 8a3c1a3347
			
		
	
	
	8a3c1a3347
	
	
	
		
			
			kvm_mmu initialization is mostly filling in function pointers, there is no way for it to fail. Clean up unused return values. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Gleb Natapov <gleb@redhat.com>
		
			
				
	
	
		
			4541 lines
		
	
	
	
		
			110 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4541 lines
		
	
	
	
		
			110 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * This module enables machines with Intel VT-x extensions to run virtual
 | |
|  * machines without emulation or binary translation.
 | |
|  *
 | |
|  * MMU support
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "irq.h"
 | |
| #include "mmu.h"
 | |
| #include "x86.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/srcu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/cmpxchg.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/vmx.h>
 | |
| 
 | |
| /*
 | |
|  * When setting this variable to true it enables Two-Dimensional-Paging
 | |
|  * where the hardware walks 2 page tables:
 | |
|  * 1. the guest-virtual to guest-physical
 | |
|  * 2. while doing 1. it walks guest-physical to host-physical
 | |
|  * If the hardware supports that we don't need to do shadow paging.
 | |
|  */
 | |
| bool tdp_enabled = false;
 | |
| 
 | |
| enum {
 | |
| 	AUDIT_PRE_PAGE_FAULT,
 | |
| 	AUDIT_POST_PAGE_FAULT,
 | |
| 	AUDIT_PRE_PTE_WRITE,
 | |
| 	AUDIT_POST_PTE_WRITE,
 | |
| 	AUDIT_PRE_SYNC,
 | |
| 	AUDIT_POST_SYNC
 | |
| };
 | |
| 
 | |
| #undef MMU_DEBUG
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| 
 | |
| #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
 | |
| #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define pgprintk(x...) do { } while (0)
 | |
| #define rmap_printk(x...) do { } while (0)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| static bool dbg = 0;
 | |
| module_param(dbg, bool, 0644);
 | |
| #endif
 | |
| 
 | |
| #ifndef MMU_DEBUG
 | |
| #define ASSERT(x) do { } while (0)
 | |
| #else
 | |
| #define ASSERT(x)							\
 | |
| 	if (!(x)) {							\
 | |
| 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
 | |
| 		       __FILE__, __LINE__, #x);				\
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #define PTE_PREFETCH_NUM		8
 | |
| 
 | |
| #define PT_FIRST_AVAIL_BITS_SHIFT 10
 | |
| #define PT64_SECOND_AVAIL_BITS_SHIFT 52
 | |
| 
 | |
| #define PT64_LEVEL_BITS 9
 | |
| 
 | |
| #define PT64_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
 | |
| 
 | |
| #define PT64_INDEX(address, level)\
 | |
| 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #define PT32_LEVEL_BITS 10
 | |
| 
 | |
| #define PT32_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 | |
| 
 | |
| #define PT32_LVL_OFFSET_MASK(level) \
 | |
| 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT32_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT32_INDEX(address, level)\
 | |
| 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
 | |
| #define PT64_DIR_BASE_ADDR_MASK \
 | |
| 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
 | |
| #define PT64_LVL_ADDR_MASK(level) \
 | |
| 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT64_LEVEL_BITS))) - 1))
 | |
| #define PT64_LVL_OFFSET_MASK(level) \
 | |
| 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT64_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT32_BASE_ADDR_MASK PAGE_MASK
 | |
| #define PT32_DIR_BASE_ADDR_MASK \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 | |
| #define PT32_LVL_ADDR_MASK(level) \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 					    * PT32_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
 | |
| 			| shadow_x_mask | shadow_nx_mask)
 | |
| 
 | |
| #define ACC_EXEC_MASK    1
 | |
| #define ACC_WRITE_MASK   PT_WRITABLE_MASK
 | |
| #define ACC_USER_MASK    PT_USER_MASK
 | |
| #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 | |
| 
 | |
| #include <trace/events/kvm.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "mmutrace.h"
 | |
| 
 | |
| #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 | |
| #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
 | |
| 
 | |
| #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 | |
| 
 | |
| /* make pte_list_desc fit well in cache line */
 | |
| #define PTE_LIST_EXT 3
 | |
| 
 | |
| struct pte_list_desc {
 | |
| 	u64 *sptes[PTE_LIST_EXT];
 | |
| 	struct pte_list_desc *more;
 | |
| };
 | |
| 
 | |
| struct kvm_shadow_walk_iterator {
 | |
| 	u64 addr;
 | |
| 	hpa_t shadow_addr;
 | |
| 	u64 *sptep;
 | |
| 	int level;
 | |
| 	unsigned index;
 | |
| };
 | |
| 
 | |
| #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
 | |
| 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
 | |
| 	     shadow_walk_okay(&(_walker));			\
 | |
| 	     shadow_walk_next(&(_walker)))
 | |
| 
 | |
| #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
 | |
| 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
 | |
| 	     shadow_walk_okay(&(_walker)) &&				\
 | |
| 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
 | |
| 	     __shadow_walk_next(&(_walker), spte))
 | |
| 
 | |
| static struct kmem_cache *pte_list_desc_cache;
 | |
| static struct kmem_cache *mmu_page_header_cache;
 | |
| static struct percpu_counter kvm_total_used_mmu_pages;
 | |
| 
 | |
| static u64 __read_mostly shadow_nx_mask;
 | |
| static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
 | |
| static u64 __read_mostly shadow_user_mask;
 | |
| static u64 __read_mostly shadow_accessed_mask;
 | |
| static u64 __read_mostly shadow_dirty_mask;
 | |
| static u64 __read_mostly shadow_mmio_mask;
 | |
| 
 | |
| static void mmu_spte_set(u64 *sptep, u64 spte);
 | |
| static void mmu_free_roots(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
 | |
| {
 | |
| 	shadow_mmio_mask = mmio_mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 | |
| 
 | |
| /*
 | |
|  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 | |
|  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 | |
|  * number.
 | |
|  */
 | |
| #define MMIO_SPTE_GEN_LOW_SHIFT		3
 | |
| #define MMIO_SPTE_GEN_HIGH_SHIFT	52
 | |
| 
 | |
| #define MMIO_GEN_SHIFT			19
 | |
| #define MMIO_GEN_LOW_SHIFT		9
 | |
| #define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
 | |
| #define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
 | |
| #define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
 | |
| 
 | |
| static u64 generation_mmio_spte_mask(unsigned int gen)
 | |
| {
 | |
| 	u64 mask;
 | |
| 
 | |
| 	WARN_ON(gen > MMIO_MAX_GEN);
 | |
| 
 | |
| 	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
 | |
| 	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static unsigned int get_mmio_spte_generation(u64 spte)
 | |
| {
 | |
| 	unsigned int gen;
 | |
| 
 | |
| 	spte &= ~shadow_mmio_mask;
 | |
| 
 | |
| 	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
 | |
| 	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
 | |
| 	return gen;
 | |
| }
 | |
| 
 | |
| static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
 | |
| {
 | |
| 	/*
 | |
| 	 * Init kvm generation close to MMIO_MAX_GEN to easily test the
 | |
| 	 * code of handling generation number wrap-around.
 | |
| 	 */
 | |
| 	return (kvm_memslots(kvm)->generation +
 | |
| 		      MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
 | |
| }
 | |
| 
 | |
| static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
 | |
| 			   unsigned access)
 | |
| {
 | |
| 	unsigned int gen = kvm_current_mmio_generation(kvm);
 | |
| 	u64 mask = generation_mmio_spte_mask(gen);
 | |
| 
 | |
| 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
 | |
| 	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
 | |
| 
 | |
| 	trace_mark_mmio_spte(sptep, gfn, access, gen);
 | |
| 	mmu_spte_set(sptep, mask);
 | |
| }
 | |
| 
 | |
| static bool is_mmio_spte(u64 spte)
 | |
| {
 | |
| 	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
 | |
| }
 | |
| 
 | |
| static gfn_t get_mmio_spte_gfn(u64 spte)
 | |
| {
 | |
| 	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
 | |
| 	return (spte & ~mask) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static unsigned get_mmio_spte_access(u64 spte)
 | |
| {
 | |
| 	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
 | |
| 	return (spte & ~mask) & ~PAGE_MASK;
 | |
| }
 | |
| 
 | |
| static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
 | |
| 			  pfn_t pfn, unsigned access)
 | |
| {
 | |
| 	if (unlikely(is_noslot_pfn(pfn))) {
 | |
| 		mark_mmio_spte(kvm, sptep, gfn, access);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool check_mmio_spte(struct kvm *kvm, u64 spte)
 | |
| {
 | |
| 	unsigned int kvm_gen, spte_gen;
 | |
| 
 | |
| 	kvm_gen = kvm_current_mmio_generation(kvm);
 | |
| 	spte_gen = get_mmio_spte_generation(spte);
 | |
| 
 | |
| 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 | |
| 	return likely(kvm_gen == spte_gen);
 | |
| }
 | |
| 
 | |
| static inline u64 rsvd_bits(int s, int e)
 | |
| {
 | |
| 	return ((1ULL << (e - s + 1)) - 1) << s;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 | |
| 		u64 dirty_mask, u64 nx_mask, u64 x_mask)
 | |
| {
 | |
| 	shadow_user_mask = user_mask;
 | |
| 	shadow_accessed_mask = accessed_mask;
 | |
| 	shadow_dirty_mask = dirty_mask;
 | |
| 	shadow_nx_mask = nx_mask;
 | |
| 	shadow_x_mask = x_mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 | |
| 
 | |
| static int is_cpuid_PSE36(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int is_nx(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.efer & EFER_NX;
 | |
| }
 | |
| 
 | |
| static int is_shadow_present_pte(u64 pte)
 | |
| {
 | |
| 	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
 | |
| }
 | |
| 
 | |
| static int is_large_pte(u64 pte)
 | |
| {
 | |
| 	return pte & PT_PAGE_SIZE_MASK;
 | |
| }
 | |
| 
 | |
| static int is_rmap_spte(u64 pte)
 | |
| {
 | |
| 	return is_shadow_present_pte(pte);
 | |
| }
 | |
| 
 | |
| static int is_last_spte(u64 pte, int level)
 | |
| {
 | |
| 	if (level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return 1;
 | |
| 	if (is_large_pte(pte))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static pfn_t spte_to_pfn(u64 pte)
 | |
| {
 | |
| 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static gfn_t pse36_gfn_delta(u32 gpte)
 | |
| {
 | |
| 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 | |
| 
 | |
| 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void __set_spte(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	*sptep = spte;
 | |
| }
 | |
| 
 | |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	*sptep = spte;
 | |
| }
 | |
| 
 | |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	return xchg(sptep, spte);
 | |
| }
 | |
| 
 | |
| static u64 __get_spte_lockless(u64 *sptep)
 | |
| {
 | |
| 	return ACCESS_ONCE(*sptep);
 | |
| }
 | |
| 
 | |
| static bool __check_direct_spte_mmio_pf(u64 spte)
 | |
| {
 | |
| 	/* It is valid if the spte is zapped. */
 | |
| 	return spte == 0ull;
 | |
| }
 | |
| #else
 | |
| union split_spte {
 | |
| 	struct {
 | |
| 		u32 spte_low;
 | |
| 		u32 spte_high;
 | |
| 	};
 | |
| 	u64 spte;
 | |
| };
 | |
| 
 | |
| static void count_spte_clear(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 | |
| 
 | |
| 	if (is_shadow_present_pte(spte))
 | |
| 		return;
 | |
| 
 | |
| 	/* Ensure the spte is completely set before we increase the count */
 | |
| 	smp_wmb();
 | |
| 	sp->clear_spte_count++;
 | |
| }
 | |
| 
 | |
| static void __set_spte(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we map the spte from nonpresent to present, We should store
 | |
| 	 * the high bits firstly, then set present bit, so cpu can not
 | |
| 	 * fetch this spte while we are setting the spte.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	ssptep->spte_low = sspte.spte_low;
 | |
| }
 | |
| 
 | |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	ssptep->spte_low = sspte.spte_low;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we map the spte from present to nonpresent, we should clear
 | |
| 	 * present bit firstly to avoid vcpu fetch the old high bits.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 	count_spte_clear(sptep, spte);
 | |
| }
 | |
| 
 | |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte, orig;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	/* xchg acts as a barrier before the setting of the high bits */
 | |
| 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 | |
| 	orig.spte_high = ssptep->spte_high;
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 	count_spte_clear(sptep, spte);
 | |
| 
 | |
| 	return orig.spte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The idea using the light way get the spte on x86_32 guest is from
 | |
|  * gup_get_pte(arch/x86/mm/gup.c).
 | |
|  *
 | |
|  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 | |
|  * coalesces them and we are running out of the MMU lock.  Therefore
 | |
|  * we need to protect against in-progress updates of the spte.
 | |
|  *
 | |
|  * Reading the spte while an update is in progress may get the old value
 | |
|  * for the high part of the spte.  The race is fine for a present->non-present
 | |
|  * change (because the high part of the spte is ignored for non-present spte),
 | |
|  * but for a present->present change we must reread the spte.
 | |
|  *
 | |
|  * All such changes are done in two steps (present->non-present and
 | |
|  * non-present->present), hence it is enough to count the number of
 | |
|  * present->non-present updates: if it changed while reading the spte,
 | |
|  * we might have hit the race.  This is done using clear_spte_count.
 | |
|  */
 | |
| static u64 __get_spte_lockless(u64 *sptep)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 | |
| 	union split_spte spte, *orig = (union split_spte *)sptep;
 | |
| 	int count;
 | |
| 
 | |
| retry:
 | |
| 	count = sp->clear_spte_count;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	spte.spte_low = orig->spte_low;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	spte.spte_high = orig->spte_high;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (unlikely(spte.spte_low != orig->spte_low ||
 | |
| 	      count != sp->clear_spte_count))
 | |
| 		goto retry;
 | |
| 
 | |
| 	return spte.spte;
 | |
| }
 | |
| 
 | |
| static bool __check_direct_spte_mmio_pf(u64 spte)
 | |
| {
 | |
| 	union split_spte sspte = (union split_spte)spte;
 | |
| 	u32 high_mmio_mask = shadow_mmio_mask >> 32;
 | |
| 
 | |
| 	/* It is valid if the spte is zapped. */
 | |
| 	if (spte == 0ull)
 | |
| 		return true;
 | |
| 
 | |
| 	/* It is valid if the spte is being zapped. */
 | |
| 	if (sspte.spte_low == 0ull &&
 | |
| 	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool spte_is_locklessly_modifiable(u64 spte)
 | |
| {
 | |
| 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
 | |
| 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
 | |
| }
 | |
| 
 | |
| static bool spte_has_volatile_bits(u64 spte)
 | |
| {
 | |
| 	/*
 | |
| 	 * Always atomicly update spte if it can be updated
 | |
| 	 * out of mmu-lock, it can ensure dirty bit is not lost,
 | |
| 	 * also, it can help us to get a stable is_writable_pte()
 | |
| 	 * to ensure tlb flush is not missed.
 | |
| 	 */
 | |
| 	if (spte_is_locklessly_modifiable(spte))
 | |
| 		return true;
 | |
| 
 | |
| 	if (!shadow_accessed_mask)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!is_shadow_present_pte(spte))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((spte & shadow_accessed_mask) &&
 | |
| 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
 | |
| {
 | |
| 	return (old_spte & bit_mask) && !(new_spte & bit_mask);
 | |
| }
 | |
| 
 | |
| /* Rules for using mmu_spte_set:
 | |
|  * Set the sptep from nonpresent to present.
