 318ae2edc3
			
		
	
	
	318ae2edc3
	
	
	
		
			
			Conflicts: Documentation/filesystems/proc.txt arch/arm/mach-u300/include/mach/debug-macro.S drivers/net/qlge/qlge_ethtool.c drivers/net/qlge/qlge_main.c drivers/net/typhoon.c
		
			
				
	
	
		
			4911 lines
		
	
	
	
		
			133 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4911 lines
		
	
	
	
		
			133 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QLogic qlge NIC HBA Driver
 | |
|  * Copyright (c)  2003-2008 QLogic Corporation
 | |
|  * See LICENSE.qlge for copyright and licensing details.
 | |
|  * Author:     Linux qlge network device driver by
 | |
|  *                      Ron Mercer <ron.mercer@qlogic.com>
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/mempool.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/ipv6.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/if_ether.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <net/ip6_checksum.h>
 | |
| 
 | |
| #include "qlge.h"
 | |
| 
 | |
| char qlge_driver_name[] = DRV_NAME;
 | |
| const char qlge_driver_version[] = DRV_VERSION;
 | |
| 
 | |
| MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
 | |
| MODULE_DESCRIPTION(DRV_STRING " ");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| 
 | |
| static const u32 default_msg =
 | |
|     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
 | |
| /* NETIF_MSG_TIMER |	*/
 | |
|     NETIF_MSG_IFDOWN |
 | |
|     NETIF_MSG_IFUP |
 | |
|     NETIF_MSG_RX_ERR |
 | |
|     NETIF_MSG_TX_ERR |
 | |
| /*  NETIF_MSG_TX_QUEUED | */
 | |
| /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
 | |
| /* NETIF_MSG_PKTDATA | */
 | |
|     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
 | |
| 
 | |
| static int debug = 0x00007fff;	/* defaults above */
 | |
| module_param(debug, int, 0);
 | |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 | |
| 
 | |
| #define MSIX_IRQ 0
 | |
| #define MSI_IRQ 1
 | |
| #define LEG_IRQ 2
 | |
| static int qlge_irq_type = MSIX_IRQ;
 | |
| module_param(qlge_irq_type, int, MSIX_IRQ);
 | |
| MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
 | |
| 
 | |
| static int qlge_mpi_coredump;
 | |
| module_param(qlge_mpi_coredump, int, 0);
 | |
| MODULE_PARM_DESC(qlge_mpi_coredump,
 | |
| 		"Option to enable MPI firmware dump. "
 | |
| 		"Default is OFF - Do Not allocate memory. ");
 | |
| 
 | |
| static int qlge_force_coredump;
 | |
| module_param(qlge_force_coredump, int, 0);
 | |
| MODULE_PARM_DESC(qlge_force_coredump,
 | |
| 		"Option to allow force of firmware core dump. "
 | |
| 		"Default is OFF - Do not allow.");
 | |
| 
 | |
| static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
 | |
| 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
 | |
| 	/* required last entry */
 | |
| 	{0,}
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
 | |
| 
 | |
| /* This hardware semaphore causes exclusive access to
 | |
|  * resources shared between the NIC driver, MPI firmware,
 | |
|  * FCOE firmware and the FC driver.
 | |
|  */
 | |
| static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
 | |
| {
 | |
| 	u32 sem_bits = 0;
 | |
| 
 | |
| 	switch (sem_mask) {
 | |
| 	case SEM_XGMAC0_MASK:
 | |
| 		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
 | |
| 		break;
 | |
| 	case SEM_XGMAC1_MASK:
 | |
| 		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
 | |
| 		break;
 | |
| 	case SEM_ICB_MASK:
 | |
| 		sem_bits = SEM_SET << SEM_ICB_SHIFT;
 | |
| 		break;
 | |
| 	case SEM_MAC_ADDR_MASK:
 | |
| 		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
 | |
| 		break;
 | |
| 	case SEM_FLASH_MASK:
 | |
| 		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
 | |
| 		break;
 | |
| 	case SEM_PROBE_MASK:
 | |
| 		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
 | |
| 		break;
 | |
| 	case SEM_RT_IDX_MASK:
 | |
| 		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
 | |
| 		break;
 | |
| 	case SEM_PROC_REG_MASK:
 | |
| 		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ql_write32(qdev, SEM, sem_bits | sem_mask);
 | |
| 	return !(ql_read32(qdev, SEM) & sem_bits);
 | |
| }
 | |
| 
 | |
| int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
 | |
| {
 | |
| 	unsigned int wait_count = 30;
 | |
| 	do {
 | |
| 		if (!ql_sem_trylock(qdev, sem_mask))
 | |
| 			return 0;
 | |
| 		udelay(100);
 | |
| 	} while (--wait_count);
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
 | |
| {
 | |
| 	ql_write32(qdev, SEM, sem_mask);
 | |
| 	ql_read32(qdev, SEM);	/* flush */
 | |
| }
 | |
| 
 | |
| /* This function waits for a specific bit to come ready
 | |
|  * in a given register.  It is used mostly by the initialize
 | |
|  * process, but is also used in kernel thread API such as
 | |
|  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
 | |
|  */
 | |
| int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
 | |
| {
 | |
| 	u32 temp;
 | |
| 	int count = UDELAY_COUNT;
 | |
| 
 | |
| 	while (count) {
 | |
| 		temp = ql_read32(qdev, reg);
 | |
| 
 | |
| 		/* check for errors */
 | |
| 		if (temp & err_bit) {
 | |
| 			netif_alert(qdev, probe, qdev->ndev,
 | |
| 				    "register 0x%.08x access error, value = 0x%.08x!.\n",
 | |
| 				    reg, temp);
 | |
| 			return -EIO;
 | |
| 		} else if (temp & bit)
 | |
| 			return 0;
 | |
| 		udelay(UDELAY_DELAY);
 | |
| 		count--;
 | |
| 	}
 | |
| 	netif_alert(qdev, probe, qdev->ndev,
 | |
| 		    "Timed out waiting for reg %x to come ready.\n", reg);
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| /* The CFG register is used to download TX and RX control blocks
 | |
|  * to the chip. This function waits for an operation to complete.
 | |
|  */
 | |
| static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
 | |
| {
 | |
| 	int count = UDELAY_COUNT;
 | |
| 	u32 temp;
 | |
| 
 | |
| 	while (count) {
 | |
| 		temp = ql_read32(qdev, CFG);
 | |
| 		if (temp & CFG_LE)
 | |
| 			return -EIO;
 | |
| 		if (!(temp & bit))
 | |
| 			return 0;
 | |
| 		udelay(UDELAY_DELAY);
 | |
| 		count--;
 | |
| 	}
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Used to issue init control blocks to hw. Maps control block,
 | |
|  * sets address, triggers download, waits for completion.
 | |
|  */
 | |
| int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
 | |
| 		 u16 q_id)
 | |
| {
 | |
| 	u64 map;
 | |
| 	int status = 0;
 | |
| 	int direction;
 | |
| 	u32 mask;
 | |
| 	u32 value;
 | |
| 
 | |
| 	direction =
 | |
| 	    (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
 | |
| 	    PCI_DMA_FROMDEVICE;
 | |
| 
 | |
| 	map = pci_map_single(qdev->pdev, ptr, size, direction);
 | |
| 	if (pci_dma_mapping_error(qdev->pdev, map)) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 
 | |
| 	status = ql_wait_cfg(qdev, bit);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Timed out waiting for CFG to come ready.\n");
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	ql_write32(qdev, ICB_L, (u32) map);
 | |
| 	ql_write32(qdev, ICB_H, (u32) (map >> 32));
 | |
| 
 | |
| 	mask = CFG_Q_MASK | (bit << 16);
 | |
| 	value = bit | (q_id << CFG_Q_SHIFT);
 | |
| 	ql_write32(qdev, CFG, (mask | value));
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the bit to clear after signaling hw.
 | |
| 	 */
 | |
| 	status = ql_wait_cfg(qdev, bit);
 | |
| exit:
 | |
| 	ql_sem_unlock(qdev, SEM_ICB_MASK);	/* does flush too */
 | |
| 	pci_unmap_single(qdev->pdev, map, size, direction);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
 | |
| int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
 | |
| 			u32 *value)
 | |
| {
 | |
| 	u32 offset = 0;
 | |
| 	int status;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case MAC_ADDR_TYPE_MULTI_MAC:
 | |
| 	case MAC_ADDR_TYPE_CAM_MAC:
 | |
| 		{
 | |
| 			status =
 | |
| 			    ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 | |
| 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 | |
| 				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
 | |
| 			status =
 | |
| 			    ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
 | |
| 			status =
 | |
| 			    ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 | |
| 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 | |
| 				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
 | |
| 			status =
 | |
| 			    ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
 | |
| 			if (type == MAC_ADDR_TYPE_CAM_MAC) {
 | |
| 				status =
 | |
| 				    ql_wait_reg_rdy(qdev,
 | |
| 					MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 				if (status)
 | |
| 					goto exit;
 | |
| 				ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 | |
| 					   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 | |
| 					   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
 | |
| 				status =
 | |
| 				    ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
 | |
| 						    MAC_ADDR_MR, 0);
 | |
| 				if (status)
 | |
| 					goto exit;
 | |
| 				*value++ = ql_read32(qdev, MAC_ADDR_DATA);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	case MAC_ADDR_TYPE_VLAN:
 | |
| 	case MAC_ADDR_TYPE_MULTI_FLTR:
 | |
| 	default:
 | |
| 		netif_crit(qdev, ifup, qdev->ndev,
 | |
| 			   "Address type %d not yet supported.\n", type);
 | |
| 		status = -EPERM;
 | |
| 	}
 | |
| exit:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* Set up a MAC, multicast or VLAN address for the
 | |
|  * inbound frame matching.
 | |
|  */
 | |
| static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
 | |
| 			       u16 index)
 | |
| {
 | |
| 	u32 offset = 0;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case MAC_ADDR_TYPE_MULTI_MAC:
 | |
| 		{
 | |
| 			u32 upper = (addr[0] << 8) | addr[1];
 | |
| 			u32 lower = (addr[2] << 24) | (addr[3] << 16) |
 | |
| 					(addr[4] << 8) | (addr[5]);
 | |
| 
 | |
| 			status =
 | |
| 				ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
 | |
| 				(index << MAC_ADDR_IDX_SHIFT) |
 | |
| 				type | MAC_ADDR_E);
 | |
| 			ql_write32(qdev, MAC_ADDR_DATA, lower);
 | |
| 			status =
 | |
| 				ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
 | |
| 				(index << MAC_ADDR_IDX_SHIFT) |
 | |
| 				type | MAC_ADDR_E);
 | |
| 
 | |
| 			ql_write32(qdev, MAC_ADDR_DATA, upper);
 | |
| 			status =
 | |
| 				ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			break;
 | |
| 		}
 | |
| 	case MAC_ADDR_TYPE_CAM_MAC:
 | |
| 		{
 | |
| 			u32 cam_output;
 | |
| 			u32 upper = (addr[0] << 8) | addr[1];
 | |
| 			u32 lower =
 | |
| 			    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
 | |
| 			    (addr[5]);
 | |
| 
 | |
| 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 				     "Adding %s address %pM at index %d in the CAM.\n",
 | |
| 				     type == MAC_ADDR_TYPE_MULTI_MAC ?
 | |
| 				     "MULTICAST" : "UNICAST",
 | |
| 				     addr, index);
 | |
| 
 | |
| 			status =
 | |
| 			    ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 | |
| 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 | |
| 				   type);	/* type */
 | |
| 			ql_write32(qdev, MAC_ADDR_DATA, lower);
 | |
| 			status =
 | |
| 			    ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
 | |
| 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
 | |
| 				   type);	/* type */
 | |
| 			ql_write32(qdev, MAC_ADDR_DATA, upper);
 | |
| 			status =
 | |
| 			    ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			ql_write32(qdev, MAC_ADDR_IDX, (offset) |	/* offset */
 | |
| 				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
 | |
| 				   type);	/* type */
 | |
| 			/* This field should also include the queue id
 | |
| 			   and possibly the function id.  Right now we hardcode
 | |
| 			   the route field to NIC core.
