if (cpu_has_xsave)
 | |
| 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
 | |
| 
 | |
| 	kvm_lapic_init();
 | |
| #ifdef CONFIG_X86_64
 | |
| 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_percpu:
 | |
| 	free_percpu(shared_msrs);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_exit(void)
 | |
| {
 | |
| 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 | |
| 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
 | |
| 					    CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
 | |
| #endif
 | |
| 	kvm_x86_ops = NULL;
 | |
| 	kvm_mmu_module_exit();
 | |
| 	free_percpu(shared_msrs);
 | |
| }
 | |
| 
 | |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.halt_exits;
 | |
| 	if (irqchip_in_kernel(vcpu->kvm)) {
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_HLT;
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt);
 | |
| 
 | |
| int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 param, ingpa, outgpa, ret;
 | |
| 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
 | |
| 	bool fast, longmode;
 | |
| 	int cs_db, cs_l;
 | |
| 
 | |
| 	/*
 | |
| 	 * hypercall generates UD from non zero cpl and real mode
 | |
| 	 * per HYPER-V spec
 | |
| 	 */
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 	longmode = is_long_mode(vcpu) && cs_l == 1;
 | |
| 
 | |
| 	if (!longmode) {
 | |
| 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
 | |
| 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
 | |
| 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
 | |
| 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
 | |
| 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
 | |
| 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
 | |
| 	}
 | |
| #ifdef CONFIG_X86_64
 | |
| 	else {
 | |
| 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	code = param & 0xffff;
 | |
| 	fast = (param >> 16) & 0x1;
 | |
| 	rep_cnt = (param >> 32) & 0xfff;
 | |
| 	rep_idx = (param >> 48) & 0xfff;
 | |
| 
 | |
| 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
 | |
| 
 | |
| 	switch (code) {
 | |
| 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
 | |
| 		kvm_vcpu_on_spin(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ret = res | (((u64)rep_done & 0xfff) << 32);
 | |
| 	if (longmode) {
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
 | |
| 	} else {
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kvm_pv_kick_cpu_op:  Kick a vcpu.
 | |
|  *
 | |
|  * @apicid - apicid of vcpu to be kicked.
 | |
|  */
 | |
| static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
 | |
| {
 | |
| 	struct kvm_lapic_irq lapic_irq;
 | |
| 
 | |
| 	lapic_irq.shorthand = 0;
 | |
| 	lapic_irq.dest_mode = 0;
 | |
| 	lapic_irq.dest_id = apicid;
 | |
| 
 | |
| 	lapic_irq.delivery_mode = APIC_DM_REMRD;
 | |
| 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
 | |
| }
 | |
| 
 | |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long nr, a0, a1, a2, a3, ret;
 | |
| 	int r = 1;
 | |
| 
 | |
| 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
 | |
| 		return kvm_hv_hypercall(vcpu);
 | |
| 
 | |
| 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
 | |
| 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 
 | |
| 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
 | |
| 
 | |
| 	if (!is_long_mode(vcpu)) {
 | |
| 		nr &= 0xFFFFFFFF;
 | |
| 		a0 &= 0xFFFFFFFF;
 | |
| 		a1 &= 0xFFFFFFFF;
 | |
| 		a2 &= 0xFFFFFFFF;
 | |
| 		a3 &= 0xFFFFFFFF;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
 | |
| 		ret = -KVM_EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch (nr) {
 | |
| 	case KVM_HC_VAPIC_POLL_IRQ:
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	case KVM_HC_KICK_CPU:
 | |
| 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -KVM_ENOSYS;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
 | |
| 	++vcpu->stat.hypercalls;
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
 | |
| 
 | |
| static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	char instruction[3];
 | |
| 	unsigned long rip = kvm_rip_read(vcpu);
 | |
| 
 | |
| 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
 | |
| 
 | |
| 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if userspace requested an interrupt window, and that the
 | |
|  * interrupt window is open.
 | |
|  *
 | |
|  * No need to exit to userspace if we already have an interrupt queued.
 | |
|  */
 | |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
 | |
| 		vcpu->run->request_interrupt_window &&
 | |
| 		kvm_arch_interrupt_allowed(vcpu));
 | |
| }
 | |
| 
 | |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 
 | |
| 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
 | |
| 	kvm_run->cr8 = kvm_get_cr8(vcpu);
 | |
| 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_run->ready_for_interrupt_injection = 1;
 | |
| 	else
 | |
| 		kvm_run->ready_for_interrupt_injection =
 | |
| 			kvm_arch_interrupt_allowed(vcpu) &&
 | |
| 			!kvm_cpu_has_interrupt(vcpu) &&
 | |
| 			!kvm_event_needs_reinjection(vcpu);
 | |
| }
 | |
| 
 | |
| static int vapic_enter(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_lapic *apic = vcpu->arch.apic;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!apic || !apic->vapic_addr)
 | |
| 		return 0;
 | |
| 
 | |
| 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
 | |
| 	if (is_error_page(page))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	vcpu->arch.apic->vapic_page = page;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void vapic_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_lapic *apic = vcpu->arch.apic;
 | |
| 	int idx;
 | |
| 
 | |
| 	if (!apic || !apic->vapic_addr)
 | |
| 		return;
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	kvm_release_page_dirty(apic->vapic_page);
 | |
| 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| }
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int max_irr, tpr;
 | |
| 
 | |
| 	if (!kvm_x86_ops->update_cr8_intercept)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.apic)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.apic->vapic_addr)
 | |
| 		max_irr = kvm_lapic_find_highest_irr(vcpu);
 | |
| 	else
 | |
| 		max_irr = -1;
 | |
| 
 | |
| 	if (max_irr != -1)
 | |
| 		max_irr >>= 4;
 | |
| 
 | |
| 	tpr = kvm_lapic_get_cr8(vcpu);
 | |
| 
 | |
| 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
 | |
| }
 | |
| 
 | |
| static void inject_pending_event(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* try to reinject previous events if any */
 | |
| 	if (vcpu->arch.exception.pending) {
 | |
| 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
 | |
| 					vcpu->arch.exception.has_error_code,
 | |
| 					vcpu->arch.exception.error_code);
 | |
| 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
 | |
| 					  vcpu->arch.exception.has_error_code,
 | |
| 					  vcpu->arch.exception.error_code,
 | |
| 					  vcpu->arch.exception.reinject);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.nmi_injected) {
 | |
| 		kvm_x86_ops->set_nmi(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.interrupt.pending) {
 | |
| 		kvm_x86_ops->set_irq(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* try to inject new event if pending */
 | |
| 	if (vcpu->arch.nmi_pending) {
 | |
| 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
 | |
| 			--vcpu->arch.nmi_pending;
 | |
| 			vcpu->arch.nmi_injected = true;
 | |
| 			kvm_x86_ops->set_nmi(vcpu);
 | |
| 		}
 | |
| 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
 | |
| 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
 | |
| 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
 | |
| 					    false);
 | |
| 			kvm_x86_ops->set_irq(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void process_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned limit = 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * x86 is limited to one NMI running, and one NMI pending after it.
