 c0ad7291aa
			
		
	
	
	c0ad7291aa
	
	
	
		
			
			Signed-off-by: Bob Liu <yjfpb04@gmail.com> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
		
			
				
	
	
		
			1761 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1761 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Universal Host Controller Interface driver for USB.
 | |
|  *
 | |
|  * Maintainer: Alan Stern <stern@rowland.harvard.edu>
 | |
|  *
 | |
|  * (C) Copyright 1999 Linus Torvalds
 | |
|  * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
 | |
|  * (C) Copyright 1999 Randy Dunlap
 | |
|  * (C) Copyright 1999 Georg Acher, acher@in.tum.de
 | |
|  * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
 | |
|  * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
 | |
|  * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
 | |
|  * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
 | |
|  *               support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
 | |
|  * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
 | |
|  * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Technically, updating td->status here is a race, but it's not really a
 | |
|  * problem. The worst that can happen is that we set the IOC bit again
 | |
|  * generating a spurious interrupt. We could fix this by creating another
 | |
|  * QH and leaving the IOC bit always set, but then we would have to play
 | |
|  * games with the FSBR code to make sure we get the correct order in all
 | |
|  * the cases. I don't think it's worth the effort
 | |
|  */
 | |
| static void uhci_set_next_interrupt(struct uhci_hcd *uhci)
 | |
| {
 | |
| 	if (uhci->is_stopped)
 | |
| 		mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies);
 | |
| 	uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC); 
 | |
| }
 | |
| 
 | |
| static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci)
 | |
| {
 | |
| 	uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Full-Speed Bandwidth Reclamation (FSBR).
 | |
|  * We turn on FSBR whenever a queue that wants it is advancing,
 | |
|  * and leave it on for a short time thereafter.
 | |
|  */
 | |
| static void uhci_fsbr_on(struct uhci_hcd *uhci)
 | |
| {
 | |
| 	struct uhci_qh *lqh;
 | |
| 
 | |
| 	/* The terminating skeleton QH always points back to the first
 | |
| 	 * FSBR QH.  Make the last async QH point to the terminating
 | |
| 	 * skeleton QH. */
 | |
| 	uhci->fsbr_is_on = 1;
 | |
| 	lqh = list_entry(uhci->skel_async_qh->node.prev,
 | |
| 			struct uhci_qh, node);
 | |
| 	lqh->link = LINK_TO_QH(uhci->skel_term_qh);
 | |
| }
 | |
| 
 | |
| static void uhci_fsbr_off(struct uhci_hcd *uhci)
 | |
| {
 | |
| 	struct uhci_qh *lqh;
 | |
| 
 | |
| 	/* Remove the link from the last async QH to the terminating
 | |
| 	 * skeleton QH. */
 | |
| 	uhci->fsbr_is_on = 0;
 | |
| 	lqh = list_entry(uhci->skel_async_qh->node.prev,
 | |
| 			struct uhci_qh, node);
 | |
| 	lqh->link = UHCI_PTR_TERM;
 | |
| }
 | |
| 
 | |
| static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb)
 | |
| {
 | |
| 	struct urb_priv *urbp = urb->hcpriv;
 | |
| 
 | |
| 	if (!(urb->transfer_flags & URB_NO_FSBR))
 | |
| 		urbp->fsbr = 1;
 | |
| }
 | |
| 
 | |
| static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp)
 | |
| {
 | |
| 	if (urbp->fsbr) {
 | |
| 		uhci->fsbr_is_wanted = 1;
 | |
| 		if (!uhci->fsbr_is_on)
 | |
| 			uhci_fsbr_on(uhci);
 | |
| 		else if (uhci->fsbr_expiring) {
 | |
| 			uhci->fsbr_expiring = 0;
 | |
| 			del_timer(&uhci->fsbr_timer);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void uhci_fsbr_timeout(unsigned long _uhci)
 | |
| {
 | |
| 	struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&uhci->lock, flags);
 | |
| 	if (uhci->fsbr_expiring) {
 | |
| 		uhci->fsbr_expiring = 0;
 | |
| 		uhci_fsbr_off(uhci);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&uhci->lock, flags);
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci)
 | |
| {
 | |
| 	dma_addr_t dma_handle;
 | |
| 	struct uhci_td *td;
 | |
| 
 | |
| 	td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle);
 | |
| 	if (!td)
 | |
| 		return NULL;
 | |
| 
 | |
| 	td->dma_handle = dma_handle;
 | |
| 	td->frame = -1;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&td->list);
 | |
| 	INIT_LIST_HEAD(&td->fl_list);
 | |
| 
 | |
| 	return td;
 | |
| }
 | |
| 
 | |
| static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td)
 | |
| {
 | |
| 	if (!list_empty(&td->list))
 | |
| 		dev_WARN(uhci_dev(uhci), "td %p still in list!\n", td);
 | |
| 	if (!list_empty(&td->fl_list))
 | |
| 		dev_WARN(uhci_dev(uhci), "td %p still in fl_list!\n", td);
 | |
| 
 | |
| 	dma_pool_free(uhci->td_pool, td, td->dma_handle);
 | |
| }
 | |
| 
 | |
| static inline void uhci_fill_td(struct uhci_td *td, u32 status,
 | |
| 		u32 token, u32 buffer)
 | |
| {
 | |
| 	td->status = cpu_to_le32(status);
 | |
| 	td->token = cpu_to_le32(token);
 | |
| 	td->buffer = cpu_to_le32(buffer);
 | |
| }
 | |
| 
 | |
| static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp)
 | |
| {
 | |
| 	list_add_tail(&td->list, &urbp->td_list);
 | |
| }
 | |
| 
 | |
| static void uhci_remove_td_from_urbp(struct uhci_td *td)
 | |
| {
 | |
| 	list_del_init(&td->list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We insert Isochronous URBs directly into the frame list at the beginning
 | |
|  */
 | |
| static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci,
 | |
| 		struct uhci_td *td, unsigned framenum)
 | |
| {
 | |
| 	framenum &= (UHCI_NUMFRAMES - 1);
 | |
| 
 | |
| 	td->frame = framenum;
 | |
| 
 | |
| 	/* Is there a TD already mapped there? */
 | |
| 	if (uhci->frame_cpu[framenum]) {
 | |
| 		struct uhci_td *ftd, *ltd;
 | |
| 
 | |
| 		ftd = uhci->frame_cpu[framenum];
 | |
| 		ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
 | |
| 
 | |
| 		list_add_tail(&td->fl_list, &ftd->fl_list);
 | |
| 
 | |
| 		td->link = ltd->link;
 | |
| 		wmb();
 | |
| 		ltd->link = LINK_TO_TD(td);
 | |
| 	} else {
 | |
| 		td->link = uhci->frame[framenum];
 | |
| 		wmb();
 | |
| 		uhci->frame[framenum] = LINK_TO_TD(td);
 | |
| 		uhci->frame_cpu[framenum] = td;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci,
 | |
| 		struct uhci_td *td)
 | |
| {
 | |
| 	/* If it's not inserted, don't remove it */
 | |
| 	if (td->frame == -1) {
 | |
| 		WARN_ON(!list_empty(&td->fl_list));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (uhci->frame_cpu[td->frame] == td) {
 | |
| 		if (list_empty(&td->fl_list)) {
 | |
| 			uhci->frame[td->frame] = td->link;
 | |
| 			uhci->frame_cpu[td->frame] = NULL;
 | |
| 		} else {
 | |
| 			struct uhci_td *ntd;
 | |
| 
 | |
| 			ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list);
 | |
| 			uhci->frame[td->frame] = LINK_TO_TD(ntd);
 | |
| 			uhci->frame_cpu[td->frame] = ntd;
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct uhci_td *ptd;
 | |
| 
 | |
| 		ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list);
 | |
| 		ptd->link = td->link;
 | |
| 	}
 | |
| 
 | |
| 	list_del_init(&td->fl_list);
 | |
| 	td->frame = -1;
 | |
| }
 | |
| 
 | |
| static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci,
 | |
| 		unsigned int framenum)
 | |
| {
 | |
| 	struct uhci_td *ftd, *ltd;
 | |
| 
 | |
| 	framenum &= (UHCI_NUMFRAMES - 1);
 | |
| 
 | |
| 	ftd = uhci->frame_cpu[framenum];
 | |
| 	if (ftd) {
 | |
| 		ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
 | |
| 		uhci->frame[framenum] = ltd->link;
 | |
| 		uhci->frame_cpu[framenum] = NULL;
 | |
| 
 | |
| 		while (!list_empty(&ftd->fl_list))
 | |
| 			list_del_init(ftd->fl_list.prev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove all the TDs for an Isochronous URB from the frame list
 | |
|  */
 | |
| static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb)
 | |
| {
 | |
