 4f804943f9
			
		
	
	
	4f804943f9
	
	
	
		
			
			Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			872 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			872 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  This file contains ioremap and related functions for 64-bit machines.
 | |
|  *
 | |
|  *  Derived from arch/ppc64/mm/init.c
 | |
|  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 | |
|  *
 | |
|  *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
 | |
|  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 | |
|  *    Copyright (C) 1996 Paul Mackerras
 | |
|  *
 | |
|  *  Derived from "arch/i386/mm/init.c"
 | |
|  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  *
 | |
|  *  Dave Engebretsen <engebret@us.ibm.com>
 | |
|  *      Rework for PPC64 port.
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or
 | |
|  *  modify it under the terms of the GNU General Public License
 | |
|  *  as published by the Free Software Foundation; either version
 | |
|  *  2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/firmware.h>
 | |
| 
 | |
| #include "mmu_decl.h"
 | |
| 
 | |
| /* Some sanity checking */
 | |
| #if TASK_SIZE_USER64 > PGTABLE_RANGE
 | |
| #error TASK_SIZE_USER64 exceeds pagetable range
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC_STD_MMU_64
 | |
| #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
 | |
| #error TASK_SIZE_USER64 exceeds user VSID range
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| unsigned long ioremap_bot = IOREMAP_BASE;
 | |
| 
 | |
| #ifdef CONFIG_PPC_MMU_NOHASH
 | |
| static void *early_alloc_pgtable(unsigned long size)
 | |
| {
 | |
| 	void *pt;
 | |
| 
 | |
| 	if (init_bootmem_done)
 | |
| 		pt = __alloc_bootmem(size, size, __pa(MAX_DMA_ADDRESS));
 | |
| 	else
 | |
| 		pt = __va(memblock_alloc_base(size, size,
 | |
| 					 __pa(MAX_DMA_ADDRESS)));
 | |
| 	memset(pt, 0, size);
 | |
| 
 | |
| 	return pt;
 | |
| }
 | |
| #endif /* CONFIG_PPC_MMU_NOHASH */
 | |
| 
 | |
| /*
 | |
|  * map_kernel_page currently only called by __ioremap
 | |
|  * map_kernel_page adds an entry to the ioremap page table
 | |
|  * and adds an entry to the HPT, possibly bolting it
 | |
|  */
 | |
| int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
 | |
| {
 | |
| 	pgd_t *pgdp;
 | |
| 	pud_t *pudp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	if (slab_is_available()) {
 | |
| 		pgdp = pgd_offset_k(ea);
 | |
| 		pudp = pud_alloc(&init_mm, pgdp, ea);
 | |
| 		if (!pudp)
 | |
| 			return -ENOMEM;
 | |
| 		pmdp = pmd_alloc(&init_mm, pudp, ea);
 | |
| 		if (!pmdp)
 | |
| 			return -ENOMEM;
 | |
| 		ptep = pte_alloc_kernel(pmdp, ea);
 | |
| 		if (!ptep)
 | |
| 			return -ENOMEM;
 | |
| 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
 | |
| 							  __pgprot(flags)));
 | |
| 	} else {
 | |
| #ifdef CONFIG_PPC_MMU_NOHASH
 | |
| 		/* Warning ! This will blow up if bootmem is not initialized
 | |
| 		 * which our ppc64 code is keen to do that, we'll need to
 | |
| 		 * fix it and/or be more careful
 | |
| 		 */
 | |
| 		pgdp = pgd_offset_k(ea);
 | |
| #ifdef PUD_TABLE_SIZE
 | |
| 		if (pgd_none(*pgdp)) {
 | |
| 			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
 | |
| 			BUG_ON(pudp == NULL);
 | |
| 			pgd_populate(&init_mm, pgdp, pudp);
 | |
| 		}
 | |
| #endif /* PUD_TABLE_SIZE */
 | |
| 		pudp = pud_offset(pgdp, ea);
 | |
| 		if (pud_none(*pudp)) {
 | |
| 			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
 | |
| 			BUG_ON(pmdp == NULL);
 | |
| 			pud_populate(&init_mm, pudp, pmdp);
 | |
| 		}
 | |
| 		pmdp = pmd_offset(pudp, ea);
 | |
| 		if (!pmd_present(*pmdp)) {
 | |
| 			ptep = early_alloc_pgtable(PAGE_SIZE);
 | |
| 			BUG_ON(ptep == NULL);
 | |
| 			pmd_populate_kernel(&init_mm, pmdp, ptep);
 | |
| 		}
 | |
| 		ptep = pte_offset_kernel(pmdp, ea);
 | |
| 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
 | |
| 							  __pgprot(flags)));
 | |
| #else /* CONFIG_PPC_MMU_NOHASH */
 | |
| 		/*
 | |
| 		 * If the mm subsystem is not fully up, we cannot create a
 | |
| 		 * linux page table entry for this mapping.  Simply bolt an
 | |
| 		 * entry in the hardware page table.