 | |
| 	 * If an NMI is already in progress, limit further NMIs to just one.
 | |
| 	 * Otherwise, allow two (and we'll inject the first one immediately).
 | |
| 	 */
 | |
| 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
 | |
| 		limit = 1;
 | |
| 
 | |
| 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
 | |
| 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| }
 | |
| 
 | |
| static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 eoi_exit_bitmap[4];
 | |
| 	u32 tmr[8];
 | |
| 
 | |
| 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
 | |
| 		return;
 | |
| 
 | |
| 	memset(eoi_exit_bitmap, 0, 32);
 | |
| 	memset(tmr, 0, 32);
 | |
| 
 | |
| 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
 | |
| 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
 | |
| 	kvm_apic_update_tmr(vcpu, tmr);
 | |
| }
 | |
| 
 | |
| static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
 | |
| 		vcpu->run->request_interrupt_window;
 | |
| 	bool req_immediate_exit = false;
 | |
| 
 | |
| 	if (vcpu->requests) {
 | |
| 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
 | |
| 			kvm_mmu_unload(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
 | |
| 			__kvm_migrate_timers(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
 | |
| 			kvm_gen_update_masterclock(vcpu->kvm);
 | |
| 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
 | |
| 			kvm_gen_kvmclock_update(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
 | |
| 			r = kvm_guest_time_update(vcpu);
 | |
| 			if (unlikely(r))
 | |
| 				goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
 | |
| 			kvm_mmu_sync_roots(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
 | |
| 			kvm_x86_ops->tlb_flush(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
 | |
| 			vcpu->fpu_active = 0;
 | |
| 			kvm_x86_ops->fpu_deactivate(vcpu);
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
 | |
| 			/* Page is swapped out. Do synthetic halt */
 | |
| 			vcpu->arch.apf.halted = true;
 | |
| 			r = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
 | |
| 			record_steal_time(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
 | |
| 			process_nmi(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
 | |
| 			kvm_handle_pmu_event(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
 | |
| 			kvm_deliver_pmi(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
 | |
| 			vcpu_scan_ioapic(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
 | |
| 		kvm_apic_accept_events(vcpu);
 | |
| 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
 | |
| 			r = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		inject_pending_event(vcpu);
 | |
| 
 | |
| 		/* enable NMI/IRQ window open exits if needed */
 | |
| 		if (vcpu->arch.nmi_pending)
 | |
| 			req_immediate_exit =
 | |
| 				kvm_x86_ops->enable_nmi_window(vcpu) != 0;
 | |
| 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
 | |
| 			req_immediate_exit =
 | |
| 				kvm_x86_ops->enable_irq_window(vcpu) != 0;
 | |
| 
 | |
| 		if (kvm_lapic_enabled(vcpu)) {
 | |
| 			/*
 | |
| 			 * Update architecture specific hints for APIC
 | |
| 			 * virtual interrupt delivery.
 | |
| 			 */
 | |
| 			if (kvm_x86_ops->hwapic_irr_update)
 | |
| 				kvm_x86_ops->hwapic_irr_update(vcpu,
 | |
| 					kvm_lapic_find_highest_irr(vcpu));
 | |
| 			update_cr8_intercept(vcpu);
 | |
| 			kvm_lapic_sync_to_vapic(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_mmu_reload(vcpu);
 | |
| 	if (unlikely(r)) {
 | |
| 		goto cancel_injection;
 | |
| 	}
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	kvm_x86_ops->prepare_guest_switch(vcpu);
 | |
| 	if (vcpu->fpu_active)
 | |
| 		kvm_load_guest_fpu(vcpu);
 | |
| 	kvm_load_guest_xcr0(vcpu);
 | |
| 
 | |
| 	vcpu->mode = IN_GUEST_MODE;
 | |
| 
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
 | |
| 
 | |
| 	/* We should set ->mode before check ->requests,
 | |
| 	 * see the comment in make_all_cpus_request.
 | |
| 	 */
 | |
| 	smp_mb__after_srcu_read_unlock();
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
 | |
| 	    || need_resched() || signal_pending(current)) {
 | |
| 		vcpu->mode = OUTSIDE_GUEST_MODE;
 | |
| 		smp_wmb();
 | |
| 		local_irq_enable();
 | |
| 		preempt_enable();
 | |
| 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 		r = 1;
 | |
| 		goto cancel_injection;
 | |
| 	}
 | |
| 
 | |
| 	if (req_immediate_exit)
 | |
| 		smp_send_reschedule(vcpu->cpu);
 | |
| 
 | |
| 	kvm_guest_enter();
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.switch_db_regs)) {
 | |
| 		set_debugreg(0, 7);
 | |
| 		set_debugreg(vcpu->arch.eff_db[0], 0);
 | |
| 		set_debugreg(vcpu->arch.eff_db[1], 1);
 | |
| 		set_debugreg(vcpu->arch.eff_db[2], 2);
 | |
| 		set_debugreg(vcpu->arch.eff_db[3], 3);
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_entry(vcpu->vcpu_id);
 | |
| 	kvm_x86_ops->run(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the guest has used debug registers, at least dr7
 | |
| 	 * will be disabled while returning to the host.
 | |
| 	 * If we don't have active breakpoints in the host, we don't
 | |
| 	 * care about the messed up debug address registers. But if
 | |
| 	 * we have some of them active, restore the old state.
 | |
| 	 */
 | |
| 	if (hw_breakpoint_active())
 | |
| 		hw_breakpoint_restore();
 | |
| 
 | |
| 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
 | |
| 							   native_read_tsc());
 | |
| 
 | |
| 	vcpu->mode = OUTSIDE_GUEST_MODE;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/* Interrupt is enabled by handle_external_intr() */
 | |
| 	kvm_x86_ops->handle_external_intr(vcpu);
 | |
| 
 | |
| 	++vcpu->stat.exits;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must have an instruction between local_irq_enable() and
 | |
| 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
 | |
| 	 * the interrupt shadow.  The stat.exits increment will do nicely.