 | |
| 			 */
 | |
| 			cam_output = (CAM_OUT_ROUTE_NIC |
 | |
| 				      (qdev->
 | |
| 				       func << CAM_OUT_FUNC_SHIFT) |
 | |
| 					(0 << CAM_OUT_CQ_ID_SHIFT));
 | |
| 			if (qdev->vlgrp)
 | |
| 				cam_output |= CAM_OUT_RV;
 | |
| 			/* route to NIC core */
 | |
| 			ql_write32(qdev, MAC_ADDR_DATA, cam_output);
 | |
| 			break;
 | |
| 		}
 | |
| 	case MAC_ADDR_TYPE_VLAN:
 | |
| 		{
 | |
| 			u32 enable_bit = *((u32 *) &addr[0]);
 | |
| 			/* For VLAN, the addr actually holds a bit that
 | |
| 			 * either enables or disables the vlan id we are
 | |
| 			 * addressing. It's either MAC_ADDR_E on or off.
 | |
| 			 * That's bit-27 we're talking about.
 | |
| 			 */
 | |
| 			netif_info(qdev, ifup, qdev->ndev,
 | |
| 				   "%s VLAN ID %d %s the CAM.\n",
 | |
| 				   enable_bit ? "Adding" : "Removing",
 | |
| 				   index,
 | |
| 				   enable_bit ? "to" : "from");
 | |
| 
 | |
| 			status =
 | |
| 			    ql_wait_reg_rdy(qdev,
 | |
| 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
 | |
| 			if (status)
 | |
| 				goto exit;
 | |
| 			ql_write32(qdev, MAC_ADDR_IDX, offset |	/* offset */
 | |
| 				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
 | |
| 				   type |	/* type */
 | |
| 				   enable_bit);	/* enable/disable */
 | |
| 			break;
 | |
| 		}
 | |
| 	case MAC_ADDR_TYPE_MULTI_FLTR:
 | |
| 	default:
 | |
| 		netif_crit(qdev, ifup, qdev->ndev,
 | |
| 			   "Address type %d not yet supported.\n", type);
 | |
| 		status = -EPERM;
 | |
| 	}
 | |
| exit:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* Set or clear MAC address in hardware. We sometimes
 | |
|  * have to clear it to prevent wrong frame routing
 | |
|  * especially in a bonding environment.
 | |
|  */
 | |
| static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
 | |
| {
 | |
| 	int status;
 | |
| 	char zero_mac_addr[ETH_ALEN];
 | |
| 	char *addr;
 | |
| 
 | |
| 	if (set) {
 | |
| 		addr = &qdev->current_mac_addr[0];
 | |
| 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Set Mac addr %pM\n", addr);
 | |
| 	} else {
 | |
| 		memset(zero_mac_addr, 0, ETH_ALEN);
 | |
| 		addr = &zero_mac_addr[0];
 | |
| 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Clearing MAC address\n");
 | |
| 	}
 | |
| 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 	status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
 | |
| 			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
 | |
| 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 	if (status)
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Failed to init mac address.\n");
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| void ql_link_on(struct ql_adapter *qdev)
 | |
| {
 | |
| 	netif_err(qdev, link, qdev->ndev, "Link is up.\n");
 | |
| 	netif_carrier_on(qdev->ndev);
 | |
| 	ql_set_mac_addr(qdev, 1);
 | |
| }
 | |
| 
 | |
| void ql_link_off(struct ql_adapter *qdev)
 | |
| {
 | |
| 	netif_err(qdev, link, qdev->ndev, "Link is down.\n");
 | |
| 	netif_carrier_off(qdev->ndev);
 | |
| 	ql_set_mac_addr(qdev, 0);
 | |
| }
 | |
| 
 | |
| /* Get a specific frame routing value from the CAM.
 | |
|  * Used for debug and reg dump.
 | |
|  */
 | |
| int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 
 | |
| 	ql_write32(qdev, RT_IDX,
 | |
| 		   RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
 | |
| 	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 	*value = ql_read32(qdev, RT_DATA);
 | |
| exit:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* The NIC function for this chip has 16 routing indexes.  Each one can be used
 | |
|  * to route different frame types to various inbound queues.  We send broadcast/
 | |
|  * multicast/error frames to the default queue for slow handling,
 | |
|  * and CAM hit/RSS frames to the fast handling queues.
 | |
|  */
 | |
| static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
 | |
| 			      int enable)
 | |
| {
 | |
| 	int status = -EINVAL; /* Return error if no mask match. */
 | |
| 	u32 value = 0;
 | |
| 
 | |
| 	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 		     "%s %s mask %s the routing reg.\n",
 | |
| 		     enable ? "Adding" : "Removing",
 | |
| 		     index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
 | |
| 		     index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
 | |
| 		     index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
 | |
| 		     index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
 | |
| 		     index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
 | |
| 		     index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
 | |
| 		     index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
 | |
| 		     index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
 | |
| 		     index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
 | |
| 		     index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
 | |
| 		     index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
 | |
| 		     index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
 | |
| 		     index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
 | |
| 		     index == RT_IDX_UNUSED013 ? "UNUSED13" :
 | |
| 		     index == RT_IDX_UNUSED014 ? "UNUSED14" :
 | |
| 		     index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
 | |
| 		     "(Bad index != RT_IDX)",
 | |
| 		     enable ? "to" : "from");
 | |
| 
 | |
| 	switch (mask) {
 | |
| 	case RT_IDX_CAM_HIT:
 | |
| 		{
 | |
| 			value = RT_IDX_DST_CAM_Q |	/* dest */
 | |
| 			    RT_IDX_TYPE_NICQ |	/* type */
 | |
| 			    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
 | |
| 			break;
 | |
| 		}
 | |
| 	case RT_IDX_VALID:	/* Promiscuous Mode frames. */
 | |
| 		{
 | |
| 			value = RT_IDX_DST_DFLT_Q |	/* dest */
 | |
| 			    RT_IDX_TYPE_NICQ |	/* type */
 | |
| 			    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
 | |
| 			break;
 | |
| 		}
 | |
| 	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
 | |
| 		{
 | |
| 			value = RT_IDX_DST_DFLT_Q |	/* dest */
 | |
| 			    RT_IDX_TYPE_NICQ |	/* type */
 | |
| 			    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
 | |
| 			break;
 | |
| 		}
 | |
| 	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
 | |
| 		{
 | |
| 			value = RT_IDX_DST_DFLT_Q |	/* dest */
 | |
| 			    RT_IDX_TYPE_NICQ |	/* type */
 | |
| 			    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
 | |
| 			break;
 | |
| 		}
 | |
| 	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
 | |
| 		{
 | |
| 			value = RT_IDX_DST_DFLT_Q |	/* dest */
 | |
| 			    RT_IDX_TYPE_NICQ |	/* type */
 | |
| 			    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
 | |
| 			break;
 | |
| 		}
 | |
| 	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
 | |
| 		{
 | |
| 			value = RT_IDX_DST_DFLT_Q |	/* dest */
 | |
| 			    RT_IDX_TYPE_NICQ |	/* type */
 | |
| 			    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
 | |
| 			break;
 | |
| 		}
 | |
| 	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
 | |
| 		{
 | |
| 			value = RT_IDX_DST_RSS |	/* dest */
 | |
| 			    RT_IDX_TYPE_NICQ |	/* type */
 | |
| 			    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
 | |
| 			break;
 | |
| 		}
 | |
| 	case 0:		/* Clear the E-bit on an entry. */
 | |
| 		{
 | |
| 			value = RT_IDX_DST_DFLT_Q |	/* dest */
 | |
| 			    RT_IDX_TYPE_NICQ |	/* type */
 | |
| 			    (index << RT_IDX_IDX_SHIFT);/* index */
 | |
| 			break;
 | |
| 		}
 | |
| 	default:
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Mask type %d not yet supported.\n", mask);
 | |
| 		status = -EPERM;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	if (value) {
 | |
| 		status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
 | |
| 		if (status)
 | |
| 			goto exit;
 | |
| 		value |= (enable ? RT_IDX_E : 0);
 | |
| 		ql_write32(qdev, RT_IDX, value);
 | |
| 		ql_write32(qdev, RT_DATA, enable ? mask : 0);
 | |
| 	}
 | |
| exit:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void ql_enable_interrupts(struct ql_adapter *qdev)
 | |
| {
 | |
| 	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
 | |
| }
 | |
| 
 | |
| static void ql_disable_interrupts(struct ql_adapter *qdev)
 | |
| {
 | |
| 	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
 | |
| }
 | |
| 
 | |
| /* If we're running with multiple MSI-X vectors then we enable on the fly.
 | |
|  * Otherwise, we may have multiple outstanding workers and don't want to
 | |
|  * enable until the last one finishes. In this case, the irq_cnt gets
 | |
|  * incremented everytime we queue a worker and decremented everytime
 | |
|  * a worker finishes.  Once it hits zero we enable the interrupt.
 | |
|  */
 | |
| u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
 | |
| {
 | |
| 	u32 var = 0;
 | |
| 	unsigned long hw_flags = 0;
 | |
| 	struct intr_context *ctx = qdev->intr_context + intr;
 | |
| 
 | |
| 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
 | |
| 		/* Always enable if we're MSIX multi interrupts and
 | |
| 		 * it's not the default (zeroeth) interrupt.
 | |
| 		 */
 | |
| 		ql_write32(qdev, INTR_EN,
 | |
| 			   ctx->intr_en_mask);
 | |
| 		var = ql_read32(qdev, STS);
 | |
| 		return var;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
 | |
| 	if (atomic_dec_and_test(&ctx->irq_cnt)) {
 | |
| 		ql_write32(qdev, INTR_EN,
 | |
| 			   ctx->intr_en_mask);
 | |
| 		var = ql_read32(qdev, STS);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
 | |
| 	return var;
 | |
| }
 | |
| 
 | |
| static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
 | |
| {
 | |
| 	u32 var = 0;
 | |
| 	struct intr_context *ctx;
 | |
| 
 | |
| 	/* HW disables for us if we're MSIX multi interrupts and
 | |
| 	 * it's not the default (zeroeth) interrupt.
 | |
| 	 */
 | |
| 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
 | |
| 		return 0;
 | |
| 
 | |
| 	ctx = qdev->intr_context + intr;
 | |
| 	spin_lock(&qdev->hw_lock);
 | |
| 	if (!atomic_read(&ctx->irq_cnt)) {
 | |
| 		ql_write32(qdev, INTR_EN,
 | |
| 		ctx->intr_dis_mask);
 | |
| 		var = ql_read32(qdev, STS);
 | |
| 	}
 | |
| 	atomic_inc(&ctx->irq_cnt);
 | |
| 	spin_unlock(&qdev->hw_lock);
 | |
| 	return var;
 | |
| }
 | |
| 
 | |
| static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < qdev->intr_count; i++) {
 | |
| 		/* The enable call does a atomic_dec_and_test
 | |
| 		 * and enables only if the result is zero.
 | |
| 		 * So we precharge it here.
 | |
| 		 */
 | |
| 		if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
 | |
| 			i == 0))
 | |
| 			atomic_set(&qdev->intr_context[i].irq_cnt, 1);
 | |
| 		ql_enable_completion_interrupt(qdev, i);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
 | |
| {
 | |
| 	int status, i;
 | |
| 	u16 csum = 0;
 | |
| 	__le16 *flash = (__le16 *)&qdev->flash;
 | |
| 
 | |
| 	status = strncmp((char *)&qdev->flash, str, 4);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
 | |
| 		return	status;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		csum += le16_to_cpu(*flash++);
 | |
| 
 | |
| 	if (csum)
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Invalid flash checksum, csum = 0x%.04x.\n", csum);
 | |
| 
 | |
| 	return csum;
 | |
| }
 | |
| 
 | |
| static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	/* wait for reg to come ready */
 | |
| 	status = ql_wait_reg_rdy(qdev,
 | |
| 			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 	/* set up for reg read */
 | |
| 	ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
 | |
| 	/* wait for reg to come ready */
 | |
| 	status = ql_wait_reg_rdy(qdev,
 | |
| 			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 	 /* This data is stored on flash as an array of
 | |
| 	 * __le32.  Since ql_read32() returns cpu endian
 | |
| 	 * we need to swap it back.