| 	struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
 | |
| 	struct uhci_td *td;
 | |
| 
 | |
| 	list_for_each_entry(td, &urbp->td_list, list)
 | |
| 		uhci_remove_td_from_frame_list(uhci, td);
 | |
| }
 | |
| 
 | |
| static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci,
 | |
| 		struct usb_device *udev, struct usb_host_endpoint *hep)
 | |
| {
 | |
| 	dma_addr_t dma_handle;
 | |
| 	struct uhci_qh *qh;
 | |
| 
 | |
| 	qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle);
 | |
| 	if (!qh)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(qh, 0, sizeof(*qh));
 | |
| 	qh->dma_handle = dma_handle;
 | |
| 
 | |
| 	qh->element = UHCI_PTR_TERM;
 | |
| 	qh->link = UHCI_PTR_TERM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&qh->queue);
 | |
| 	INIT_LIST_HEAD(&qh->node);
 | |
| 
 | |
| 	if (udev) {		/* Normal QH */
 | |
| 		qh->type = usb_endpoint_type(&hep->desc);
 | |
| 		if (qh->type != USB_ENDPOINT_XFER_ISOC) {
 | |
| 			qh->dummy_td = uhci_alloc_td(uhci);
 | |
| 			if (!qh->dummy_td) {
 | |
| 				dma_pool_free(uhci->qh_pool, qh, dma_handle);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		qh->state = QH_STATE_IDLE;
 | |
| 		qh->hep = hep;
 | |
| 		qh->udev = udev;
 | |
| 		hep->hcpriv = qh;
 | |
| 
 | |
| 		if (qh->type == USB_ENDPOINT_XFER_INT ||
 | |
| 				qh->type == USB_ENDPOINT_XFER_ISOC)
 | |
| 			qh->load = usb_calc_bus_time(udev->speed,
 | |
| 					usb_endpoint_dir_in(&hep->desc),
 | |
| 					qh->type == USB_ENDPOINT_XFER_ISOC,
 | |
| 					le16_to_cpu(hep->desc.wMaxPacketSize))
 | |
| 				/ 1000 + 1;
 | |
| 
 | |
| 	} else {		/* Skeleton QH */
 | |
| 		qh->state = QH_STATE_ACTIVE;
 | |
| 		qh->type = -1;
 | |
| 	}
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	WARN_ON(qh->state != QH_STATE_IDLE && qh->udev);
 | |
| 	if (!list_empty(&qh->queue))
 | |
| 		dev_WARN(uhci_dev(uhci), "qh %p list not empty!\n", qh);
 | |
| 
 | |
| 	list_del(&qh->node);
 | |
| 	if (qh->udev) {
 | |
| 		qh->hep->hcpriv = NULL;
 | |
| 		if (qh->dummy_td)
 | |
| 			uhci_free_td(uhci, qh->dummy_td);
 | |
| 	}
 | |
| 	dma_pool_free(uhci->qh_pool, qh, qh->dma_handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a queue is stopped and a dequeued URB is given back, adjust
 | |
|  * the previous TD link (if the URB isn't first on the queue) or
 | |
|  * save its toggle value (if it is first and is currently executing).
 | |
|  *
 | |
|  * Returns 0 if the URB should not yet be given back, 1 otherwise.
 | |
|  */
 | |
| static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh,
 | |
| 		struct urb *urb)
 | |
| {
 | |
| 	struct urb_priv *urbp = urb->hcpriv;
 | |
| 	struct uhci_td *td;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	/* Isochronous pipes don't use toggles and their TD link pointers
 | |
| 	 * get adjusted during uhci_urb_dequeue().  But since their queues
 | |
| 	 * cannot truly be stopped, we have to watch out for dequeues
 | |
| 	 * occurring after the nominal unlink frame. */
 | |
| 	if (qh->type == USB_ENDPOINT_XFER_ISOC) {
 | |
| 		ret = (uhci->frame_number + uhci->is_stopped !=
 | |
| 				qh->unlink_frame);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* If the URB isn't first on its queue, adjust the link pointer
 | |
| 	 * of the last TD in the previous URB.  The toggle doesn't need
 | |
| 	 * to be saved since this URB can't be executing yet. */
 | |
| 	if (qh->queue.next != &urbp->node) {
 | |
| 		struct urb_priv *purbp;
 | |
| 		struct uhci_td *ptd;
 | |
| 
 | |
| 		purbp = list_entry(urbp->node.prev, struct urb_priv, node);
 | |
| 		WARN_ON(list_empty(&purbp->td_list));
 | |
| 		ptd = list_entry(purbp->td_list.prev, struct uhci_td,
 | |
| 				list);
 | |
| 		td = list_entry(urbp->td_list.prev, struct uhci_td,
 | |
| 				list);
 | |
| 		ptd->link = td->link;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* If the QH element pointer is UHCI_PTR_TERM then then currently
 | |
| 	 * executing URB has already been unlinked, so this one isn't it. */
 | |
| 	if (qh_element(qh) == UHCI_PTR_TERM)
 | |
| 		goto done;
 | |
| 	qh->element = UHCI_PTR_TERM;
 | |
| 
 | |
| 	/* Control pipes don't have to worry about toggles */
 | |
| 	if (qh->type == USB_ENDPOINT_XFER_CONTROL)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Save the next toggle value */
 | |
| 	WARN_ON(list_empty(&urbp->td_list));
 | |
| 	td = list_entry(urbp->td_list.next, struct uhci_td, list);
 | |
| 	qh->needs_fixup = 1;
 | |
| 	qh->initial_toggle = uhci_toggle(td_token(td));
 | |
| 
 | |
| done:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fix up the data toggles for URBs in a queue, when one of them
 | |
|  * terminates early (short transfer, error, or dequeued).
 | |
|  */
 | |
| static void uhci_fixup_toggles(struct uhci_qh *qh, int skip_first)
 | |
| {
 | |
| 	struct urb_priv *urbp = NULL;
 | |
| 	struct uhci_td *td;
 | |
| 	unsigned int toggle = qh->initial_toggle;
 | |
| 	unsigned int pipe;
 | |
| 
 | |
| 	/* Fixups for a short transfer start with the second URB in the
 | |
| 	 * queue (the short URB is the first). */
 | |
| 	if (skip_first)
 | |
| 		urbp = list_entry(qh->queue.next, struct urb_priv, node);
 | |
| 
 | |
| 	/* When starting with the first URB, if the QH element pointer is
 | |
| 	 * still valid then we know the URB's toggles are okay. */
 | |
| 	else if (qh_element(qh) != UHCI_PTR_TERM)
 | |
| 		toggle = 2;
 | |
| 
 | |
| 	/* Fix up the toggle for the URBs in the queue.  Normally this
 | |
| 	 * loop won't run more than once: When an error or short transfer
 | |
| 	 * occurs, the queue usually gets emptied. */
 | |
| 	urbp = list_prepare_entry(urbp, &qh->queue, node);
 | |
| 	list_for_each_entry_continue(urbp, &qh->queue, node) {
 | |
| 
 | |
| 		/* If the first TD has the right toggle value, we don't
 | |
| 		 * need to change any toggles in this URB */
 | |
| 		td = list_entry(urbp->td_list.next, struct uhci_td, list);
 | |
| 		if (toggle > 1 || uhci_toggle(td_token(td)) == toggle) {
 | |
| 			td = list_entry(urbp->td_list.prev, struct uhci_td,
 | |
| 					list);
 | |
| 			toggle = uhci_toggle(td_token(td)) ^ 1;
 | |
| 
 | |
| 		/* Otherwise all the toggles in the URB have to be switched */
 | |
| 		} else {
 | |
| 			list_for_each_entry(td, &urbp->td_list, list) {
 | |
| 				td->token ^= cpu_to_le32(
 | |
| 							TD_TOKEN_TOGGLE);
 | |
| 				toggle ^= 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	wmb();
 | |
| 	pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe;
 | |
| 	usb_settoggle(qh->udev, usb_pipeendpoint(pipe),
 | |
| 			usb_pipeout(pipe), toggle);
 | |
| 	qh->needs_fixup = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Link an Isochronous QH into its skeleton's list
 | |
|  */
 | |
| static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	list_add_tail(&qh->node, &uhci->skel_iso_qh->node);
 | |
| 
 | |
| 	/* Isochronous QHs aren't linked by the hardware */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Link a high-period interrupt QH into the schedule at the end of its
 | |
|  * skeleton's list
 | |
|  */
 | |
| static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	struct uhci_qh *pqh;
 | |
| 
 | |
| 	list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node);
 | |
| 
 | |
| 	pqh = list_entry(qh->node.prev, struct uhci_qh, node);
 | |
| 	qh->link = pqh->link;
 | |
| 	wmb();
 | |
| 	pqh->link = LINK_TO_QH(qh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Link a period-1 interrupt or async QH into the schedule at the
 | |
|  * correct spot in the async skeleton's list, and update the FSBR link
 | |
|  */
 | |
| static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	struct uhci_qh *pqh;
 | |
| 	__le32 link_to_new_qh;
 | |
| 
 | |
| 	/* Find the predecessor QH for our new one and insert it in the list.