 | |
| 		 *
 | |
| 		 */
 | |
| 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
 | |
| 				      mmu_io_psize, mmu_kernel_ssize)) {
 | |
| 			printk(KERN_ERR "Failed to do bolted mapping IO "
 | |
| 			       "memory at %016lx !\n", pa);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| #endif /* !CONFIG_PPC_MMU_NOHASH */
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * __ioremap_at - Low level function to establish the page tables
 | |
|  *                for an IO mapping
 | |
|  */
 | |
| void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
 | |
| 			    unsigned long flags)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	/* Make sure we have the base flags */
 | |
| 	if ((flags & _PAGE_PRESENT) == 0)
 | |
| 		flags |= pgprot_val(PAGE_KERNEL);
 | |
| 
 | |
| 	/* Non-cacheable page cannot be coherent */
 | |
| 	if (flags & _PAGE_NO_CACHE)
 | |
| 		flags &= ~_PAGE_COHERENT;
 | |
| 
 | |
| 	/* We don't support the 4K PFN hack with ioremap */
 | |
| 	if (flags & _PAGE_4K_PFN)
 | |
| 		return NULL;
 | |
| 
 | |
| 	WARN_ON(pa & ~PAGE_MASK);
 | |
| 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
 | |
| 	WARN_ON(size & ~PAGE_MASK);
 | |
| 
 | |
| 	for (i = 0; i < size; i += PAGE_SIZE)
 | |
| 		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
 | |
| 			return NULL;
 | |
| 
 | |
| 	return (void __iomem *)ea;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __iounmap_from - Low level function to tear down the page tables
 | |
|  *                  for an IO mapping. This is used for mappings that
 | |
|  *                  are manipulated manually, like partial unmapping of
 | |
|  *                  PCI IOs or ISA space.
 | |
|  */
 | |
| void __iounmap_at(void *ea, unsigned long size)
 | |
| {
 | |
| 	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
 | |
| 	WARN_ON(size & ~PAGE_MASK);
 | |
| 
 | |
| 	unmap_kernel_range((unsigned long)ea, size);
 | |
| }
 | |
| 
 | |
| void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
 | |
| 				unsigned long flags, void *caller)
 | |
| {
 | |
| 	phys_addr_t paligned;
 | |
| 	void __iomem *ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Choose an address to map it to.
 | |
| 	 * Once the imalloc system is running, we use it.