 | |
| 	 */
 | |
| 	*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
 | |
| exit:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_get_8000_flash_params(struct ql_adapter *qdev)
 | |
| {
 | |
| 	u32 i, size;
 | |
| 	int status;
 | |
| 	__le32 *p = (__le32 *)&qdev->flash;
 | |
| 	u32 offset;
 | |
| 	u8 mac_addr[6];
 | |
| 
 | |
| 	/* Get flash offset for function and adjust
 | |
| 	 * for dword access.
 | |
| 	 */
 | |
| 	if (!qdev->port)
 | |
| 		offset = FUNC0_FLASH_OFFSET / sizeof(u32);
 | |
| 	else
 | |
| 		offset = FUNC1_FLASH_OFFSET / sizeof(u32);
 | |
| 
 | |
| 	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
 | |
| 		return -ETIMEDOUT;
 | |
| 
 | |
| 	size = sizeof(struct flash_params_8000) / sizeof(u32);
 | |
| 	for (i = 0; i < size; i++, p++) {
 | |
| 		status = ql_read_flash_word(qdev, i+offset, p);
 | |
| 		if (status) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Error reading flash.\n");
 | |
| 			goto exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	status = ql_validate_flash(qdev,
 | |
| 			sizeof(struct flash_params_8000) / sizeof(u16),
 | |
| 			"8000");
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
 | |
| 		status = -EINVAL;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	/* Extract either manufacturer or BOFM modified
 | |
| 	 * MAC address.
 | |
| 	 */
 | |
| 	if (qdev->flash.flash_params_8000.data_type1 == 2)
 | |
| 		memcpy(mac_addr,
 | |
| 			qdev->flash.flash_params_8000.mac_addr1,
 | |
| 			qdev->ndev->addr_len);
 | |
| 	else
 | |
| 		memcpy(mac_addr,
 | |
| 			qdev->flash.flash_params_8000.mac_addr,
 | |
| 			qdev->ndev->addr_len);
 | |
| 
 | |
| 	if (!is_valid_ether_addr(mac_addr)) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
 | |
| 		status = -EINVAL;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(qdev->ndev->dev_addr,
 | |
| 		mac_addr,
 | |
| 		qdev->ndev->addr_len);
 | |
| 
 | |
| exit:
 | |
| 	ql_sem_unlock(qdev, SEM_FLASH_MASK);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_get_8012_flash_params(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i;
 | |
| 	int status;
 | |
| 	__le32 *p = (__le32 *)&qdev->flash;
 | |
| 	u32 offset = 0;
 | |
| 	u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
 | |
| 
 | |
| 	/* Second function's parameters follow the first
 | |
| 	 * function's.
 | |
| 	 */
 | |
| 	if (qdev->port)
 | |
| 		offset = size;
 | |
| 
 | |
| 	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
 | |
| 		return -ETIMEDOUT;
 | |
| 
 | |
| 	for (i = 0; i < size; i++, p++) {
 | |
| 		status = ql_read_flash_word(qdev, i+offset, p);
 | |
| 		if (status) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Error reading flash.\n");
 | |
| 			goto exit;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	status = ql_validate_flash(qdev,
 | |
| 			sizeof(struct flash_params_8012) / sizeof(u16),
 | |
| 			"8012");
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
 | |
| 		status = -EINVAL;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
 | |
| 		status = -EINVAL;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(qdev->ndev->dev_addr,
 | |
| 		qdev->flash.flash_params_8012.mac_addr,
 | |
| 		qdev->ndev->addr_len);
 | |
| 
 | |
| exit:
 | |
| 	ql_sem_unlock(qdev, SEM_FLASH_MASK);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* xgmac register are located behind the xgmac_addr and xgmac_data
 | |
|  * register pair.  Each read/write requires us to wait for the ready
 | |
|  * bit before reading/writing the data.
 | |
|  */
 | |
| static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
 | |
| {
 | |
| 	int status;
 | |
| 	/* wait for reg to come ready */
 | |
| 	status = ql_wait_reg_rdy(qdev,
 | |
| 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 	/* write the data to the data reg */
 | |
| 	ql_write32(qdev, XGMAC_DATA, data);
 | |
| 	/* trigger the write */
 | |
| 	ql_write32(qdev, XGMAC_ADDR, reg);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* xgmac register are located behind the xgmac_addr and xgmac_data
 | |
|  * register pair.  Each read/write requires us to wait for the ready
 | |
|  * bit before reading/writing the data.
 | |
|  */
 | |
| int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	/* wait for reg to come ready */
 | |
| 	status = ql_wait_reg_rdy(qdev,
 | |
| 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 	/* set up for reg read */
 | |
| 	ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
 | |
| 	/* wait for reg to come ready */
 | |
| 	status = ql_wait_reg_rdy(qdev,
 | |
| 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 	/* get the data */
 | |
| 	*data = ql_read32(qdev, XGMAC_DATA);
 | |
| exit:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* This is used for reading the 64-bit statistics regs. */
 | |
| int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u32 hi = 0;
 | |
| 	u32 lo = 0;
 | |
| 
 | |
| 	status = ql_read_xgmac_reg(qdev, reg, &lo);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 
 | |
| 	status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 
 | |
| 	*data = (u64) lo | ((u64) hi << 32);
 | |
| 
 | |
| exit:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_8000_port_initialize(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int status;
 | |
| 	/*
 | |
| 	 * Get MPI firmware version for driver banner
 | |
| 	 * and ethool info.
 | |
| 	 */
 | |
| 	status = ql_mb_about_fw(qdev);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 	status = ql_mb_get_fw_state(qdev);
 | |
| 	if (status)
 | |
| 		goto exit;
 | |
| 	/* Wake up a worker to get/set the TX/RX frame sizes. */
 | |
| 	queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
 | |
| exit:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* Take the MAC Core out of reset.
 | |
|  * Enable statistics counting.
 | |
|  * Take the transmitter/receiver out of reset.
 | |
|  * This functionality may be done in the MPI firmware at a
 | |
|  * later date.
 | |
|  */
 | |
| static int ql_8012_port_initialize(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u32 data;
 | |
| 
 | |
| 	if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
 | |
| 		/* Another function has the semaphore, so
 | |
| 		 * wait for the port init bit to come ready.
 | |
| 		 */
 | |
| 		netif_info(qdev, link, qdev->ndev,
 | |
| 			   "Another function has the semaphore, so wait for the port init bit to come ready.\n");
 | |
| 		status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
 | |
| 		if (status) {
 | |
| 			netif_crit(qdev, link, qdev->ndev,
 | |
| 				   "Port initialize timed out.\n");
 | |
| 		}
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
 | |
| 	/* Set the core reset. */
 | |
| 	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 	data |= GLOBAL_CFG_RESET;
 | |
| 	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 
 | |
| 	/* Clear the core reset and turn on jumbo for receiver. */
 | |
| 	data &= ~GLOBAL_CFG_RESET;	/* Clear core reset. */
 | |
| 	data |= GLOBAL_CFG_JUMBO;	/* Turn on jumbo. */
 | |
| 	data |= GLOBAL_CFG_TX_STAT_EN;
 | |
| 	data |= GLOBAL_CFG_RX_STAT_EN;
 | |
| 	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 
 | |
| 	/* Enable transmitter, and clear it's reset. */
 | |
| 	status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 	data &= ~TX_CFG_RESET;	/* Clear the TX MAC reset. */
 | |
| 	data |= TX_CFG_EN;	/* Enable the transmitter. */
 | |
| 	status = ql_write_xgmac_reg(qdev, TX_CFG, data);
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 
 | |
| 	/* Enable receiver and clear it's reset. */
 | |
| 	status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 	data &= ~RX_CFG_RESET;	/* Clear the RX MAC reset. */
 | |
| 	data |= RX_CFG_EN;	/* Enable the receiver. */
 | |
| 	status = ql_write_xgmac_reg(qdev, RX_CFG, data);
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 
 | |
| 	/* Turn on jumbo. */
 | |
| 	status =
 | |
| 	    ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 	status =
 | |
| 	    ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
 | |
| 	if (status)
 | |
| 		goto end;
 | |
| 
 | |
| 	/* Signal to the world that the port is enabled.        */
 | |
| 	ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
 | |
| end:
 | |
| 	ql_sem_unlock(qdev, qdev->xg_sem_mask);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
 | |
| {
 | |
| 	return PAGE_SIZE << qdev->lbq_buf_order;
 | |
| }
 | |
| 
 | |
| /* Get the next large buffer. */
 | |
| static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
 | |
| {
 | |
| 	struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
 | |
| 	rx_ring->lbq_curr_idx++;
 | |
| 	if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
 | |
| 		rx_ring->lbq_curr_idx = 0;
 | |
| 	rx_ring->lbq_free_cnt++;
 | |
| 	return lbq_desc;
 | |
| }
 | |
| 
 | |
| static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
 | |
| 		struct rx_ring *rx_ring)
 | |
| {
 | |
| 	struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
 | |
| 
 | |
| 	pci_dma_sync_single_for_cpu(qdev->pdev,
 | |
| 					pci_unmap_addr(lbq_desc, mapaddr),
 | |
| 				    rx_ring->lbq_buf_size,
 | |
| 					PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 	/* If it's the last chunk of our master page then
 | |
| 	 * we unmap it.
 | |
| 	 */
 | |
| 	if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
 | |
| 					== ql_lbq_block_size(qdev))
 | |
| 		pci_unmap_page(qdev->pdev,
 | |
| 				lbq_desc->p.pg_chunk.map,
 | |
| 				ql_lbq_block_size(qdev),
 | |
| 				PCI_DMA_FROMDEVICE);
 | |
| 	return lbq_desc;
 | |
| }
 | |
| 
 | |
| /* Get the next small buffer. */
 | |
| static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
 | |
| {
 | |
| 	struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
 | |
| 	rx_ring->sbq_curr_idx++;
 | |
| 	if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
 | |
| 		rx_ring->sbq_curr_idx = 0;
 | |
| 	rx_ring->sbq_free_cnt++;
 | |
| 	return sbq_desc;
 | |
| }
 | |
| 
 | |
| /* Update an rx ring index. */
 | |
| static void ql_update_cq(struct rx_ring *rx_ring)
 | |
| {
 | |
| 	rx_ring->cnsmr_idx++;
 | |
| 	rx_ring->curr_entry++;
 | |
| 	if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
 | |
| 		rx_ring->cnsmr_idx = 0;
 | |
| 		rx_ring->curr_entry = rx_ring->cq_base;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_write_cq_idx(struct rx_ring *rx_ring)
 | |
| {
 | |
| 	ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
 | |
| }
 | |
| 
 | |
| static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
 | |
| 						struct bq_desc *lbq_desc)
 | |
| {
 | |
| 	if (!rx_ring->pg_chunk.page) {
 | |
| 		u64 map;
 | |
| 		rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
 | |
| 						GFP_ATOMIC,
 | |
| 						qdev->lbq_buf_order);
 | |
| 		if (unlikely(!rx_ring->pg_chunk.page)) {
 | |
| 			netif_err(qdev, drv, qdev->ndev,
 | |
| 				  "page allocation failed.\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		rx_ring->pg_chunk.offset = 0;
 | |
| 		map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
 | |
| 					0, ql_lbq_block_size(qdev),
 | |
| 					PCI_DMA_FROMDEVICE);
 | |
| 		if (pci_dma_mapping_error(qdev->pdev, map)) {
 | |
| 			__free_pages(rx_ring->pg_chunk.page,
 | |
| 					qdev->lbq_buf_order);
 | |
| 			netif_err(qdev, drv, qdev->ndev,
 | |
| 				  "PCI mapping failed.\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		rx_ring->pg_chunk.map = map;
 | |
| 		rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the current master pg_chunk info
 | |
| 	 * to the current descriptor.