 | |
| 	 * But we need to prevent reordering, hence this barrier():
 | |
| 	 */
 | |
| 	barrier();
 | |
| 
 | |
| 	kvm_guest_exit();
 | |
| 
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Profile KVM exit RIPs:
 | |
| 	 */
 | |
| 	if (unlikely(prof_on == KVM_PROFILING)) {
 | |
| 		unsigned long rip = kvm_rip_read(vcpu);
 | |
| 		profile_hit(KVM_PROFILING, (void *)rip);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.tsc_always_catchup))
 | |
| 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 
 | |
| 	if (vcpu->arch.apic_attention)
 | |
| 		kvm_lapic_sync_from_vapic(vcpu);
 | |
| 
 | |
| 	r = kvm_x86_ops->handle_exit(vcpu);
 | |
| 	return r;
 | |
| 
 | |
| cancel_injection:
 | |
| 	kvm_x86_ops->cancel_injection(vcpu);
 | |
| 	if (unlikely(vcpu->arch.apic_attention))
 | |
| 		kvm_lapic_sync_from_vapic(vcpu);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __vcpu_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
 | |
| 	r = vapic_enter(vcpu);
 | |
| 	if (r) {
 | |
| 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = 1;
 | |
| 	while (r > 0) {
 | |
| 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
 | |
| 		    !vcpu->arch.apf.halted)
 | |
| 			r = vcpu_enter_guest(vcpu);
 | |
| 		else {
 | |
| 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
 | |
| 			kvm_vcpu_block(vcpu);
 | |
| 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
 | |
| 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
 | |
| 				kvm_apic_accept_events(vcpu);
 | |
| 				switch(vcpu->arch.mp_state) {
 | |
| 				case KVM_MP_STATE_HALTED:
 | |
| 					vcpu->arch.pv.pv_unhalted = false;
 | |
| 					vcpu->arch.mp_state =
 | |
| 						KVM_MP_STATE_RUNNABLE;
 | |
| 				case KVM_MP_STATE_RUNNABLE:
 | |
| 					vcpu->arch.apf.halted = false;
 | |
| 					break;
 | |
| 				case KVM_MP_STATE_INIT_RECEIVED:
 | |
| 					break;
 | |
| 				default:
 | |
| 					r = -EINTR;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (r <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
 | |
| 		if (kvm_cpu_has_pending_timer(vcpu))
 | |
| 			kvm_inject_pending_timer_irqs(vcpu);
 | |
| 
 | |
| 		if (dm_request_for_irq_injection(vcpu)) {
 | |
| 			r = -EINTR;
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_INTR;
 | |
| 			++vcpu->stat.request_irq_exits;
 | |
| 		}
 | |
| 
 | |
| 		kvm_check_async_pf_completion(vcpu);
 | |
| 
 | |
| 		if (signal_pending(current)) {
 | |
| 			r = -EINTR;
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_INTR;
 | |
| 			++vcpu->stat.signal_exits;
 | |
| 		}
 | |
| 		if (need_resched()) {
 | |
| 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
 | |
| 			kvm_resched(vcpu);
 | |
| 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
 | |
| 
 | |
| 	vapic_exit(vcpu);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
 | |
| 	if (r != EMULATE_DONE)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int complete_emulated_pio(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	BUG_ON(!vcpu->arch.pio.count);
 | |
| 
 | |
| 	return complete_emulated_io(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implements the following, as a state machine:
 | |
|  *
 | |
|  * read:
 | |
|  *   for each fragment
 | |
|  *     for each mmio piece in the fragment
 | |
|  *       write gpa, len
 | |
|  *       exit
 | |
|  *       copy data
 | |
|  *   execute insn
 | |
|  *
 | |
|  * write:
 | |
|  *   for each fragment
 | |
|  *     for each mmio piece in the fragment
 | |
|  *       write gpa, len
 | |
|  *       copy data
 | |
|  *       exit
 | |
|  */
 | |
| static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *run = vcpu->run;
 | |
| 	struct kvm_mmio_fragment *frag;
 | |
| 	unsigned len;
 | |
| 
 | |
| 	BUG_ON(!vcpu->mmio_needed);
 | |
| 
 | |
| 	/* Complete previous fragment */
 | |
| 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
 | |
| 	len = min(8u, frag->len);
 | |
| 	if (!vcpu->mmio_is_write)
 | |
| 		memcpy(frag->data, run->mmio.data, len);
 | |
| 
 | |
| 	if (frag->len <= 8) {
 | |
| 		/* Switch to the next fragment. */
 | |
| 		frag++;
 | |
| 		vcpu->mmio_cur_fragment++;
 | |
| 	} else {
 | |
| 		/* Go forward to the next mmio piece. */
 | |
| 		frag->data += len;
 | |
| 		frag->gpa += len;
 | |
| 		frag->len -= len;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
 | |
| 		vcpu->mmio_needed = 0;
 | |
| 
 | |
| 		/* FIXME: return into emulator if single-stepping.  */
 | |
| 		if (vcpu->mmio_is_write)
 | |
| 			return 1;
 | |
| 		vcpu->mmio_read_completed = 1;
 | |
| 		return complete_emulated_io(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	run->exit_reason = KVM_EXIT_MMIO;
 | |
| 	run->mmio.phys_addr = frag->gpa;
 | |
| 	if (vcpu->mmio_is_write)
 | |
| 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
 | |
| 	run->mmio.len = min(8u, frag->len);
 | |
| 	run->mmio.is_write = vcpu->mmio_is_write;
 | |
| 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
 | |
| {
 | |
| 	int r;
 | |
| 	sigset_t sigsaved;
 | |
| 
 | |
| 	if (!tsk_used_math(current) && init_fpu(current))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (vcpu->sigset_active)
 | |
| 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
 | |
| 		kvm_vcpu_block(vcpu);
 | |
| 		kvm_apic_accept_events(vcpu);
 | |
| 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
 | |
| 		r = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* re-sync apic's tpr */
 | |
| 	if (!irqchip_in_kernel(vcpu->kvm)) {
 | |
| 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
 | |
| 			r = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.complete_userspace_io)) {
 | |
| 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
 | |
| 		vcpu->arch.complete_userspace_io = NULL;
 | |
| 		r = cui(vcpu);
 | |
| 		if (r <= 0)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
 | |
| 
 | |
| 	r = __vcpu_run(vcpu);
 | |
| 
 | |
| out:
 | |
| 	post_kvm_run_save(vcpu);
 | |
| 	if (vcpu->sigset_active)
 | |
| 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
 | |
| 		/*
 | |
| 		 * We are here if userspace calls get_regs() in the middle of
 | |
| 		 * instruction emulation. Registers state needs to be copied
 | |
| 		 * back from emulation context to vcpu. Userspace shouldn't do
 | |
| 		 * that usually, but some bad designed PV devices (vmware
 | |
| 		 * backdoor interface) need this to work
 | |
| 		 */
 | |
| 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
 | |
| 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
 | |
| 	}
 | |
| 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
 | |
| 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
 | |
| 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
 | |
| 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
 | |
| 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
 | |
| 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
 | |
| 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
 | |
| 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
 | |
| 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
 | |
| 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