 | |
| 	 * Before that, we map using addresses going
 | |
| 	 * up from ioremap_bot.  imalloc will use
 | |
| 	 * the addresses from ioremap_bot through
 | |
| 	 * IMALLOC_END
 | |
| 	 * 
 | |
| 	 */
 | |
| 	paligned = addr & PAGE_MASK;
 | |
| 	size = PAGE_ALIGN(addr + size) - paligned;
 | |
| 
 | |
| 	if ((size == 0) || (paligned == 0))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (mem_init_done) {
 | |
| 		struct vm_struct *area;
 | |
| 
 | |
| 		area = __get_vm_area_caller(size, VM_IOREMAP,
 | |
| 					    ioremap_bot, IOREMAP_END,
 | |
| 					    caller);
 | |
| 		if (area == NULL)
 | |
| 			return NULL;
 | |
| 
 | |
| 		area->phys_addr = paligned;
 | |
| 		ret = __ioremap_at(paligned, area->addr, size, flags);
 | |
| 		if (!ret)
 | |
| 			vunmap(area->addr);
 | |
| 	} else {
 | |
| 		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
 | |
| 		if (ret)
 | |
| 			ioremap_bot += size;
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		ret += addr & ~PAGE_MASK;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
 | |
| 			 unsigned long flags)
 | |
| {
 | |
| 	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
 | |
| }
 | |
| 
 | |
| void __iomem * ioremap(phys_addr_t addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
 | |
| 	void *caller = __builtin_return_address(0);
 | |
| 
 | |
| 	if (ppc_md.ioremap)
 | |
| 		return ppc_md.ioremap(addr, size, flags, caller);
 | |
| 	return __ioremap_caller(addr, size, flags, caller);
 | |
| }
 | |
| 
 | |
| void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long flags = _PAGE_NO_CACHE;
 | |
| 	void *caller = __builtin_return_address(0);
 | |
| 
 | |
| 	if (ppc_md.ioremap)
 | |
| 		return ppc_md.ioremap(addr, size, flags, caller);
 | |
| 	return __ioremap_caller(addr, size, flags, caller);
 | |
| }
 | |
| 
 | |
| void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
 | |
| 			     unsigned long flags)
 | |
| {
 | |
| 	void *caller = __builtin_return_address(0);
 | |
| 
 | |
| 	/* writeable implies dirty for kernel addresses */
 | |
| 	if (flags & _PAGE_RW)
 | |
| 		flags |= _PAGE_DIRTY;
 | |
| 
 | |
| 	/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
 | |
| 	flags &= ~(_PAGE_USER | _PAGE_EXEC);
 | |
| 
 | |
| #ifdef _PAGE_BAP_SR
 | |
| 	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
 | |
| 	 * which means that we just cleared supervisor access... oops ;-) This
 | |
| 	 * restores it
 | |
| 	 */
 | |
| 	flags |= _PAGE_BAP_SR;
 | |
| #endif
 | |
| 
 | |
| 	if (ppc_md.ioremap)
 | |
| 		return ppc_md.ioremap(addr, size, flags, caller);
 | |
| 	return __ioremap_caller(addr, size, flags, caller);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*  
 | |
|  * Unmap an IO region and remove it from imalloc'd list.
 | |
|  * Access to IO memory should be serialized by driver.
 | |
|  */
 | |
| void __iounmap(volatile void __iomem *token)
 | |
| {
 | |
| 	void *addr;
 | |
| 
 | |
| 	if (!mem_init_done)
 | |
| 		return;
 | |
| 	
 | |
| 	addr = (void *) ((unsigned long __force)
 | |
| 			 PCI_FIX_ADDR(token) & PAGE_MASK);
 | |
| 	if ((unsigned long)addr < ioremap_bot) {
 | |
| 		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
 | |
| 		       " at 0x%p\n", addr);
 | |
| 		return;
 | |
| 	}
 | |
| 	vunmap(addr);
 | |
| }
 | |
| 
 | |
| void iounmap(volatile void __iomem *token)
 | |
| {
 | |
| 	if (ppc_md.iounmap)
 | |
| 		ppc_md.iounmap(token);
 | |
| 	else
 | |
| 		__iounmap(token);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(ioremap);
 | |
| EXPORT_SYMBOL(ioremap_wc);
 | |
| EXPORT_SYMBOL(ioremap_prot);
 | |
| EXPORT_SYMBOL(__ioremap);
 | |
| EXPORT_SYMBOL(__ioremap_at);
 | |
| EXPORT_SYMBOL(iounmap);
 | |
| EXPORT_SYMBOL(__iounmap);
 | |
| EXPORT_SYMBOL(__iounmap_at);
 | |
| 
 | |
| /*
 | |
|  * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
 | |
|  * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
 | |
|  */
 | |
| struct page *pmd_page(pmd_t pmd)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	if (pmd_trans_huge(pmd))
 | |
| 		return pfn_to_page(pmd_pfn(pmd));
 | |
| #endif
 | |
| 	return virt_to_page(pmd_page_vaddr(pmd));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| static pte_t *get_from_cache(struct mm_struct *mm)
 | |
| {
 | |
| 	void *pte_frag, *ret;
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	ret = mm->context.pte_frag;
 | |
| 	if (ret) {
 | |
| 		pte_frag = ret + PTE_FRAG_SIZE;
 | |
| 		/*
 | |
| 		 * If we have taken up all the fragments mark PTE page NULL
 | |
| 		 */
 | |
| 		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
 | |
| 			pte_frag = NULL;
 | |
| 		mm->context.pte_frag = pte_frag;
 | |
| 	}
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return (pte_t *)ret;
 | |
| }
 | |
| 
 | |
| static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
 | |
| {
 | |
| 	void *ret = NULL;
 | |
| 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
 | |
| 				       __GFP_REPEAT | __GFP_ZERO);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 	if (!kernel && !pgtable_page_ctor(page)) {
 | |
| 		__free_page(page);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ret = page_address(page);
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	/*
 | |
| 	 * If we find pgtable_page set, we return
 | |
| 	 * the allocated page with single fragement
 | |
| 	 * count.