 | |
|  * Note: the sptep being assigned *must* be either not present
 | |
|  * or in a state where the hardware will not attempt to update
 | |
|  * the spte.
 | |
|  */
 | |
| static void mmu_spte_set(u64 *sptep, u64 new_spte)
 | |
| {
 | |
| 	WARN_ON(is_shadow_present_pte(*sptep));
 | |
| 	__set_spte(sptep, new_spte);
 | |
| }
 | |
| 
 | |
| /* Rules for using mmu_spte_update:
 | |
|  * Update the state bits, it means the mapped pfn is not changged.
 | |
|  *
 | |
|  * Whenever we overwrite a writable spte with a read-only one we
 | |
|  * should flush remote TLBs. Otherwise rmap_write_protect
 | |
|  * will find a read-only spte, even though the writable spte
 | |
|  * might be cached on a CPU's TLB, the return value indicates this
 | |
|  * case.
 | |
|  */
 | |
| static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 | |
| {
 | |
| 	u64 old_spte = *sptep;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	WARN_ON(!is_rmap_spte(new_spte));
 | |
| 
 | |
| 	if (!is_shadow_present_pte(old_spte)) {
 | |
| 		mmu_spte_set(sptep, new_spte);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!spte_has_volatile_bits(old_spte))
 | |
| 		__update_clear_spte_fast(sptep, new_spte);
 | |
| 	else
 | |
| 		old_spte = __update_clear_spte_slow(sptep, new_spte);
 | |
| 
 | |
| 	/*
 | |
| 	 * For the spte updated out of mmu-lock is safe, since
 | |
| 	 * we always atomicly update it, see the comments in
 | |
| 	 * spte_has_volatile_bits().
 | |
| 	 */
 | |
| 	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
 | |
| 		ret = true;
 | |
| 
 | |
| 	if (!shadow_accessed_mask)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
 | |
| 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 | |
| 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
 | |
| 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rules for using mmu_spte_clear_track_bits:
 | |
|  * It sets the sptep from present to nonpresent, and track the
 | |
|  * state bits, it is used to clear the last level sptep.
 | |
|  */
 | |
| static int mmu_spte_clear_track_bits(u64 *sptep)
 | |
| {
 | |
| 	pfn_t pfn;
 | |
| 	u64 old_spte = *sptep;
 | |
| 
 | |
| 	if (!spte_has_volatile_bits(old_spte))
 | |
| 		__update_clear_spte_fast(sptep, 0ull);
 | |
| 	else
 | |
| 		old_spte = __update_clear_spte_slow(sptep, 0ull);
 | |
| 
 | |
| 	if (!is_rmap_spte(old_spte))
 | |
| 		return 0;
 | |
| 
 | |
| 	pfn = spte_to_pfn(old_spte);
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM does not hold the refcount of the page used by
 | |
| 	 * kvm mmu, before reclaiming the page, we should
 | |
| 	 * unmap it from mmu first.
 | |
| 	 */
 | |
| 	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
 | |
| 
 | |
| 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
 | |
| 		kvm_set_pfn_accessed(pfn);
 | |
| 	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
 | |
| 		kvm_set_pfn_dirty(pfn);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rules for using mmu_spte_clear_no_track:
 | |
|  * Directly clear spte without caring the state bits of sptep,
 | |
|  * it is used to set the upper level spte.
 | |
|  */
 | |
| static void mmu_spte_clear_no_track(u64 *sptep)
 | |
| {
 | |
| 	__update_clear_spte_fast(sptep, 0ull);
 | |
| }
 | |
| 
 | |
| static u64 mmu_spte_get_lockless(u64 *sptep)
 | |
| {
 | |
| 	return __get_spte_lockless(sptep);
 | |
| }
 | |
| 
 | |
| static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Prevent page table teardown by making any free-er wait during
 | |
| 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	vcpu->mode = READING_SHADOW_PAGE_TABLES;
 | |
| 	/*
 | |
| 	 * Make sure a following spte read is not reordered ahead of the write
 | |
| 	 * to vcpu->mode.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| }
 | |
| 
 | |
| static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Make sure the write to vcpu->mode is not reordered in front of
 | |
| 	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
 | |
| 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	vcpu->mode = OUTSIDE_GUEST_MODE;
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 | |
| 				  struct kmem_cache *base_cache, int min)
 | |
| {
 | |
| 	void *obj;
 | |
| 
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 | |
| 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 | |
| 		if (!obj)
 | |
| 			return -ENOMEM;
 | |
| 		cache->objects[cache->nobjs++] = obj;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
 | |
| {
 | |
| 	return cache->nobjs;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
 | |
| 				  struct kmem_cache *cache)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 | |
| 				       int min)
 | |
| {
 | |
| 	void *page;
 | |
| 
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 | |
| 		page = (void *)__get_free_page(GFP_KERNEL);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 		cache->objects[cache->nobjs++] = page;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		free_page((unsigned long)mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 | |
| 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 | |
| 				   mmu_page_header_cache, 4);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 | |
| 				pte_list_desc_cache);
 | |
| 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
 | |
| 				mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	BUG_ON(!mc->nobjs);
 | |
| 	p = mc->objects[--mc->nobjs];
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
 | |
| }
 | |
| 
 | |
| static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
 | |
| {
 | |
| 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
 | |
| }
 | |
| 
 | |
| static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
 | |
| {
 | |
| 	if (!sp->role.direct)
 | |
| 		return sp->gfns[index];
 | |
| 
 | |
| 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
 | |
| {
 | |
| 	if (sp->role.direct)
 | |
| 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
 | |
| 	else
 | |
| 		sp->gfns[index] = gfn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the pointer to the large page information for a given gfn,
 | |
|  * handling slots that are not large page aligned.
 | |
|  */
 | |
| static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
 | |
| 					      struct kvm_memory_slot *slot,
 | |
| 					      int level)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	idx = gfn_to_index(gfn, slot->base_gfn, level);
 | |
| 	return &slot->arch.lpage_info[level - 2][idx];
 | |
| }
 | |
| 
 | |
| static void account_shadowed(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	struct kvm_lpage_info *linfo;
 | |
| 	int i;
 | |
| 
 | |
| 	slot = gfn_to_memslot(kvm, gfn);
 | |
| 	for (i = PT_DIRECTORY_LEVEL;
 | |
| 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		linfo = lpage_info_slot(gfn, slot, i);
 | |
| 		linfo->write_count += 1;
 | |
| 	}
 | |
| 	kvm->arch.indirect_shadow_pages++;
 | |
| }
 | |
| 
 | |
| static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	struct kvm_lpage_info *linfo;
 | |
| 	int i;
 | |
| 
 | |
| 	slot = gfn_to_memslot(kvm, gfn);
 | |
| 	for (i = PT_DIRECTORY_LEVEL;
 | |
| 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		linfo = lpage_info_slot(gfn, slot, i);
 | |
| 		linfo->write_count -= 1;
 | |
| 		WARN_ON(linfo->write_count < 0);
 | |
| 	}
 | |
| 	kvm->arch.indirect_shadow_pages--;
 | |
| }
 | |
| 
 | |
| static int has_wrprotected_page(struct kvm *kvm,
 | |
| 				gfn_t gfn,
 | |
| 				int level)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	struct kvm_lpage_info *linfo;
 | |
| 
 | |
| 	slot = gfn_to_memslot(kvm, gfn);
 | |
| 	if (slot) {
 | |
| 		linfo = lpage_info_slot(gfn, slot, level);
 | |
| 		return linfo->write_count;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	unsigned long page_size;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	page_size = kvm_host_page_size(kvm, gfn);
 | |
| 
 | |
| 	for (i = PT_PAGE_TABLE_LEVEL;
 | |
| 	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
 | |
| 		if (page_size >= KVM_HPAGE_SIZE(i))
 | |
| 			ret = i;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct kvm_memory_slot *
 | |
| gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 			    bool no_dirty_log)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = gfn_to_memslot(vcpu->kvm, gfn);
 | |
| 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
 | |
| 	      (no_dirty_log && slot->dirty_bitmap))
 | |
| 		slot = NULL;
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| 
 | |
| static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
 | |
| {
 | |
| 	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
 | |
| }
 | |
| 
 | |
| static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
 | |
| {
 | |
| 	int host_level, level, max_level;
 | |
| 
 | |
| 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
 | |
| 
 | |
| 	if (host_level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return host_level;
 | |
| 
 | |
| 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
 | |
| 
 | |
| 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
 | |
| 		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
 | |
| 			break;
 | |
| 
 | |
| 	return level - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pte mapping structures:
 | |
|  *
 | |
|  * If pte_list bit zero is zero, then pte_list point to the spte.
 | |
|  *
 | |
|  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 | |
|  * pte_list_desc containing more mappings.
 | |
|  *
 | |
|  * Returns the number of pte entries before the spte was added or zero if
 | |
|  * the spte was not added.
 | |
|  *
 | |
|  */
 | |
| static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
 | |
| 			unsigned long *pte_list)
 | |
| {
 | |
| 	struct pte_list_desc *desc;
 | |
| 	int i, count = 0;
 | |
| 
 | |
| 	if (!*pte_list) {
 | |
| 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
 | |
| 		*pte_list = (unsigned long)spte;
 | |
| 	} else if (!(*pte_list & 1)) {
 | |
| 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
 | |
| 		desc = mmu_alloc_pte_list_desc(vcpu);
 | |
| 		desc->sptes[0] = (u64 *)*pte_list;
 | |
| 		desc->sptes[1] = spte;
 | |
| 		*pte_list = (unsigned long)desc | 1;
 | |
| 		++count;
 | |
| 	} else {
 | |
| 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
 | |
| 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
 | |
| 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
 | |
| 			desc = desc->more;
 | |
| 			count += PTE_LIST_EXT;
 | |
| 		}
 | |
| 		if (desc->sptes[PTE_LIST_EXT-1]) {
 | |
| 			desc->more = mmu_alloc_pte_list_desc(vcpu);
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		for (i = 0; desc->sptes[i]; ++i)
 | |
| 			++count;
 | |
| 		desc->sptes[i] = spte;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void
 | |
| pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
 | |
| 			   int i, struct pte_list_desc *prev_desc)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
 | |
| 		;
 | |
| 	desc->sptes[i] = desc->sptes[j];
 | |
| 	desc->sptes[j] = NULL;
 | |
| 	if (j != 0)
 | |
| 		return;
 | |
| 	if (!prev_desc && !desc->more)
 | |
| 		*pte_list = (unsigned long)desc->sptes[0];
 | |
| 	else
 | |
| 		if (prev_desc)
 | |
| 			prev_desc->more = desc->more;
 | |
| 		else
 | |
| 			*pte_list = (unsigned long)desc->more | 1;
 | |
| 	mmu_free_pte_list_desc(desc);
 | |
| }
 | |
| 
 | |
| static void pte_list_remove(u64 *spte, unsigned long *pte_list)
 | |
| {
 | |
| 	struct pte_list_desc *desc;
 | |
| 	struct pte_list_desc *prev_desc;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!*pte_list) {
 | |
| 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
 | |
| 		BUG();
 | |
| 	} else if (!(*pte_list & 1)) {
 | |
| 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
 | |
| 		if ((u64 *)*pte_list != spte) {
 | |
| 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
 | |
| 			BUG();
 | |
| 		}
 | |
| 		*pte_list = 0;
 | |
| 	} else {
 | |
| 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
 | |
| 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
 | |
| 		prev_desc = NULL;
 | |
| 		while (desc) {
 | |
| 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
 | |
| 				if (desc->sptes[i] == spte) {
 | |
| 					pte_list_desc_remove_entry(pte_list,
 | |
| 							       desc, i,
 | |
| 							       prev_desc);
 | |
| 					return;
 | |
| 				}
 | |
| 			prev_desc = desc;
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		pr_err("pte_list_remove: %p many->many\n", spte);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| typedef void (*pte_list_walk_fn) (u64 *spte);
 | |
| static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
 | |
| {
 | |
| 	struct pte_list_desc *desc;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!*pte_list)
 | |
| 		return;
 | |
| 
 | |
| 	if (!(*pte_list & 1))
 | |
| 		return fn((u64 *)*pte_list);
 | |
| 
 | |
| 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
 | |
| 	while (desc) {
 | |
| 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
 | |
| 			fn(desc->sptes[i]);
 | |
| 		desc = desc->more;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
 | |
| 				    struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	idx = gfn_to_index(gfn, slot->base_gfn, level);
 | |
| 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take gfn and return the reverse mapping to it.
 | |
|  */
 | |
| static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = gfn_to_memslot(kvm, gfn);
 | |
| 	return __gfn_to_rmap(gfn, level, slot);
 | |
| }
 | |
| 
 | |
| static bool rmap_can_add(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_memory_cache *cache;
 | |
| 
 | |
| 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
 | |
| 	return mmu_memory_cache_free_objects(cache);
 | |
| }
 | |
| 
 | |
| static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned long *rmapp;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
 | |
| 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
 | |
| 	return pte_list_add(vcpu, spte, rmapp);
 | |
| }
 | |
| 
 | |
| static void rmap_remove(struct kvm *kvm, u64 *spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	gfn_t gfn;
 | |
| 	unsigned long *rmapp;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
 | |
| 	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
 | |
| 	pte_list_remove(spte, rmapp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by the following functions to iterate through the sptes linked by a
 | |
|  * rmap.  All fields are private and not assumed to be used outside.
 | |
|  */
 | |
| struct rmap_iterator {
 | |
| 	/* private fields */
 | |
| 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
 | |
| 	int pos;			/* index of the sptep */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Iteration must be started by this function.  This should also be used after
 | |
|  * removing/dropping sptes from the rmap link because in such cases the
 | |
|  * information in the itererator may not be valid.
 | |
|  *
 | |
|  * Returns sptep if found, NULL otherwise.
 | |
|  */
 | |
| static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
 | |
| {
 | |
| 	if (!rmap)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!(rmap & 1)) {
 | |
| 		iter->desc = NULL;
 | |
| 		return (u64 *)rmap;
 | |
| 	}
 | |
| 
 | |
| 	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
 | |
| 	iter->pos = 0;
 | |
| 	return iter->desc->sptes[iter->pos];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be used with a valid iterator: e.g. after rmap_get_first().
 | |
|  *
 | |
|  * Returns sptep if found, NULL otherwise.
 | |
|  */
 | |
| static u64 *rmap_get_next(struct rmap_iterator *iter)
 | |
| {
 | |
| 	if (iter->desc) {
 | |
| 		if (iter->pos < PTE_LIST_EXT - 1) {
 | |
| 			u64 *sptep;
 | |
| 
 | |
| 			++iter->pos;
 | |
| 			sptep = iter->desc->sptes[iter->pos];
 | |
| 			if (sptep)
 | |
| 				return sptep;
 | |
| 		}
 | |
| 
 | |
| 		iter->desc = iter->desc->more;
 | |
| 
 | |
| 		if (iter->desc) {
 | |
| 			iter->pos = 0;
 | |
| 			/* desc->sptes[0] cannot be NULL */
 | |
| 			return iter->desc->sptes[iter->pos];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void drop_spte(struct kvm *kvm, u64 *sptep)
 | |
| {
 | |
| 	if (mmu_spte_clear_track_bits(sptep))
 | |
| 		rmap_remove(kvm, sptep);
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
 | |
| {
 | |
| 	if (is_large_pte(*sptep)) {
 | |
| 		WARN_ON(page_header(__pa(sptep))->role.level ==
 | |
| 			PT_PAGE_TABLE_LEVEL);
 | |
| 		drop_spte(kvm, sptep);
 | |
| 		--kvm->stat.lpages;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
 | |
| {
 | |
| 	if (__drop_large_spte(vcpu->kvm, sptep))
 | |
| 		kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write-protect on the specified @sptep, @pt_protect indicates whether
 | |
|  * spte writ-protection is caused by protecting shadow page table.