 | |
| 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
 | |
| #endif
 | |
| 
 | |
| 	regs->rip = kvm_rip_read(vcpu);
 | |
| 	regs->rflags = kvm_get_rflags(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
 | |
| 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
 | |
| 
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
 | |
| #endif
 | |
| 
 | |
| 	kvm_rip_write(vcpu, regs->rip);
 | |
| 	kvm_set_rflags(vcpu, regs->rflags);
 | |
| 
 | |
| 	vcpu->arch.exception.pending = false;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
 | |
| {
 | |
| 	struct kvm_segment cs;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	*db = cs.db;
 | |
| 	*l = cs.l;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_sregs *sregs)
 | |
| {
 | |
| 	struct desc_ptr dt;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
 | |
| 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
 | |
| 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
 | |
| 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
 | |
| 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
 | |
| 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
 | |
| 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	kvm_x86_ops->get_idt(vcpu, &dt);
 | |
| 	sregs->idt.limit = dt.size;
 | |
| 	sregs->idt.base = dt.address;
 | |
| 	kvm_x86_ops->get_gdt(vcpu, &dt);
 | |
| 	sregs->gdt.limit = dt.size;
 | |
| 	sregs->gdt.base = dt.address;
 | |
| 
 | |
| 	sregs->cr0 = kvm_read_cr0(vcpu);
 | |
| 	sregs->cr2 = vcpu->arch.cr2;
 | |
| 	sregs->cr3 = kvm_read_cr3(vcpu);
 | |
| 	sregs->cr4 = kvm_read_cr4(vcpu);
 | |
| 	sregs->cr8 = kvm_get_cr8(vcpu);
 | |
| 	sregs->efer = vcpu->arch.efer;
 | |
| 	sregs->apic_base = kvm_get_apic_base(vcpu);
 | |
| 
 | |
| 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
 | |
| 
 | |
| 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
 | |
| 		set_bit(vcpu->arch.interrupt.nr,
 | |
| 			(unsigned long *)sregs->interrupt_bitmap);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mp_state *mp_state)
 | |
| {
 | |
| 	kvm_apic_accept_events(vcpu);
 | |
| 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
 | |
| 					vcpu->arch.pv.pv_unhalted)
 | |
| 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 	else
 | |
| 		mp_state->mp_state = vcpu->arch.mp_state;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mp_state *mp_state)
 | |
| {
 | |
| 	if (!kvm_vcpu_has_lapic(vcpu) &&
 | |
| 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
 | |
| 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
 | |
| 	} else
 | |
| 		vcpu->arch.mp_state = mp_state->mp_state;
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
 | |
| 		    int reason, bool has_error_code, u32 error_code)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
 | |
| 	int ret;
 | |
| 
 | |
| 	init_emulate_ctxt(vcpu);
 | |
| 
 | |
| 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
 | |
| 				   has_error_code, error_code);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return EMULATE_FAIL;
 | |
| 
 | |
| 	kvm_rip_write(vcpu, ctxt->eip);
 | |
| 	kvm_set_rflags(vcpu, ctxt->eflags);
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_task_switch);
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_sregs *sregs)
 | |
| {
 | |
| 	int mmu_reset_needed = 0;
 | |
| 	int pending_vec, max_bits, idx;
 | |
| 	struct desc_ptr dt;
 | |
| 
 | |
| 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dt.size = sregs->idt.limit;
 | |
| 	dt.address = sregs->idt.base;
 | |
| 	kvm_x86_ops->set_idt(vcpu, &dt);
 | |
| 	dt.size = sregs->gdt.limit;
 | |
| 	dt.address = sregs->gdt.base;
 | |
| 	kvm_x86_ops->set_gdt(vcpu, &dt);
 | |
| 
 | |
| 	vcpu->arch.cr2 = sregs->cr2;
 | |
| 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
 | |
| 	vcpu->arch.cr3 = sregs->cr3;
 | |
| 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 | |
| 
 | |
| 	kvm_set_cr8(vcpu, sregs->cr8);
 | |
| 
 | |
| 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
 | |
| 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
 | |
| 	kvm_set_apic_base(vcpu, sregs->apic_base);
 | |
| 
 | |
| 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
 | |
| 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
 | |
| 	vcpu->arch.cr0 = sregs->cr0;
 | |
| 
 | |
| 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
 | |
| 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
 | |
| 	if (sregs->cr4 & X86_CR4_OSXSAVE)
 | |
| 		kvm_update_cpuid(vcpu);
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
 | |
| 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
 | |
| 		mmu_reset_needed = 1;
 | |
| 	}
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 
 | |
| 	if (mmu_reset_needed)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	max_bits = KVM_NR_INTERRUPTS;
 | |
| 	pending_vec = find_first_bit(
 | |
| 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
 | |
| 	if (pending_vec < max_bits) {
 | |
| 		kvm_queue_interrupt(vcpu, pending_vec, false);
 | |
| 		pr_debug("Set back pending irq %d\n", pending_vec);
 | |
| 	}
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
 | |
| 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
 | |
| 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
 | |
| 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
 | |
| 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
 | |
| 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
 | |
| 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	update_cr8_intercept(vcpu);
 | |
| 
 | |
| 	/* Older userspace won't unhalt the vcpu on reset. */
 | |
| 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
 | |
| 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
 | |
| 	    !is_protmode(vcpu))
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_guest_debug *dbg)
 | |
| {
 | |
| 	unsigned long rflags;
 | |
| 	int i, r;
 | |
| 
 | |
| 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
 | |
| 		r = -EBUSY;
 | |
| 		if (vcpu->arch.exception.pending)
 | |
| 			goto out;
 | |
| 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 		else
 | |
| 			kvm_queue_exception(vcpu, BP_VECTOR);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read rflags as long as potentially injected trace flags are still
 | |
| 	 * filtered out.
 | |
| 	 */
 | |
| 	rflags = kvm_get_rflags(vcpu);
 | |
| 
 | |
| 	vcpu->guest_debug = dbg->control;
 | |
| 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
 | |
| 		vcpu->guest_debug = 0;
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
 | |
| 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
 | |
| 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
 | |
| 	} else {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; i++)
 | |
| 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
 | |
| 	}
 | |
| 	kvm_update_dr7(vcpu);
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
 | |
| 			get_segment_base(vcpu, VCPU_SREG_CS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Trigger an rflags update that will inject or remove the trace
 | |
| 	 * flags.