 | |
| 	 * The list of QHs is expected to be short, so linear search won't
 | |
| 	 * take too long. */
 | |
| 	list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) {
 | |
| 		if (pqh->skel <= qh->skel)
 | |
| 			break;
 | |
| 	}
 | |
| 	list_add(&qh->node, &pqh->node);
 | |
| 
 | |
| 	/* Link it into the schedule */
 | |
| 	qh->link = pqh->link;
 | |
| 	wmb();
 | |
| 	link_to_new_qh = LINK_TO_QH(qh);
 | |
| 	pqh->link = link_to_new_qh;
 | |
| 
 | |
| 	/* If this is now the first FSBR QH, link the terminating skeleton
 | |
| 	 * QH to it. */
 | |
| 	if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR)
 | |
| 		uhci->skel_term_qh->link = link_to_new_qh;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put a QH on the schedule in both hardware and software
 | |
|  */
 | |
| static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	WARN_ON(list_empty(&qh->queue));
 | |
| 
 | |
| 	/* Set the element pointer if it isn't set already.
 | |
| 	 * This isn't needed for Isochronous queues, but it doesn't hurt. */
 | |
| 	if (qh_element(qh) == UHCI_PTR_TERM) {
 | |
| 		struct urb_priv *urbp = list_entry(qh->queue.next,
 | |
| 				struct urb_priv, node);
 | |
| 		struct uhci_td *td = list_entry(urbp->td_list.next,
 | |
| 				struct uhci_td, list);
 | |
| 
 | |
| 		qh->element = LINK_TO_TD(td);
 | |
| 	}
 | |
| 
 | |
| 	/* Treat the queue as if it has just advanced */
 | |
| 	qh->wait_expired = 0;
 | |
| 	qh->advance_jiffies = jiffies;
 | |
| 
 | |
| 	if (qh->state == QH_STATE_ACTIVE)
 | |
| 		return;
 | |
| 	qh->state = QH_STATE_ACTIVE;
 | |
| 
 | |
| 	/* Move the QH from its old list to the correct spot in the appropriate
 | |
| 	 * skeleton's list */
 | |
| 	if (qh == uhci->next_qh)
 | |
| 		uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
 | |
| 				node);
 | |
| 	list_del(&qh->node);
 | |
| 
 | |
| 	if (qh->skel == SKEL_ISO)
 | |
| 		link_iso(uhci, qh);
 | |
| 	else if (qh->skel < SKEL_ASYNC)
 | |
| 		link_interrupt(uhci, qh);
 | |
| 	else
 | |
| 		link_async(uhci, qh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlink a high-period interrupt QH from the schedule
 | |
|  */
 | |
| static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	struct uhci_qh *pqh;
 | |
| 
 | |
| 	pqh = list_entry(qh->node.prev, struct uhci_qh, node);
 | |
| 	pqh->link = qh->link;
 | |
| 	mb();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlink a period-1 interrupt or async QH from the schedule
 | |
|  */
 | |
| static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	struct uhci_qh *pqh;
 | |
| 	__le32 link_to_next_qh = qh->link;
 | |
| 
 | |
| 	pqh = list_entry(qh->node.prev, struct uhci_qh, node);
 | |
| 	pqh->link = link_to_next_qh;
 | |
| 
 | |
| 	/* If this was the old first FSBR QH, link the terminating skeleton
 | |
| 	 * QH to the next (new first FSBR) QH. */
 | |
| 	if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR)
 | |
| 		uhci->skel_term_qh->link = link_to_next_qh;
 | |
| 	mb();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take a QH off the hardware schedule
 | |
|  */
 | |
| static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	if (qh->state == QH_STATE_UNLINKING)
 | |
| 		return;
 | |
| 	WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev);
 | |
| 	qh->state = QH_STATE_UNLINKING;
 | |
| 
 | |
| 	/* Unlink the QH from the schedule and record when we did it */
 | |
| 	if (qh->skel == SKEL_ISO)
 | |
| 		;
 | |
| 	else if (qh->skel < SKEL_ASYNC)
 | |
| 		unlink_interrupt(uhci, qh);
 | |
| 	else
 | |
| 		unlink_async(uhci, qh);
 | |
| 
 | |
| 	uhci_get_current_frame_number(uhci);
 | |
| 	qh->unlink_frame = uhci->frame_number;
 | |
| 
 | |
| 	/* Force an interrupt so we know when the QH is fully unlinked */
 | |
| 	if (list_empty(&uhci->skel_unlink_qh->node))
 | |
| 		uhci_set_next_interrupt(uhci);
 | |
| 
 | |
| 	/* Move the QH from its old list to the end of the unlinking list */
 | |
| 	if (qh == uhci->next_qh)
 | |
| 		uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
 | |
| 				node);
 | |
| 	list_move_tail(&qh->node, &uhci->skel_unlink_qh->node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we and the controller are through with a QH, it becomes IDLE.
 | |
|  * This happens when a QH has been off the schedule (on the unlinking
 | |
|  * list) for more than one frame, or when an error occurs while adding
 | |
|  * the first URB onto a new QH.
 | |
|  */
 | |
| static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	WARN_ON(qh->state == QH_STATE_ACTIVE);
 | |
| 
 | |
| 	if (qh == uhci->next_qh)
 | |
| 		uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
 | |
| 				node);
 | |
| 	list_move(&qh->node, &uhci->idle_qh_list);
 | |
| 	qh->state = QH_STATE_IDLE;
 | |
| 
 | |
| 	/* Now that the QH is idle, its post_td isn't being used */
 | |
| 	if (qh->post_td) {
 | |
| 		uhci_free_td(uhci, qh->post_td);
 | |
| 		qh->post_td = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* If anyone is waiting for a QH to become idle, wake them up */
 | |
| 	if (uhci->num_waiting)
 | |
| 		wake_up_all(&uhci->waitqh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the highest existing bandwidth load for a given phase and period.
 | |
|  */
 | |
| static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period)
 | |
| {
 | |
| 	int highest_load = uhci->load[phase];
 | |
| 
 | |
| 	for (phase += period; phase < MAX_PHASE; phase += period)
 | |
| 		highest_load = max_t(int, highest_load, uhci->load[phase]);
 | |
| 	return highest_load;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set qh->phase to the optimal phase for a periodic transfer and
 | |
|  * check whether the bandwidth requirement is acceptable.