 | |
|  * @flush indicates whether tlb need be flushed.
 | |
|  *
 | |
|  * Note: write protection is difference between drity logging and spte
 | |
|  * protection:
 | |
|  * - for dirty logging, the spte can be set to writable at anytime if
 | |
|  *   its dirty bitmap is properly set.
 | |
|  * - for spte protection, the spte can be writable only after unsync-ing
 | |
|  *   shadow page.
 | |
|  *
 | |
|  * Return true if the spte is dropped.
 | |
|  */
 | |
| static bool
 | |
| spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
 | |
| {
 | |
| 	u64 spte = *sptep;
 | |
| 
 | |
| 	if (!is_writable_pte(spte) &&
 | |
| 	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
 | |
| 		return false;
 | |
| 
 | |
| 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
 | |
| 
 | |
| 	if (__drop_large_spte(kvm, sptep)) {
 | |
| 		*flush |= true;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (pt_protect)
 | |
| 		spte &= ~SPTE_MMU_WRITEABLE;
 | |
| 	spte = spte & ~PT_WRITABLE_MASK;
 | |
| 
 | |
| 	*flush |= mmu_spte_update(sptep, spte);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
 | |
| 				 bool pt_protect)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
 | |
| 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
 | |
| 		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
 | |
| 			sptep = rmap_get_first(*rmapp, &iter);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		sptep = rmap_get_next(&iter);
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 | |
|  * @kvm: kvm instance
 | |
|  * @slot: slot to protect
 | |
|  * @gfn_offset: start of the BITS_PER_LONG pages we care about
 | |
|  * @mask: indicates which pages we should protect
 | |
|  *
 | |
|  * Used when we do not need to care about huge page mappings: e.g. during dirty
 | |
|  * logging we do not have any such mappings.
 | |
|  */
 | |
| void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
 | |
| 				     struct kvm_memory_slot *slot,
 | |
| 				     gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	unsigned long *rmapp;
 | |
| 
 | |
| 	while (mask) {
 | |
| 		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
 | |
| 				      PT_PAGE_TABLE_LEVEL, slot);
 | |
| 		__rmap_write_protect(kvm, rmapp, false);
 | |
| 
 | |
| 		/* clear the first set bit */
 | |
| 		mask &= mask - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	unsigned long *rmapp;
 | |
| 	int i;
 | |
| 	bool write_protected = false;
 | |
| 
 | |
| 	slot = gfn_to_memslot(kvm, gfn);
 | |
| 
 | |
| 	for (i = PT_PAGE_TABLE_LEVEL;
 | |
| 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		rmapp = __gfn_to_rmap(gfn, i, slot);
 | |
| 		write_protected |= __rmap_write_protect(kvm, rmapp, true);
 | |
| 	}
 | |
| 
 | |
| 	return write_protected;
 | |
| }
 | |
| 
 | |
| static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
 | |
| 			   struct kvm_memory_slot *slot, unsigned long data)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	int need_tlb_flush = 0;
 | |
| 
 | |
| 	while ((sptep = rmap_get_first(*rmapp, &iter))) {
 | |
| 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
 | |
| 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
 | |
| 
 | |
| 		drop_spte(kvm, sptep);
 | |
| 		need_tlb_flush = 1;
 | |
| 	}
 | |
| 
 | |
| 	return need_tlb_flush;
 | |
| }
 | |
| 
 | |
| static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
 | |
| 			     struct kvm_memory_slot *slot, unsigned long data)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	int need_flush = 0;
 | |
| 	u64 new_spte;
 | |
| 	pte_t *ptep = (pte_t *)data;
 | |
| 	pfn_t new_pfn;
 | |
| 
 | |
| 	WARN_ON(pte_huge(*ptep));
 | |
| 	new_pfn = pte_pfn(*ptep);
 | |
| 
 | |
| 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
 | |
| 		BUG_ON(!is_shadow_present_pte(*sptep));
 | |
| 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
 | |
| 
 | |
| 		need_flush = 1;
 | |
| 
 | |
| 		if (pte_write(*ptep)) {
 | |
| 			drop_spte(kvm, sptep);
 | |
| 			sptep = rmap_get_first(*rmapp, &iter);
 | |
| 		} else {
 | |
| 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
 | |
| 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
 | |
| 
 | |
| 			new_spte &= ~PT_WRITABLE_MASK;
 | |
| 			new_spte &= ~SPTE_HOST_WRITEABLE;
 | |
| 			new_spte &= ~shadow_accessed_mask;
 | |
| 
 | |
| 			mmu_spte_clear_track_bits(sptep);
 | |
| 			mmu_spte_set(sptep, new_spte);
 | |
| 			sptep = rmap_get_next(&iter);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (need_flush)
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_handle_hva_range(struct kvm *kvm,
 | |
| 				unsigned long start,
 | |
| 				unsigned long end,
 | |
| 				unsigned long data,
 | |
| 				int (*handler)(struct kvm *kvm,
 | |
| 					       unsigned long *rmapp,
 | |
| 					       struct kvm_memory_slot *slot,
 | |
| 					       unsigned long data))
 | |
| {
 | |
| 	int j;
 | |
| 	int ret = 0;
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 
 | |
| 	slots = kvm_memslots(kvm);
 | |
| 
 | |
| 	kvm_for_each_memslot(memslot, slots) {
 | |
| 		unsigned long hva_start, hva_end;
 | |
| 		gfn_t gfn_start, gfn_end;
 | |
| 
 | |
| 		hva_start = max(start, memslot->userspace_addr);
 | |
| 		hva_end = min(end, memslot->userspace_addr +
 | |
| 					(memslot->npages << PAGE_SHIFT));
 | |
| 		if (hva_start >= hva_end)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 | |
| 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 | |
| 		 */
 | |
| 		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
 | |
| 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 | |
| 
 | |
| 		for (j = PT_PAGE_TABLE_LEVEL;
 | |
| 		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
 | |
| 			unsigned long idx, idx_end;
 | |
| 			unsigned long *rmapp;
 | |
| 
 | |
| 			/*
 | |
| 			 * {idx(page_j) | page_j intersects with
 | |
| 			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
 | |
| 			 */
 | |
| 			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
 | |
| 			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
 | |
| 
 | |
| 			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
 | |
| 
 | |
| 			for (; idx <= idx_end; ++idx)
 | |
| 				ret |= handler(kvm, rmapp++, memslot, data);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
 | |
| 			  unsigned long data,
 | |
| 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
 | |
| 					 struct kvm_memory_slot *slot,
 | |
| 					 unsigned long data))
 | |
| {
 | |
| 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
 | |
| }
 | |
| 
 | |
| int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
 | |
| }
 | |
| 
 | |
| int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
 | |
| }
 | |
| 
 | |
| void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 | |
| {
 | |
| 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
 | |
| }
 | |
| 
 | |
| static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
 | |
| 			 struct kvm_memory_slot *slot, unsigned long data)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator uninitialized_var(iter);
 | |
| 	int young = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of absence of EPT Access and Dirty Bits supports,
 | |
| 	 * emulate the accessed bit for EPT, by checking if this page has
 | |
| 	 * an EPT mapping, and clearing it if it does. On the next access,
 | |
| 	 * a new EPT mapping will be established.
 | |
| 	 * This has some overhead, but not as much as the cost of swapping
 | |
| 	 * out actively used pages or breaking up actively used hugepages.
 | |
| 	 */
 | |
| 	if (!shadow_accessed_mask) {
 | |
| 		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
 | |
| 	     sptep = rmap_get_next(&iter)) {
 | |
| 		BUG_ON(!is_shadow_present_pte(*sptep));
 | |
| 
 | |
| 		if (*sptep & shadow_accessed_mask) {
 | |
| 			young = 1;
 | |
| 			clear_bit((ffs(shadow_accessed_mask) - 1),
 | |
| 				 (unsigned long *)sptep);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	/* @data has hva passed to kvm_age_hva(). */
 | |
| 	trace_kvm_age_page(data, slot, young);
 | |
| 	return young;
 | |
| }
 | |
| 
 | |
| static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
 | |
| 			      struct kvm_memory_slot *slot, unsigned long data)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	int young = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there's no access bit in the secondary pte set by the
 | |
| 	 * hardware it's up to gup-fast/gup to set the access bit in
 | |
| 	 * the primary pte or in the page structure.
 | |
| 	 */
 | |
| 	if (!shadow_accessed_mask)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
 | |
| 	     sptep = rmap_get_next(&iter)) {
 | |
| 		BUG_ON(!is_shadow_present_pte(*sptep));
 | |
| 
 | |
| 		if (*sptep & shadow_accessed_mask) {
 | |
| 			young = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return young;
 | |
| }
 | |
| 
 | |
| #define RMAP_RECYCLE_THRESHOLD 1000
 | |
| 
 | |
| static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 | |
| {
 | |
| 	unsigned long *rmapp;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 
 | |
| 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
 | |
| 
 | |
| 	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
 | |
| 	kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| }
 | |
| 
 | |
| int kvm_age_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
 | |
| }
 | |
| 
 | |
| int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
 | |
| }
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| static int is_empty_shadow_page(u64 *spt)
 | |
| {
 | |
| 	u64 *pos;
 | |
| 	u64 *end;
 | |
| 
 | |
| 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
 | |
| 		if (is_shadow_present_pte(*pos)) {
 | |
| 			printk(KERN_ERR "%s: %p %llx\n", __func__,
 | |
| 			       pos, *pos);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This value is the sum of all of the kvm instances's
 | |
|  * kvm->arch.n_used_mmu_pages values.  We need a global,
 | |
|  * aggregate version in order to make the slab shrinker
 | |
|  * faster
 | |
|  */
 | |
| static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
 | |
| {
 | |
| 	kvm->arch.n_used_mmu_pages += nr;
 | |
| 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	ASSERT(is_empty_shadow_page(sp->spt));
 | |
| 	hlist_del(&sp->hash_link);
 | |
| 	list_del(&sp->link);
 | |
| 	free_page((unsigned long)sp->spt);
 | |
| 	if (!sp->role.direct)
 | |
| 		free_page((unsigned long)sp->gfns);
 | |
| 	kmem_cache_free(mmu_page_header_cache, sp);
 | |
| }
 | |
| 
 | |
| static unsigned kvm_page_table_hashfn(gfn_t gfn)
 | |
| {
 | |
| 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
 | |
| }
 | |
| 
 | |
| static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp, u64 *parent_pte)
 | |
| {
 | |
| 	if (!parent_pte)
 | |
| 		return;
 | |
| 
 | |
| 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
 | |
| }
 | |
| 
 | |
| static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
 | |
| 				       u64 *parent_pte)
 | |
| {
 | |
| 	pte_list_remove(parent_pte, &sp->parent_ptes);
 | |
| }
 | |
| 
 | |
| static void drop_parent_pte(struct kvm_mmu_page *sp,
 | |
| 			    u64 *parent_pte)
 | |
| {
 | |
| 	mmu_page_remove_parent_pte(sp, parent_pte);
 | |
| 	mmu_spte_clear_no_track(parent_pte);
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
 | |
| 					       u64 *parent_pte, int direct)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
 | |
| 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
 | |
| 	if (!direct)
 | |
| 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
 | |
| 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
 | |
| 
 | |
| 	/*
 | |
| 	 * The active_mmu_pages list is the FIFO list, do not move the
 | |
| 	 * page until it is zapped. kvm_zap_obsolete_pages depends on
 | |
| 	 * this feature. See the comments in kvm_zap_obsolete_pages().
 | |
| 	 */
 | |
| 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
 | |
| 	sp->parent_ptes = 0;
 | |
| 	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
 | |
| 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void mark_unsync(u64 *spte);
 | |
| static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	pte_list_walk(&sp->parent_ptes, mark_unsync);
 | |
| }
 | |
| 
 | |
| static void mark_unsync(u64 *spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned int index;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	index = spte - sp->spt;
 | |
| 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
 | |
| 		return;
 | |
| 	if (sp->unsync_children++)
 | |
| 		return;
 | |
| 	kvm_mmu_mark_parents_unsync(sp);
 | |
| }
 | |
| 
 | |
| static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
 | |
| 			       struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
 | |
| 				 struct kvm_mmu_page *sp, u64 *spte,
 | |
| 				 const void *pte)
 | |
| {
 | |
| 	WARN_ON(1);
 | |
| }
 | |
| 
 | |
| #define KVM_PAGE_ARRAY_NR 16
 | |
| 
 | |
| struct kvm_mmu_pages {
 | |
| 	struct mmu_page_and_offset {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 		unsigned int idx;
 | |
| 	} page[KVM_PAGE_ARRAY_NR];
 | |
| 	unsigned int nr;
 | |
| };
 | |
| 
 | |
| static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
 | |
| 			 int idx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (sp->unsync)
 | |
| 		for (i=0; i < pvec->nr; i++)
 | |
| 			if (pvec->page[i].sp == sp)
 | |
| 				return 0;
 | |
| 
 | |
| 	pvec->page[pvec->nr].sp = sp;
 | |
| 	pvec->page[pvec->nr].idx = idx;
 | |
| 	pvec->nr++;
 | |
| 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
 | |
| }
 | |
| 
 | |
| static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
 | |
| 			   struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	int i, ret, nr_unsync_leaf = 0;
 | |
| 
 | |
| 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
 | |
| 		struct kvm_mmu_page *child;
 | |
| 		u64 ent = sp->spt[i];
 | |
| 
 | |
| 		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
 | |
| 			goto clear_child_bitmap;
 | |
| 
 | |
| 		child = page_header(ent & PT64_BASE_ADDR_MASK);
 | |
| 
 | |
| 		if (child->unsync_children) {
 | |
| 			if (mmu_pages_add(pvec, child, i))
 | |
| 				return -ENOSPC;
 | |
| 
 | |
| 			ret = __mmu_unsync_walk(child, pvec);
 | |
| 			if (!ret)
 | |
| 				goto clear_child_bitmap;
 | |
| 			else if (ret > 0)
 | |
| 				nr_unsync_leaf += ret;
 | |
| 			else
 | |
| 				return ret;
 | |
| 		} else if (child->unsync) {
 | |
| 			nr_unsync_leaf++;
 | |
| 			if (mmu_pages_add(pvec, child, i))
 | |
| 				return -ENOSPC;
 | |
| 		} else
 | |
| 			 goto clear_child_bitmap;
 | |
| 
 | |
| 		continue;
 | |
| 
 | |
| clear_child_bitmap:
 | |
| 		__clear_bit(i, sp->unsync_child_bitmap);
 | |
| 		sp->unsync_children--;
 | |
| 		WARN_ON((int)sp->unsync_children < 0);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return nr_unsync_leaf;
 | |
| }
 | |
| 
 | |
| static int mmu_unsync_walk(struct kvm_mmu_page *sp,
 | |
| 			   struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	if (!sp->unsync_children)
 | |
| 		return 0;
 | |
| 
 | |
| 	mmu_pages_add(pvec, sp, 0);
 | |
| 	return __mmu_unsync_walk(sp, pvec);
 | |
| }
 | |
| 
 | |
| static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	WARN_ON(!sp->unsync);
 | |
| 	trace_kvm_mmu_sync_page(sp);
 | |
| 	sp->unsync = 0;
 | |
| 	--kvm->stat.mmu_unsync;
 | |
| }
 | |
| 
 | |
| static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 				    struct list_head *invalid_list);
 | |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm,
 | |
| 				    struct list_head *invalid_list);
 | |
| 
 | |
| /*
 | |
|  * NOTE: we should pay more attention on the zapped-obsolete page
 | |
|  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 | |
|  * since it has been deleted from active_mmu_pages but still can be found
 | |
|  * at hast list.