 | |
| 	 */
 | |
| 	if (likely(!mm->context.pte_frag)) {
 | |
| 		atomic_set(&page->_count, PTE_FRAG_NR);
 | |
| 		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
 | |
| 	}
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	return (pte_t *)ret;
 | |
| }
 | |
| 
 | |
| pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = get_from_cache(mm);
 | |
| 	if (pte)
 | |
| 		return pte;
 | |
| 
 | |
| 	return __alloc_for_cache(mm, kernel);
 | |
| }
 | |
| 
 | |
| void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
 | |
| {
 | |
| 	struct page *page = virt_to_page(table);
 | |
| 	if (put_page_testzero(page)) {
 | |
| 		if (!kernel)
 | |
| 			pgtable_page_dtor(page);
 | |
| 		free_hot_cold_page(page, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static void page_table_free_rcu(void *table)
 | |
| {
 | |
| 	struct page *page = virt_to_page(table);
 | |
| 	if (put_page_testzero(page)) {
 | |
| 		pgtable_page_dtor(page);
 | |
| 		free_hot_cold_page(page, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
 | |
| {
 | |
| 	unsigned long pgf = (unsigned long)table;
 | |
| 
 | |
| 	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
 | |
| 	pgf |= shift;
 | |
| 	tlb_remove_table(tlb, (void *)pgf);
 | |
| }
 | |
| 
 | |
| void __tlb_remove_table(void *_table)
 | |
| {
 | |
| 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
 | |
| 	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
 | |
| 
 | |
| 	if (!shift)
 | |
| 		/* PTE page needs special handling */
 | |
| 		page_table_free_rcu(table);
 | |
| 	else {
 | |
| 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
 | |
| 		kmem_cache_free(PGT_CACHE(shift), table);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
 | |
| {
 | |
| 	if (!shift) {
 | |
| 		/* PTE page needs special handling */
 | |
| 		struct page *page = virt_to_page(table);
 | |
| 		if (put_page_testzero(page)) {
 | |
| 			pgtable_page_dtor(page);
 | |
| 			free_hot_cold_page(page, 0);
 | |
| 		}
 | |
| 	} else {
 | |
| 		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
 | |
| 		kmem_cache_free(PGT_CACHE(shift), table);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| #endif /* CONFIG_PPC_64K_PAGES */
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 
 | |
| /*
 | |
|  * This is called when relaxing access to a hugepage. It's also called in the page
 | |
|  * fault path when we don't hit any of the major fault cases, ie, a minor
 | |
|  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
 | |
|  * handled those two for us, we additionally deal with missing execute
 | |
|  * permission here on some processors
 | |
|  */
 | |
| int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
 | |
| 			  pmd_t *pmdp, pmd_t entry, int dirty)
 | |
| {
 | |
| 	int changed;
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	WARN_ON(!pmd_trans_huge(*pmdp));
 | |
| 	assert_spin_locked(&vma->vm_mm->page_table_lock);
 | |
| #endif
 | |
| 	changed = !pmd_same(*(pmdp), entry);
 | |
| 	if (changed) {
 | |
| 		__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
 | |
| 		/*
 | |
| 		 * Since we are not supporting SW TLB systems, we don't
 | |
| 		 * have any thing similar to flush_tlb_page_nohash()
 | |
| 		 */
 | |
| 	}
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
 | |
| 				  pmd_t *pmdp, unsigned long clr)
 | |
| {
 | |
| 
 | |
| 	unsigned long old, tmp;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	WARN_ON(!pmd_trans_huge(*pmdp));
 | |
| 	assert_spin_locked(&mm->page_table_lock);
 | |
| #endif
 | |
| 
 | |
| #ifdef PTE_ATOMIC_UPDATES
 | |
| 	__asm__ __volatile__(
 | |
| 	"1:	ldarx	%0,0,%3\n\
 | |
| 		andi.	%1,%0,%6\n\
 | |
| 		bne-	1b \n\
 | |
| 		andc	%1,%0,%4 \n\
 | |
| 		stdcx.	%1,0,%3 \n\
 | |
| 		bne-	1b"
 | |