 | |
|  */
 | |
| static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	int minimax_load;
 | |
| 
 | |
| 	/* Find the optimal phase (unless it is already set) and get
 | |
| 	 * its load value. */
 | |
| 	if (qh->phase >= 0)
 | |
| 		minimax_load = uhci_highest_load(uhci, qh->phase, qh->period);
 | |
| 	else {
 | |
| 		int phase, load;
 | |
| 		int max_phase = min_t(int, MAX_PHASE, qh->period);
 | |
| 
 | |
| 		qh->phase = 0;
 | |
| 		minimax_load = uhci_highest_load(uhci, qh->phase, qh->period);
 | |
| 		for (phase = 1; phase < max_phase; ++phase) {
 | |
| 			load = uhci_highest_load(uhci, phase, qh->period);
 | |
| 			if (load < minimax_load) {
 | |
| 				minimax_load = load;
 | |
| 				qh->phase = phase;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */
 | |
| 	if (minimax_load + qh->load > 900) {
 | |
| 		dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: "
 | |
| 				"period %d, phase %d, %d + %d us\n",
 | |
| 				qh->period, qh->phase, minimax_load, qh->load);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve a periodic QH's bandwidth in the schedule
 | |
|  */
 | |
| static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	int i;
 | |
| 	int load = qh->load;
 | |
| 	char *p = "??";
 | |
| 
 | |
| 	for (i = qh->phase; i < MAX_PHASE; i += qh->period) {
 | |
| 		uhci->load[i] += load;
 | |
| 		uhci->total_load += load;
 | |
| 	}
 | |
| 	uhci_to_hcd(uhci)->self.bandwidth_allocated =
 | |
| 			uhci->total_load / MAX_PHASE;
 | |
| 	switch (qh->type) {
 | |
| 	case USB_ENDPOINT_XFER_INT:
 | |
| 		++uhci_to_hcd(uhci)->self.bandwidth_int_reqs;
 | |
| 		p = "INT";
 | |
| 		break;
 | |
| 	case USB_ENDPOINT_XFER_ISOC:
 | |
| 		++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs;
 | |
| 		p = "ISO";
 | |
| 		break;
 | |
| 	}
 | |
| 	qh->bandwidth_reserved = 1;
 | |
| 	dev_dbg(uhci_dev(uhci),
 | |
| 			"%s dev %d ep%02x-%s, period %d, phase %d, %d us\n",
 | |
| 			"reserve", qh->udev->devnum,
 | |
| 			qh->hep->desc.bEndpointAddress, p,
 | |
| 			qh->period, qh->phase, load);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release a periodic QH's bandwidth reservation
 | |
|  */
 | |
| static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	int i;
 | |
| 	int load = qh->load;
 | |
| 	char *p = "??";
 | |
| 
 | |
| 	for (i = qh->phase; i < MAX_PHASE; i += qh->period) {
 | |
| 		uhci->load[i] -= load;
 | |
| 		uhci->total_load -= load;
 | |
| 	}
 | |
| 	uhci_to_hcd(uhci)->self.bandwidth_allocated =
 | |
| 			uhci->total_load / MAX_PHASE;
 | |
| 	switch (qh->type) {
 | |
| 	case USB_ENDPOINT_XFER_INT:
 | |
| 		--uhci_to_hcd(uhci)->self.bandwidth_int_reqs;
 | |
| 		p = "INT";
 | |
| 		break;
 | |
| 	case USB_ENDPOINT_XFER_ISOC:
 | |
| 		--uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs;
 | |
| 		p = "ISO";
 | |
| 		break;
 | |
| 	}
 | |
| 	qh->bandwidth_reserved = 0;
 | |
| 	dev_dbg(uhci_dev(uhci),
 | |
| 			"%s dev %d ep%02x-%s, period %d, phase %d, %d us\n",
 | |
| 			"release", qh->udev->devnum,
 | |
| 			qh->hep->desc.bEndpointAddress, p,
 | |
| 			qh->period, qh->phase, load);
 | |
| }
 | |
| 
 | |
| static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci,
 | |
| 		struct urb *urb)
 | |
| {
 | |
| 	struct urb_priv *urbp;
 | |
| 
 | |
| 	urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC);
 | |
| 	if (!urbp)
 | |
| 		return NULL;
 | |
| 
 | |
| 	urbp->urb = urb;
 | |
| 	urb->hcpriv = urbp;
 | |
| 	
 | |
| 	INIT_LIST_HEAD(&urbp->node);
 | |
| 	INIT_LIST_HEAD(&urbp->td_list);
 | |
| 
 | |
| 	return urbp;
 | |
| }
 | |
| 
 | |
| static void uhci_free_urb_priv(struct uhci_hcd *uhci,
 | |
| 		struct urb_priv *urbp)
 | |
| {
 | |
| 	struct uhci_td *td, *tmp;
 | |
| 
 | |
| 	if (!list_empty(&urbp->node))
 | |
| 		dev_WARN(uhci_dev(uhci), "urb %p still on QH's list!\n",
 | |
| 				urbp->urb);
 | |
| 
 | |
| 	list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
 | |
| 		uhci_remove_td_from_urbp(td);
 | |
| 		uhci_free_td(uhci, td);
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_free(uhci_up_cachep, urbp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map status to standard result codes
 | |
|  *
 | |
|  * <status> is (td_status(td) & 0xF60000), a.k.a.
 | |
|  * uhci_status_bits(td_status(td)).
 | |
|  * Note: <status> does not include the TD_CTRL_NAK bit.
 | |
|  * <dir_out> is True for output TDs and False for input TDs.
 | |
|  */
 | |
| static int uhci_map_status(int status, int dir_out)
 | |
| {
 | |
| 	if (!status)
 | |
| 		return 0;
 | |
| 	if (status & TD_CTRL_BITSTUFF)			/* Bitstuff error */
 | |
| 		return -EPROTO;
 | |
| 	if (status & TD_CTRL_CRCTIMEO) {		/* CRC/Timeout */
 | |
| 		if (dir_out)
 | |
| 			return -EPROTO;
 | |
| 		else
 | |
| 			return -EILSEQ;
 | |
| 	}
 | |
| 	if (status & TD_CTRL_BABBLE)			/* Babble */
 | |
| 		return -EOVERFLOW;
 | |
| 	if (status & TD_CTRL_DBUFERR)			/* Buffer error */
 | |
| 		return -ENOSR;
 | |
| 	if (status & TD_CTRL_STALLED)			/* Stalled */
 | |
| 		return -EPIPE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Control transfers
 | |
|  */
 | |
| static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb,
 | |
| 		struct uhci_qh *qh)
 | |
| {
 | |
| 	struct uhci_td *td;
 | |
| 	unsigned long destination, status;
 | |
| 	int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize);
 | |
| 	int len = urb->transfer_buffer_length;
 | |
| 	dma_addr_t data = urb->transfer_dma;
 | |
| 	__le32 *plink;
 | |
| 	struct urb_priv *urbp = urb->hcpriv;
 | |
| 	int skel;
 | |
| 
 | |
| 	/* The "pipe" thing contains the destination in bits 8--18 */
 | |
| 	destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;
 | |
| 
 | |
| 	/* 3 errors, dummy TD remains inactive */
 | |
| 	status = uhci_maxerr(3);
 | |
| 	if (urb->dev->speed == USB_SPEED_LOW)
 | |
| 		status |= TD_CTRL_LS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Build the TD for the control request setup packet
 | |
| 	 */
 | |
| 	td = qh->dummy_td;
 | |
| 	uhci_add_td_to_urbp(td, urbp);
 | |
| 	uhci_fill_td(td, status, destination | uhci_explen(8),
 | |
| 			urb->setup_dma);
 | |
| 	plink = &td->link;
 | |
| 	status |= TD_CTRL_ACTIVE;
 | |
| 
 | |
| 	/*
 | |
| 	 * If direction is "send", change the packet ID from SETUP (0x2D)
 | |
| 	 * to OUT (0xE1).  Else change it from SETUP to IN (0x69) and
 | |
| 	 * set Short Packet Detect (SPD) for all data packets.
 | |
| 	 *
 | |
| 	 * 0-length transfers always get treated as "send".
 | |
| 	 */
 | |
| 	if (usb_pipeout(urb->pipe) || len == 0)
 | |
| 		destination ^= (USB_PID_SETUP ^ USB_PID_OUT);
 | |
| 	else {
 | |
| 		destination ^= (USB_PID_SETUP ^ USB_PID_IN);
 | |
| 		status |= TD_CTRL_SPD;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Build the DATA TDs
 | |
| 	 */
 | |
| 	while (len > 0) {
 | |
| 		int pktsze = maxsze;
 | |
| 
 | |
| 		if (len <= pktsze) {		/* The last data packet */
 | |
| 			pktsze = len;
 | |
| 			status &= ~TD_CTRL_SPD;
 | |
| 		}
 | |
| 
 | |
| 		td = uhci_alloc_td(uhci);
 | |
| 		if (!td)
 | |
| 			goto nomem;
 | |
| 		*plink = LINK_TO_TD(td);
 | |
| 
 | |
| 		/* Alternate Data0/1 (start with Data1) */
 | |
| 		destination ^= TD_TOKEN_TOGGLE;
 | |
| 	
 | |
| 		uhci_add_td_to_urbp(td, urbp);
 | |
| 		uhci_fill_td(td, status, destination | uhci_explen(pktsze),
 | |
| 				data);
 | |
| 		plink = &td->link;
 | |
| 
 | |
| 		data += pktsze;
 | |
| 		len -= pktsze;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Build the final TD for control status 
 | |
| 	 */
 | |
| 	td = uhci_alloc_td(uhci);
 | |
| 	if (!td)
 | |
| 		goto nomem;
 | |
| 	*plink = LINK_TO_TD(td);
 | |
| 
 | |
| 	/* Change direction for the status transaction */
 | |
| 	destination ^= (USB_PID_IN ^ USB_PID_OUT);
 | |
| 	destination |= TD_TOKEN_TOGGLE;		/* End in Data1 */
 | |
| 
 | |
| 	uhci_add_td_to_urbp(td, urbp);
 | |
| 	uhci_fill_td(td, status | TD_CTRL_IOC,
 | |
| 			destination | uhci_explen(0), 0);
 | |
| 	plink = &td->link;
 | |
| 
 | |
| 	/*
 | |
| 	 * Build the new dummy TD and activate the old one
 | |
| 	 */
 | |
| 	td = uhci_alloc_td(uhci);
 | |
| 	if (!td)
 | |
| 		goto nomem;
 | |
| 	*plink = LINK_TO_TD(td);
 | |
| 
 | |
| 	uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0);
 | |
| 	wmb();
 | |
| 	qh->dummy_td->status |= cpu_to_le32(TD_CTRL_ACTIVE);
 | |
| 	qh->dummy_td = td;
 | |
| 
 | |
| 	/* Low-speed transfers get a different queue, and won't hog the bus.