 | |
|  *
 | |
|  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 | |
|  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 | |
|  * all the obsolete pages.
 | |
|  */
 | |
| #define for_each_gfn_sp(_kvm, _sp, _gfn)				\
 | |
| 	hlist_for_each_entry(_sp,					\
 | |
| 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
 | |
| 		if ((_sp)->gfn != (_gfn)) {} else
 | |
| 
 | |
| #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
 | |
| 	for_each_gfn_sp(_kvm, _sp, _gfn)				\
 | |
| 		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
 | |
| 
 | |
| /* @sp->gfn should be write-protected at the call site */
 | |
| static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 			   struct list_head *invalid_list, bool clear_unsync)
 | |
| {
 | |
| 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
 | |
| 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (clear_unsync)
 | |
| 		kvm_unlink_unsync_page(vcpu->kvm, sp);
 | |
| 
 | |
| 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
 | |
| 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_flush_tlb(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
 | |
| 				   struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
 | |
| 	if (ret)
 | |
| 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KVM_MMU_AUDIT
 | |
| #include "mmu_audit.c"
 | |
| #else
 | |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
 | |
| static void mmu_audit_disable(void) { }
 | |
| #endif
 | |
| 
 | |
| static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 			 struct list_head *invalid_list)
 | |
| {
 | |
| 	return __kvm_sync_page(vcpu, sp, invalid_list, true);
 | |
| }
 | |
| 
 | |
| /* @gfn should be write-protected at the call site */
 | |
| static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *s;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
 | |
| 		if (!s->unsync)
 | |
| 			continue;
 | |
| 
 | |
| 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
 | |
| 		kvm_unlink_unsync_page(vcpu->kvm, s);
 | |
| 		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
 | |
| 			(vcpu->arch.mmu.sync_page(vcpu, s))) {
 | |
| 			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
 | |
| 			continue;
 | |
| 		}
 | |
| 		flush = true;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 	if (flush)
 | |
| 		kvm_mmu_flush_tlb(vcpu);
 | |
| }
 | |
| 
 | |
| struct mmu_page_path {
 | |
| 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
 | |
| 	unsigned int idx[PT64_ROOT_LEVEL-1];
 | |
| };
 | |
| 
 | |
| #define for_each_sp(pvec, sp, parents, i)			\
 | |
| 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
 | |
| 			sp = pvec.page[i].sp;			\
 | |
| 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
 | |
| 			i = mmu_pages_next(&pvec, &parents, i))
 | |
| 
 | |
| static int mmu_pages_next(struct kvm_mmu_pages *pvec,
 | |
| 			  struct mmu_page_path *parents,
 | |
| 			  int i)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	for (n = i+1; n < pvec->nr; n++) {
 | |
| 		struct kvm_mmu_page *sp = pvec->page[n].sp;
 | |
| 
 | |
| 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
 | |
| 			parents->idx[0] = pvec->page[n].idx;
 | |
| 			return n;
 | |
| 		}
 | |
| 
 | |
| 		parents->parent[sp->role.level-2] = sp;
 | |
| 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static void mmu_pages_clear_parents(struct mmu_page_path *parents)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned int level = 0;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int idx = parents->idx[level];
 | |
| 
 | |
| 		sp = parents->parent[level];
 | |
| 		if (!sp)
 | |
| 			return;
 | |
| 
 | |
| 		--sp->unsync_children;
 | |
| 		WARN_ON((int)sp->unsync_children < 0);
 | |
| 		__clear_bit(idx, sp->unsync_child_bitmap);
 | |
| 		level++;
 | |
| 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
 | |
| 			       struct mmu_page_path *parents,
 | |
| 			       struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	parents->parent[parent->role.level-1] = NULL;
 | |
| 	pvec->nr = 0;
 | |
| }
 | |
| 
 | |
| static void mmu_sync_children(struct kvm_vcpu *vcpu,
 | |
| 			      struct kvm_mmu_page *parent)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct mmu_page_path parents;
 | |
| 	struct kvm_mmu_pages pages;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 
 | |
| 	kvm_mmu_pages_init(parent, &parents, &pages);
 | |
| 	while (mmu_unsync_walk(parent, &pages)) {
 | |
| 		bool protected = false;
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i)
 | |
| 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
 | |
| 
 | |
| 		if (protected)
 | |
| 			kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i) {
 | |
| 			kvm_sync_page(vcpu, sp, &invalid_list);
 | |
| 			mmu_pages_clear_parents(&parents);
 | |
| 		}
 | |
| 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 		cond_resched_lock(&vcpu->kvm->mmu_lock);
 | |
| 		kvm_mmu_pages_init(parent, &parents, &pages);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_shadow_page_table(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
 | |
| 		sp->spt[i] = 0ull;
 | |
| }
 | |
| 
 | |
| static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	sp->write_flooding_count = 0;
 | |
| }
 | |
| 
 | |
| static void clear_sp_write_flooding_count(u64 *spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
 | |
| 
 | |
| 	__clear_sp_write_flooding_count(sp);
 | |
| }
 | |
| 
 | |
| static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
 | |
| 					     gfn_t gfn,
 | |
| 					     gva_t gaddr,
 | |
| 					     unsigned level,
 | |
| 					     int direct,
 | |
| 					     unsigned access,
 | |
| 					     u64 *parent_pte)
 | |
| {
 | |
| 	union kvm_mmu_page_role role;
 | |
| 	unsigned quadrant;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	bool need_sync = false;
 | |
| 
 | |
| 	role = vcpu->arch.mmu.base_role;
 | |
| 	role.level = level;
 | |
| 	role.direct = direct;
 | |
| 	if (role.direct)
 | |
| 		role.cr4_pae = 0;
 | |
| 	role.access = access;
 | |
| 	if (!vcpu->arch.mmu.direct_map
 | |
| 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
 | |
| 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
 | |
| 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
 | |
| 		role.quadrant = quadrant;
 | |
| 	}
 | |
| 	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
 | |
| 		if (is_obsolete_sp(vcpu->kvm, sp))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!need_sync && sp->unsync)
 | |
| 			need_sync = true;
 | |
| 
 | |
| 		if (sp->role.word != role.word)
 | |
| 			continue;
 | |
| 
 | |
| 		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
 | |
| 			break;
 | |
| 
 | |
| 		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
 | |
| 		if (sp->unsync_children) {
 | |
| 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
 | |
| 			kvm_mmu_mark_parents_unsync(sp);
 | |
| 		} else if (sp->unsync)
 | |
| 			kvm_mmu_mark_parents_unsync(sp);
 | |
| 
 | |
| 		__clear_sp_write_flooding_count(sp);
 | |
| 		trace_kvm_mmu_get_page(sp, false);
 | |
| 		return sp;
 | |
| 	}
 | |
| 	++vcpu->kvm->stat.mmu_cache_miss;
 | |
| 	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
 | |
| 	if (!sp)
 | |
| 		return sp;
 | |
| 	sp->gfn = gfn;
 | |
| 	sp->role = role;
 | |
| 	hlist_add_head(&sp->hash_link,
 | |
| 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
 | |
| 	if (!direct) {
 | |
| 		if (rmap_write_protect(vcpu->kvm, gfn))
 | |
| 			kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
 | |
| 			kvm_sync_pages(vcpu, gfn);
 | |
| 
 | |
| 		account_shadowed(vcpu->kvm, gfn);
 | |
| 	}
 | |
| 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
 | |
| 	init_shadow_page_table(sp);
 | |
| 	trace_kvm_mmu_get_page(sp, true);
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
 | |
| 			     struct kvm_vcpu *vcpu, u64 addr)
 | |
| {
 | |
| 	iterator->addr = addr;
 | |
| 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
 | |
| 	iterator->level = vcpu->arch.mmu.shadow_root_level;
 | |
| 
 | |
| 	if (iterator->level == PT64_ROOT_LEVEL &&
 | |
| 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
 | |
| 	    !vcpu->arch.mmu.direct_map)
 | |
| 		--iterator->level;
 | |
| 
 | |
| 	if (iterator->level == PT32E_ROOT_LEVEL) {
 | |
| 		iterator->shadow_addr
 | |
| 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
 | |
| 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
 | |
| 		--iterator->level;
 | |
| 		if (!iterator->shadow_addr)
 | |
| 			iterator->level = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
 | |
| {
 | |
| 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
 | |
| 		return false;
 | |
| 
 | |
| 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
 | |
| 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
 | |
| 			       u64 spte)
 | |
| {
 | |
| 	if (is_last_spte(spte, iterator->level)) {
 | |
| 		iterator->level = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
 | |
| 	--iterator->level;
 | |
| }
 | |
| 
 | |
| static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
 | |
| {
 | |
| 	return __shadow_walk_next(iterator, *iterator->sptep);
 | |
| }
 | |
| 
 | |
| static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
 | |
| {
 | |
| 	u64 spte;
 | |
| 
 | |
| 	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
 | |
| 			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
 | |
| 
 | |
| 	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
 | |
| 	       shadow_user_mask | shadow_x_mask;
 | |
| 
 | |
| 	if (accessed)
 | |
| 		spte |= shadow_accessed_mask;
 | |
| 
 | |
| 	mmu_spte_set(sptep, spte);
 | |
| }
 | |
| 
 | |
| static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 				   unsigned direct_access)
 | |
| {
 | |
| 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
 | |
| 		struct kvm_mmu_page *child;
 | |
| 
 | |
| 		/*
 | |
| 		 * For the direct sp, if the guest pte's dirty bit
 | |
| 		 * changed form clean to dirty, it will corrupt the
 | |
| 		 * sp's access: allow writable in the read-only sp,
 | |
| 		 * so we should update the spte at this point to get
 | |
| 		 * a new sp with the correct access.
 | |
| 		 */
 | |
| 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
 | |
| 		if (child->role.access == direct_access)
 | |
| 			return;
 | |
| 
 | |
| 		drop_parent_pte(child, sptep);
 | |
| 		kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 			     u64 *spte)
 | |
| {
 | |
| 	u64 pte;
 | |
| 	struct kvm_mmu_page *child;
 | |
| 
 | |
| 	pte = *spte;
 | |
| 	if (is_shadow_present_pte(pte)) {
 | |
| 		if (is_last_spte(pte, sp->role.level)) {
 | |
| 			drop_spte(kvm, spte);
 | |
| 			if (is_large_pte(pte))
 | |
| 				--kvm->stat.lpages;
 | |
| 		} else {
 | |
| 			child = page_header(pte & PT64_BASE_ADDR_MASK);
 | |
| 			drop_parent_pte(child, spte);
 | |
| 		}
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (is_mmio_spte(pte))
 | |
| 		mmu_spte_clear_no_track(spte);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_page_unlink_children(struct kvm *kvm,
 | |
| 					 struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
 | |
| 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
 | |
| {
 | |
| 	mmu_page_remove_parent_pte(sp, parent_pte);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 
 | |
| 	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
 | |
| 		drop_parent_pte(sp, sptep);
 | |
| }
 | |
| 
 | |
| static int mmu_zap_unsync_children(struct kvm *kvm,
 | |
| 				   struct kvm_mmu_page *parent,
 | |
| 				   struct list_head *invalid_list)
 | |
| {
 | |
| 	int i, zapped = 0;
 | |
| 	struct mmu_page_path parents;
 | |
| 	struct kvm_mmu_pages pages;
 | |
| 
 | |
| 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return 0;
 | |
| 
 | |
| 	kvm_mmu_pages_init(parent, &parents, &pages);
 | |
| 	while (mmu_unsync_walk(parent, &pages)) {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i) {
 | |
| 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
 | |
| 			mmu_pages_clear_parents(&parents);
 | |
| 			zapped++;
 | |
| 		}
 | |
| 		kvm_mmu_pages_init(parent, &parents, &pages);
 | |
| 	}
 | |
| 
 | |
| 	return zapped;
 | |
| }
 | |
| 
 | |
| static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 				    struct list_head *invalid_list)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	trace_kvm_mmu_prepare_zap_page(sp);
 | |
| 	++kvm->stat.mmu_shadow_zapped;
 | |
| 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
 | |
| 	kvm_mmu_page_unlink_children(kvm, sp);
 | |
| 	kvm_mmu_unlink_parents(kvm, sp);
 | |
| 
 | |
| 	if (!sp->role.invalid && !sp->role.direct)
 | |
| 		unaccount_shadowed(kvm, sp->gfn);
 | |
| 
 | |
| 	if (sp->unsync)
 | |
| 		kvm_unlink_unsync_page(kvm, sp);
 | |
| 	if (!sp->root_count) {
 | |
| 		/* Count self */
 | |
| 		ret++;
 | |
| 		list_move(&sp->link, invalid_list);
 | |
| 		kvm_mod_used_mmu_pages(kvm, -1);
 | |
| 	} else {
 | |
| 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
 | |
| 
 | |
| 		/*
 | |
| 		 * The obsolete pages can not be used on any vcpus.
 | |
| 		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
 | |
| 		 */
 | |
| 		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
 | |
| 			kvm_reload_remote_mmus(kvm);
 | |
| 	}
 | |
| 
 | |
| 	sp->role.invalid = 1;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm,
 | |
| 				    struct list_head *invalid_list)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *nsp;
 | |
| 
 | |
| 	if (list_empty(invalid_list))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * wmb: make sure everyone sees our modifications to the page tables
 | |
| 	 * rmb: make sure we see changes to vcpu->mode
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for all vcpus to exit guest mode and/or lockless shadow
 | |
| 	 * page table walks.