| 	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
 | |
| 	: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY)
 | |
| 	: "cc" );
 | |
| #else
 | |
| 	old = pmd_val(*pmdp);
 | |
| 	*pmdp = __pmd(old & ~clr);
 | |
| #endif
 | |
| 	if (old & _PAGE_HASHPTE)
 | |
| 		hpte_do_hugepage_flush(mm, addr, pmdp);
 | |
| 	return old;
 | |
| }
 | |
| 
 | |
| pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
 | |
| 		       pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t pmd;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 	if (pmd_trans_huge(*pmdp)) {
 | |
| 		pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * khugepaged calls this for normal pmd
 | |
| 		 */
 | |
| 		pmd = *pmdp;
 | |
| 		pmd_clear(pmdp);
 | |
| 		/*
 | |
| 		 * Wait for all pending hash_page to finish. This is needed
 | |
| 		 * in case of subpage collapse. When we collapse normal pages
 | |
| 		 * to hugepage, we first clear the pmd, then invalidate all
 | |
| 		 * the PTE entries. The assumption here is that any low level
 | |
| 		 * page fault will see a none pmd and take the slow path that
 | |
| 		 * will wait on mmap_sem. But we could very well be in a
 | |
| 		 * hash_page with local ptep pointer value. Such a hash page
 | |
| 		 * can result in adding new HPTE entries for normal subpages.
 | |
| 		 * That means we could be modifying the page content as we
 | |
| 		 * copy them to a huge page. So wait for parallel hash_page
 | |
| 		 * to finish before invalidating HPTE entries. We can do this
 | |
| 		 * by sending an IPI to all the cpus and executing a dummy
 | |
| 		 * function there.
 | |
| 		 */
 | |
| 		kick_all_cpus_sync();
 | |
| 		/*
 | |
| 		 * Now invalidate the hpte entries in the range
 | |
| 		 * covered by pmd. This make sure we take a
 | |
| 		 * fault and will find the pmd as none, which will
 | |
| 		 * result in a major fault which takes mmap_sem and
 | |
| 		 * hence wait for collapse to complete. Without this
 | |
| 		 * the __collapse_huge_page_copy can result in copying
 | |
| 		 * the old content.
 | |
| 		 */
 | |
| 		flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
 | |
| 	}
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 			      unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We currently remove entries from the hashtable regardless of whether
 | |
|  * the entry was young or dirty. The generic routines only flush if the
 | |
|  * entry was young or dirty which is not good enough.
 | |
|  *
 | |
|  * We should be more intelligent about this but for the moment we override
 | |
|  * these functions and force a tlb flush unconditionally
 | |
|  */
 | |
| int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | |
| 				  unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We mark the pmd splitting and invalidate all the hpte
 | |
|  * entries for this hugepage.
 | |
|  */
 | |
| void pmdp_splitting_flush(struct vm_area_struct *vma,
 | |
| 			  unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	unsigned long old, tmp;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	WARN_ON(!pmd_trans_huge(*pmdp));
 | |
| 	assert_spin_locked(&vma->vm_mm->page_table_lock);
 | |
| #endif
 | |
| 
 | |
| #ifdef PTE_ATOMIC_UPDATES
 | |
| 
 | |
| 	__asm__ __volatile__(
 | |
| 	"1:	ldarx	%0,0,%3\n\
 | |
| 		andi.	%1,%0,%6\n\
 | |
| 		bne-	1b \n\
 | |
| 		ori	%1,%0,%4 \n\
 | |
| 		stdcx.	%1,0,%3 \n\
 | |
| 		bne-	1b"
 | |
| 	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
 | |
| 	: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
 | |
| 	: "cc" );
 | |
| #else
 | |
| 	old = pmd_val(*pmdp);
 | |
| 	*pmdp = __pmd(old | _PAGE_SPLITTING);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * If we didn't had the splitting flag set, go and flush the
 | |
| 	 * HPTE entries.