 | |
| 	 * Also, some devices enumerate better without FSBR; the easiest way
 | |
| 	 * to do that is to put URBs on the low-speed queue while the device
 | |
| 	 * isn't in the CONFIGURED state. */
 | |
| 	if (urb->dev->speed == USB_SPEED_LOW ||
 | |
| 			urb->dev->state != USB_STATE_CONFIGURED)
 | |
| 		skel = SKEL_LS_CONTROL;
 | |
| 	else {
 | |
| 		skel = SKEL_FS_CONTROL;
 | |
| 		uhci_add_fsbr(uhci, urb);
 | |
| 	}
 | |
| 	if (qh->state != QH_STATE_ACTIVE)
 | |
| 		qh->skel = skel;
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	/* Remove the dummy TD from the td_list so it doesn't get freed */
 | |
| 	uhci_remove_td_from_urbp(qh->dummy_td);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common submit for bulk and interrupt
 | |
|  */
 | |
| static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb,
 | |
| 		struct uhci_qh *qh)
 | |
| {
 | |
| 	struct uhci_td *td;
 | |
| 	unsigned long destination, status;
 | |
| 	int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize);
 | |
| 	int len = urb->transfer_buffer_length;
 | |
| 	dma_addr_t data = urb->transfer_dma;
 | |
| 	__le32 *plink;
 | |
| 	struct urb_priv *urbp = urb->hcpriv;
 | |
| 	unsigned int toggle;
 | |
| 
 | |
| 	if (len < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* The "pipe" thing contains the destination in bits 8--18 */
 | |
| 	destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
 | |
| 	toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
 | |
| 			 usb_pipeout(urb->pipe));
 | |
| 
 | |
| 	/* 3 errors, dummy TD remains inactive */
 | |
| 	status = uhci_maxerr(3);
 | |
| 	if (urb->dev->speed == USB_SPEED_LOW)
 | |
| 		status |= TD_CTRL_LS;
 | |
| 	if (usb_pipein(urb->pipe))
 | |
| 		status |= TD_CTRL_SPD;
 | |
| 
 | |
| 	/*
 | |
| 	 * Build the DATA TDs
 | |
| 	 */
 | |
| 	plink = NULL;
 | |
| 	td = qh->dummy_td;
 | |
| 	do {	/* Allow zero length packets */
 | |
| 		int pktsze = maxsze;
 | |
| 
 | |
| 		if (len <= pktsze) {		/* The last packet */
 | |
| 			pktsze = len;
 | |
| 			if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
 | |
| 				status &= ~TD_CTRL_SPD;
 | |
| 		}
 | |
| 
 | |
| 		if (plink) {
 | |
| 			td = uhci_alloc_td(uhci);
 | |
| 			if (!td)
 | |
| 				goto nomem;
 | |
| 			*plink = LINK_TO_TD(td);
 | |
| 		}
 | |
| 		uhci_add_td_to_urbp(td, urbp);
 | |
| 		uhci_fill_td(td, status,
 | |
| 				destination | uhci_explen(pktsze) |
 | |
| 					(toggle << TD_TOKEN_TOGGLE_SHIFT),
 | |
| 				data);
 | |
| 		plink = &td->link;
 | |
| 		status |= TD_CTRL_ACTIVE;
 | |
| 
 | |
| 		data += pktsze;
 | |
| 		len -= maxsze;
 | |
| 		toggle ^= 1;
 | |
| 	} while (len > 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * URB_ZERO_PACKET means adding a 0-length packet, if direction
 | |
| 	 * is OUT and the transfer_length was an exact multiple of maxsze,
 | |
| 	 * hence (len = transfer_length - N * maxsze) == 0
 | |
| 	 * however, if transfer_length == 0, the zero packet was already
 | |
| 	 * prepared above.
 | |
| 	 */
 | |
| 	if ((urb->transfer_flags & URB_ZERO_PACKET) &&
 | |
| 			usb_pipeout(urb->pipe) && len == 0 &&
 | |
| 			urb->transfer_buffer_length > 0) {
 | |
| 		td = uhci_alloc_td(uhci);
 | |
| 		if (!td)
 | |
| 			goto nomem;
 | |
| 		*plink = LINK_TO_TD(td);
 | |
| 
 | |
| 		uhci_add_td_to_urbp(td, urbp);
 | |
| 		uhci_fill_td(td, status,
 | |
| 				destination | uhci_explen(0) |
 | |
| 					(toggle << TD_TOKEN_TOGGLE_SHIFT),
 | |
| 				data);
 | |
| 		plink = &td->link;
 | |
| 
 | |
| 		toggle ^= 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the interrupt-on-completion flag on the last packet.
 | |
| 	 * A more-or-less typical 4 KB URB (= size of one memory page)
 | |
| 	 * will require about 3 ms to transfer; that's a little on the
 | |
| 	 * fast side but not enough to justify delaying an interrupt
 | |
| 	 * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT
 | |
| 	 * flag setting. */
 | |
| 	td->status |= cpu_to_le32(TD_CTRL_IOC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Build the new dummy TD and activate the old one
 | |
| 	 */
 | |
| 	td = uhci_alloc_td(uhci);
 | |
| 	if (!td)
 | |
| 		goto nomem;
 | |
| 	*plink = LINK_TO_TD(td);
 | |
| 
 | |
| 	uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0);
 | |
| 	wmb();
 | |
| 	qh->dummy_td->status |= cpu_to_le32(TD_CTRL_ACTIVE);
 | |
| 	qh->dummy_td = td;
 | |
| 
 | |
| 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
 | |
| 			usb_pipeout(urb->pipe), toggle);
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	/* Remove the dummy TD from the td_list so it doesn't get freed */
 | |
| 	uhci_remove_td_from_urbp(qh->dummy_td);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb,
 | |
| 		struct uhci_qh *qh)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Can't have low-speed bulk transfers */
 | |
| 	if (urb->dev->speed == USB_SPEED_LOW)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (qh->state != QH_STATE_ACTIVE)
 | |
| 		qh->skel = SKEL_BULK;
 | |
| 	ret = uhci_submit_common(uhci, urb, qh);
 | |
| 	if (ret == 0)
 | |
| 		uhci_add_fsbr(uhci, urb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb,
 | |
| 		struct uhci_qh *qh)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* USB 1.1 interrupt transfers only involve one packet per interval.
 | |
| 	 * Drivers can submit URBs of any length, but longer ones will need
 | |
| 	 * multiple intervals to complete.
 | |
| 	 */
 | |
| 
 | |
| 	if (!qh->bandwidth_reserved) {
 | |
| 		int exponent;
 | |
| 
 | |
| 		/* Figure out which power-of-two queue to use */
 | |
| 		for (exponent = 7; exponent >= 0; --exponent) {
 | |
| 			if ((1 << exponent) <= urb->interval)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (exponent < 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* If the slot is full, try a lower period */
 | |
| 		do {
 | |
| 			qh->period = 1 << exponent;
 | |
| 			qh->skel = SKEL_INDEX(exponent);
 | |
| 
 | |
| 			/* For now, interrupt phase is fixed by the layout
 | |
| 			 * of the QH lists.