 | |
| 	 */
 | |
| 	lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
 | |
| 
 | |
| 	/* Adjust the master page chunk for next
 | |
| 	 * buffer get.
 | |
| 	 */
 | |
| 	rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
 | |
| 	if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
 | |
| 		rx_ring->pg_chunk.page = NULL;
 | |
| 		lbq_desc->p.pg_chunk.last_flag = 1;
 | |
| 	} else {
 | |
| 		rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
 | |
| 		get_page(rx_ring->pg_chunk.page);
 | |
| 		lbq_desc->p.pg_chunk.last_flag = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| /* Process (refill) a large buffer queue. */
 | |
| static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
 | |
| {
 | |
| 	u32 clean_idx = rx_ring->lbq_clean_idx;
 | |
| 	u32 start_idx = clean_idx;
 | |
| 	struct bq_desc *lbq_desc;
 | |
| 	u64 map;
 | |
| 	int i;
 | |
| 
 | |
| 	while (rx_ring->lbq_free_cnt > 32) {
 | |
| 		for (i = 0; i < 16; i++) {
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "lbq: try cleaning clean_idx = %d.\n",
 | |
| 				     clean_idx);
 | |
| 			lbq_desc = &rx_ring->lbq[clean_idx];
 | |
| 			if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
 | |
| 				netif_err(qdev, ifup, qdev->ndev,
 | |
| 					  "Could not get a page chunk.\n");
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			map = lbq_desc->p.pg_chunk.map +
 | |
| 				lbq_desc->p.pg_chunk.offset;
 | |
| 				pci_unmap_addr_set(lbq_desc, mapaddr, map);
 | |
| 			pci_unmap_len_set(lbq_desc, maplen,
 | |
| 					rx_ring->lbq_buf_size);
 | |
| 				*lbq_desc->addr = cpu_to_le64(map);
 | |
| 
 | |
| 			pci_dma_sync_single_for_device(qdev->pdev, map,
 | |
| 						rx_ring->lbq_buf_size,
 | |
| 						PCI_DMA_FROMDEVICE);
 | |
| 			clean_idx++;
 | |
| 			if (clean_idx == rx_ring->lbq_len)
 | |
| 				clean_idx = 0;
 | |
| 		}
 | |
| 
 | |
| 		rx_ring->lbq_clean_idx = clean_idx;
 | |
| 		rx_ring->lbq_prod_idx += 16;
 | |
| 		if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
 | |
| 			rx_ring->lbq_prod_idx = 0;
 | |
| 		rx_ring->lbq_free_cnt -= 16;
 | |
| 	}
 | |
| 
 | |
| 	if (start_idx != clean_idx) {
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "lbq: updating prod idx = %d.\n",
 | |
| 			     rx_ring->lbq_prod_idx);
 | |
| 		ql_write_db_reg(rx_ring->lbq_prod_idx,
 | |
| 				rx_ring->lbq_prod_idx_db_reg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Process (refill) a small buffer queue. */
 | |
| static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
 | |
| {
 | |
| 	u32 clean_idx = rx_ring->sbq_clean_idx;
 | |
| 	u32 start_idx = clean_idx;
 | |
| 	struct bq_desc *sbq_desc;
 | |
| 	u64 map;
 | |
| 	int i;
 | |
| 
 | |
| 	while (rx_ring->sbq_free_cnt > 16) {
 | |
| 		for (i = 0; i < 16; i++) {
 | |
| 			sbq_desc = &rx_ring->sbq[clean_idx];
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "sbq: try cleaning clean_idx = %d.\n",
 | |
| 				     clean_idx);
 | |
| 			if (sbq_desc->p.skb == NULL) {
 | |
| 				netif_printk(qdev, rx_status, KERN_DEBUG,
 | |
| 					     qdev->ndev,
 | |
| 					     "sbq: getting new skb for index %d.\n",
 | |
| 					     sbq_desc->index);
 | |
| 				sbq_desc->p.skb =
 | |
| 				    netdev_alloc_skb(qdev->ndev,
 | |
| 						     SMALL_BUFFER_SIZE);
 | |
| 				if (sbq_desc->p.skb == NULL) {
 | |
| 					netif_err(qdev, probe, qdev->ndev,
 | |
| 						  "Couldn't get an skb.\n");
 | |
| 					rx_ring->sbq_clean_idx = clean_idx;
 | |
| 					return;
 | |
| 				}
 | |
| 				skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
 | |
| 				map = pci_map_single(qdev->pdev,
 | |
| 						     sbq_desc->p.skb->data,
 | |
| 						     rx_ring->sbq_buf_size,
 | |
| 						     PCI_DMA_FROMDEVICE);
 | |
| 				if (pci_dma_mapping_error(qdev->pdev, map)) {
 | |
| 					netif_err(qdev, ifup, qdev->ndev,
 | |
| 						  "PCI mapping failed.\n");
 | |
| 					rx_ring->sbq_clean_idx = clean_idx;
 | |
| 					dev_kfree_skb_any(sbq_desc->p.skb);
 | |
| 					sbq_desc->p.skb = NULL;
 | |
| 					return;
 | |
| 				}
 | |
| 				pci_unmap_addr_set(sbq_desc, mapaddr, map);
 | |
| 				pci_unmap_len_set(sbq_desc, maplen,
 | |
| 						  rx_ring->sbq_buf_size);
 | |
| 				*sbq_desc->addr = cpu_to_le64(map);
 | |
| 			}
 | |
| 
 | |
| 			clean_idx++;
 | |
| 			if (clean_idx == rx_ring->sbq_len)
 | |
| 				clean_idx = 0;
 | |
| 		}
 | |
| 		rx_ring->sbq_clean_idx = clean_idx;
 | |
| 		rx_ring->sbq_prod_idx += 16;
 | |
| 		if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
 | |
| 			rx_ring->sbq_prod_idx = 0;
 | |
| 		rx_ring->sbq_free_cnt -= 16;
 | |
| 	}
 | |
| 
 | |
| 	if (start_idx != clean_idx) {
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "sbq: updating prod idx = %d.\n",
 | |
| 			     rx_ring->sbq_prod_idx);
 | |
| 		ql_write_db_reg(rx_ring->sbq_prod_idx,
 | |
| 				rx_ring->sbq_prod_idx_db_reg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_update_buffer_queues(struct ql_adapter *qdev,
 | |
| 				    struct rx_ring *rx_ring)
 | |
| {
 | |
| 	ql_update_sbq(qdev, rx_ring);
 | |
| 	ql_update_lbq(qdev, rx_ring);
 | |
| }
 | |
| 
 | |
| /* Unmaps tx buffers.  Can be called from send() if a pci mapping
 | |
|  * fails at some stage, or from the interrupt when a tx completes.
 | |
|  */
 | |
| static void ql_unmap_send(struct ql_adapter *qdev,
 | |
| 			  struct tx_ring_desc *tx_ring_desc, int mapped)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < mapped; i++) {
 | |
| 		if (i == 0 || (i == 7 && mapped > 7)) {
 | |
| 			/*
 | |
| 			 * Unmap the skb->data area, or the
 | |
| 			 * external sglist (AKA the Outbound
 | |
| 			 * Address List (OAL)).
 | |
| 			 * If its the zeroeth element, then it's
 | |
| 			 * the skb->data area.  If it's the 7th
 | |
| 			 * element and there is more than 6 frags,
 | |
| 			 * then its an OAL.
 | |
| 			 */
 | |
| 			if (i == 7) {
 | |
| 				netif_printk(qdev, tx_done, KERN_DEBUG,
 | |
| 					     qdev->ndev,
 | |
| 					     "unmapping OAL area.\n");
 | |
| 			}
 | |
| 			pci_unmap_single(qdev->pdev,
 | |
| 					 pci_unmap_addr(&tx_ring_desc->map[i],
 | |
| 							mapaddr),
 | |
| 					 pci_unmap_len(&tx_ring_desc->map[i],
 | |
| 						       maplen),
 | |
| 					 PCI_DMA_TODEVICE);
 | |
| 		} else {
 | |
| 			netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
 | |
| 				     "unmapping frag %d.\n", i);
 | |
| 			pci_unmap_page(qdev->pdev,
 | |
| 				       pci_unmap_addr(&tx_ring_desc->map[i],
 | |
| 						      mapaddr),
 | |
| 				       pci_unmap_len(&tx_ring_desc->map[i],
 | |
| 						     maplen), PCI_DMA_TODEVICE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Map the buffers for this transmit.  This will return
 | |
|  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
 | |
|  */
 | |
| static int ql_map_send(struct ql_adapter *qdev,
 | |
| 		       struct ob_mac_iocb_req *mac_iocb_ptr,
 | |
| 		       struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
 | |
| {
 | |
| 	int len = skb_headlen(skb);
 | |
| 	dma_addr_t map;
 | |
| 	int frag_idx, err, map_idx = 0;
 | |
| 	struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
 | |
| 	int frag_cnt = skb_shinfo(skb)->nr_frags;
 | |
| 
 | |
| 	if (frag_cnt) {
 | |
| 		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
 | |
| 			     "frag_cnt = %d.\n", frag_cnt);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Map the skb buffer first.
 | |
| 	 */
 | |
| 	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
 | |
| 
 | |
| 	err = pci_dma_mapping_error(qdev->pdev, map);
 | |
| 	if (err) {
 | |
| 		netif_err(qdev, tx_queued, qdev->ndev,
 | |
| 			  "PCI mapping failed with error: %d\n", err);
 | |
| 
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	tbd->len = cpu_to_le32(len);
 | |
| 	tbd->addr = cpu_to_le64(map);
 | |
| 	pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
 | |
| 	pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
 | |
| 	map_idx++;
 | |
| 
 | |
| 	/*
 | |
| 	 * This loop fills the remainder of the 8 address descriptors
 | |
| 	 * in the IOCB.  If there are more than 7 fragments, then the
 | |
| 	 * eighth address desc will point to an external list (OAL).
 | |
| 	 * When this happens, the remainder of the frags will be stored
 | |
| 	 * in this list.
 | |
| 	 */
 | |
| 	for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
 | |
| 		skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
 | |
| 		tbd++;
 | |
| 		if (frag_idx == 6 && frag_cnt > 7) {
 | |
| 			/* Let's tack on an sglist.
 | |
| 			 * Our control block will now
 | |
| 			 * look like this:
 | |
| 			 * iocb->seg[0] = skb->data
 | |
| 			 * iocb->seg[1] = frag[0]
 | |
| 			 * iocb->seg[2] = frag[1]
 | |
| 			 * iocb->seg[3] = frag[2]
 | |
| 			 * iocb->seg[4] = frag[3]
 | |
| 			 * iocb->seg[5] = frag[4]
 | |
| 			 * iocb->seg[6] = frag[5]
 | |
| 			 * iocb->seg[7] = ptr to OAL (external sglist)
 | |
| 			 * oal->seg[0] = frag[6]
 | |
| 			 * oal->seg[1] = frag[7]
 | |
| 			 * oal->seg[2] = frag[8]
 | |
| 			 * oal->seg[3] = frag[9]
 | |
| 			 * oal->seg[4] = frag[10]
 | |
| 			 *      etc...
 | |
| 			 */
 | |
| 			/* Tack on the OAL in the eighth segment of IOCB. */
 | |
| 			map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
 | |
| 					     sizeof(struct oal),
 | |
| 					     PCI_DMA_TODEVICE);
 | |
| 			err = pci_dma_mapping_error(qdev->pdev, map);
 | |
| 			if (err) {
 | |
| 				netif_err(qdev, tx_queued, qdev->ndev,
 | |
| 					  "PCI mapping outbound address list with error: %d\n",
 | |
| 					  err);
 | |
| 				goto map_error;
 | |
| 			}
 | |
| 
 | |
| 			tbd->addr = cpu_to_le64(map);
 | |
| 			/*
 | |
| 			 * The length is the number of fragments
 | |
| 			 * that remain to be mapped times the length
 | |
| 			 * of our sglist (OAL).