 | |
| 	 */
 | |
| 	if (!(old & _PAGE_SPLITTING)) {
 | |
| 		/* We need to flush the hpte */
 | |
| 		if (old & _PAGE_HASHPTE)
 | |
| 			hpte_do_hugepage_flush(vma->vm_mm, address, pmdp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want to put the pgtable in pmd and use pgtable for tracking
 | |
|  * the base page size hptes
 | |
|  */
 | |
| void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 | |
| 				pgtable_t pgtable)
 | |
| {
 | |
| 	pgtable_t *pgtable_slot;
 | |
| 	assert_spin_locked(&mm->page_table_lock);
 | |
| 	/*
 | |
| 	 * we store the pgtable in the second half of PMD
 | |
| 	 */
 | |
| 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 | |
| 	*pgtable_slot = pgtable;
 | |
| 	/*
 | |
| 	 * expose the deposited pgtable to other cpus.
 | |
| 	 * before we set the hugepage PTE at pmd level
 | |
| 	 * hash fault code looks at the deposted pgtable
 | |
| 	 * to store hash index values.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| }
 | |
| 
 | |
| pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 | |
| {
 | |
| 	pgtable_t pgtable;
 | |
| 	pgtable_t *pgtable_slot;
 | |
| 
 | |
| 	assert_spin_locked(&mm->page_table_lock);
 | |
| 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 | |
| 	pgtable = *pgtable_slot;
 | |
| 	/*
 | |
| 	 * Once we withdraw, mark the entry NULL.
 | |
| 	 */
 | |
| 	*pgtable_slot = NULL;
 | |
| 	/*
 | |
| 	 * We store HPTE information in the deposited PTE fragment.
 | |
| 	 * zero out the content on withdraw.
 | |
| 	 */
 | |
| 	memset(pgtable, 0, PTE_FRAG_SIZE);
 | |
| 	return pgtable;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * set a new huge pmd. We should not be called for updating
 | |
|  * an existing pmd entry. That should go via pmd_hugepage_update.
 | |
|  */
 | |
| void set_pmd_at(struct mm_struct *mm, unsigned long addr,
 | |
| 		pmd_t *pmdp, pmd_t pmd)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	WARN_ON(!pmd_none(*pmdp));
 | |
| 	assert_spin_locked(&mm->page_table_lock);
 | |
| 	WARN_ON(!pmd_trans_huge(pmd));
 | |
| #endif
 | |
| 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
 | |
| }
 | |
| 
 | |
| void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 | |
| 		     pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A linux hugepage PMD was changed and the corresponding hash table entries
 | |
|  * neesd to be flushed.
 | |
|  */
 | |
| void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
 | |
| 			    pmd_t *pmdp)
 | |
| {
 | |
| 	int ssize, i;
 | |
| 	unsigned long s_addr;
 | |
| 	int max_hpte_count;
 | |
| 	unsigned int psize, valid;
 | |
| 	unsigned char *hpte_slot_array;
 | |
| 	unsigned long hidx, vpn, vsid, hash, shift, slot;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all the hptes mapping this hugepage
 | |
| 	 */
 | |
| 	s_addr = addr & HPAGE_PMD_MASK;
 | |
| 	hpte_slot_array = get_hpte_slot_array(pmdp);
 | |
| 	/*
 | |
| 	 * IF we try to do a HUGE PTE update after a withdraw is done.