 | |
| 	 */
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| 
 | |
| 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
 | |
| 		WARN_ON(!sp->role.invalid || sp->root_count);
 | |
| 		kvm_mmu_free_page(sp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
 | |
| 					struct list_head *invalid_list)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (list_empty(&kvm->arch.active_mmu_pages))
 | |
| 		return false;
 | |
| 
 | |
| 	sp = list_entry(kvm->arch.active_mmu_pages.prev,
 | |
| 			struct kvm_mmu_page, link);
 | |
| 	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Changing the number of mmu pages allocated to the vm
 | |
|  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
 | |
|  */
 | |
| void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
 | |
| {
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
 | |
| 		/* Need to free some mmu pages to achieve the goal. */
 | |
| 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
 | |
| 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
 | |
| 				break;
 | |
| 
 | |
| 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
 | |
| 	}
 | |
| 
 | |
| 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
 | |
| 	r = 0;
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
 | |
| 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
 | |
| 			 sp->role.word);
 | |
| 		r = 1;
 | |
| 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
 | |
| 	}
 | |
| 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
 | |
| 
 | |
| /*
 | |
|  * The function is based on mtrr_type_lookup() in
 | |
|  * arch/x86/kernel/cpu/mtrr/generic.c
 | |
|  */
 | |
| static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
 | |
| 			 u64 start, u64 end)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 base, mask;
 | |
| 	u8 prev_match, curr_match;
 | |
| 	int num_var_ranges = KVM_NR_VAR_MTRR;
 | |
| 
 | |
| 	if (!mtrr_state->enabled)
 | |
| 		return 0xFF;
 | |
| 
 | |
| 	/* Make end inclusive end, instead of exclusive */
 | |
| 	end--;
 | |
| 
 | |
| 	/* Look in fixed ranges. Just return the type as per start */
 | |
| 	if (mtrr_state->have_fixed && (start < 0x100000)) {
 | |
| 		int idx;
 | |
| 
 | |
| 		if (start < 0x80000) {
 | |
| 			idx = 0;
 | |
| 			idx += (start >> 16);
 | |
| 			return mtrr_state->fixed_ranges[idx];
 | |
| 		} else if (start < 0xC0000) {
 | |
| 			idx = 1 * 8;
 | |
| 			idx += ((start - 0x80000) >> 14);
 | |
| 			return mtrr_state->fixed_ranges[idx];
 | |
| 		} else if (start < 0x1000000) {
 | |
| 			idx = 3 * 8;
 | |
| 			idx += ((start - 0xC0000) >> 12);
 | |
| 			return mtrr_state->fixed_ranges[idx];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Look in variable ranges
 | |
| 	 * Look of multiple ranges matching this address and pick type
 | |
| 	 * as per MTRR precedence
 | |
| 	 */
 | |
| 	if (!(mtrr_state->enabled & 2))
 | |
| 		return mtrr_state->def_type;
 | |
| 
 | |
| 	prev_match = 0xFF;
 | |
| 	for (i = 0; i < num_var_ranges; ++i) {
 | |
| 		unsigned short start_state, end_state;
 | |
| 
 | |
| 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
 | |
| 			continue;
 | |
| 
 | |
| 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
 | |
| 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
 | |
| 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
 | |
| 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
 | |
| 
 | |
| 		start_state = ((start & mask) == (base & mask));
 | |
| 		end_state = ((end & mask) == (base & mask));
 | |
| 		if (start_state != end_state)
 | |
| 			return 0xFE;
 | |
| 
 | |
| 		if ((start & mask) != (base & mask))
 | |
| 			continue;
 | |
| 
 | |
| 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
 | |
| 		if (prev_match == 0xFF) {
 | |
| 			prev_match = curr_match;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (prev_match == MTRR_TYPE_UNCACHABLE ||
 | |
| 		    curr_match == MTRR_TYPE_UNCACHABLE)
 | |
| 			return MTRR_TYPE_UNCACHABLE;
 | |
| 
 | |
| 		if ((prev_match == MTRR_TYPE_WRBACK &&
 | |
| 		     curr_match == MTRR_TYPE_WRTHROUGH) ||
 | |
| 		    (prev_match == MTRR_TYPE_WRTHROUGH &&
 | |
| 		     curr_match == MTRR_TYPE_WRBACK)) {
 | |
| 			prev_match = MTRR_TYPE_WRTHROUGH;
 | |
| 			curr_match = MTRR_TYPE_WRTHROUGH;
 | |
| 		}
 | |
| 
 | |
| 		if (prev_match != curr_match)
 | |
| 			return MTRR_TYPE_UNCACHABLE;
 | |
| 	}
 | |
| 
 | |
| 	if (prev_match != 0xFF)
 | |
| 		return prev_match;
 | |
| 
 | |
| 	return mtrr_state->def_type;
 | |
| }
 | |
| 
 | |
| u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	u8 mtrr;
 | |
| 
 | |
| 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
 | |
| 			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
 | |
| 	if (mtrr == 0xfe || mtrr == 0xff)
 | |
| 		mtrr = MTRR_TYPE_WRBACK;
 | |
| 	return mtrr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
 | |
| 
 | |
| static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	trace_kvm_mmu_unsync_page(sp);
 | |
| 	++vcpu->kvm->stat.mmu_unsync;
 | |
| 	sp->unsync = 1;
 | |
| 
 | |
| 	kvm_mmu_mark_parents_unsync(sp);
 | |
| }
 | |
| 
 | |
| static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *s;
 | |
| 
 | |
| 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
 | |
| 		if (s->unsync)
 | |
| 			continue;
 | |
| 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
 | |
| 		__kvm_unsync_page(vcpu, s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 				  bool can_unsync)
 | |
| {
 | |
| 	struct kvm_mmu_page *s;
 | |
| 	bool need_unsync = false;
 | |
| 
 | |
| 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
 | |
| 		if (!can_unsync)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (s->role.level != PT_PAGE_TABLE_LEVEL)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (!s->unsync)
 | |
| 			need_unsync = true;
 | |
| 	}
 | |
| 	if (need_unsync)
 | |
| 		kvm_unsync_pages(vcpu, gfn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 		    unsigned pte_access, int level,
 | |
| 		    gfn_t gfn, pfn_t pfn, bool speculative,
 | |
| 		    bool can_unsync, bool host_writable)
 | |
| {
 | |
| 	u64 spte;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
 | |
| 		return 0;
 | |
| 
 | |
| 	spte = PT_PRESENT_MASK;
 | |
| 	if (!speculative)
 | |
| 		spte |= shadow_accessed_mask;
 | |
| 
 | |
| 	if (pte_access & ACC_EXEC_MASK)
 | |
| 		spte |= shadow_x_mask;
 | |
| 	else
 | |
| 		spte |= shadow_nx_mask;
 | |
| 
 | |
| 	if (pte_access & ACC_USER_MASK)
 | |
| 		spte |= shadow_user_mask;
 | |
| 
 | |
| 	if (level > PT_PAGE_TABLE_LEVEL)
 | |
| 		spte |= PT_PAGE_SIZE_MASK;
 | |
| 	if (tdp_enabled)
 | |
| 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
 | |
| 			kvm_is_mmio_pfn(pfn));
 | |
| 
 | |
| 	if (host_writable)
 | |
| 		spte |= SPTE_HOST_WRITEABLE;
 | |
| 	else
 | |
| 		pte_access &= ~ACC_WRITE_MASK;
 | |
| 
 | |
| 	spte |= (u64)pfn << PAGE_SHIFT;
 | |
| 
 | |
| 	if (pte_access & ACC_WRITE_MASK) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Other vcpu creates new sp in the window between
 | |
| 		 * mapping_level() and acquiring mmu-lock. We can
 | |
| 		 * allow guest to retry the access, the mapping can
 | |
| 		 * be fixed if guest refault.
 | |
| 		 */
 | |
| 		if (level > PT_PAGE_TABLE_LEVEL &&
 | |
| 		    has_wrprotected_page(vcpu->kvm, gfn, level))
 | |
| 			goto done;
 | |
| 
 | |
| 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Optimization: for pte sync, if spte was writable the hash
 | |
| 		 * lookup is unnecessary (and expensive). Write protection
 | |
| 		 * is responsibility of mmu_get_page / kvm_sync_page.
 | |
| 		 * Same reasoning can be applied to dirty page accounting.
 | |
| 		 */
 | |
| 		if (!can_unsync && is_writable_pte(*sptep))
 | |
| 			goto set_pte;
 | |
| 
 | |
| 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
 | |
| 			pgprintk("%s: found shadow page for %llx, marking ro\n",
 | |
| 				 __func__, gfn);
 | |
| 			ret = 1;
 | |
| 			pte_access &= ~ACC_WRITE_MASK;
 | |
| 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pte_access & ACC_WRITE_MASK)
 | |
| 		mark_page_dirty(vcpu->kvm, gfn);
 | |
| 
 | |
| set_pte:
 | |
| 	if (mmu_spte_update(sptep, spte))
 | |
| 		kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| done:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 			 unsigned pte_access, int write_fault, int *emulate,
 | |
| 			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
 | |
| 			 bool host_writable)
 | |
| {
 | |
| 	int was_rmapped = 0;
 | |
| 	int rmap_count;
 | |
| 
 | |
| 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
 | |
| 		 *sptep, write_fault, gfn);
 | |
| 
 | |
| 	if (is_rmap_spte(*sptep)) {
 | |
| 		/*
 | |
| 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
 | |
| 		 * the parent of the now unreachable PTE.
 | |
| 		 */
 | |
| 		if (level > PT_PAGE_TABLE_LEVEL &&
 | |
| 		    !is_large_pte(*sptep)) {
 | |
| 			struct kvm_mmu_page *child;
 | |
| 			u64 pte = *sptep;
 | |
| 
 | |
| 			child = page_header(pte & PT64_BASE_ADDR_MASK);
 | |
| 			drop_parent_pte(child, sptep);
 | |
| 			kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 		} else if (pfn != spte_to_pfn(*sptep)) {
 | |
| 			pgprintk("hfn old %llx new %llx\n",
 | |
| 				 spte_to_pfn(*sptep), pfn);
 | |
| 			drop_spte(vcpu->kvm, sptep);
 | |
| 			kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 		} else
 | |
| 			was_rmapped = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
 | |
| 	      true, host_writable)) {
 | |
| 		if (write_fault)
 | |
| 			*emulate = 1;
 | |
| 		kvm_mmu_flush_tlb(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(is_mmio_spte(*sptep) && emulate))
 | |
| 		*emulate = 1;
 | |
| 
 | |
| 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
 | |
| 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
 | |
| 		 is_large_pte(*sptep)? "2MB" : "4kB",
 | |
| 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
 | |
| 		 *sptep, sptep);
 | |
| 	if (!was_rmapped && is_large_pte(*sptep))
 | |
| 		++vcpu->kvm->stat.lpages;
 | |
| 
 | |
| 	if (is_shadow_present_pte(*sptep)) {
 | |
| 		if (!was_rmapped) {
 | |
| 			rmap_count = rmap_add(vcpu, sptep, gfn);
 | |
| 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
 | |
| 				rmap_recycle(vcpu, sptep, gfn);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| }
 | |
| 
 | |
| static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 				     bool no_dirty_log)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
 | |
| 	if (!slot)
 | |
| 		return KVM_PFN_ERR_FAULT;
 | |
| 
 | |
| 	return gfn_to_pfn_memslot_atomic(slot, gfn);
 | |
| }
 | |
| 
 | |
| static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp,
 | |
| 				    u64 *start, u64 *end)
 | |
| {
 | |
| 	struct page *pages[PTE_PREFETCH_NUM];
 | |
| 	unsigned access = sp->role.access;
 | |
| 	int i, ret;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
 | |
| 	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
 | |
| 		return -1;
 | |
| 
 | |
| 	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
 | |
| 	if (ret <= 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	for (i = 0; i < ret; i++, gfn++, start++)
 | |
| 		mmu_set_spte(vcpu, start, access, 0, NULL,
 | |
| 			     sp->role.level, gfn, page_to_pfn(pages[i]),
 | |
| 			     true, true);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp, u64 *sptep)
 | |
| {
 | |
| 	u64 *spte, *start = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON(!sp->role.direct);
 | |
| 
 | |
| 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
 | |
| 	spte = sp->spt + i;
 | |
| 
 | |
| 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
 | |
| 		if (is_shadow_present_pte(*spte) || spte == sptep) {
 | |
| 			if (!start)
 | |
| 				continue;
 | |
| 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
 | |
| 				break;
 | |
| 			start = NULL;
 | |
| 		} else if (!start)
 | |
| 			start = spte;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since it's no accessed bit on EPT, it's no way to
 | |
| 	 * distinguish between actually accessed translations
 | |
| 	 * and prefetched, so disable pte prefetch if EPT is
 | |
| 	 * enabled.
 | |
| 	 */
 | |
| 	if (!shadow_accessed_mask)
 | |
| 		return;
 | |
| 
 | |
| 	sp = page_header(__pa(sptep));
 | |
| 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
 | |
| 		return;
 | |
| 
 | |
| 	__direct_pte_prefetch(vcpu, sp, sptep);
 | |
| }
 | |
| 
 | |
| static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
 | |
| 			int map_writable, int level, gfn_t gfn, pfn_t pfn,
 | |
| 			bool prefault)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int emulate = 0;
 | |
| 	gfn_t pseudo_gfn;
 | |
| 
 | |
| 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
 | |
| 		if (iterator.level == level) {
 | |
| 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
 | |
| 				     write, &emulate, level, gfn, pfn,
 | |
| 				     prefault, map_writable);
 | |
| 			direct_pte_prefetch(vcpu, iterator.sptep);
 | |
| 			++vcpu->stat.pf_fixed;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!is_shadow_present_pte(*iterator.sptep)) {
 | |
| 			u64 base_addr = iterator.addr;
 | |
| 
 | |
| 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
 | |
| 			pseudo_gfn = base_addr >> PAGE_SHIFT;
 | |
| 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
 | |
| 					      iterator.level - 1,
 | |
| 					      1, ACC_ALL, iterator.sptep);
 | |
| 
 | |
| 			link_shadow_page(iterator.sptep, sp, true);
 | |
| 		}
 | |
| 	}
 | |
| 	return emulate;
 | |
| }
 | |
| 
 | |
| static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	info.si_signo	= SIGBUS;
 | |
| 	info.si_errno	= 0;
 | |
| 	info.si_code	= BUS_MCEERR_AR;
 | |
| 	info.si_addr	= (void __user *)address;
 | |
| 	info.si_addr_lsb = PAGE_SHIFT;
 | |
| 
 | |
| 	send_sig_info(SIGBUS, &info, tsk);
 | |
| }
 | |
| 
 | |
| static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
 | |
| {
 | |
| 	/*
 | |
| 	 * Do not cache the mmio info caused by writing the readonly gfn
 | |
| 	 * into the spte otherwise read access on readonly gfn also can
 | |
| 	 * caused mmio page fault and treat it as mmio access.
 | |
| 	 * Return 1 to tell kvm to emulate it.
 | |
| 	 */
 | |
| 	if (pfn == KVM_PFN_ERR_RO_FAULT)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (pfn == KVM_PFN_ERR_HWPOISON) {
 | |
| 		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
 | |
| 					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
 | |
| {
 | |
| 	pfn_t pfn = *pfnp;
 | |
| 	gfn_t gfn = *gfnp;
 | |
| 	int level = *levelp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if it's a transparent hugepage. If this would be an
 | |
| 	 * hugetlbfs page, level wouldn't be set to
 | |
| 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
 | |
| 	    level == PT_PAGE_TABLE_LEVEL &&
 | |
| 	    PageTransCompound(pfn_to_page(pfn)) &&
 | |
| 	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
 | |
| 		unsigned long mask;
 | |
| 		/*
 | |
| 		 * mmu_notifier_retry was successful and we hold the
 | |
| 		 * mmu_lock here, so the pmd can't become splitting
 | |
| 		 * from under us, and in turn
 | |
| 		 * __split_huge_page_refcount() can't run from under
 | |
| 		 * us and we can safely transfer the refcount from
 | |
| 		 * PG_tail to PG_head as we switch the pfn to tail to
 | |
| 		 * head.
 | |
| 		 */
 | |
| 		*levelp = level = PT_DIRECTORY_LEVEL;
 | |
| 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
 | |
| 		VM_BUG_ON((gfn & mask) != (pfn & mask));
 | |
| 		if (pfn & mask) {
 | |
| 			gfn &= ~mask;
 | |
| 			*gfnp = gfn;
 | |
| 			kvm_release_pfn_clean(pfn);
 | |
| 			pfn &= ~mask;
 | |
| 			kvm_get_pfn(pfn);
 | |
| 			*pfnp = pfn;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
 | |
| 				pfn_t pfn, unsigned access, int *ret_val)
 | |
| {
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	/* The pfn is invalid, report the error! */
 | |
| 	if (unlikely(is_error_pfn(pfn))) {
 | |
| 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(is_noslot_pfn(pfn)))
 | |
| 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
 | |
| 
 | |
| 	ret = false;
 | |
| exit:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool page_fault_can_be_fast(u32 error_code)
 | |
| {
 | |
| 	/*
 | |
| 	 * Do not fix the mmio spte with invalid generation number which
 | |
| 	 * need to be updated by slow page fault path.