 | |
| 			 */
 | |
| 			tbd->len =
 | |
| 			    cpu_to_le32((sizeof(struct tx_buf_desc) *
 | |
| 					 (frag_cnt - frag_idx)) | TX_DESC_C);
 | |
| 			pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
 | |
| 					   map);
 | |
| 			pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
 | |
| 					  sizeof(struct oal));
 | |
| 			tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
 | |
| 			map_idx++;
 | |
| 		}
 | |
| 
 | |
| 		map =
 | |
| 		    pci_map_page(qdev->pdev, frag->page,
 | |
| 				 frag->page_offset, frag->size,
 | |
| 				 PCI_DMA_TODEVICE);
 | |
| 
 | |
| 		err = pci_dma_mapping_error(qdev->pdev, map);
 | |
| 		if (err) {
 | |
| 			netif_err(qdev, tx_queued, qdev->ndev,
 | |
| 				  "PCI mapping frags failed with error: %d.\n",
 | |
| 				  err);
 | |
| 			goto map_error;
 | |
| 		}
 | |
| 
 | |
| 		tbd->addr = cpu_to_le64(map);
 | |
| 		tbd->len = cpu_to_le32(frag->size);
 | |
| 		pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
 | |
| 		pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
 | |
| 				  frag->size);
 | |
| 
 | |
| 	}
 | |
| 	/* Save the number of segments we've mapped. */
 | |
| 	tx_ring_desc->map_cnt = map_idx;
 | |
| 	/* Terminate the last segment. */
 | |
| 	tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| map_error:
 | |
| 	/*
 | |
| 	 * If the first frag mapping failed, then i will be zero.
 | |
| 	 * This causes the unmap of the skb->data area.  Otherwise
 | |
| 	 * we pass in the number of frags that mapped successfully
 | |
| 	 * so they can be umapped.
 | |
| 	 */
 | |
| 	ql_unmap_send(qdev, tx_ring_desc, map_idx);
 | |
| 	return NETDEV_TX_BUSY;
 | |
| }
 | |
| 
 | |
| /* Process an inbound completion from an rx ring. */
 | |
| static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
 | |
| 					struct rx_ring *rx_ring,
 | |
| 					struct ib_mac_iocb_rsp *ib_mac_rsp,
 | |
| 					u32 length,
 | |
| 					u16 vlan_id)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
 | |
| 	struct skb_frag_struct *rx_frag;
 | |
| 	int nr_frags;
 | |
| 	struct napi_struct *napi = &rx_ring->napi;
 | |
| 
 | |
| 	napi->dev = qdev->ndev;
 | |
| 
 | |
| 	skb = napi_get_frags(napi);
 | |
| 	if (!skb) {
 | |
| 		netif_err(qdev, drv, qdev->ndev,
 | |
| 			  "Couldn't get an skb, exiting.\n");
 | |
| 		rx_ring->rx_dropped++;
 | |
| 		put_page(lbq_desc->p.pg_chunk.page);
 | |
| 		return;
 | |
| 	}
 | |
| 	prefetch(lbq_desc->p.pg_chunk.va);
 | |
| 	rx_frag = skb_shinfo(skb)->frags;
 | |
| 	nr_frags = skb_shinfo(skb)->nr_frags;
 | |
| 	rx_frag += nr_frags;
 | |
| 	rx_frag->page = lbq_desc->p.pg_chunk.page;
 | |
| 	rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
 | |
| 	rx_frag->size = length;
 | |
| 
 | |
| 	skb->len += length;
 | |
| 	skb->data_len += length;
 | |
| 	skb->truesize += length;
 | |
| 	skb_shinfo(skb)->nr_frags++;
 | |
| 
 | |
| 	rx_ring->rx_packets++;
 | |
| 	rx_ring->rx_bytes += length;
 | |
| 	skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 	skb_record_rx_queue(skb, rx_ring->cq_id);
 | |
| 	if (qdev->vlgrp && (vlan_id != 0xffff))
 | |
| 		vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
 | |
| 	else
 | |
| 		napi_gro_frags(napi);
 | |
| }
 | |
| 
 | |
| /* Process an inbound completion from an rx ring. */
 | |
| static void ql_process_mac_rx_page(struct ql_adapter *qdev,
 | |
| 					struct rx_ring *rx_ring,
 | |
| 					struct ib_mac_iocb_rsp *ib_mac_rsp,
 | |
| 					u32 length,
 | |
| 					u16 vlan_id)
 | |
| {
 | |
| 	struct net_device *ndev = qdev->ndev;
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 	void *addr;
 | |
| 	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
 | |
| 	struct napi_struct *napi = &rx_ring->napi;
 | |
| 
 | |
| 	skb = netdev_alloc_skb(ndev, length);
 | |
| 	if (!skb) {
 | |
| 		netif_err(qdev, drv, qdev->ndev,
 | |
| 			  "Couldn't get an skb, need to unwind!.\n");
 | |
| 		rx_ring->rx_dropped++;
 | |
| 		put_page(lbq_desc->p.pg_chunk.page);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	addr = lbq_desc->p.pg_chunk.va;
 | |
| 	prefetch(addr);
 | |
| 
 | |
| 
 | |
| 	/* Frame error, so drop the packet. */
 | |
| 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
 | |
| 		netif_err(qdev, drv, qdev->ndev,
 | |
| 			  "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
 | |
| 		rx_ring->rx_errors++;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	/* The max framesize filter on this chip is set higher than
 | |
| 	 * MTU since FCoE uses 2k frames.
 | |
| 	 */
 | |
| 	if (skb->len > ndev->mtu + ETH_HLEN) {
 | |
| 		netif_err(qdev, drv, qdev->ndev,
 | |
| 			  "Segment too small, dropping.\n");
 | |
| 		rx_ring->rx_dropped++;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 	memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
 | |
| 	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 		     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
 | |
| 		     length);
 | |
| 	skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
 | |
| 				lbq_desc->p.pg_chunk.offset+ETH_HLEN,
 | |
| 				length-ETH_HLEN);
 | |
| 	skb->len += length-ETH_HLEN;
 | |
| 	skb->data_len += length-ETH_HLEN;
 | |
| 	skb->truesize += length-ETH_HLEN;
 | |
| 
 | |
| 	rx_ring->rx_packets++;
 | |
| 	rx_ring->rx_bytes += skb->len;
 | |
| 	skb->protocol = eth_type_trans(skb, ndev);
 | |
| 	skb->ip_summed = CHECKSUM_NONE;
 | |
| 
 | |
| 	if (qdev->rx_csum &&
 | |
| 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
 | |
| 		/* TCP frame. */
 | |
| 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "TCP checksum done!\n");
 | |
| 			skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
 | |
| 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
 | |
| 			/* Unfragmented ipv4 UDP frame. */
 | |
| 			struct iphdr *iph = (struct iphdr *) skb->data;
 | |
| 			if (!(iph->frag_off &
 | |
| 				cpu_to_be16(IP_MF|IP_OFFSET))) {
 | |
| 				skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 				netif_printk(qdev, rx_status, KERN_DEBUG,
 | |
| 					     qdev->ndev,
 | |
| 					     "TCP checksum done!\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	skb_record_rx_queue(skb, rx_ring->cq_id);
 | |
| 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 | |
| 		if (qdev->vlgrp && (vlan_id != 0xffff))
 | |
| 			vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
 | |
| 		else
 | |
| 			napi_gro_receive(napi, skb);
 | |
| 	} else {
 | |
| 		if (qdev->vlgrp && (vlan_id != 0xffff))
 | |
| 			vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
 | |
| 		else
 | |
| 			netif_receive_skb(skb);
 | |
| 	}
 | |
| 	return;
 | |
| err_out:
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	put_page(lbq_desc->p.pg_chunk.page);
 | |
| }
 | |
| 
 | |
| /* Process an inbound completion from an rx ring. */
 | |
| static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
 | |
| 					struct rx_ring *rx_ring,
 | |
| 					struct ib_mac_iocb_rsp *ib_mac_rsp,
 | |
| 					u32 length,
 | |
| 					u16 vlan_id)
 | |
| {
 | |
| 	struct net_device *ndev = qdev->ndev;
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 	struct sk_buff *new_skb = NULL;
 | |
| 	struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
 | |
| 
 | |
| 	skb = sbq_desc->p.skb;
 | |
| 	/* Allocate new_skb and copy */
 | |
| 	new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
 | |
| 	if (new_skb == NULL) {
 | |
| 		netif_err(qdev, probe, qdev->ndev,
 | |
| 			  "No skb available, drop the packet.\n");
 | |
| 		rx_ring->rx_dropped++;
 | |
| 		return;
 | |
| 	}
 | |
| 	skb_reserve(new_skb, NET_IP_ALIGN);
 | |
| 	memcpy(skb_put(new_skb, length), skb->data, length);
 | |
| 	skb = new_skb;
 | |
| 
 | |
| 	/* Frame error, so drop the packet. */
 | |
| 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
 | |
| 		netif_err(qdev, drv, qdev->ndev,
 | |
| 			  "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		rx_ring->rx_errors++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* loopback self test for ethtool */
 | |
| 	if (test_bit(QL_SELFTEST, &qdev->flags)) {
 | |
| 		ql_check_lb_frame(qdev, skb);
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The max framesize filter on this chip is set higher than
 | |
| 	 * MTU since FCoE uses 2k frames.
 | |
| 	 */
 | |
| 	if (skb->len > ndev->mtu + ETH_HLEN) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		rx_ring->rx_dropped++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	prefetch(skb->data);
 | |
| 	skb->dev = ndev;
 | |
| 	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "%s Multicast.\n",
 | |
| 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
 | |
| 			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
 | |
| 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
 | |
| 			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
 | |
| 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
 | |
| 			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
 | |
| 	}
 | |
| 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Promiscuous Packet.\n");
 | |
| 
 | |
| 	rx_ring->rx_packets++;
 | |
| 	rx_ring->rx_bytes += skb->len;
 | |
| 	skb->protocol = eth_type_trans(skb, ndev);
 | |
| 	skb->ip_summed = CHECKSUM_NONE;
 | |
| 
 | |
| 	/* If rx checksum is on, and there are no
 | |
| 	 * csum or frame errors.
 | |
| 	 */
 | |
| 	if (qdev->rx_csum &&
 | |
| 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
 | |
| 		/* TCP frame. */
 | |
| 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "TCP checksum done!\n");
 | |
| 			skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
 | |
| 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
 | |
| 			/* Unfragmented ipv4 UDP frame. */
 | |
| 			struct iphdr *iph = (struct iphdr *) skb->data;
 | |
| 			if (!(iph->frag_off &
 | |
| 				cpu_to_be16(IP_MF|IP_OFFSET))) {
 | |
| 				skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 				netif_printk(qdev, rx_status, KERN_DEBUG,
 | |
| 					     qdev->ndev,
 | |
| 					     "TCP checksum done!\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	skb_record_rx_queue(skb, rx_ring->cq_id);
 | |
| 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 | |
| 		if (qdev->vlgrp && (vlan_id != 0xffff))
 | |
| 			vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
 | |
| 						vlan_id, skb);
 | |
| 		else
 | |
| 			napi_gro_receive(&rx_ring->napi, skb);
 | |
| 	} else {
 | |
| 		if (qdev->vlgrp && (vlan_id != 0xffff))
 | |
| 			vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
 | |
| 		else
 | |
| 			netif_receive_skb(skb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_realign_skb(struct sk_buff *skb, int len)
 | |
| {
 | |
| 	void *temp_addr = skb->data;
 | |
| 
 | |
| 	/* Undo the skb_reserve(skb,32) we did before
 | |
| 	 * giving to hardware, and realign data on
 | |
| 	 * a 2-byte boundary.
 | |
| 	 */
 | |
| 	skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
 | |
| 	skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
 | |
| 	skb_copy_to_linear_data(skb, temp_addr,
 | |
| 		(unsigned int)len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function builds an skb for the given inbound
 | |
|  * completion.  It will be rewritten for readability in the near
 | |
|  * future, but for not it works well.