 | |
| 	 */
 | |
| 	kvm_set_rflags(vcpu, rflags);
 | |
| 
 | |
| 	kvm_x86_ops->update_db_bp_intercept(vcpu);
 | |
| 
 | |
| 	r = 0;
 | |
| 
 | |
| out:
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Translate a guest virtual address to a guest physical address.
 | |
|  */
 | |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_translation *tr)
 | |
| {
 | |
| 	unsigned long vaddr = tr->linear_address;
 | |
| 	gpa_t gpa;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	tr->physical_address = gpa;
 | |
| 	tr->valid = gpa != UNMAPPED_GVA;
 | |
| 	tr->writeable = 1;
 | |
| 	tr->usermode = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 | |
| {
 | |
| 	struct i387_fxsave_struct *fxsave =
 | |
| 			&vcpu->arch.guest_fpu.state->fxsave;
 | |
| 
 | |
| 	memcpy(fpu->fpr, fxsave->st_space, 128);
 | |
| 	fpu->fcw = fxsave->cwd;
 | |
| 	fpu->fsw = fxsave->swd;
 | |
| 	fpu->ftwx = fxsave->twd;
 | |
| 	fpu->last_opcode = fxsave->fop;
 | |
| 	fpu->last_ip = fxsave->rip;
 | |
| 	fpu->last_dp = fxsave->rdp;
 | |
| 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 | |
| {
 | |
| 	struct i387_fxsave_struct *fxsave =
 | |
| 			&vcpu->arch.guest_fpu.state->fxsave;
 | |
| 
 | |
| 	memcpy(fxsave->st_space, fpu->fpr, 128);
 | |
| 	fxsave->cwd = fpu->fcw;
 | |
| 	fxsave->swd = fpu->fsw;
 | |
| 	fxsave->twd = fpu->ftwx;
 | |
| 	fxsave->fop = fpu->last_opcode;
 | |
| 	fxsave->rip = fpu->last_ip;
 | |
| 	fxsave->rdp = fpu->last_dp;
 | |
| 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int fx_init(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = fpu_alloc(&vcpu->arch.guest_fpu);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	fpu_finit(&vcpu->arch.guest_fpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure guest xcr0 is valid for loading
 | |
| 	 */
 | |
| 	vcpu->arch.xcr0 = XSTATE_FP;
 | |
| 
 | |
| 	vcpu->arch.cr0 |= X86_CR0_ET;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(fx_init);
 | |
| 
 | |
| static void fx_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	fpu_free(&vcpu->arch.guest_fpu);
 | |
| }
 | |
| 
 | |
| void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->guest_fpu_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore all possible states in the guest,
 | |
| 	 * and assume host would use all available bits.
 | |
| 	 * Guest xcr0 would be loaded later.
 | |
| 	 */
 | |
| 	kvm_put_guest_xcr0(vcpu);
 | |
| 	vcpu->guest_fpu_loaded = 1;
 | |
| 	__kernel_fpu_begin();
 | |
| 	fpu_restore_checking(&vcpu->arch.guest_fpu);
 | |
| 	trace_kvm_fpu(1);
 | |
| }
 | |
| 
 | |
| void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_put_guest_xcr0(vcpu);
 | |
| 
 | |
| 	if (!vcpu->guest_fpu_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	vcpu->guest_fpu_loaded = 0;
 | |
| 	fpu_save_init(&vcpu->arch.guest_fpu);
 | |
| 	__kernel_fpu_end();
 | |
| 	++vcpu->stat.fpu_reload;
 | |
| 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
 | |
| 	trace_kvm_fpu(0);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvmclock_reset(vcpu);
 | |
| 
 | |
| 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
 | |
| 	fx_free(vcpu);
 | |
| 	kvm_x86_ops->vcpu_free(vcpu);
 | |
| }
 | |
| 
 | |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
 | |
| 						unsigned int id)
 | |
| {
 | |
| 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
 | |
| 		printk_once(KERN_WARNING
 | |
| 		"kvm: SMP vm created on host with unstable TSC; "
 | |
| 		"guest TSC will not be reliable\n");
 | |
| 	return kvm_x86_ops->vcpu_create(kvm, id);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	vcpu->arch.mtrr_state.have_fixed = 1;
 | |
| 	r = vcpu_load(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	kvm_vcpu_reset(vcpu);
 | |
| 	kvm_mmu_setup(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	struct msr_data msr;
 | |
| 
 | |
| 	r = vcpu_load(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	msr.data = 0x0;
 | |
| 	msr.index = MSR_IA32_TSC;
 | |
| 	msr.host_initiated = true;
 | |
| 	kvm_write_tsc(vcpu, &msr);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	vcpu->arch.apf.msr_val = 0;
 | |
| 
 | |
| 	r = vcpu_load(vcpu);
 | |
| 	BUG_ON(r);
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	fx_free(vcpu);
 | |
| 	kvm_x86_ops->vcpu_free(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	atomic_set(&vcpu->arch.nmi_queued, 0);
 | |
| 	vcpu->arch.nmi_pending = 0;
 | |
| 	vcpu->arch.nmi_injected = false;
 | |
| 
 | |
| 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
 | |
| 	vcpu->arch.dr6 = DR6_FIXED_1;
 | |
| 	vcpu->arch.dr7 = DR7_FIXED_1;
 | |
| 	kvm_update_dr7(vcpu);
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	vcpu->arch.apf.msr_val = 0;
 | |
| 	vcpu->arch.st.msr_val = 0;
 | |
| 
 | |
| 	kvmclock_reset(vcpu);
 | |
| 
 | |
| 	kvm_clear_async_pf_completion_queue(vcpu);
 | |
| 	kvm_async_pf_hash_reset(vcpu);
 | |
| 	vcpu->arch.apf.halted = false;
 | |
| 
 | |
| 	kvm_pmu_reset(vcpu);
 | |
| 
 | |
| 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
 | |
| 	vcpu->arch.regs_avail = ~0;
 | |
| 	vcpu->arch.regs_dirty = ~0;
 | |
| 
 | |
| 	kvm_x86_ops->vcpu_reset(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
 | |
| {
 | |
| 	struct kvm_segment cs;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	cs.selector = vector << 8;
 | |
| 	cs.base = vector << 12;
 | |
| 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	kvm_rip_write(vcpu, 0);
 | |
| }
 | |
| 
 | |
| int kvm_arch_hardware_enable(void *garbage)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	u64 local_tsc;
 | |
| 	u64 max_tsc = 0;
 | |
| 	bool stable, backwards_tsc = false;
 | |
| 
 | |
| 	kvm_shared_msr_cpu_online();
 | |
| 	ret = kvm_x86_ops->hardware_enable(garbage);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	local_tsc = native_read_tsc();
 | |
| 	stable = !check_tsc_unstable();
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 			if (!stable && vcpu->cpu == smp_processor_id())
 | |
| 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
 | |
| 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
 | |
| 				backwards_tsc = true;
 | |
| 				if (vcpu->arch.last_host_tsc > max_tsc)
 | |
| 					max_tsc = vcpu->arch.last_host_tsc;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sometimes, even reliable TSCs go backwards.  This happens on
 | |
| 	 * platforms that reset TSC during suspend or hibernate actions, but
 | |
| 	 * maintain synchronization.  We must compensate.  Fortunately, we can
 | |
| 	 * detect that condition here, which happens early in CPU bringup,
 | |
| 	 * before any KVM threads can be running.  Unfortunately, we can't
 | |
| 	 * bring the TSCs fully up to date with real time, as we aren't yet far
 | |
| 	 * enough into CPU bringup that we know how much real time has actually
 | |
| 	 * elapsed; our helper function, get_kernel_ns() will be using boot
 | |
| 	 * variables that haven't been updated yet.