 | |
| 	 * we will find the below NULL. This happens when we do
 | |
| 	 * split_huge_page_pmd
 | |
| 	 */
 | |
| 	if (!hpte_slot_array)
 | |
| 		return;
 | |
| 
 | |
| 	/* get the base page size */
 | |
| 	psize = get_slice_psize(mm, s_addr);
 | |
| 
 | |
| 	if (ppc_md.hugepage_invalidate)
 | |
| 		return ppc_md.hugepage_invalidate(mm, hpte_slot_array,
 | |
| 						  s_addr, psize);
 | |
| 	/*
 | |
| 	 * No bluk hpte removal support, invalidate each entry
 | |
| 	 */
 | |
| 	shift = mmu_psize_defs[psize].shift;
 | |
| 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
 | |
| 	for (i = 0; i < max_hpte_count; i++) {
 | |
| 		/*
 | |
| 		 * 8 bits per each hpte entries
 | |
| 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
 | |
| 		 */
 | |
| 		valid = hpte_valid(hpte_slot_array, i);
 | |
| 		if (!valid)
 | |
| 			continue;
 | |
| 		hidx =  hpte_hash_index(hpte_slot_array, i);
 | |
| 
 | |
| 		/* get the vpn */
 | |
| 		addr = s_addr + (i * (1ul << shift));
 | |
| 		if (!is_kernel_addr(addr)) {
 | |
| 			ssize = user_segment_size(addr);
 | |
| 			vsid = get_vsid(mm->context.id, addr, ssize);
 | |
| 			WARN_ON(vsid == 0);
 | |
| 		} else {
 | |
| 			vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
 | |
| 			ssize = mmu_kernel_ssize;
 | |
| 		}
 | |
| 
 | |
| 		vpn = hpt_vpn(addr, vsid, ssize);
 | |
| 		hash = hpt_hash(vpn, shift, ssize);
 | |
| 		if (hidx & _PTEIDX_SECONDARY)
 | |
| 			hash = ~hash;
 | |
| 
 | |
| 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 		slot += hidx & _PTEIDX_GROUP_IX;
 | |
| 		ppc_md.hpte_invalidate(slot, vpn, psize,
 | |
| 				       MMU_PAGE_16M, ssize, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
 | |
| {
 | |
| 	pmd_val(pmd) |= pgprot_val(pgprot);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
 | |
| {
 | |
| 	pmd_t pmd;
 | |
| 	/*
 | |
| 	 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
 | |
| 	 * set. We use this to check THP page at pmd level.
 | |
| 	 * leaf pte for huge page, bottom two bits != 00
 | |
| 	 */
 | |
| 	pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
 | |
| 	pmd_val(pmd) |= _PAGE_THP_HUGE;
 | |
| 	pmd = pmd_set_protbits(pmd, pgprot);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
 | |
| {
 | |
| 	return pfn_pmd(page_to_pfn(page), pgprot);
 | |
| }
 | |
| 
 | |
| pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
 | |
| {
 | |
| 
 | |
| 	pmd_val(pmd) &= _HPAGE_CHG_MASK;
 | |
| 	pmd = pmd_set_protbits(pmd, newprot);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called at the end of handling a user page fault, when the
 | |
|  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
 | |
|  * We use it to preload an HPTE into the hash table corresponding to
 | |
|  * the updated linux HUGE PMD entry.
 | |
|  */
 | |
| void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			  pmd_t *pmd)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| pmd_t pmdp_get_and_clear(struct mm_struct *mm,
 | |
| 			 unsigned long addr, pmd_t *pmdp)
 | |
| {
 | |
| 	pmd_t old_pmd;
 | |
| 	pgtable_t pgtable;
 | |
| 	unsigned long old;
 | |
| 	pgtable_t *pgtable_slot;
 | |
| 
 | |
| 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL);
 | |
| 	old_pmd = __pmd(old);
 | |
| 	/*
 | |
| 	 * We have pmd == none and we are holding page_table_lock.
 | |
| 	 * So we can safely go and clear the pgtable hash
 | |
| 	 * index info.
 | |
| 	 */
 | |
| 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
 | |
| 	pgtable = *pgtable_slot;
 | |
| 	/*
 | |
| 	 * Let's zero out old valid and hash index details
 | |
| 	 * hash fault look at them.
 | |
| 	 */
 | |
| 	memset(pgtable, 0, PTE_FRAG_SIZE);
 | |
| 	return old_pmd;
 | |
| }
 | |
| 
 | |
| int has_transparent_hugepage(void)
 | |
| {
 | |
| 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We support THP only if PMD_SIZE is 16MB.
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * We need to make sure that we support 16MB hugepage in a segement
 | |
| 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
 | |
| 	 * of 64K.
 | |
| 	 */
 | |
| 	/*
 | |
| 	 * If we have 64K HPTE, we will be using that by default
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
 | |
| 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Ok we only have 4K HPTE
 | |
| 	 */
 | |
| 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 |