 | |
| 	 */
 | |
| 	if (unlikely(error_code & PFERR_RSVD_MASK))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * #PF can be fast only if the shadow page table is present and it
 | |
| 	 * is caused by write-protect, that means we just need change the
 | |
| 	 * W bit of the spte which can be done out of mmu-lock.
 | |
| 	 */
 | |
| 	if (!(error_code & PFERR_PRESENT_MASK) ||
 | |
| 	      !(error_code & PFERR_WRITE_MASK))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp = page_header(__pa(sptep));
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	WARN_ON(!sp->role.direct);
 | |
| 
 | |
| 	/*
 | |
| 	 * The gfn of direct spte is stable since it is calculated
 | |
| 	 * by sp->gfn.
 | |
| 	 */
 | |
| 	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
 | |
| 
 | |
| 	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
 | |
| 		mark_page_dirty(vcpu->kvm, gfn);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return value:
 | |
|  * - true: let the vcpu to access on the same address again.
 | |
|  * - false: let the real page fault path to fix it.
 | |
|  */
 | |
| static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
 | |
| 			    u32 error_code)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	bool ret = false;
 | |
| 	u64 spte = 0ull;
 | |
| 
 | |
| 	if (!page_fault_can_be_fast(error_code))
 | |
| 		return false;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
 | |
| 		if (!is_shadow_present_pte(spte) || iterator.level < level)
 | |
| 			break;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the mapping has been changed, let the vcpu fault on the
 | |
| 	 * same address again.
 | |
| 	 */
 | |
| 	if (!is_rmap_spte(spte)) {
 | |
| 		ret = true;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_last_spte(spte, level))
 | |
| 		goto exit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if it is a spurious fault caused by TLB lazily flushed.
 | |
| 	 *
 | |
| 	 * Need not check the access of upper level table entries since
 | |
| 	 * they are always ACC_ALL.
 | |
| 	 */
 | |
| 	 if (is_writable_pte(spte)) {
 | |
| 		ret = true;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently, to simplify the code, only the spte write-protected
 | |
| 	 * by dirty-log can be fast fixed.
 | |
| 	 */
 | |
| 	if (!spte_is_locklessly_modifiable(spte))
 | |
| 		goto exit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently, fast page fault only works for direct mapping since
 | |
| 	 * the gfn is not stable for indirect shadow page.
 | |
| 	 * See Documentation/virtual/kvm/locking.txt to get more detail.
 | |
| 	 */
 | |
| 	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
 | |
| exit:
 | |
| 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
 | |
| 			      spte, ret);
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
 | |
| 			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
 | |
| static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
 | |
| 			 gfn_t gfn, bool prefault)
 | |
| {
 | |
| 	int r;
 | |
| 	int level;
 | |
| 	int force_pt_level;
 | |
| 	pfn_t pfn;
 | |
| 	unsigned long mmu_seq;
 | |
| 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
 | |
| 
 | |
| 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
 | |
| 	if (likely(!force_pt_level)) {
 | |
| 		level = mapping_level(vcpu, gfn);
 | |
| 		/*
 | |
| 		 * This path builds a PAE pagetable - so we can map
 | |
| 		 * 2mb pages at maximum. Therefore check if the level
 | |
| 		 * is larger than that.
 | |
| 		 */
 | |
| 		if (level > PT_DIRECTORY_LEVEL)
 | |
| 			level = PT_DIRECTORY_LEVEL;
 | |
| 
 | |
| 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
 | |
| 	} else
 | |
| 		level = PT_PAGE_TABLE_LEVEL;
 | |
| 
 | |
| 	if (fast_page_fault(vcpu, v, level, error_code))
 | |
| 		return 0;
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 	make_mmu_pages_available(vcpu);
 | |
| 	if (likely(!force_pt_level))
 | |
| 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
 | |
| 	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
 | |
| 			 prefault);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 
 | |
| 	return r;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void mmu_free_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 		return;
 | |
| 
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
 | |
| 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
 | |
| 	     vcpu->arch.mmu.direct_map)) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		sp = page_header(root);
 | |
| 		--sp->root_count;
 | |
| 		if (!sp->root_count && sp->role.invalid) {
 | |
| 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
 | |
| 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 		}
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		if (root) {
 | |
| 			root &= PT64_BASE_ADDR_MASK;
 | |
| 			sp = page_header(root);
 | |
| 			--sp->root_count;
 | |
| 			if (!sp->root_count && sp->role.invalid)
 | |
| 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
 | |
| 							 &invalid_list);
 | |
| 		}
 | |
| 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
 | |
| 	}
 | |
| 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| }
 | |
| 
 | |
| static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
 | |
| 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		make_mmu_pages_available(vcpu);
 | |
| 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
 | |
| 				      1, ACC_ALL, NULL);
 | |
| 		++sp->root_count;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
 | |
| 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
 | |
| 		for (i = 0; i < 4; ++i) {
 | |
| 			hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 			ASSERT(!VALID_PAGE(root));
 | |
| 			spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 			make_mmu_pages_available(vcpu);
 | |
| 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
 | |
| 					      i << 30,
 | |
| 					      PT32_ROOT_LEVEL, 1, ACC_ALL,
 | |
| 					      NULL);
 | |
| 			root = __pa(sp->spt);
 | |
| 			++sp->root_count;
 | |
| 			spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
 | |
| 		}
 | |
| 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
 | |
| 	} else
 | |
| 		BUG();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	u64 pdptr, pm_mask;
 | |
| 	gfn_t root_gfn;
 | |
| 	int i;
 | |
| 
 | |
| 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (mmu_check_root(vcpu, root_gfn))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we shadow a long mode page table? If so we need to
 | |
| 	 * write-protect the guests page table root.
 | |
| 	 */
 | |
| 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 
 | |
| 		ASSERT(!VALID_PAGE(root));
 | |
| 
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		make_mmu_pages_available(vcpu);
 | |
| 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
 | |
| 				      0, ACC_ALL, NULL);
 | |
| 		root = __pa(sp->spt);
 | |
| 		++sp->root_count;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		vcpu->arch.mmu.root_hpa = root;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We shadow a 32 bit page table. This may be a legacy 2-level
 | |
| 	 * or a PAE 3-level page table. In either case we need to be aware that
 | |
| 	 * the shadow page table may be a PAE or a long mode page table.
 | |
| 	 */
 | |
| 	pm_mask = PT_PRESENT_MASK;
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
 | |
| 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
 | |
| 
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		ASSERT(!VALID_PAGE(root));
 | |
| 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
 | |
| 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
 | |
| 			if (!is_present_gpte(pdptr)) {
 | |
| 				vcpu->arch.mmu.pae_root[i] = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 			root_gfn = pdptr >> PAGE_SHIFT;
 | |
| 			if (mmu_check_root(vcpu, root_gfn))
 | |
| 				return 1;
 | |
| 		}
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		make_mmu_pages_available(vcpu);
 | |
| 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
 | |
| 				      PT32_ROOT_LEVEL, 0,
 | |
| 				      ACC_ALL, NULL);
 | |
| 		root = __pa(sp->spt);
 | |
| 		++sp->root_count;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
 | |
| 	}
 | |
| 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we shadow a 32 bit page table with a long mode page
 | |
| 	 * table we enter this path.
 | |
| 	 */
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
 | |
| 		if (vcpu->arch.mmu.lm_root == NULL) {
 | |
| 			/*
 | |
| 			 * The additional page necessary for this is only
 | |
| 			 * allocated on demand.
 | |
| 			 */
 | |
| 
 | |
| 			u64 *lm_root;
 | |
| 
 | |
| 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
 | |
| 			if (lm_root == NULL)
 | |
| 				return 1;
 | |
| 
 | |
| 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
 | |
| 
 | |
| 			vcpu->arch.mmu.lm_root = lm_root;
 | |
| 		}
 | |
| 
 | |
| 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.mmu.direct_map)
 | |
| 		return mmu_alloc_direct_roots(vcpu);
 | |
| 	else
 | |
| 		return mmu_alloc_shadow_roots(vcpu);
 | |
| }
 | |
| 
 | |
| static void mmu_sync_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (vcpu->arch.mmu.direct_map)
 | |
| 		return;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 		return;
 | |
| 
 | |
| 	vcpu_clear_mmio_info(vcpu, ~0ul);
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
 | |
| 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 		sp = page_header(root);
 | |
| 		mmu_sync_children(vcpu, sp);
 | |
| 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
 | |
| 		return;
 | |
| 	}
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		if (root && VALID_PAGE(root)) {
 | |
| 			root &= PT64_BASE_ADDR_MASK;
 | |
| 			sp = page_header(root);
 | |
| 			mmu_sync_children(vcpu, sp);
 | |
| 		}
 | |
| 	}
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	mmu_sync_roots(vcpu);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
 | |
| 
 | |
| static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
 | |
| 				  u32 access, struct x86_exception *exception)
 | |
| {
 | |
| 	if (exception)
 | |
| 		exception->error_code = 0;
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
 | |
| 					 u32 access,
 | |
| 					 struct x86_exception *exception)
 | |
| {
 | |
| 	if (exception)
 | |
| 		exception->error_code = 0;
 | |
| 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
 | |
| }
 | |
| 
 | |
| static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
 | |
| {
 | |
| 	if (direct)
 | |
| 		return vcpu_match_mmio_gpa(vcpu, addr);
 | |
| 
 | |
| 	return vcpu_match_mmio_gva(vcpu, addr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * On direct hosts, the last spte is only allows two states
 | |
|  * for mmio page fault:
 | |
|  *   - It is the mmio spte
 | |
|  *   - It is zapped or it is being zapped.
 | |
|  *
 | |
|  * This function completely checks the spte when the last spte
 | |
|  * is not the mmio spte.
 | |
|  */
 | |
| static bool check_direct_spte_mmio_pf(u64 spte)
 | |
| {
 | |
| 	return __check_direct_spte_mmio_pf(spte);
 | |
| }
 | |
| 
 | |
| static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	u64 spte = 0ull;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
 | |
| 		if (!is_shadow_present_pte(spte))
 | |
| 			break;
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| 
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
 | |
| {
 | |
| 	u64 spte;
 | |
| 
 | |
| 	if (quickly_check_mmio_pf(vcpu, addr, direct))
 | |
| 		return RET_MMIO_PF_EMULATE;
 | |
| 
 | |
| 	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
 | |
| 
 | |
| 	if (is_mmio_spte(spte)) {
 | |
| 		gfn_t gfn = get_mmio_spte_gfn(spte);
 | |
| 		unsigned access = get_mmio_spte_access(spte);
 | |
| 
 | |
| 		if (!check_mmio_spte(vcpu->kvm, spte))
 | |
| 			return RET_MMIO_PF_INVALID;
 | |
| 
 | |
| 		if (direct)
 | |
| 			addr = 0;
 | |
| 
 | |
| 		trace_handle_mmio_page_fault(addr, gfn, access);
 | |
| 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
 | |
| 		return RET_MMIO_PF_EMULATE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's ok if the gva is remapped by other cpus on shadow guest,
 | |
| 	 * it's a BUG if the gfn is not a mmio page.
 | |
| 	 */
 | |
| 	if (direct && !check_direct_spte_mmio_pf(spte))
 | |
| 		return RET_MMIO_PF_BUG;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the page table is zapped by other cpus, let CPU fault again on
 | |
| 	 * the address.