 | |
|  */
 | |
| static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
 | |
| 				       struct rx_ring *rx_ring,
 | |
| 				       struct ib_mac_iocb_rsp *ib_mac_rsp)
 | |
| {
 | |
| 	struct bq_desc *lbq_desc;
 | |
| 	struct bq_desc *sbq_desc;
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
 | |
|        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the header buffer if present.
 | |
| 	 */
 | |
| 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
 | |
| 	    ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Header of %d bytes in small buffer.\n", hdr_len);
 | |
| 		/*
 | |
| 		 * Headers fit nicely into a small buffer.
 | |
| 		 */
 | |
| 		sbq_desc = ql_get_curr_sbuf(rx_ring);
 | |
| 		pci_unmap_single(qdev->pdev,
 | |
| 				pci_unmap_addr(sbq_desc, mapaddr),
 | |
| 				pci_unmap_len(sbq_desc, maplen),
 | |
| 				PCI_DMA_FROMDEVICE);
 | |
| 		skb = sbq_desc->p.skb;
 | |
| 		ql_realign_skb(skb, hdr_len);
 | |
| 		skb_put(skb, hdr_len);
 | |
| 		sbq_desc->p.skb = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the data buffer(s).
 | |
| 	 */
 | |
| 	if (unlikely(!length)) {	/* Is there data too? */
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "No Data buffer in this packet.\n");
 | |
| 		return skb;
 | |
| 	}
 | |
| 
 | |
| 	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
 | |
| 		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "Headers in small, data of %d bytes in small, combine them.\n",
 | |
| 				     length);
 | |
| 			/*
 | |
| 			 * Data is less than small buffer size so it's
 | |
| 			 * stuffed in a small buffer.
 | |
| 			 * For this case we append the data
 | |
| 			 * from the "data" small buffer to the "header" small
 | |
| 			 * buffer.
 | |
| 			 */
 | |
| 			sbq_desc = ql_get_curr_sbuf(rx_ring);
 | |
| 			pci_dma_sync_single_for_cpu(qdev->pdev,
 | |
| 						    pci_unmap_addr
 | |
| 						    (sbq_desc, mapaddr),
 | |
| 						    pci_unmap_len
 | |
| 						    (sbq_desc, maplen),
 | |
| 						    PCI_DMA_FROMDEVICE);
 | |
| 			memcpy(skb_put(skb, length),
 | |
| 			       sbq_desc->p.skb->data, length);
 | |
| 			pci_dma_sync_single_for_device(qdev->pdev,
 | |
| 						       pci_unmap_addr
 | |
| 						       (sbq_desc,
 | |
| 							mapaddr),
 | |
| 						       pci_unmap_len
 | |
| 						       (sbq_desc,
 | |
| 							maplen),
 | |
| 						       PCI_DMA_FROMDEVICE);
 | |
| 		} else {
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "%d bytes in a single small buffer.\n",
 | |
| 				     length);
 | |
| 			sbq_desc = ql_get_curr_sbuf(rx_ring);
 | |
| 			skb = sbq_desc->p.skb;
 | |
| 			ql_realign_skb(skb, length);
 | |
| 			skb_put(skb, length);
 | |
| 			pci_unmap_single(qdev->pdev,
 | |
| 					 pci_unmap_addr(sbq_desc,
 | |
| 							mapaddr),
 | |
| 					 pci_unmap_len(sbq_desc,
 | |
| 						       maplen),
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 			sbq_desc->p.skb = NULL;
 | |
| 		}
 | |
| 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
 | |
| 		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "Header in small, %d bytes in large. Chain large to small!\n",
 | |
| 				     length);
 | |
| 			/*
 | |
| 			 * The data is in a single large buffer.  We
 | |
| 			 * chain it to the header buffer's skb and let
 | |
| 			 * it rip.
 | |
| 			 */
 | |
| 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "Chaining page at offset = %d, for %d bytes  to skb.\n",
 | |
| 				     lbq_desc->p.pg_chunk.offset, length);
 | |
| 			skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
 | |
| 						lbq_desc->p.pg_chunk.offset,
 | |
| 						length);
 | |
| 			skb->len += length;
 | |
| 			skb->data_len += length;
 | |
| 			skb->truesize += length;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The headers and data are in a single large buffer. We
 | |
| 			 * copy it to a new skb and let it go. This can happen with
 | |
| 			 * jumbo mtu on a non-TCP/UDP frame.
 | |
| 			 */
 | |
| 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
 | |
| 			skb = netdev_alloc_skb(qdev->ndev, length);
 | |
| 			if (skb == NULL) {
 | |
| 				netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
 | |
| 					     "No skb available, drop the packet.\n");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			pci_unmap_page(qdev->pdev,
 | |
| 				       pci_unmap_addr(lbq_desc,
 | |
| 						      mapaddr),
 | |
| 				       pci_unmap_len(lbq_desc, maplen),
 | |
| 				       PCI_DMA_FROMDEVICE);
 | |
| 			skb_reserve(skb, NET_IP_ALIGN);
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
 | |
| 				     length);
 | |
| 			skb_fill_page_desc(skb, 0,
 | |
| 						lbq_desc->p.pg_chunk.page,
 | |
| 						lbq_desc->p.pg_chunk.offset,
 | |
| 						length);
 | |
| 			skb->len += length;
 | |
| 			skb->data_len += length;
 | |
| 			skb->truesize += length;
 | |
| 			length -= length;
 | |
| 			__pskb_pull_tail(skb,
 | |
| 				(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
 | |
| 				VLAN_ETH_HLEN : ETH_HLEN);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The data is in a chain of large buffers
 | |
| 		 * pointed to by a small buffer.  We loop
 | |
| 		 * thru and chain them to the our small header
 | |
| 		 * buffer's skb.
 | |
| 		 * frags:  There are 18 max frags and our small
 | |
| 		 *         buffer will hold 32 of them. The thing is,
 | |
| 		 *         we'll use 3 max for our 9000 byte jumbo
 | |
| 		 *         frames.  If the MTU goes up we could
 | |
| 		 *          eventually be in trouble.
 | |
| 		 */
 | |
| 		int size, i = 0;
 | |
| 		sbq_desc = ql_get_curr_sbuf(rx_ring);
 | |
| 		pci_unmap_single(qdev->pdev,
 | |
| 				 pci_unmap_addr(sbq_desc, mapaddr),
 | |
| 				 pci_unmap_len(sbq_desc, maplen),
 | |
| 				 PCI_DMA_FROMDEVICE);
 | |
| 		if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
 | |
| 			/*
 | |
| 			 * This is an non TCP/UDP IP frame, so
 | |
| 			 * the headers aren't split into a small
 | |
| 			 * buffer.  We have to use the small buffer
 | |
| 			 * that contains our sg list as our skb to
 | |
| 			 * send upstairs. Copy the sg list here to
 | |
| 			 * a local buffer and use it to find the
 | |
| 			 * pages to chain.
 | |
| 			 */
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "%d bytes of headers & data in chain of large.\n",
 | |
| 				     length);
 | |
| 			skb = sbq_desc->p.skb;
 | |
| 			sbq_desc->p.skb = NULL;
 | |
| 			skb_reserve(skb, NET_IP_ALIGN);
 | |
| 		}
 | |
| 		while (length > 0) {
 | |
| 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
 | |
| 			size = (length < rx_ring->lbq_buf_size) ? length :
 | |
| 				rx_ring->lbq_buf_size;
 | |
| 
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "Adding page %d to skb for %d bytes.\n",
 | |
| 				     i, size);
 | |
| 			skb_fill_page_desc(skb, i,
 | |
| 						lbq_desc->p.pg_chunk.page,
 | |
| 						lbq_desc->p.pg_chunk.offset,
 | |
| 						size);
 | |
| 			skb->len += size;
 | |
| 			skb->data_len += size;
 | |
| 			skb->truesize += size;
 | |
| 			length -= size;
 | |
| 			i++;
 | |
| 		}
 | |
| 		__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
 | |
| 				VLAN_ETH_HLEN : ETH_HLEN);
 | |
| 	}
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /* Process an inbound completion from an rx ring. */
 | |
| static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
 | |
| 				   struct rx_ring *rx_ring,
 | |
| 				   struct ib_mac_iocb_rsp *ib_mac_rsp,
 | |
| 				   u16 vlan_id)
 | |
| {
 | |
| 	struct net_device *ndev = qdev->ndev;
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 
 | |
| 	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
 | |
| 
 | |
| 	skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "No skb available, drop packet.\n");
 | |
| 		rx_ring->rx_dropped++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Frame error, so drop the packet. */
 | |
| 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
 | |
| 		netif_err(qdev, drv, qdev->ndev,
 | |
| 			  "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		rx_ring->rx_errors++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The max framesize filter on this chip is set higher than
 | |
| 	 * MTU since FCoE uses 2k frames.
 | |
| 	 */
 | |
| 	if (skb->len > ndev->mtu + ETH_HLEN) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		rx_ring->rx_dropped++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* loopback self test for ethtool */
 | |
| 	if (test_bit(QL_SELFTEST, &qdev->flags)) {
 | |
| 		ql_check_lb_frame(qdev, skb);
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	prefetch(skb->data);
 | |
| 	skb->dev = ndev;
 | |
| 	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
 | |
| 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
 | |
| 			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
 | |
| 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
 | |
| 			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
 | |
| 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
 | |
| 			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
 | |
| 		rx_ring->rx_multicast++;
 | |
| 	}
 | |
| 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Promiscuous Packet.\n");
 | |
| 	}
 | |
| 
 | |
| 	skb->protocol = eth_type_trans(skb, ndev);
 | |
| 	skb->ip_summed = CHECKSUM_NONE;
 | |
| 
 | |
| 	/* If rx checksum is on, and there are no
 | |
| 	 * csum or frame errors.
 | |
| 	 */
 | |
| 	if (qdev->rx_csum &&
 | |
| 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
 | |
| 		/* TCP frame. */
 | |
| 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "TCP checksum done!\n");
 | |
| 			skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
 | |
| 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
 | |
| 		/* Unfragmented ipv4 UDP frame. */
 | |
| 			struct iphdr *iph = (struct iphdr *) skb->data;
 | |
| 			if (!(iph->frag_off &
 | |
| 				cpu_to_be16(IP_MF|IP_OFFSET))) {
 | |
| 				skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 				netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 					     "TCP checksum done!\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rx_ring->rx_packets++;
 | |
| 	rx_ring->rx_bytes += skb->len;
 | |
| 	skb_record_rx_queue(skb, rx_ring->cq_id);
 | |
| 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 | |
| 		if (qdev->vlgrp &&
 | |
| 			(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
 | |
| 			(vlan_id != 0))
 | |
| 			vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
 | |
| 				vlan_id, skb);
 | |
| 		else
 | |
| 			napi_gro_receive(&rx_ring->napi, skb);
 | |
| 	} else {
 | |
| 		if (qdev->vlgrp &&
 | |
| 			(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
 | |
| 			(vlan_id != 0))
 | |
| 			vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
 | |
| 		else
 | |
| 			netif_receive_skb(skb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Process an inbound completion from an rx ring. */
 | |
| static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
 | |
| 					struct rx_ring *rx_ring,
 | |
| 					struct ib_mac_iocb_rsp *ib_mac_rsp)
 | |
| {
 | |
| 	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
 | |
| 	u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
 | |
| 			((le16_to_cpu(ib_mac_rsp->vlan_id) &
 | |
| 			IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
 | |
| 
 | |
| 	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
 | |
| 
 | |
| 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
 | |
| 		/* The data and headers are split into
 | |
| 		 * separate buffers.
 | |
| 		 */
 | |
| 		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
 | |
| 						vlan_id);
 | |
| 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
 | |
| 		/* The data fit in a single small buffer.
 | |
| 		 * Allocate a new skb, copy the data and
 | |
| 		 * return the buffer to the free pool.
 | |
| 		 */
 | |
| 		ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
 | |
| 						length, vlan_id);
 | |
| 	} else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
 | |
| 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
 | |
| 		(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
 | |
| 		/* TCP packet in a page chunk that's been checksummed.
 | |
| 		 * Tack it on to our GRO skb and let it go.