 | |
| 	 *
 | |
| 	 * So we simply find the maximum observed TSC above, then record the
 | |
| 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
 | |
| 	 * the adjustment will be applied.  Note that we accumulate
 | |
| 	 * adjustments, in case multiple suspend cycles happen before some VCPU
 | |
| 	 * gets a chance to run again.  In the event that no KVM threads get a
 | |
| 	 * chance to run, we will miss the entire elapsed period, as we'll have
 | |
| 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
 | |
| 	 * loose cycle time.  This isn't too big a deal, since the loss will be
 | |
| 	 * uniform across all VCPUs (not to mention the scenario is extremely
 | |
| 	 * unlikely). It is possible that a second hibernate recovery happens
 | |
| 	 * much faster than a first, causing the observed TSC here to be
 | |
| 	 * smaller; this would require additional padding adjustment, which is
 | |
| 	 * why we set last_host_tsc to the local tsc observed here.
 | |
| 	 *
 | |
| 	 * N.B. - this code below runs only on platforms with reliable TSC,
 | |
| 	 * as that is the only way backwards_tsc is set above.  Also note
 | |
| 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
 | |
| 	 * have the same delta_cyc adjustment applied if backwards_tsc
 | |
| 	 * is detected.  Note further, this adjustment is only done once,
 | |
| 	 * as we reset last_host_tsc on all VCPUs to stop this from being
 | |
| 	 * called multiple times (one for each physical CPU bringup).
 | |
| 	 *
 | |
| 	 * Platforms with unreliable TSCs don't have to deal with this, they
 | |
| 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
 | |
| 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
 | |
| 	 * guarantee that they stay in perfect synchronization.
 | |
| 	 */
 | |
| 	if (backwards_tsc) {
 | |
| 		u64 delta_cyc = max_tsc - local_tsc;
 | |
| 		list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 			kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
 | |
| 				vcpu->arch.last_host_tsc = local_tsc;
 | |
| 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
 | |
| 					&vcpu->requests);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We have to disable TSC offset matching.. if you were
 | |
| 			 * booting a VM while issuing an S4 host suspend....
 | |
| 			 * you may have some problem.  Solving this issue is
 | |
| 			 * left as an exercise to the reader.
 | |
| 			 */
 | |
| 			kvm->arch.last_tsc_nsec = 0;
 | |
| 			kvm->arch.last_tsc_write = 0;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_disable(void *garbage)
 | |
| {
 | |
| 	kvm_x86_ops->hardware_disable(garbage);
 | |
| 	drop_user_return_notifiers(garbage);
 | |
| }
 | |
| 
 | |
| int kvm_arch_hardware_setup(void)
 | |
| {
 | |
| 	return kvm_x86_ops->hardware_setup();
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_unsetup(void)
 | |
| {
 | |
| 	kvm_x86_ops->hardware_unsetup();
 | |
| }
 | |
| 
 | |
| void kvm_arch_check_processor_compat(void *rtn)
 | |
| {
 | |
| 	kvm_x86_ops->check_processor_compatibility(rtn);
 | |
| }
 | |
| 
 | |
| bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
 | |
| }
 | |
| 
 | |
| struct static_key kvm_no_apic_vcpu __read_mostly;
 | |
| 
 | |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct kvm *kvm;
 | |
| 	int r;
 | |
| 
 | |
| 	BUG_ON(vcpu->kvm == NULL);
 | |
| 	kvm = vcpu->kvm;
 | |
| 
 | |
| 	vcpu->arch.pv.pv_unhalted = false;
 | |
| 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
 | |
| 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 	else
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 	if (!page) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	vcpu->arch.pio_data = page_address(page);
 | |
| 
 | |
| 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
 | |
| 
 | |
| 	r = kvm_mmu_create(vcpu);
 | |
| 	if (r < 0)
 | |
| 		goto fail_free_pio_data;
 | |
| 
 | |
| 	if (irqchip_in_kernel(kvm)) {
 | |
| 		r = kvm_create_lapic(vcpu);
 | |
| 		if (r < 0)
 | |
| 			goto fail_mmu_destroy;
 | |
| 	} else
 | |
| 		static_key_slow_inc(&kvm_no_apic_vcpu);
 | |
| 
 | |
| 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
 | |
| 				       GFP_KERNEL);
 | |
| 	if (!vcpu->arch.mce_banks) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto fail_free_lapic;
 | |
| 	}
 | |
| 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto fail_free_mce_banks;
 | |
| 	}
 | |
| 
 | |
| 	r = fx_init(vcpu);
 | |
| 	if (r)
 | |
| 		goto fail_free_wbinvd_dirty_mask;
 | |
| 
 | |
| 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
 | |
| 	vcpu->arch.pv_time_enabled = false;
 | |
| 
 | |
| 	vcpu->arch.guest_supported_xcr0 = 0;
 | |
| 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 | |
| 
 | |
| 	kvm_async_pf_hash_reset(vcpu);
 | |
| 	kvm_pmu_init(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| fail_free_wbinvd_dirty_mask:
 | |
| 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
 | |
| fail_free_mce_banks:
 | |
| 	kfree(vcpu->arch.mce_banks);
 | |
| fail_free_lapic:
 | |
| 	kvm_free_lapic(vcpu);
 | |
| fail_mmu_destroy:
 | |
| 	kvm_mmu_destroy(vcpu);
 | |
| fail_free_pio_data:
 | |
| 	free_page((unsigned long)vcpu->arch.pio_data);
 | |
| fail:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	kvm_pmu_destroy(vcpu);
 | |
| 	kfree(vcpu->arch.mce_banks);
 | |
| 	kvm_free_lapic(vcpu);
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	kvm_mmu_destroy(vcpu);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	free_page((unsigned long)vcpu->arch.pio_data);
 | |
| 	if (!irqchip_in_kernel(vcpu->kvm))
 | |
| 		static_key_slow_dec(&kvm_no_apic_vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 | |
| {
 | |
| 	if (type)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
 | |
| 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
 | |
| 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
 | |
| 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
 | |
| 
 | |
| 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
 | |
| 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
 | |
| 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
 | |
| 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
 | |
| 		&kvm->arch.irq_sources_bitmap);
 | |
| 
 | |
| 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
 | |
| 	mutex_init(&kvm->arch.apic_map_lock);
 | |
| 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
 | |
| 
 | |
| 	pvclock_update_vm_gtod_copy(kvm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	r = vcpu_load(vcpu);
 | |
| 	BUG_ON(r);
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_free_vcpus(struct kvm *kvm)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unpin any mmu pages first.