 | |
| 			 */
 | |
| 			qh->phase = (qh->period / 2) & (MAX_PHASE - 1);
 | |
| 			ret = uhci_check_bandwidth(uhci, qh);
 | |
| 		} while (ret != 0 && --exponent >= 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} else if (qh->period > urb->interval)
 | |
| 		return -EINVAL;		/* Can't decrease the period */
 | |
| 
 | |
| 	ret = uhci_submit_common(uhci, urb, qh);
 | |
| 	if (ret == 0) {
 | |
| 		urb->interval = qh->period;
 | |
| 		if (!qh->bandwidth_reserved)
 | |
| 			uhci_reserve_bandwidth(uhci, qh);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fix up the data structures following a short transfer
 | |
|  */
 | |
| static int uhci_fixup_short_transfer(struct uhci_hcd *uhci,
 | |
| 		struct uhci_qh *qh, struct urb_priv *urbp)
 | |
| {
 | |
| 	struct uhci_td *td;
 | |
| 	struct list_head *tmp;
 | |
| 	int ret;
 | |
| 
 | |
| 	td = list_entry(urbp->td_list.prev, struct uhci_td, list);
 | |
| 	if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
 | |
| 
 | |
| 		/* When a control transfer is short, we have to restart
 | |
| 		 * the queue at the status stage transaction, which is
 | |
| 		 * the last TD. */
 | |
| 		WARN_ON(list_empty(&urbp->td_list));
 | |
| 		qh->element = LINK_TO_TD(td);
 | |
| 		tmp = td->list.prev;
 | |
| 		ret = -EINPROGRESS;
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		/* When a bulk/interrupt transfer is short, we have to
 | |
| 		 * fix up the toggles of the following URBs on the queue
 | |
| 		 * before restarting the queue at the next URB. */
 | |
| 		qh->initial_toggle = uhci_toggle(td_token(qh->post_td)) ^ 1;
 | |
| 		uhci_fixup_toggles(qh, 1);
 | |
| 
 | |
| 		if (list_empty(&urbp->td_list))
 | |
| 			td = qh->post_td;
 | |
| 		qh->element = td->link;
 | |
| 		tmp = urbp->td_list.prev;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Remove all the TDs we skipped over, from tmp back to the start */
 | |
| 	while (tmp != &urbp->td_list) {
 | |
| 		td = list_entry(tmp, struct uhci_td, list);
 | |
| 		tmp = tmp->prev;
 | |
| 
 | |
| 		uhci_remove_td_from_urbp(td);
 | |
| 		uhci_free_td(uhci, td);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Common result for control, bulk, and interrupt
 | |
|  */
 | |
| static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb)
 | |
| {
 | |
| 	struct urb_priv *urbp = urb->hcpriv;
 | |
| 	struct uhci_qh *qh = urbp->qh;
 | |
| 	struct uhci_td *td, *tmp;
 | |
| 	unsigned status;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
 | |
| 		unsigned int ctrlstat;
 | |
| 		int len;
 | |
| 
 | |
| 		ctrlstat = td_status(td);
 | |
| 		status = uhci_status_bits(ctrlstat);
 | |
| 		if (status & TD_CTRL_ACTIVE)
 | |
| 			return -EINPROGRESS;
 | |
| 
 | |
| 		len = uhci_actual_length(ctrlstat);
 | |
| 		urb->actual_length += len;
 | |
| 
 | |
| 		if (status) {
 | |
| 			ret = uhci_map_status(status,
 | |
| 					uhci_packetout(td_token(td)));
 | |
| 			if ((debug == 1 && ret != -EPIPE) || debug > 1) {
 | |
| 				/* Some debugging code */
 | |
| 				dev_dbg(&urb->dev->dev,
 | |
| 						"%s: failed with status %x\n",
 | |
| 						__func__, status);
 | |
| 
 | |
| 				if (debug > 1 && errbuf) {
 | |
| 					/* Print the chain for debugging */
 | |
| 					uhci_show_qh(uhci, urbp->qh, errbuf,
 | |
| 							ERRBUF_LEN, 0);
 | |
| 					lprintk(errbuf);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		/* Did we receive a short packet? */
 | |
| 		} else if (len < uhci_expected_length(td_token(td))) {
 | |
| 
 | |
| 			/* For control transfers, go to the status TD if
 | |
| 			 * this isn't already the last data TD */
 | |
| 			if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
 | |
| 				if (td->list.next != urbp->td_list.prev)
 | |
| 					ret = 1;
 | |
| 			}
 | |
| 
 | |
| 			/* For bulk and interrupt, this may be an error */
 | |
| 			else if (urb->transfer_flags & URB_SHORT_NOT_OK)
 | |
| 				ret = -EREMOTEIO;
 | |
| 
 | |
| 			/* Fixup needed only if this isn't the URB's last TD */
 | |
| 			else if (&td->list != urbp->td_list.prev)
 | |
| 				ret = 1;
 | |
| 		}
 | |
| 
 | |
| 		uhci_remove_td_from_urbp(td);
 | |
| 		if (qh->post_td)
 | |
| 			uhci_free_td(uhci, qh->post_td);
 | |
| 		qh->post_td = td;
 | |
| 
 | |
| 		if (ret != 0)
 | |
| 			goto err;
 | |
| 	}
 | |
| 	return ret;
 | |
| 
 | |
| err:
 | |
| 	if (ret < 0) {
 | |
| 		/* Note that the queue has stopped and save
 | |
| 		 * the next toggle value */
 | |
| 		qh->element = UHCI_PTR_TERM;
 | |
| 		qh->is_stopped = 1;
 | |
| 		qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL);
 | |
| 		qh->initial_toggle = uhci_toggle(td_token(td)) ^
 | |
| 				(ret == -EREMOTEIO);
 | |
| 
 | |
| 	} else		/* Short packet received */
 | |
| 		ret = uhci_fixup_short_transfer(uhci, qh, urbp);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Isochronous transfers
 | |
|  */
 | |
| static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb,
 | |
| 		struct uhci_qh *qh)
 | |
| {
 | |
| 	struct uhci_td *td = NULL;	/* Since urb->number_of_packets > 0 */
 | |
| 	int i, frame;
 | |
| 	unsigned long destination, status;
 | |
| 	struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
 | |
| 
 | |
| 	/* Values must not be too big (could overflow below) */
 | |
| 	if (urb->interval >= UHCI_NUMFRAMES ||
 | |
| 			urb->number_of_packets >= UHCI_NUMFRAMES)
 | |
| 		return -EFBIG;
 | |
| 
 | |
| 	/* Check the period and figure out the starting frame number */
 | |
| 	if (!qh->bandwidth_reserved) {
 | |
| 		qh->period = urb->interval;
 | |
| 		if (urb->transfer_flags & URB_ISO_ASAP) {
 | |
| 			qh->phase = -1;		/* Find the best phase */
 | |
| 			i = uhci_check_bandwidth(uhci, qh);
 | |
| 			if (i)
 | |
| 				return i;
 | |
| 
 | |
| 			/* Allow a little time to allocate the TDs */
 | |
| 			uhci_get_current_frame_number(uhci);
 | |
| 			frame = uhci->frame_number + 10;
 | |
| 
 | |
| 			/* Move forward to the first frame having the
 | |
| 			 * correct phase */
 | |
| 			urb->start_frame = frame + ((qh->phase - frame) &
 | |
| 					(qh->period - 1));
 | |
| 		} else {
 | |
| 			i = urb->start_frame - uhci->last_iso_frame;
 | |
| 			if (i <= 0 || i >= UHCI_NUMFRAMES)
 | |
| 				return -EINVAL;
 | |
| 			qh->phase = urb->start_frame & (qh->period - 1);
 | |
| 			i = uhci_check_bandwidth(uhci, qh);
 | |
| 			if (i)
 | |
| 				return i;
 | |
| 		}
 | |
| 
 | |
| 	} else if (qh->period != urb->interval) {
 | |
| 		return -EINVAL;		/* Can't change the period */
 | |
| 
 | |
| 	} else {
 | |
| 		/* Find the next unused frame */
 | |
| 		if (list_empty(&qh->queue)) {
 | |
| 			frame = qh->iso_frame;
 | |
| 		} else {
 | |
| 			struct urb *lurb;
 | |
| 
 | |
| 			lurb = list_entry(qh->queue.prev,
 | |
| 					struct urb_priv, node)->urb;
 | |
| 			frame = lurb->start_frame +
 | |
| 					lurb->number_of_packets *
 | |
| 					lurb->interval;
 | |
| 		}
 | |
| 		if (urb->transfer_flags & URB_ISO_ASAP) {
 | |
| 			/* Skip some frames if necessary to insure
 | |
| 			 * the start frame is in the future.