 | |
| 		 */
 | |
| 		ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
 | |
| 						length, vlan_id);
 | |
| 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
 | |
| 		/* Non-TCP packet in a page chunk. Allocate an
 | |
| 		 * skb, tack it on frags, and send it up.
 | |
| 		 */
 | |
| 		ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
 | |
| 						length, vlan_id);
 | |
| 	} else {
 | |
| 		/* Non-TCP/UDP large frames that span multiple buffers
 | |
| 		 * can be processed corrrectly by the split frame logic.
 | |
| 		 */
 | |
| 		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
 | |
| 						vlan_id);
 | |
| 	}
 | |
| 
 | |
| 	return (unsigned long)length;
 | |
| }
 | |
| 
 | |
| /* Process an outbound completion from an rx ring. */
 | |
| static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
 | |
| 				   struct ob_mac_iocb_rsp *mac_rsp)
 | |
| {
 | |
| 	struct tx_ring *tx_ring;
 | |
| 	struct tx_ring_desc *tx_ring_desc;
 | |
| 
 | |
| 	QL_DUMP_OB_MAC_RSP(mac_rsp);
 | |
| 	tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
 | |
| 	tx_ring_desc = &tx_ring->q[mac_rsp->tid];
 | |
| 	ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
 | |
| 	tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
 | |
| 	tx_ring->tx_packets++;
 | |
| 	dev_kfree_skb(tx_ring_desc->skb);
 | |
| 	tx_ring_desc->skb = NULL;
 | |
| 
 | |
| 	if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
 | |
| 					OB_MAC_IOCB_RSP_S |
 | |
| 					OB_MAC_IOCB_RSP_L |
 | |
| 					OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
 | |
| 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
 | |
| 			netif_warn(qdev, tx_done, qdev->ndev,
 | |
| 				   "Total descriptor length did not match transfer length.\n");
 | |
| 		}
 | |
| 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
 | |
| 			netif_warn(qdev, tx_done, qdev->ndev,
 | |
| 				   "Frame too short to be valid, not sent.\n");
 | |
| 		}
 | |
| 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
 | |
| 			netif_warn(qdev, tx_done, qdev->ndev,
 | |
| 				   "Frame too long, but sent anyway.\n");
 | |
| 		}
 | |
| 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
 | |
| 			netif_warn(qdev, tx_done, qdev->ndev,
 | |
| 				   "PCI backplane error. Frame not sent.\n");
 | |
| 		}
 | |
| 	}
 | |
| 	atomic_inc(&tx_ring->tx_count);
 | |
| }
 | |
| 
 | |
| /* Fire up a handler to reset the MPI processor. */
 | |
| void ql_queue_fw_error(struct ql_adapter *qdev)
 | |
| {
 | |
| 	ql_link_off(qdev);
 | |
| 	queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
 | |
| }
 | |
| 
 | |
| void ql_queue_asic_error(struct ql_adapter *qdev)
 | |
| {
 | |
| 	ql_link_off(qdev);
 | |
| 	ql_disable_interrupts(qdev);
 | |
| 	/* Clear adapter up bit to signal the recovery
 | |
| 	 * process that it shouldn't kill the reset worker
 | |
| 	 * thread
 | |
| 	 */
 | |
| 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
 | |
| 	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
 | |
| }
 | |
| 
 | |
| static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
 | |
| 				    struct ib_ae_iocb_rsp *ib_ae_rsp)
 | |
| {
 | |
| 	switch (ib_ae_rsp->event) {
 | |
| 	case MGMT_ERR_EVENT:
 | |
| 		netif_err(qdev, rx_err, qdev->ndev,
 | |
| 			  "Management Processor Fatal Error.\n");
 | |
| 		ql_queue_fw_error(qdev);
 | |
| 		return;
 | |
| 
 | |
| 	case CAM_LOOKUP_ERR_EVENT:
 | |
| 		netif_err(qdev, link, qdev->ndev,
 | |
| 			  "Multiple CAM hits lookup occurred.\n");
 | |
| 		netif_err(qdev, drv, qdev->ndev,
 | |
| 			  "This event shouldn't occur.\n");
 | |
| 		ql_queue_asic_error(qdev);
 | |
| 		return;
 | |
| 
 | |
| 	case SOFT_ECC_ERROR_EVENT:
 | |
| 		netif_err(qdev, rx_err, qdev->ndev,
 | |
| 			  "Soft ECC error detected.\n");
 | |
| 		ql_queue_asic_error(qdev);
 | |
| 		break;
 | |
| 
 | |
| 	case PCI_ERR_ANON_BUF_RD:
 | |
| 		netif_err(qdev, rx_err, qdev->ndev,
 | |
| 			  "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
 | |
| 			  ib_ae_rsp->q_id);
 | |
| 		ql_queue_asic_error(qdev);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
 | |
| 			  ib_ae_rsp->event);
 | |
| 		ql_queue_asic_error(qdev);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
 | |
| {
 | |
| 	struct ql_adapter *qdev = rx_ring->qdev;
 | |
| 	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
 | |
| 	struct ob_mac_iocb_rsp *net_rsp = NULL;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	struct tx_ring *tx_ring;
 | |
| 	/* While there are entries in the completion queue. */
 | |
| 	while (prod != rx_ring->cnsmr_idx) {
 | |
| 
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
 | |
| 			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
 | |
| 
 | |
| 		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
 | |
| 		rmb();
 | |
| 		switch (net_rsp->opcode) {
 | |
| 
 | |
| 		case OPCODE_OB_MAC_TSO_IOCB:
 | |
| 		case OPCODE_OB_MAC_IOCB:
 | |
| 			ql_process_mac_tx_intr(qdev, net_rsp);
 | |
| 			break;
 | |
| 		default:
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
 | |
| 				     net_rsp->opcode);
 | |
| 		}
 | |
| 		count++;
 | |
| 		ql_update_cq(rx_ring);
 | |
| 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
 | |
| 	}
 | |
| 	ql_write_cq_idx(rx_ring);
 | |
| 	tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
 | |
| 	if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
 | |
| 					net_rsp != NULL) {
 | |
| 		if (atomic_read(&tx_ring->queue_stopped) &&
 | |
| 		    (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
 | |
| 			/*
 | |
| 			 * The queue got stopped because the tx_ring was full.
 | |
| 			 * Wake it up, because it's now at least 25% empty.
 | |
| 			 */
 | |
| 			netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
 | |
| {
 | |
| 	struct ql_adapter *qdev = rx_ring->qdev;
 | |
| 	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
 | |
| 	struct ql_net_rsp_iocb *net_rsp;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	/* While there are entries in the completion queue. */
 | |
| 	while (prod != rx_ring->cnsmr_idx) {
 | |
| 
 | |
| 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
 | |
| 			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
 | |
| 
 | |
| 		net_rsp = rx_ring->curr_entry;
 | |
| 		rmb();
 | |
| 		switch (net_rsp->opcode) {
 | |
| 		case OPCODE_IB_MAC_IOCB:
 | |
| 			ql_process_mac_rx_intr(qdev, rx_ring,
 | |
| 					       (struct ib_mac_iocb_rsp *)
 | |
| 					       net_rsp);
 | |
| 			break;
 | |
| 
 | |
| 		case OPCODE_IB_AE_IOCB:
 | |
| 			ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
 | |
| 						net_rsp);
 | |
| 			break;
 | |
| 		default:
 | |
| 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
 | |
| 				     net_rsp->opcode);
 | |
| 			break;
 | |
| 		}
 | |
| 		count++;
 | |
| 		ql_update_cq(rx_ring);
 | |
| 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
 | |
| 		if (count == budget)
 | |
| 			break;
 | |
| 	}
 | |
| 	ql_update_buffer_queues(qdev, rx_ring);
 | |
| 	ql_write_cq_idx(rx_ring);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
 | |
| 	struct ql_adapter *qdev = rx_ring->qdev;
 | |
| 	struct rx_ring *trx_ring;
 | |
| 	int i, work_done = 0;
 | |
| 	struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
 | |
| 
 | |
| 	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
 | |
| 		     "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
 | |
| 
 | |
| 	/* Service the TX rings first.  They start
 | |
| 	 * right after the RSS rings. */
 | |
| 	for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
 | |
| 		trx_ring = &qdev->rx_ring[i];
 | |
| 		/* If this TX completion ring belongs to this vector and
 | |
| 		 * it's not empty then service it.
 | |
| 		 */
 | |
| 		if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
 | |
| 			(ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
 | |
| 					trx_ring->cnsmr_idx)) {
 | |
| 			netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
 | |
| 				     "%s: Servicing TX completion ring %d.\n",
 | |
| 				     __func__, trx_ring->cq_id);
 | |
| 			ql_clean_outbound_rx_ring(trx_ring);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now service the RSS ring if it's active.
 | |
| 	 */
 | |
| 	if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
 | |
| 					rx_ring->cnsmr_idx) {
 | |
| 		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
 | |
| 			     "%s: Servicing RX completion ring %d.\n",
 | |
| 			     __func__, rx_ring->cq_id);
 | |
| 		work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
 | |
| 	}
 | |
| 
 | |
| 	if (work_done < budget) {
 | |
| 		napi_complete(napi);
 | |
| 		ql_enable_completion_interrupt(qdev, rx_ring->irq);
 | |
| 	}
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
 | |
| {
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 
 | |
| 	qdev->vlgrp = grp;
 | |
| 	if (grp) {
 | |
| 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Turning on VLAN in NIC_RCV_CFG.\n");
 | |
| 		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
 | |
| 			   NIC_RCV_CFG_VLAN_MATCH_AND_NON);
 | |
| 	} else {
 | |
| 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Turning off VLAN in NIC_RCV_CFG.\n");
 | |
| 		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
 | |
| {
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	u32 enable_bit = MAC_ADDR_E;
 | |
| 	int status;
 | |
| 
 | |
| 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 	if (status)
 | |
| 		return;
 | |
| 	if (ql_set_mac_addr_reg
 | |
| 	    (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Failed to init vlan address.\n");
 | |
| 	}
 | |
| 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| }
 | |
| 
 | |
| static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
 | |
| {
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	u32 enable_bit = 0;
 | |
| 	int status;
 | |
| 
 | |
| 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 	if (status)
 | |
| 		return;
 | |
| 
 | |
| 	if (ql_set_mac_addr_reg
 | |
| 	    (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Failed to clear vlan address.\n");
 | |
| 	}
 | |
| 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
 | |
| static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct rx_ring *rx_ring = dev_id;
 | |
| 	napi_schedule(&rx_ring->napi);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* This handles a fatal error, MPI activity, and the default
 | |
|  * rx_ring in an MSI-X multiple vector environment.
 | |
|  * In MSI/Legacy environment it also process the rest of
 | |
|  * the rx_rings.
 | |
|  */
 | |
| static irqreturn_t qlge_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct rx_ring *rx_ring = dev_id;
 | |
| 	struct ql_adapter *qdev = rx_ring->qdev;
 | |
| 	struct intr_context *intr_context = &qdev->intr_context[0];
 | |
| 	u32 var;
 | |
| 	int work_done = 0;
 | |
| 
 | |
| 	spin_lock(&qdev->hw_lock);
 | |
| 	if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
 | |
| 		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Shared Interrupt, Not ours!\n");
 | |
| 		spin_unlock(&qdev->hw_lock);
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 	spin_unlock(&qdev->hw_lock);
 | |
| 
 | |
| 	var = ql_disable_completion_interrupt(qdev, intr_context->intr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for fatal error.
 | |
| 	 */
 | |
| 	if (var & STS_FE) {
 | |
| 		ql_queue_asic_error(qdev);
 | |
| 		netif_err(qdev, intr, qdev->ndev,
 | |
| 			  "Got fatal error, STS = %x.\n", var);
 | |
| 		var = ql_read32(qdev, ERR_STS);
 | |
| 		netif_err(qdev, intr, qdev->ndev,
 | |
| 			  "Resetting chip. Error Status Register = 0x%x\n", var);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check MPI processor activity.
 | |
| 	 */
 | |
| 	if ((var & STS_PI) &&
 | |
| 		(ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
 | |
| 		/*
 | |
| 		 * We've got an async event or mailbox completion.