 | |
| 	 */
 | |
| 	return RET_MMIO_PF_RETRY;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
 | |
| 
 | |
| static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
 | |
| 				  u32 error_code, bool direct)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
 | |
| 	WARN_ON(ret == RET_MMIO_PF_BUG);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 				u32 error_code, bool prefault)
 | |
| {
 | |
| 	gfn_t gfn;
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
 | |
| 
 | |
| 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
 | |
| 		r = handle_mmio_page_fault(vcpu, gva, error_code, true);
 | |
| 
 | |
| 		if (likely(r != RET_MMIO_PF_INVALID))
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	gfn = gva >> PAGE_SHIFT;
 | |
| 
 | |
| 	return nonpaging_map(vcpu, gva & PAGE_MASK,
 | |
| 			     error_code, gfn, prefault);
 | |
| }
 | |
| 
 | |
| static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_arch_async_pf arch;
 | |
| 
 | |
| 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
 | |
| 	arch.gfn = gfn;
 | |
| 	arch.direct_map = vcpu->arch.mmu.direct_map;
 | |
| 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
 | |
| 
 | |
| 	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
 | |
| }
 | |
| 
 | |
| static bool can_do_async_pf(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
 | |
| 		     kvm_event_needs_reinjection(vcpu)))
 | |
| 		return false;
 | |
| 
 | |
| 	return kvm_x86_ops->interrupt_allowed(vcpu);
 | |
| }
 | |
| 
 | |
| static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
 | |
| 			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
 | |
| {
 | |
| 	bool async;
 | |
| 
 | |
| 	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
 | |
| 
 | |
| 	if (!async)
 | |
| 		return false; /* *pfn has correct page already */
 | |
| 
 | |
| 	if (!prefault && can_do_async_pf(vcpu)) {
 | |
| 		trace_kvm_try_async_get_page(gva, gfn);
 | |
| 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
 | |
| 			trace_kvm_async_pf_doublefault(gva, gfn);
 | |
| 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
 | |
| 			return true;
 | |
| 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
 | |
| 			  bool prefault)
 | |
| {
 | |
| 	pfn_t pfn;
 | |
| 	int r;
 | |
| 	int level;
 | |
| 	int force_pt_level;
 | |
| 	gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 	unsigned long mmu_seq;
 | |
| 	int write = error_code & PFERR_WRITE_MASK;
 | |
| 	bool map_writable;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
 | |
| 		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
 | |
| 
 | |
| 		if (likely(r != RET_MMIO_PF_INVALID))
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
 | |
| 	if (likely(!force_pt_level)) {
 | |
| 		level = mapping_level(vcpu, gfn);
 | |
| 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
 | |
| 	} else
 | |
| 		level = PT_PAGE_TABLE_LEVEL;
 | |
| 
 | |
| 	if (fast_page_fault(vcpu, gpa, level, error_code))
 | |
| 		return 0;
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 	make_mmu_pages_available(vcpu);
 | |
| 	if (likely(!force_pt_level))
 | |
| 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
 | |
| 	r = __direct_map(vcpu, gpa, write, map_writable,
 | |
| 			 level, gfn, pfn, prefault);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	return r;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void nonpaging_init_context(struct kvm_vcpu *vcpu,
 | |
| 				   struct kvm_mmu *context)
 | |
| {
 | |
| 	context->page_fault = nonpaging_page_fault;
 | |
| 	context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 	context->sync_page = nonpaging_sync_page;
 | |
| 	context->invlpg = nonpaging_invlpg;
 | |
| 	context->update_pte = nonpaging_update_pte;
 | |
| 	context->root_level = 0;
 | |
| 	context->shadow_root_level = PT32E_ROOT_LEVEL;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	context->direct_map = true;
 | |
| 	context->nx = false;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.tlb_flush;
 | |
| 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
 | |
| 
 | |
| void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_roots(vcpu);
 | |
| }
 | |
| 
 | |
| static unsigned long get_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_read_cr3(vcpu);
 | |
| }
 | |
| 
 | |
| static void inject_page_fault(struct kvm_vcpu *vcpu,
 | |
| 			      struct x86_exception *fault)
 | |
| {
 | |
| 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 | |
| }
 | |
| 
 | |
| static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
 | |
| 			   unsigned access, int *nr_present)
 | |
| {
 | |
| 	if (unlikely(is_mmio_spte(*sptep))) {
 | |
| 		if (gfn != get_mmio_spte_gfn(*sptep)) {
 | |
| 			mmu_spte_clear_no_track(sptep);
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		(*nr_present)++;
 | |
| 		mark_mmio_spte(kvm, sptep, gfn, access);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
 | |
| {
 | |
| 	unsigned index;
 | |
| 
 | |
| 	index = level - 1;
 | |
| 	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
 | |
| 	return mmu->last_pte_bitmap & (1 << index);
 | |
| }
 | |
| 
 | |
| #define PTTYPE_EPT 18 /* arbitrary */
 | |
| #define PTTYPE PTTYPE_EPT
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| #define PTTYPE 64
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| #define PTTYPE 32
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu *context)
 | |
| {
 | |
| 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
 | |
| 	u64 exb_bit_rsvd = 0;
 | |
| 
 | |
| 	context->bad_mt_xwr = 0;
 | |
| 
 | |
| 	if (!context->nx)
 | |
| 		exb_bit_rsvd = rsvd_bits(63, 63);
 | |
| 	switch (context->root_level) {
 | |
| 	case PT32_ROOT_LEVEL:
 | |
| 		/* no rsvd bits for 2 level 4K page table entries */
 | |
| 		context->rsvd_bits_mask[0][1] = 0;
 | |
| 		context->rsvd_bits_mask[0][0] = 0;
 | |
| 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
 | |
| 
 | |
| 		if (!is_pse(vcpu)) {
 | |
| 			context->rsvd_bits_mask[1][1] = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (is_cpuid_PSE36())
 | |
| 			/* 36bits PSE 4MB page */
 | |
| 			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
 | |
| 		else
 | |
| 			/* 32 bits PSE 4MB page */
 | |
| 			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
 | |
| 		break;
 | |
| 	case PT32E_ROOT_LEVEL:
 | |
| 		context->rsvd_bits_mask[0][2] =
 | |
| 			rsvd_bits(maxphyaddr, 63) |
 | |
| 			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
 | |
| 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62);	/* PDE */
 | |
| 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
 | |
| 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62) |
 | |
| 			rsvd_bits(13, 20);		/* large page */
 | |
| 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
 | |
| 		break;
 | |
| 	case PT64_ROOT_LEVEL:
 | |
| 		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
 | |
| 		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
 | |
| 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
 | |
| 		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) |
 | |
| 			rsvd_bits(13, 29);
 | |
| 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) |
 | |
| 			rsvd_bits(13, 20);		/* large page */
 | |
| 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
 | |
| 		struct kvm_mmu *context, bool execonly)
 | |
| {
 | |
| 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
 | |
| 	int pte;
 | |
| 
 | |
| 	context->rsvd_bits_mask[0][3] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
 | |
| 	context->rsvd_bits_mask[0][2] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
 | |
| 	context->rsvd_bits_mask[0][1] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
 | |
| 	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
 | |
| 
 | |
| 	/* large page */
 | |
| 	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
 | |
| 	context->rsvd_bits_mask[1][2] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
 | |
| 	context->rsvd_bits_mask[1][1] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
 | |
| 	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
 | |
| 
 | |
| 	for (pte = 0; pte < 64; pte++) {
 | |
| 		int rwx_bits = pte & 7;
 | |
| 		int mt = pte >> 3;
 | |
| 		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
 | |
| 				rwx_bits == 0x2 || rwx_bits == 0x6 ||
 | |
| 				(rwx_bits == 0x4 && !execonly))
 | |
| 			context->bad_mt_xwr |= (1ull << pte);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_permission_bitmask(struct kvm_vcpu *vcpu,
 | |
| 		struct kvm_mmu *mmu, bool ept)
 | |
| {
 | |
| 	unsigned bit, byte, pfec;
 | |
| 	u8 map;
 | |
| 	bool fault, x, w, u, wf, uf, ff, smep;
 | |
| 
 | |
| 	smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
 | |
| 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
 | |
| 		pfec = byte << 1;
 | |
| 		map = 0;
 | |
| 		wf = pfec & PFERR_WRITE_MASK;
 | |
| 		uf = pfec & PFERR_USER_MASK;
 | |
| 		ff = pfec & PFERR_FETCH_MASK;
 | |
| 		for (bit = 0; bit < 8; ++bit) {
 | |
| 			x = bit & ACC_EXEC_MASK;
 | |
| 			w = bit & ACC_WRITE_MASK;
 | |
| 			u = bit & ACC_USER_MASK;
 | |
| 
 | |
| 			if (!ept) {
 | |
| 				/* Not really needed: !nx will cause pte.nx to fault */
 | |
| 				x |= !mmu->nx;
 | |
| 				/* Allow supervisor writes if !cr0.wp */
 | |
| 				w |= !is_write_protection(vcpu) && !uf;
 | |
| 				/* Disallow supervisor fetches of user code if cr4.smep */
 | |
| 				x &= !(smep && u && !uf);
 | |
| 			} else
 | |
| 				/* Not really needed: no U/S accesses on ept  */
 | |
| 				u = 1;
 | |
| 
 | |
| 			fault = (ff && !x) || (uf && !u) || (wf && !w);
 | |
| 			map |= fault << bit;
 | |
| 		}
 | |
| 		mmu->permissions[byte] = map;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
 | |
| {
 | |
| 	u8 map;
 | |
| 	unsigned level, root_level = mmu->root_level;
 | |
| 	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
 | |
| 
 | |
| 	if (root_level == PT32E_ROOT_LEVEL)
 | |
| 		--root_level;
 | |
| 	/* PT_PAGE_TABLE_LEVEL always terminates */
 | |
| 	map = 1 | (1 << ps_set_index);
 | |
| 	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
 | |
| 		if (level <= PT_PDPE_LEVEL
 | |
| 		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
 | |
| 			map |= 1 << (ps_set_index | (level - 1));
 | |
| 	}
 | |
| 	mmu->last_pte_bitmap = map;
 | |
| }
 | |
| 
 | |
| static void paging64_init_context_common(struct kvm_vcpu *vcpu,
 | |
| 					 struct kvm_mmu *context,
 | |
| 					 int level)
 | |
| {
 | |
| 	context->nx = is_nx(vcpu);
 | |
| 	context->root_level = level;
 | |
| 
 | |
| 	reset_rsvds_bits_mask(vcpu, context);
 | |
| 	update_permission_bitmask(vcpu, context, false);
 | |
| 	update_last_pte_bitmap(vcpu, context);
 | |
| 
 | |
| 	ASSERT(is_pae(vcpu));
 | |
| 	context->page_fault = paging64_page_fault;
 | |
| 	context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	context->sync_page = paging64_sync_page;
 | |
| 	context->invlpg = paging64_invlpg;
 | |
| 	context->update_pte = paging64_update_pte;
 | |
| 	context->shadow_root_level = level;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	context->direct_map = false;
 | |
| }
 | |
| 
 | |
| static void paging64_init_context(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu *context)
 | |
| {
 | |
| 	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
 | |
| }
 | |
| 
 | |
| static void paging32_init_context(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu *context)
 | |
| {
 | |
| 	context->nx = false;
 | |
| 	context->root_level = PT32_ROOT_LEVEL;
 | |
| 
 | |
| 	reset_rsvds_bits_mask(vcpu, context);
 | |
| 	update_permission_bitmask(vcpu, context, false);
 | |
| 	update_last_pte_bitmap(vcpu, context);
 | |
| 
 | |
| 	context->page_fault = paging32_page_fault;
 | |
| 	context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 	context->sync_page = paging32_sync_page;
 | |
| 	context->invlpg = paging32_invlpg;
 | |
| 	context->update_pte = paging32_update_pte;
 | |
| 	context->shadow_root_level = PT32E_ROOT_LEVEL;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	context->direct_map = false;
 | |
| }
 | |
| 
 | |
| static void paging32E_init_context(struct kvm_vcpu *vcpu,
 | |
| 				   struct kvm_mmu *context)
 | |
| {
 | |
| 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
 | |
| }
 | |
| 
 | |
| static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	context->base_role.word = 0;
 | |
| 	context->page_fault = tdp_page_fault;
 | |
| 	context->sync_page = nonpaging_sync_page;
 | |
| 	context->invlpg = nonpaging_invlpg;
 | |
| 	context->update_pte = nonpaging_update_pte;
 | |
| 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	context->direct_map = true;
 | |
| 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
 | |
| 	context->get_cr3 = get_cr3;
 | |
| 	context->get_pdptr = kvm_pdptr_read;
 | |
| 	context->inject_page_fault = kvm_inject_page_fault;
 | |
| 
 | |
| 	if (!is_paging(vcpu)) {
 | |
| 		context->nx = false;
 | |
| 		context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 		context->root_level = 0;
 | |
| 	} else if (is_long_mode(vcpu)) {
 | |
| 		context->nx = is_nx(vcpu);
 | |
| 		context->root_level = PT64_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, context);
 | |
| 		context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	} else if (is_pae(vcpu)) {
 | |
| 		context->nx = is_nx(vcpu);
 | |
| 		context->root_level = PT32E_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, context);
 | |
| 		context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	} else {
 | |
| 		context->nx = false;
 | |
| 		context->root_level = PT32_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, context);
 | |
| 		context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 	}
 | |
| 
 | |
| 	update_permission_bitmask(vcpu, context, false);
 | |
| 	update_last_pte_bitmap(vcpu, context);
 | |
| }
 | |
| 
 | |
| void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
 | |
| {
 | |
| 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	if (!is_paging(vcpu))
 | |
| 		nonpaging_init_context(vcpu, context);
 | |
| 	else if (is_long_mode(vcpu))
 | |
| 		paging64_init_context(vcpu, context);
 | |
| 	else if (is_pae(vcpu))
 | |
| 		paging32E_init_context(vcpu, context);
 | |
| 	else
 | |
| 		paging32_init_context(vcpu, context);
 | |
| 
 | |
| 	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
 | |
| 	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
 | |
| 	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
 | |
| 	vcpu->arch.mmu.base_role.smep_andnot_wp
 | |
| 		= smep && !is_write_protection(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
 | |
| 
 | |
| void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
 | |
| 		bool execonly)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
 | |
| 
 | |
| 	context->nx = true;
 | |
| 	context->page_fault = ept_page_fault;
 | |
| 	context->gva_to_gpa = ept_gva_to_gpa;
 | |
| 	context->sync_page = ept_sync_page;
 | |
| 	context->invlpg = ept_invlpg;
 | |
| 	context->update_pte = ept_update_pte;
 | |
| 	context->root_level = context->shadow_root_level;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	context->direct_map = false;
 | |
| 
 | |
| 	update_permission_bitmask(vcpu, context, true);
 | |
| 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
 | |
| 
 | |
| static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
 | |
| 	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
 | |
| 	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
 | |
| 	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
 | |
| 	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
 | |
| }
 | |
| 
 | |
| static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
 | |
| 
 | |
| 	g_context->get_cr3           = get_cr3;
 | |
| 	g_context->get_pdptr         = kvm_pdptr_read;
 | |
| 	g_context->inject_page_fault = kvm_inject_page_fault;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
 | |
| 	 * translation of l2_gpa to l1_gpa addresses is done using the
 | |
| 	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
 | |
| 	 * functions between mmu and nested_mmu are swapped.
 | |
| 	 */
 | |
| 	if (!is_paging(vcpu)) {
 | |
| 		g_context->nx = false;
 | |
| 		g_context->root_level = 0;
 | |
| 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
 | |
| 	} else if (is_long_mode(vcpu)) {
 | |
| 		g_context->nx = is_nx(vcpu);
 | |
| 		g_context->root_level = PT64_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, g_context);
 | |
| 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
 | |
| 	} else if (is_pae(vcpu)) {
 | |
| 		g_context->nx = is_nx(vcpu);
 | |
| 		g_context->root_level = PT32E_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, g_context);
 | |
| 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
 | |
| 	} else {
 | |
| 		g_context->nx = false;
 | |
| 		g_context->root_level = PT32_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, g_context);
 | |
| 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
 | |
| 	}
 | |
| 
 | |
| 	update_permission_bitmask(vcpu, g_context, false);
 | |
| 	update_last_pte_bitmap(vcpu, g_context);
 | |
| }
 | |
| 
 | |
| static void init_kvm_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (mmu_is_nested(vcpu))
 | |
| 		return init_kvm_nested_mmu(vcpu);
 | |
| 	else if (tdp_enabled)
 | |
| 		return init_kvm_tdp_mmu(vcpu);
 | |
| 	else
 | |
| 		return init_kvm_softmmu(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	init_kvm_mmu(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
 | |
| 
 | |
| int kvm_mmu_load(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_alloc_roots(vcpu);
 | |
| 	kvm_mmu_sync_roots(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	/* set_cr3() should ensure TLB has been flushed */
 | |
| 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_load);
 | |
| 
 | |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_roots(vcpu);
 | |
| 	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_unload);
 | |
| 
 | |
| static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp, u64 *spte,
 | |
| 				  const void *new)
 | |
| {
 | |
| 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
 | |
| 		++vcpu->kvm->stat.mmu_pde_zapped;
 | |
| 		return;
 | |
|         }
 | |
| 
 | |
| 	++vcpu->kvm->stat.mmu_pte_updated;
 | |
| 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
 | |
| }
 | |
| 
 | |
| static bool need_remote_flush(u64 old, u64 new)
 | |
| {
 | |
| 	if (!is_shadow_present_pte(old))
 | |
| 		return false;
 | |
| 	if (!is_shadow_present_pte(new))
 | |
| 		return true;
 | |
| 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
 | |
| 		return true;
 | |
| 	old ^= shadow_nx_mask;
 | |
| 	new ^= shadow_nx_mask;
 | |
| 	return (old & ~new & PT64_PERM_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
 | |
| 				    bool remote_flush, bool local_flush)
 | |
| {
 | |
| 	if (zap_page)
 | |
| 		return;
 | |
| 
 | |
| 	if (remote_flush)
 | |
| 		kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 	else if (local_flush)
 | |
| 		kvm_mmu_flush_tlb(vcpu);
 | |
| }
 | |
| 
 | |
| static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
 | |
| 				    const u8 *new, int *bytes)
 | |
| {
 | |
| 	u64 gentry;
 | |
| 	int r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume that the pte write on a page table of the same type
 | |
| 	 * as the current vcpu paging mode since we update the sptes only
 | |
| 	 * when they have the same mode.
 | |
| 	 */
 | |
| 	if (is_pae(vcpu) && *bytes == 4) {
 | |
| 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
 | |
| 		*gpa &= ~(gpa_t)7;
 | |
| 		*bytes = 8;
 | |
| 		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
 | |
| 		if (r)
 | |
| 			gentry = 0;
 | |
| 		new = (const u8 *)&gentry;
 | |
| 	}
 | |
| 
 | |
| 	switch (*bytes) {
 | |
| 	case 4:
 | |
| 		gentry = *(const u32 *)new;
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		gentry = *(const u64 *)new;
 | |
| 		break;
 | |
| 	default:
 | |
| 		gentry = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return gentry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we're seeing too many writes to a page, it may no longer be a page table,
 | |
|  * or we may be forking, in which case it is better to unmap the page.