 | |
| 			 */
 | |
| 			uhci_get_current_frame_number(uhci);
 | |
| 			if (uhci_frame_before_eq(frame, uhci->frame_number)) {
 | |
| 				frame = uhci->frame_number + 1;
 | |
| 				frame += ((qh->phase - frame) &
 | |
| 					(qh->period - 1));
 | |
| 			}
 | |
| 		}	/* Otherwise pick up where the last URB leaves off */
 | |
| 		urb->start_frame = frame;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we won't have to go too far into the future */
 | |
| 	if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES,
 | |
| 			urb->start_frame + urb->number_of_packets *
 | |
| 				urb->interval))
 | |
| 		return -EFBIG;
 | |
| 
 | |
| 	status = TD_CTRL_ACTIVE | TD_CTRL_IOS;
 | |
| 	destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
 | |
| 
 | |
| 	for (i = 0; i < urb->number_of_packets; i++) {
 | |
| 		td = uhci_alloc_td(uhci);
 | |
| 		if (!td)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		uhci_add_td_to_urbp(td, urbp);
 | |
| 		uhci_fill_td(td, status, destination |
 | |
| 				uhci_explen(urb->iso_frame_desc[i].length),
 | |
| 				urb->transfer_dma +
 | |
| 					urb->iso_frame_desc[i].offset);
 | |
| 	}
 | |
| 
 | |
| 	/* Set the interrupt-on-completion flag on the last packet. */
 | |
| 	td->status |= cpu_to_le32(TD_CTRL_IOC);
 | |
| 
 | |
| 	/* Add the TDs to the frame list */
 | |
| 	frame = urb->start_frame;
 | |
| 	list_for_each_entry(td, &urbp->td_list, list) {
 | |
| 		uhci_insert_td_in_frame_list(uhci, td, frame);
 | |
| 		frame += qh->period;
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(&qh->queue)) {
 | |
| 		qh->iso_packet_desc = &urb->iso_frame_desc[0];
 | |
| 		qh->iso_frame = urb->start_frame;
 | |
| 	}
 | |
| 
 | |
| 	qh->skel = SKEL_ISO;
 | |
| 	if (!qh->bandwidth_reserved)
 | |
| 		uhci_reserve_bandwidth(uhci, qh);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb)
 | |
| {
 | |
| 	struct uhci_td *td, *tmp;
 | |
| 	struct urb_priv *urbp = urb->hcpriv;
 | |
| 	struct uhci_qh *qh = urbp->qh;
 | |
| 
 | |
| 	list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
 | |
| 		unsigned int ctrlstat;
 | |
| 		int status;
 | |
| 		int actlength;
 | |
| 
 | |
| 		if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame))
 | |
| 			return -EINPROGRESS;
 | |
| 
 | |
| 		uhci_remove_tds_from_frame(uhci, qh->iso_frame);
 | |
| 
 | |
| 		ctrlstat = td_status(td);
 | |
| 		if (ctrlstat & TD_CTRL_ACTIVE) {
 | |
| 			status = -EXDEV;	/* TD was added too late? */
 | |
| 		} else {
 | |
| 			status = uhci_map_status(uhci_status_bits(ctrlstat),
 | |
| 					usb_pipeout(urb->pipe));
 | |
| 			actlength = uhci_actual_length(ctrlstat);
 | |
| 
 | |
| 			urb->actual_length += actlength;
 | |
| 			qh->iso_packet_desc->actual_length = actlength;
 | |
| 			qh->iso_packet_desc->status = status;
 | |
| 		}
 | |
| 		if (status)
 | |
| 			urb->error_count++;
 | |
| 
 | |
| 		uhci_remove_td_from_urbp(td);
 | |
| 		uhci_free_td(uhci, td);
 | |
| 		qh->iso_frame += qh->period;
 | |
| 		++qh->iso_packet_desc;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int uhci_urb_enqueue(struct usb_hcd *hcd,
 | |
| 		struct urb *urb, gfp_t mem_flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 | |
| 	unsigned long flags;
 | |
| 	struct urb_priv *urbp;
 | |
| 	struct uhci_qh *qh;
 | |
| 
 | |
| 	spin_lock_irqsave(&uhci->lock, flags);
 | |
| 
 | |
| 	ret = usb_hcd_link_urb_to_ep(hcd, urb);
 | |
| 	if (ret)
 | |
| 		goto done_not_linked;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	urbp = uhci_alloc_urb_priv(uhci, urb);
 | |
| 	if (!urbp)
 | |
| 		goto done;
 | |
| 
 | |
| 	if (urb->ep->hcpriv)
 | |
| 		qh = urb->ep->hcpriv;
 | |
| 	else {
 | |
| 		qh = uhci_alloc_qh(uhci, urb->dev, urb->ep);
 | |
| 		if (!qh)
 | |
| 			goto err_no_qh;
 | |
| 	}
 | |
| 	urbp->qh = qh;
 | |
| 
 | |
| 	switch (qh->type) {
 | |
| 	case USB_ENDPOINT_XFER_CONTROL:
 | |
| 		ret = uhci_submit_control(uhci, urb, qh);
 | |
| 		break;
 | |
| 	case USB_ENDPOINT_XFER_BULK:
 | |
| 		ret = uhci_submit_bulk(uhci, urb, qh);
 | |
| 		break;
 | |
| 	case USB_ENDPOINT_XFER_INT:
 | |
| 		ret = uhci_submit_interrupt(uhci, urb, qh);
 | |
| 		break;
 | |
| 	case USB_ENDPOINT_XFER_ISOC:
 | |
| 		urb->error_count = 0;
 | |
| 		ret = uhci_submit_isochronous(uhci, urb, qh);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (ret != 0)
 | |
| 		goto err_submit_failed;
 | |
| 
 | |
| 	/* Add this URB to the QH */
 | |
| 	list_add_tail(&urbp->node, &qh->queue);
 | |
| 
 | |
| 	/* If the new URB is the first and only one on this QH then either
 | |
| 	 * the QH is new and idle or else it's unlinked and waiting to
 | |
| 	 * become idle, so we can activate it right away.  But only if the
 | |
| 	 * queue isn't stopped. */
 | |
| 	if (qh->queue.next == &urbp->node && !qh->is_stopped) {
 | |
| 		uhci_activate_qh(uhci, qh);
 | |
| 		uhci_urbp_wants_fsbr(uhci, urbp);
 | |
| 	}
 | |
| 	goto done;
 | |
| 
 | |
| err_submit_failed:
 | |
| 	if (qh->state == QH_STATE_IDLE)
 | |
| 		uhci_make_qh_idle(uhci, qh);	/* Reclaim unused QH */
 | |
| err_no_qh:
 | |
| 	uhci_free_urb_priv(uhci, urbp);
 | |
| done:
 | |
| 	if (ret)
 | |
| 		usb_hcd_unlink_urb_from_ep(hcd, urb);
 | |
| done_not_linked:
 | |
| 	spin_unlock_irqrestore(&uhci->lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 | |
| {
 | |
| 	struct uhci_hcd *uhci = hcd_to_uhci(hcd);
 | |
| 	unsigned long flags;
 | |
| 	struct uhci_qh *qh;
 | |
| 	int rc;
 | |
| 
 | |
| 	spin_lock_irqsave(&uhci->lock, flags);
 | |
| 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 | |
| 	if (rc)
 | |
| 		goto done;
 | |
| 
 | |
| 	qh = ((struct urb_priv *) urb->hcpriv)->qh;
 | |
| 
 | |
| 	/* Remove Isochronous TDs from the frame list ASAP */
 | |
| 	if (qh->type == USB_ENDPOINT_XFER_ISOC) {
 | |
| 		uhci_unlink_isochronous_tds(uhci, urb);
 | |
| 		mb();
 | |
| 
 | |
| 		/* If the URB has already started, update the QH unlink time */
 | |
| 		uhci_get_current_frame_number(uhci);
 | |
| 		if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number))
 | |
| 			qh->unlink_frame = uhci->frame_number;
 | |
| 	}
 | |
| 
 | |
| 	uhci_unlink_qh(uhci, qh);
 | |
| 
 | |
| done:
 | |
| 	spin_unlock_irqrestore(&uhci->lock, flags);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finish unlinking an URB and give it back
 | |
|  */
 | |
| static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh,
 | |
| 		struct urb *urb, int status)
 | |
| __releases(uhci->lock)
 | |
| __acquires(uhci->lock)
 | |
| {
 | |
| 	struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
 | |
| 
 | |
| 	if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
 | |
| 
 | |
| 		/* Subtract off the length of the SETUP packet from
 | |
| 		 * urb->actual_length.