 | |
| 	 */
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		kvm_clear_async_pf_completion_queue(vcpu);
 | |
| 		kvm_unload_vcpu_mmu(vcpu);
 | |
| 	}
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_arch_vcpu_free(vcpu);
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 | |
| 		kvm->vcpus[i] = NULL;
 | |
| 
 | |
| 	atomic_set(&kvm->online_vcpus, 0);
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| }
 | |
| 
 | |
| void kvm_arch_sync_events(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_free_all_assigned_devices(kvm);
 | |
| 	kvm_free_pit(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_destroy_vm(struct kvm *kvm)
 | |
| {
 | |
| 	if (current->mm == kvm->mm) {
 | |
| 		/*
 | |
| 		 * Free memory regions allocated on behalf of userspace,
 | |
| 		 * unless the the memory map has changed due to process exit
 | |
| 		 * or fd copying.
 | |
| 		 */
 | |
| 		struct kvm_userspace_memory_region mem;
 | |
| 		memset(&mem, 0, sizeof(mem));
 | |
| 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
 | |
| 		kvm_set_memory_region(kvm, &mem);
 | |
| 
 | |
| 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
 | |
| 		kvm_set_memory_region(kvm, &mem);
 | |
| 
 | |
| 		mem.slot = TSS_PRIVATE_MEMSLOT;
 | |
| 		kvm_set_memory_region(kvm, &mem);
 | |
| 	}
 | |
| 	kvm_iommu_unmap_guest(kvm);
 | |
| 	kfree(kvm->arch.vpic);
 | |
| 	kfree(kvm->arch.vioapic);
 | |
| 	kvm_free_vcpus(kvm);
 | |
| 	if (kvm->arch.apic_access_page)
 | |
| 		put_page(kvm->arch.apic_access_page);
 | |
| 	if (kvm->arch.ept_identity_pagetable)
 | |
| 		put_page(kvm->arch.ept_identity_pagetable);
 | |
| 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
 | |
| }
 | |
| 
 | |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 | |
| 			   struct kvm_memory_slot *dont)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
 | |
| 			kvm_kvfree(free->arch.rmap[i]);
 | |
| 			free->arch.rmap[i] = NULL;
 | |
| 		}
 | |
| 		if (i == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!dont || free->arch.lpage_info[i - 1] !=
 | |
| 			     dont->arch.lpage_info[i - 1]) {
 | |
| 			kvm_kvfree(free->arch.lpage_info[i - 1]);
 | |
| 			free->arch.lpage_info[i - 1] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 | |
| 			    unsigned long npages)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		unsigned long ugfn;
 | |
| 		int lpages;
 | |
| 		int level = i + 1;
 | |
| 
 | |
| 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
 | |
| 				      slot->base_gfn, level) + 1;
 | |
| 
 | |
| 		slot->arch.rmap[i] =
 | |
| 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
 | |
| 		if (!slot->arch.rmap[i])
 | |
| 			goto out_free;
 | |
| 		if (i == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
 | |
| 					sizeof(*slot->arch.lpage_info[i - 1]));
 | |
| 		if (!slot->arch.lpage_info[i - 1])
 | |
| 			goto out_free;
 | |
| 
 | |
| 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
 | |
| 			slot->arch.lpage_info[i - 1][0].write_count = 1;
 | |
| 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
 | |
| 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
 | |
| 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
 | |
| 		/*
 | |
| 		 * If the gfn and userspace address are not aligned wrt each
 | |
| 		 * other, or if explicitly asked to, disable large page
 | |
| 		 * support for this slot
 | |
| 		 */
 | |
| 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
 | |
| 		    !kvm_largepages_enabled()) {
 | |
| 			unsigned long j;
 | |
| 
 | |
| 			for (j = 0; j < lpages; ++j)
 | |
| 				slot->arch.lpage_info[i - 1][j].write_count = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		kvm_kvfree(slot->arch.rmap[i]);
 | |
| 		slot->arch.rmap[i] = NULL;
 | |
| 		if (i == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
 | |
| 		slot->arch.lpage_info[i - 1] = NULL;
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void kvm_arch_memslots_updated(struct kvm *kvm)
 | |
| {
 | |
| 	/*
 | |
| 	 * memslots->generation has been incremented.
 | |
| 	 * mmio generation may have reached its maximum value.
 | |
| 	 */
 | |
| 	kvm_mmu_invalidate_mmio_sptes(kvm);
 | |
| }
 | |
| 
 | |
| int kvm_arch_prepare_memory_region(struct kvm *kvm,
 | |
| 				struct kvm_memory_slot *memslot,
 | |
| 				struct kvm_userspace_memory_region *mem,
 | |
| 				enum kvm_mr_change change)
 | |
| {
 | |
| 	/*
 | |
| 	 * Only private memory slots need to be mapped here since
 | |
| 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
 | |
| 	 */
 | |
| 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
 | |
| 		unsigned long userspace_addr;
 | |
| 
 | |
| 		/*
 | |
| 		 * MAP_SHARED to prevent internal slot pages from being moved
 | |
| 		 * by fork()/COW.
 | |
| 		 */
 | |
| 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
 | |
| 					 PROT_READ | PROT_WRITE,
 | |
| 					 MAP_SHARED | MAP_ANONYMOUS, 0);
 | |
| 
 | |
| 		if (IS_ERR((void *)userspace_addr))
 | |
| 			return PTR_ERR((void *)userspace_addr);
 | |
| 
 | |
| 		memslot->userspace_addr = userspace_addr;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_commit_memory_region(struct kvm *kvm,
 | |
| 				struct kvm_userspace_memory_region *mem,
 | |
| 				const struct kvm_memory_slot *old,
 | |
| 				enum kvm_mr_change change)
 | |
| {
 | |
| 
 | |
| 	int nr_mmu_pages = 0;
 | |
| 
 | |
| 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = vm_munmap(old->userspace_addr,
 | |
| 				old->npages * PAGE_SIZE);
 | |
| 		if (ret < 0)
 | |
| 			printk(KERN_WARNING
 | |
| 			       "kvm_vm_ioctl_set_memory_region: "
 | |
| 			       "failed to munmap memory\n");
 | |
| 	}
 | |
| 
 | |
| 	if (!kvm->arch.n_requested_mmu_pages)
 | |
| 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
 | |
| 
 | |
| 	if (nr_mmu_pages)
 | |
| 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
 | |
| 	/*
 | |
| 	 * Write protect all pages for dirty logging.