 | |
|  */
 | |
| static bool detect_write_flooding(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Skip write-flooding detected for the sp whose level is 1, because
 | |
| 	 * it can become unsync, then the guest page is not write-protected.
 | |
| 	 */
 | |
| 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return false;
 | |
| 
 | |
| 	return ++sp->write_flooding_count >= 3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Misaligned accesses are too much trouble to fix up; also, they usually
 | |
|  * indicate a page is not used as a page table.
 | |
|  */
 | |
| static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
 | |
| 				    int bytes)
 | |
| {
 | |
| 	unsigned offset, pte_size, misaligned;
 | |
| 
 | |
| 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
 | |
| 		 gpa, bytes, sp->role.word);
 | |
| 
 | |
| 	offset = offset_in_page(gpa);
 | |
| 	pte_size = sp->role.cr4_pae ? 8 : 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sometimes, the OS only writes the last one bytes to update status
 | |
| 	 * bits, for example, in linux, andb instruction is used in clear_bit().
 | |
| 	 */
 | |
| 	if (!(offset & (pte_size - 1)) && bytes == 1)
 | |
| 		return false;
 | |
| 
 | |
| 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
 | |
| 	misaligned |= bytes < 4;
 | |
| 
 | |
| 	return misaligned;
 | |
| }
 | |
| 
 | |
| static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
 | |
| {
 | |
| 	unsigned page_offset, quadrant;
 | |
| 	u64 *spte;
 | |
| 	int level;
 | |
| 
 | |
| 	page_offset = offset_in_page(gpa);
 | |
| 	level = sp->role.level;
 | |
| 	*nspte = 1;
 | |
| 	if (!sp->role.cr4_pae) {
 | |
| 		page_offset <<= 1;	/* 32->64 */
 | |
| 		/*
 | |
| 		 * A 32-bit pde maps 4MB while the shadow pdes map
 | |
| 		 * only 2MB.  So we need to double the offset again
 | |
| 		 * and zap two pdes instead of one.
 | |
| 		 */
 | |
| 		if (level == PT32_ROOT_LEVEL) {
 | |
| 			page_offset &= ~7; /* kill rounding error */
 | |
| 			page_offset <<= 1;
 | |
| 			*nspte = 2;
 | |
| 		}
 | |
| 		quadrant = page_offset >> PAGE_SHIFT;
 | |
| 		page_offset &= ~PAGE_MASK;
 | |
| 		if (quadrant != sp->role.quadrant)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	spte = &sp->spt[page_offset / sizeof(*spte)];
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 		       const u8 *new, int bytes)
 | |
| {
 | |
| 	gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 	union kvm_mmu_page_role mask = { .word = 0 };
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	u64 entry, gentry, *spte;
 | |
| 	int npte;
 | |
| 	bool remote_flush, local_flush, zap_page;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't have indirect shadow pages, it means no page is
 | |
| 	 * write-protected, so we can exit simply.
 | |
| 	 */
 | |
| 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
 | |
| 		return;
 | |
| 
 | |
| 	zap_page = remote_flush = local_flush = false;
 | |
| 
 | |
| 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
 | |
| 
 | |
| 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to care whether allocation memory is successful
 | |
| 	 * or not since pte prefetch is skiped if it does not have
 | |
| 	 * enough objects in the cache.
 | |
| 	 */
 | |
| 	mmu_topup_memory_caches(vcpu);
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	++vcpu->kvm->stat.mmu_pte_write;
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
 | |
| 
 | |
| 	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
 | |
| 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
 | |
| 		if (detect_write_misaligned(sp, gpa, bytes) ||
 | |
| 		      detect_write_flooding(sp)) {
 | |
| 			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
 | |
| 						     &invalid_list);
 | |
| 			++vcpu->kvm->stat.mmu_flooded;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spte = get_written_sptes(sp, gpa, &npte);
 | |
| 		if (!spte)
 | |
| 			continue;
 | |
| 
 | |
| 		local_flush = true;
 | |
| 		while (npte--) {
 | |
| 			entry = *spte;
 | |
| 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
 | |
| 			if (gentry &&
 | |
| 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
 | |
| 			      & mask.word) && rmap_can_add(vcpu))
 | |
| 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
 | |
| 			if (need_remote_flush(entry, *spte))
 | |
| 				remote_flush = true;
 | |
| 			++spte;
 | |
| 		}
 | |
| 	}
 | |
| 	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
 | |
| 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 	int r;
 | |
| 
 | |
| 	if (vcpu->arch.mmu.direct_map)
 | |
| 		return 0;
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
 | |
| 
 | |
| 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
 | |
| 
 | |
| static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 
 | |
| 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
 | |
| 		return;
 | |
| 
 | |
| 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
 | |
| 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
 | |
| 			break;
 | |
| 
 | |
| 		++vcpu->kvm->stat.mmu_recycled;
 | |
| 	}
 | |
| 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| }
 | |
| 
 | |
| static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
 | |
| {
 | |
| 	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
 | |
| 		return vcpu_match_mmio_gpa(vcpu, addr);
 | |
| 
 | |
| 	return vcpu_match_mmio_gva(vcpu, addr);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
 | |
| 		       void *insn, int insn_len)
 | |
| {
 | |
| 	int r, emulation_type = EMULTYPE_RETRY;
 | |
| 	enum emulation_result er;
 | |
| 
 | |
| 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!r) {
 | |
| 		r = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (is_mmio_page_fault(vcpu, cr2))
 | |
| 		emulation_type = 0;
 | |
| 
 | |
| 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
 | |
| 
 | |
| 	switch (er) {
 | |
| 	case EMULATE_DONE:
 | |
| 		return 1;
 | |
| 	case EMULATE_USER_EXIT:
 | |
| 		++vcpu->stat.mmio_exits;
 | |
| 		/* fall through */
 | |
| 	case EMULATE_FAIL:
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
 | |
| 
 | |
| void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	vcpu->arch.mmu.invlpg(vcpu, gva);
 | |
| 	kvm_mmu_flush_tlb(vcpu);
 | |
| 	++vcpu->stat.invlpg;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
 | |
| 
 | |
| void kvm_enable_tdp(void)
 | |
| {
 | |
| 	tdp_enabled = true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_enable_tdp);
 | |
| 
 | |
| void kvm_disable_tdp(void)
 | |
| {
 | |
| 	tdp_enabled = false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_disable_tdp);
 | |
| 
 | |
| static void free_mmu_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
 | |
| 	if (vcpu->arch.mmu.lm_root != NULL)
 | |
| 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
 | |
| }
 | |
| 
 | |
| static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
 | |
| 	 * Therefore we need to allocate shadow page tables in the first
 | |
| 	 * 4GB of memory, which happens to fit the DMA32 zone.
 | |
| 	 */
 | |
| 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vcpu->arch.mmu.pae_root = page_address(page);
 | |
| 	for (i = 0; i < 4; ++i)
 | |
| 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_create(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 
 | |
| 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
 | |
| 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| 	vcpu->arch.mmu.translate_gpa = translate_gpa;
 | |
| 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
 | |
| 
 | |
| 	return alloc_mmu_pages(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_setup(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	init_kvm_mmu(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
 | |
| {
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	gfn_t last_gfn;
 | |
| 	int i;
 | |
| 
 | |
| 	memslot = id_to_memslot(kvm->memslots, slot);
 | |
| 	last_gfn = memslot->base_gfn + memslot->npages - 1;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	for (i = PT_PAGE_TABLE_LEVEL;
 | |
| 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		unsigned long *rmapp;
 | |
| 		unsigned long last_index, index;
 | |
| 
 | |
| 		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
 | |
| 		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
 | |
| 
 | |
| 		for (index = 0; index <= last_index; ++index, ++rmapp) {
 | |
| 			if (*rmapp)
 | |
| 				__rmap_write_protect(kvm, rmapp, false);
 | |
| 
 | |
| 			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
 | |
| 				kvm_flush_remote_tlbs(kvm);
 | |
| 				cond_resched_lock(&kvm->mmu_lock);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| #define BATCH_ZAP_PAGES	10
 | |
| static void kvm_zap_obsolete_pages(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *node;
 | |
| 	int batch = 0;
 | |
| 
 | |
| restart:
 | |
| 	list_for_each_entry_safe_reverse(sp, node,
 | |
| 	      &kvm->arch.active_mmu_pages, link) {
 | |
| 		int ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * No obsolete page exists before new created page since
 | |
| 		 * active_mmu_pages is the FIFO list.
 | |
| 		 */
 | |
| 		if (!is_obsolete_sp(kvm, sp))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we are reversely walking the list and the invalid
 | |
| 		 * list will be moved to the head, skip the invalid page
 | |
| 		 * can help us to avoid the infinity list walking.
 | |
| 		 */
 | |
| 		if (sp->role.invalid)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Need not flush tlb since we only zap the sp with invalid
 | |
| 		 * generation number.
 | |
| 		 */
 | |
| 		if (batch >= BATCH_ZAP_PAGES &&
 | |
| 		      cond_resched_lock(&kvm->mmu_lock)) {
 | |
| 			batch = 0;
 | |
| 			goto restart;
 | |
| 		}
 | |
| 
 | |
| 		ret = kvm_mmu_prepare_zap_page(kvm, sp,
 | |
| 				&kvm->arch.zapped_obsolete_pages);
 | |
| 		batch += ret;
 | |
| 
 | |
| 		if (ret)
 | |
| 			goto restart;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Should flush tlb before free page tables since lockless-walking
 | |
| 	 * may use the pages.
 | |
| 	 */
 | |
| 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast invalidate all shadow pages and use lock-break technique
 | |
|  * to zap obsolete pages.
 | |
|  *
 | |
|  * It's required when memslot is being deleted or VM is being
 | |
|  * destroyed, in these cases, we should ensure that KVM MMU does
 | |
|  * not use any resource of the being-deleted slot or all slots
 | |
|  * after calling the function.
 | |
|  */
 | |
| void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
 | |
| {
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
 | |
| 	kvm->arch.mmu_valid_gen++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Notify all vcpus to reload its shadow page table
 | |
| 	 * and flush TLB. Then all vcpus will switch to new
 | |
| 	 * shadow page table with the new mmu_valid_gen.
 | |
| 	 *
 | |
| 	 * Note: we should do this under the protection of
 | |
| 	 * mmu-lock, otherwise, vcpu would purge shadow page
 | |
| 	 * but miss tlb flush.
 | |
| 	 */
 | |
| 	kvm_reload_remote_mmus(kvm);
 | |
| 
 | |
| 	kvm_zap_obsolete_pages(kvm);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
 | |
| {
 | |
| 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
 | |
| }
 | |
| 
 | |
| void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
 | |
| {
 | |
| 	/*
 | |
| 	 * The very rare case: if the generation-number is round,
 | |
| 	 * zap all shadow pages.
 | |
| 	 */
 | |
| 	if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
 | |
| 		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
 | |
| 		kvm_mmu_invalidate_zap_all_pages(kvm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	int nr_to_scan = sc->nr_to_scan;
 | |
| 	unsigned long freed = 0;
 | |
| 
 | |
| 	spin_lock(&kvm_lock);
 | |
| 
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		int idx;
 | |
| 		LIST_HEAD(invalid_list);
 | |
| 
 | |
| 		/*
 | |
| 		 * Never scan more than sc->nr_to_scan VM instances.
 | |
| 		 * Will not hit this condition practically since we do not try
 | |
| 		 * to shrink more than one VM and it is very unlikely to see
 | |
| 		 * !n_used_mmu_pages so many times.
 | |
| 		 */
 | |
| 		if (!nr_to_scan--)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
 | |
| 		 * here. We may skip a VM instance errorneosly, but we do not
 | |
| 		 * want to shrink a VM that only started to populate its MMU
 | |
| 		 * anyway.
 | |
| 		 */
 | |
| 		if (!kvm->arch.n_used_mmu_pages &&
 | |
| 		      !kvm_has_zapped_obsolete_pages(kvm))
 | |
| 			continue;
 | |
| 
 | |
| 		idx = srcu_read_lock(&kvm->srcu);
 | |
| 		spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 		if (kvm_has_zapped_obsolete_pages(kvm)) {
 | |
| 			kvm_mmu_commit_zap_page(kvm,
 | |
| 			      &kvm->arch.zapped_obsolete_pages);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
 | |
| 			freed++;
 | |
| 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 
 | |
| unlock:
 | |
| 		spin_unlock(&kvm->mmu_lock);
 | |
| 		srcu_read_unlock(&kvm->srcu, idx);
 | |
| 
 | |
| 		/*
 | |
| 		 * unfair on small ones
 | |
| 		 * per-vm shrinkers cry out
 | |
| 		 * sadness comes quickly
 | |
| 		 */
 | |
| 		list_move_tail(&kvm->vm_list, &vm_list);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&kvm_lock);
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
 | |
| }
 | |
| 
 | |
| static struct shrinker mmu_shrinker = {
 | |
| 	.count_objects = mmu_shrink_count,
 | |
| 	.scan_objects = mmu_shrink_scan,
 | |
| 	.seeks = DEFAULT_SEEKS * 10,
 | |
| };
 | |
| 
 | |
| static void mmu_destroy_caches(void)
 | |
| {
 | |
| 	if (pte_list_desc_cache)
 | |
| 		kmem_cache_destroy(pte_list_desc_cache);
 | |
| 	if (mmu_page_header_cache)
 | |
| 		kmem_cache_destroy(mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_module_init(void)
 | |
| {
 | |
| 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
 | |
| 					    sizeof(struct pte_list_desc),
 | |
| 					    0, 0, NULL);
 | |
| 	if (!pte_list_desc_cache)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
 | |
| 						  sizeof(struct kvm_mmu_page),
 | |
| 						  0, 0, NULL);
 | |
| 	if (!mmu_page_header_cache)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
 | |
| 		goto nomem;
 | |
| 
 | |
| 	register_shrinker(&mmu_shrinker);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	mmu_destroy_caches();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caculate mmu pages needed for kvm.
 | |
|  */
 | |
| unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
 | |
| {
 | |
| 	unsigned int nr_mmu_pages;
 | |
| 	unsigned int  nr_pages = 0;
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 
 | |
| 	slots = kvm_memslots(kvm);
 | |
| 
 | |
| 	kvm_for_each_memslot(memslot, slots)
 | |
| 		nr_pages += memslot->npages;
 | |
| 
 | |
| 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
 | |
| 	nr_mmu_pages = max(nr_mmu_pages,
 | |
| 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
 | |
| 
 | |
| 	return nr_mmu_pages;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	u64 spte;
 | |
| 	int nr_sptes = 0;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
 | |
| 		sptes[iterator.level-1] = spte;
 | |
| 		nr_sptes++;
 | |
| 		if (!is_shadow_present_pte(spte))
 | |
| 			break;
 | |
| 	}
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| 
 | |
| 	return nr_sptes;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
 | |
| 
 | |
| void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	free_mmu_pages(vcpu);
 | |
| 	mmu_free_memory_caches(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_module_exit(void)
 | |
| {
 | |
| 	mmu_destroy_caches();
 | |
| 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
 | |
| 	unregister_shrinker(&mmu_shrinker);
 | |
| 	mmu_audit_disable();
 | |
| }
 |