 | |
| 		 */
 | |
| 		urb->actual_length -= min_t(u32, 8, urb->actual_length);
 | |
| 	}
 | |
| 
 | |
| 	/* When giving back the first URB in an Isochronous queue,
 | |
| 	 * reinitialize the QH's iso-related members for the next URB. */
 | |
| 	else if (qh->type == USB_ENDPOINT_XFER_ISOC &&
 | |
| 			urbp->node.prev == &qh->queue &&
 | |
| 			urbp->node.next != &qh->queue) {
 | |
| 		struct urb *nurb = list_entry(urbp->node.next,
 | |
| 				struct urb_priv, node)->urb;
 | |
| 
 | |
| 		qh->iso_packet_desc = &nurb->iso_frame_desc[0];
 | |
| 		qh->iso_frame = nurb->start_frame;
 | |
| 	}
 | |
| 
 | |
| 	/* Take the URB off the QH's queue.  If the queue is now empty,
 | |
| 	 * this is a perfect time for a toggle fixup. */
 | |
| 	list_del_init(&urbp->node);
 | |
| 	if (list_empty(&qh->queue) && qh->needs_fixup) {
 | |
| 		usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
 | |
| 				usb_pipeout(urb->pipe), qh->initial_toggle);
 | |
| 		qh->needs_fixup = 0;
 | |
| 	}
 | |
| 
 | |
| 	uhci_free_urb_priv(uhci, urbp);
 | |
| 	usb_hcd_unlink_urb_from_ep(uhci_to_hcd(uhci), urb);
 | |
| 
 | |
| 	spin_unlock(&uhci->lock);
 | |
| 	usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb, status);
 | |
| 	spin_lock(&uhci->lock);
 | |
| 
 | |
| 	/* If the queue is now empty, we can unlink the QH and give up its
 | |
| 	 * reserved bandwidth. */
 | |
| 	if (list_empty(&qh->queue)) {
 | |
| 		uhci_unlink_qh(uhci, qh);
 | |
| 		if (qh->bandwidth_reserved)
 | |
| 			uhci_release_bandwidth(uhci, qh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the URBs in a QH's queue
 | |
|  */
 | |
| #define QH_FINISHED_UNLINKING(qh)			\
 | |
| 		(qh->state == QH_STATE_UNLINKING &&	\
 | |
| 		uhci->frame_number + uhci->is_stopped != qh->unlink_frame)
 | |
| 
 | |
| static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	struct urb_priv *urbp;
 | |
| 	struct urb *urb;
 | |
| 	int status;
 | |
| 
 | |
| 	while (!list_empty(&qh->queue)) {
 | |
| 		urbp = list_entry(qh->queue.next, struct urb_priv, node);
 | |
| 		urb = urbp->urb;
 | |
| 
 | |
| 		if (qh->type == USB_ENDPOINT_XFER_ISOC)
 | |
| 			status = uhci_result_isochronous(uhci, urb);
 | |
| 		else
 | |
| 			status = uhci_result_common(uhci, urb);
 | |
| 		if (status == -EINPROGRESS)
 | |
| 			break;
 | |
| 
 | |
| 		/* Dequeued but completed URBs can't be given back unless
 | |
| 		 * the QH is stopped or has finished unlinking. */
 | |
| 		if (urb->unlinked) {
 | |
| 			if (QH_FINISHED_UNLINKING(qh))
 | |
| 				qh->is_stopped = 1;
 | |
| 			else if (!qh->is_stopped)
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		uhci_giveback_urb(uhci, qh, urb, status);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* If the QH is neither stopped nor finished unlinking (normal case),
 | |
| 	 * our work here is done. */
 | |
| 	if (QH_FINISHED_UNLINKING(qh))
 | |
| 		qh->is_stopped = 1;
 | |
| 	else if (!qh->is_stopped)
 | |
| 		return;
 | |
| 
 | |
| 	/* Otherwise give back each of the dequeued URBs */
 | |
| restart:
 | |
| 	list_for_each_entry(urbp, &qh->queue, node) {
 | |
| 		urb = urbp->urb;
 | |
| 		if (urb->unlinked) {
 | |
| 
 | |
| 			/* Fix up the TD links and save the toggles for
 | |
| 			 * non-Isochronous queues.  For Isochronous queues,
 | |
| 			 * test for too-recent dequeues. */
 | |
| 			if (!uhci_cleanup_queue(uhci, qh, urb)) {
 | |
| 				qh->is_stopped = 0;
 | |
| 				return;
 | |
| 			}
 | |
| 			uhci_giveback_urb(uhci, qh, urb, 0);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 	qh->is_stopped = 0;
 | |
| 
 | |
| 	/* There are no more dequeued URBs.  If there are still URBs on the
 | |
| 	 * queue, the QH can now be re-activated. */
 | |
| 	if (!list_empty(&qh->queue)) {
 | |
| 		if (qh->needs_fixup)
 | |
| 			uhci_fixup_toggles(qh, 0);
 | |
| 
 | |
| 		/* If the first URB on the queue wants FSBR but its time
 | |
| 		 * limit has expired, set the next TD to interrupt on
 | |
| 		 * completion before reactivating the QH. */
 | |
| 		urbp = list_entry(qh->queue.next, struct urb_priv, node);
 | |
| 		if (urbp->fsbr && qh->wait_expired) {
 | |
| 			struct uhci_td *td = list_entry(urbp->td_list.next,
 | |
| 					struct uhci_td, list);
 | |
| 
 | |
| 			td->status |= __cpu_to_le32(TD_CTRL_IOC);
 | |
| 		}
 | |
| 
 | |
| 		uhci_activate_qh(uhci, qh);
 | |
| 	}
 | |
| 
 | |
| 	/* The queue is empty.  The QH can become idle if it is fully
 | |
| 	 * unlinked. */
 | |
| 	else if (QH_FINISHED_UNLINKING(qh))
 | |
| 		uhci_make_qh_idle(uhci, qh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for queues that have made some forward progress.
 | |
|  * Returns 0 if the queue is not Isochronous, is ACTIVE, and
 | |
|  * has not advanced since last examined; 1 otherwise.
 | |
|  *
 | |
|  * Early Intel controllers have a bug which causes qh->element sometimes
 | |
|  * not to advance when a TD completes successfully.  The queue remains
 | |
|  * stuck on the inactive completed TD.  We detect such cases and advance
 | |
|  * the element pointer by hand.
 | |
|  */
 | |
| static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh)
 | |
| {
 | |
| 	struct urb_priv *urbp = NULL;
 | |
| 	struct uhci_td *td;
 | |
| 	int ret = 1;
 | |
| 	unsigned status;
 | |
| 
 | |
| 	if (qh->type == USB_ENDPOINT_XFER_ISOC)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Treat an UNLINKING queue as though it hasn't advanced.
 | |
| 	 * This is okay because reactivation will treat it as though
 | |
| 	 * it has advanced, and if it is going to become IDLE then
 | |
| 	 * this doesn't matter anyway.  Furthermore it's possible
 | |
| 	 * for an UNLINKING queue not to have any URBs at all, or
 | |
| 	 * for its first URB not to have any TDs (if it was dequeued
 | |
| 	 * just as it completed).  So it's not easy in any case to
 | |
| 	 * test whether such queues have advanced. */
 | |
| 	if (qh->state != QH_STATE_ACTIVE) {
 | |
| 		urbp = NULL;
 | |
| 		status = 0;
 | |
| 
 | |
| 	} else {
 | |
| 		urbp = list_entry(qh->queue.next, struct urb_priv, node);
 | |
| 		td = list_entry(urbp->td_list.next, struct uhci_td, list);
 | |
| 		status = td_status(td);
 | |
| 		if (!(status & TD_CTRL_ACTIVE)) {
 | |
| 
 | |
| 			/* We're okay, the queue has advanced */
 | |
| 			qh->wait_expired = 0;
 | |
| 			qh->advance_jiffies = jiffies;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* The queue hasn't advanced; check for timeout */
 | |
| 	if (qh->wait_expired)
 | |
| 		goto done;
 | |
| 
 | |
| 	if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) {
 | |
| 
 | |
| 		/* Detect the Intel bug and work around it */
 | |
| 		if (qh->post_td && qh_element(qh) == LINK_TO_TD(qh->post_td)) {
 | |
| 			qh->element = qh->post_td->link;
 | |
| 			qh->advance_jiffies = jiffies;
 | |
| 			ret = 1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		qh->wait_expired = 1;
 | |
| 
 | |
| 		/* If the current URB wants FSBR, unlink it temporarily
 | |
| 		 * so that we can safely set the next TD to interrupt on
 | |
| 		 * completion.  That way we'll know as soon as the queue
 | |
| 		 * starts moving again. */
 | |
| 		if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC))
 | |
| 			uhci_unlink_qh(uhci, qh);
 | |
| 
 | |
| 	} else {
 | |
| 		/* Unmoving but not-yet-expired queues keep FSBR alive */
 | |
| 		if (urbp)
 | |
| 			uhci_urbp_wants_fsbr(uhci, urbp);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process events in the schedule, but only in one thread at a time
 | |
|  */
 | |
| static void uhci_scan_schedule(struct uhci_hcd *uhci)
 | |
| {
 | |
| 	int i;
 | |
| 	struct uhci_qh *qh;
 | |
| 
 | |
| 	/* Don't allow re-entrant calls */
 | |
| 	if (uhci->scan_in_progress) {
 | |
| 		uhci->need_rescan = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 	uhci->scan_in_progress = 1;
 | |
| rescan:
 | |
| 	uhci->need_rescan = 0;
 | |
| 	uhci->fsbr_is_wanted = 0;
 | |
| 
 | |
| 	uhci_clear_next_interrupt(uhci);
 | |
| 	uhci_get_current_frame_number(uhci);
 | |
| 	uhci->cur_iso_frame = uhci->frame_number;
 | |
| 
 | |
| 	/* Go through all the QH queues and process the URBs in each one */
 | |
| 	for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) {
 | |
| 		uhci->next_qh = list_entry(uhci->skelqh[i]->node.next,
 | |
| 				struct uhci_qh, node);
 | |
| 		while ((qh = uhci->next_qh) != uhci->skelqh[i]) {
 | |
| 			uhci->next_qh = list_entry(qh->node.next,
 | |
| 					struct uhci_qh, node);
 | |
| 
 | |
| 			if (uhci_advance_check(uhci, qh)) {
 | |
| 				uhci_scan_qh(uhci, qh);
 | |
| 				if (qh->state == QH_STATE_ACTIVE) {
 | |
| 					uhci_urbp_wants_fsbr(uhci,
 | |
| 	list_entry(qh->queue.next, struct urb_priv, node));
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	uhci->last_iso_frame = uhci->cur_iso_frame;
 | |
| 	if (uhci->need_rescan)
 | |
| 		goto rescan;
 | |
| 	uhci->scan_in_progress = 0;
 | |
| 
 | |
| 	if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted &&
 | |
| 			!uhci->fsbr_expiring) {
 | |
| 		uhci->fsbr_expiring = 1;
 | |
| 		mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(&uhci->skel_unlink_qh->node))
 | |
| 		uhci_clear_next_interrupt(uhci);
 | |
| 	else
 | |
| 		uhci_set_next_interrupt(uhci);
 | |
| }
 |