 | |
| 	 * Existing largepage mappings are destroyed here and new ones will
 | |
| 	 * not be created until the end of the logging.
 | |
| 	 */
 | |
| 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
 | |
| 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow_all(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_mmu_invalidate_zap_all_pages(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 | |
| 				   struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	kvm_mmu_invalidate_zap_all_pages(kvm);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
 | |
| 		!vcpu->arch.apf.halted)
 | |
| 		|| !list_empty_careful(&vcpu->async_pf.done)
 | |
| 		|| kvm_apic_has_events(vcpu)
 | |
| 		|| vcpu->arch.pv.pv_unhalted
 | |
| 		|| atomic_read(&vcpu->arch.nmi_queued) ||
 | |
| 		(kvm_arch_interrupt_allowed(vcpu) &&
 | |
| 		 kvm_cpu_has_interrupt(vcpu));
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
 | |
| }
 | |
| 
 | |
| int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_x86_ops->interrupt_allowed(vcpu);
 | |
| }
 | |
| 
 | |
| bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
 | |
| {
 | |
| 	unsigned long current_rip = kvm_rip_read(vcpu) +
 | |
| 		get_segment_base(vcpu, VCPU_SREG_CS);
 | |
| 
 | |
| 	return current_rip == linear_rip;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
 | |
| 
 | |
| unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long rflags;
 | |
| 
 | |
| 	rflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		rflags &= ~X86_EFLAGS_TF;
 | |
| 	return rflags;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_rflags);
 | |
| 
 | |
| void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 | |
| {
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
 | |
| 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
 | |
| 		rflags |= X86_EFLAGS_TF;
 | |
| 	kvm_x86_ops->set_rflags(vcpu, rflags);
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_rflags);
 | |
| 
 | |
| void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
 | |
| 	      work->wakeup_all)
 | |
| 		return;
 | |
| 
 | |
| 	r = kvm_mmu_reload(vcpu);
 | |
| 	if (unlikely(r))
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.mmu.direct_map &&
 | |
| 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
 | |
| }
 | |
| 
 | |
| static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
 | |
| {
 | |
| 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
 | |
| }
 | |
| 
 | |
| static inline u32 kvm_async_pf_next_probe(u32 key)
 | |
| {
 | |
| 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
 | |
| }
 | |
| 
 | |
| static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	u32 key = kvm_async_pf_hash_fn(gfn);
 | |
| 
 | |
| 	while (vcpu->arch.apf.gfns[key] != ~0)
 | |
| 		key = kvm_async_pf_next_probe(key);
 | |
| 
 | |
| 	vcpu->arch.apf.gfns[key] = gfn;
 | |
| }
 | |
| 
 | |
| static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 key = kvm_async_pf_hash_fn(gfn);
 | |
| 
 | |
| 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
 | |
| 		     (vcpu->arch.apf.gfns[key] != gfn &&
 | |
| 		      vcpu->arch.apf.gfns[key] != ~0); i++)
 | |
| 		key = kvm_async_pf_next_probe(key);
 | |
| 
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
 | |
| }
 | |
| 
 | |
| static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	u32 i, j, k;
 | |
| 
 | |
| 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
 | |
| 	while (true) {
 | |
| 		vcpu->arch.apf.gfns[i] = ~0;
 | |
| 		do {
 | |
| 			j = kvm_async_pf_next_probe(j);
 | |
| 			if (vcpu->arch.apf.gfns[j] == ~0)
 | |
| 				return;
 | |
| 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
 | |
| 			/*
 | |
| 			 * k lies cyclically in ]i,j]
 | |
| 			 * |    i.k.j |
 | |
| 			 * |....j i.k.| or  |.k..j i...|
 | |
| 			 */
 | |
| 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
 | |
| 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
 | |
| 		i = j;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
 | |
| {
 | |
| 
 | |
| 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
 | |
| 				      sizeof(val));
 | |
| }
 | |
| 
 | |
| void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
 | |
| 				     struct kvm_async_pf *work)
 | |
| {
 | |
| 	struct x86_exception fault;
 | |
| 
 | |
| 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
 | |
| 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
 | |
| 
 | |
| 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
 | |
| 	    (vcpu->arch.apf.send_user_only &&
 | |
| 	     kvm_x86_ops->get_cpl(vcpu) == 0))
 | |
| 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
 | |
| 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
 | |
| 		fault.vector = PF_VECTOR;
 | |
| 		fault.error_code_valid = true;
 | |
| 		fault.error_code = 0;
 | |
| 		fault.nested_page_fault = false;
 | |
| 		fault.address = work->arch.token;
 | |
| 		kvm_inject_page_fault(vcpu, &fault);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
 | |
| 				 struct kvm_async_pf *work)
 | |
| {
 | |
| 	struct x86_exception fault;
 | |
| 
 | |
| 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
 | |
| 	if (work->wakeup_all)
 | |
| 		work->arch.token = ~0; /* broadcast wakeup */
 | |
| 	else
 | |
| 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
 | |
| 
 | |
| 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
 | |
| 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
 | |
| 		fault.vector = PF_VECTOR;
 | |
| 		fault.error_code_valid = true;
 | |
| 		fault.error_code = 0;
 | |
| 		fault.nested_page_fault = false;
 | |
| 		fault.address = work->arch.token;
 | |
| 		kvm_inject_page_fault(vcpu, &fault);
 | |
| 	}
 | |
| 	vcpu->arch.apf.halted = false;
 | |
| 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| }
 | |
| 
 | |
| bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
 | |
| 		return true;
 | |
| 	else
 | |
| 		return !kvm_event_needs_reinjection(vcpu) &&
 | |
| 			kvm_x86_ops->interrupt_allowed(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
 | |
| {
 | |
| 	atomic_inc(&kvm->arch.noncoherent_dma_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
 | |
| 
 | |
| void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
 | |
| {
 | |
| 	atomic_dec(&kvm->arch.noncoherent_dma_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
 | |
| 
 | |
| bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
 | |
| {
 | |
| 	return atomic_read(&kvm->arch.noncoherent_dma_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
 | |
| 
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
 |