 | |
| 		 * Handle it and clear the source of the interrupt.
 | |
| 		 */
 | |
| 		netif_err(qdev, intr, qdev->ndev,
 | |
| 			  "Got MPI processor interrupt.\n");
 | |
| 		ql_disable_completion_interrupt(qdev, intr_context->intr);
 | |
| 		ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
 | |
| 		queue_delayed_work_on(smp_processor_id(),
 | |
| 				qdev->workqueue, &qdev->mpi_work, 0);
 | |
| 		work_done++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the bit-mask that shows the active queues for this
 | |
| 	 * pass.  Compare it to the queues that this irq services
 | |
| 	 * and call napi if there's a match.
 | |
| 	 */
 | |
| 	var = ql_read32(qdev, ISR1);
 | |
| 	if (var & intr_context->irq_mask) {
 | |
| 		netif_info(qdev, intr, qdev->ndev,
 | |
| 			   "Waking handler for rx_ring[0].\n");
 | |
| 		ql_disable_completion_interrupt(qdev, intr_context->intr);
 | |
| 		napi_schedule(&rx_ring->napi);
 | |
| 		work_done++;
 | |
| 	}
 | |
| 	ql_enable_completion_interrupt(qdev, intr_context->intr);
 | |
| 	return work_done ? IRQ_HANDLED : IRQ_NONE;
 | |
| }
 | |
| 
 | |
| static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
 | |
| {
 | |
| 
 | |
| 	if (skb_is_gso(skb)) {
 | |
| 		int err;
 | |
| 		if (skb_header_cloned(skb)) {
 | |
| 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
 | |
| 		mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
 | |
| 		mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
 | |
| 		mac_iocb_ptr->total_hdrs_len =
 | |
| 		    cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
 | |
| 		mac_iocb_ptr->net_trans_offset =
 | |
| 		    cpu_to_le16(skb_network_offset(skb) |
 | |
| 				skb_transport_offset(skb)
 | |
| 				<< OB_MAC_TRANSPORT_HDR_SHIFT);
 | |
| 		mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 | |
| 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
 | |
| 		if (likely(skb->protocol == htons(ETH_P_IP))) {
 | |
| 			struct iphdr *iph = ip_hdr(skb);
 | |
| 			iph->check = 0;
 | |
| 			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
 | |
| 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
 | |
| 								 iph->daddr, 0,
 | |
| 								 IPPROTO_TCP,
 | |
| 								 0);
 | |
| 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
 | |
| 			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
 | |
| 			tcp_hdr(skb)->check =
 | |
| 			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 | |
| 					     &ipv6_hdr(skb)->daddr,
 | |
| 					     0, IPPROTO_TCP, 0);
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ql_hw_csum_setup(struct sk_buff *skb,
 | |
| 			     struct ob_mac_tso_iocb_req *mac_iocb_ptr)
 | |
| {
 | |
| 	int len;
 | |
| 	struct iphdr *iph = ip_hdr(skb);
 | |
| 	__sum16 *check;
 | |
| 	mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
 | |
| 	mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
 | |
| 	mac_iocb_ptr->net_trans_offset =
 | |
| 		cpu_to_le16(skb_network_offset(skb) |
 | |
| 		skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
 | |
| 
 | |
| 	mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
 | |
| 	len = (ntohs(iph->tot_len) - (iph->ihl << 2));
 | |
| 	if (likely(iph->protocol == IPPROTO_TCP)) {
 | |
| 		check = &(tcp_hdr(skb)->check);
 | |
| 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
 | |
| 		mac_iocb_ptr->total_hdrs_len =
 | |
| 		    cpu_to_le16(skb_transport_offset(skb) +
 | |
| 				(tcp_hdr(skb)->doff << 2));
 | |
| 	} else {
 | |
| 		check = &(udp_hdr(skb)->check);
 | |
| 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
 | |
| 		mac_iocb_ptr->total_hdrs_len =
 | |
| 		    cpu_to_le16(skb_transport_offset(skb) +
 | |
| 				sizeof(struct udphdr));
 | |
| 	}
 | |
| 	*check = ~csum_tcpudp_magic(iph->saddr,
 | |
| 				    iph->daddr, len, iph->protocol, 0);
 | |
| }
 | |
| 
 | |
| static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
 | |
| {
 | |
| 	struct tx_ring_desc *tx_ring_desc;
 | |
| 	struct ob_mac_iocb_req *mac_iocb_ptr;
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	int tso;
 | |
| 	struct tx_ring *tx_ring;
 | |
| 	u32 tx_ring_idx = (u32) skb->queue_mapping;
 | |
| 
 | |
| 	tx_ring = &qdev->tx_ring[tx_ring_idx];
 | |
| 
 | |
| 	if (skb_padto(skb, ETH_ZLEN))
 | |
| 		return NETDEV_TX_OK;
 | |
| 
 | |
| 	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
 | |
| 		netif_info(qdev, tx_queued, qdev->ndev,
 | |
| 			   "%s: shutting down tx queue %d du to lack of resources.\n",
 | |
| 			   __func__, tx_ring_idx);
 | |
| 		netif_stop_subqueue(ndev, tx_ring->wq_id);
 | |
| 		atomic_inc(&tx_ring->queue_stopped);
 | |
| 		tx_ring->tx_errors++;
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 	tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
 | |
| 	mac_iocb_ptr = tx_ring_desc->queue_entry;
 | |
| 	memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
 | |
| 
 | |
| 	mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
 | |
| 	mac_iocb_ptr->tid = tx_ring_desc->index;
 | |
| 	/* We use the upper 32-bits to store the tx queue for this IO.
 | |
| 	 * When we get the completion we can use it to establish the context.
 | |
| 	 */
 | |
| 	mac_iocb_ptr->txq_idx = tx_ring_idx;
 | |
| 	tx_ring_desc->skb = skb;
 | |
| 
 | |
| 	mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
 | |
| 
 | |
| 	if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
 | |
| 		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
 | |
| 		mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
 | |
| 		mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
 | |
| 	}
 | |
| 	tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
 | |
| 	if (tso < 0) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
 | |
| 		ql_hw_csum_setup(skb,
 | |
| 				 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
 | |
| 	}
 | |
| 	if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
 | |
| 			NETDEV_TX_OK) {
 | |
| 		netif_err(qdev, tx_queued, qdev->ndev,
 | |
| 			  "Could not map the segments.\n");
 | |
| 		tx_ring->tx_errors++;
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 	QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
 | |
| 	tx_ring->prod_idx++;
 | |
| 	if (tx_ring->prod_idx == tx_ring->wq_len)
 | |
| 		tx_ring->prod_idx = 0;
 | |
| 	wmb();
 | |
| 
 | |
| 	ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
 | |
| 	netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
 | |
| 		     "tx queued, slot %d, len %d\n",
 | |
| 		     tx_ring->prod_idx, skb->len);
 | |
| 
 | |
| 	atomic_dec(&tx_ring->tx_count);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ql_free_shadow_space(struct ql_adapter *qdev)
 | |
| {
 | |
| 	if (qdev->rx_ring_shadow_reg_area) {
 | |
| 		pci_free_consistent(qdev->pdev,
 | |
| 				    PAGE_SIZE,
 | |
| 				    qdev->rx_ring_shadow_reg_area,
 | |
| 				    qdev->rx_ring_shadow_reg_dma);
 | |
| 		qdev->rx_ring_shadow_reg_area = NULL;
 | |
| 	}
 | |
| 	if (qdev->tx_ring_shadow_reg_area) {
 | |
| 		pci_free_consistent(qdev->pdev,
 | |
| 				    PAGE_SIZE,
 | |
| 				    qdev->tx_ring_shadow_reg_area,
 | |
| 				    qdev->tx_ring_shadow_reg_dma);
 | |
| 		qdev->tx_ring_shadow_reg_area = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ql_alloc_shadow_space(struct ql_adapter *qdev)
 | |
| {
 | |
| 	qdev->rx_ring_shadow_reg_area =
 | |
| 	    pci_alloc_consistent(qdev->pdev,
 | |
| 				 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
 | |
| 	if (qdev->rx_ring_shadow_reg_area == NULL) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Allocation of RX shadow space failed.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
 | |
| 	qdev->tx_ring_shadow_reg_area =
 | |
| 	    pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
 | |
| 				 &qdev->tx_ring_shadow_reg_dma);
 | |
| 	if (qdev->tx_ring_shadow_reg_area == NULL) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Allocation of TX shadow space failed.\n");
 | |
| 		goto err_wqp_sh_area;
 | |
| 	}
 | |
| 	memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
 | |
| 	return 0;
 | |
| 
 | |
| err_wqp_sh_area:
 | |
| 	pci_free_consistent(qdev->pdev,
 | |
| 			    PAGE_SIZE,
 | |
| 			    qdev->rx_ring_shadow_reg_area,
 | |
| 			    qdev->rx_ring_shadow_reg_dma);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
 | |
| {
 | |
| 	struct tx_ring_desc *tx_ring_desc;
 | |
| 	int i;
 | |
| 	struct ob_mac_iocb_req *mac_iocb_ptr;
 | |
| 
 | |
| 	mac_iocb_ptr = tx_ring->wq_base;
 | |
| 	tx_ring_desc = tx_ring->q;
 | |
| 	for (i = 0; i < tx_ring->wq_len; i++) {
 | |
| 		tx_ring_desc->index = i;
 | |
| 		tx_ring_desc->skb = NULL;
 | |
| 		tx_ring_desc->queue_entry = mac_iocb_ptr;
 | |
| 		mac_iocb_ptr++;
 | |
| 		tx_ring_desc++;
 | |
| 	}
 | |
| 	atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
 | |
| 	atomic_set(&tx_ring->queue_stopped, 0);
 | |
| }
 | |
| 
 | |
| static void ql_free_tx_resources(struct ql_adapter *qdev,
 | |
| 				 struct tx_ring *tx_ring)
 | |
| {
 | |
| 	if (tx_ring->wq_base) {
 | |
| 		pci_free_consistent(qdev->pdev, tx_ring->wq_size,
 | |
| 				    tx_ring->wq_base, tx_ring->wq_base_dma);
 | |
| 		tx_ring->wq_base = NULL;
 | |
| 	}
 | |
| 	kfree(tx_ring->q);
 | |
| 	tx_ring->q = NULL;
 | |
| }
 | |
| 
 | |
| static int ql_alloc_tx_resources(struct ql_adapter *qdev,
 | |
| 				 struct tx_ring *tx_ring)
 | |
| {
 | |
| 	tx_ring->wq_base =
 | |
| 	    pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
 | |
| 				 &tx_ring->wq_base_dma);
 | |
| 
 | |
| 	if ((tx_ring->wq_base == NULL) ||
 | |
| 	    tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	tx_ring->q =
 | |
| 	    kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
 | |
| 	if (tx_ring->q == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	pci_free_consistent(qdev->pdev, tx_ring->wq_size,
 | |
| 			    tx_ring->wq_base, tx_ring->wq_base_dma);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
 | |
| {
 | |
| 	struct bq_desc *lbq_desc;
 | |
| 
 | |
| 	uint32_t  curr_idx, clean_idx;
 | |
| 
 | |
| 	curr_idx = rx_ring->lbq_curr_idx;
 | |
| 	clean_idx = rx_ring->lbq_clean_idx;
 | |
| 	while (curr_idx != clean_idx) {
 | |
| 		lbq_desc = &rx_ring->lbq[curr_idx];
 | |
| 
 | |
| 		if (lbq_desc->p.pg_chunk.last_flag) {
 | |
| 			pci_unmap_page(qdev->pdev,
 | |
| 				lbq_desc->p.pg_chunk.map,
 | |
| 				ql_lbq_block_size(qdev),
 | |
| 				       PCI_DMA_FROMDEVICE);
 | |
| 			lbq_desc->p.pg_chunk.last_flag = 0;
 | |
| 		}
 | |
| 
 | |
| 		put_page(lbq_desc->p.pg_chunk.page);
 | |
| 		lbq_desc->p.pg_chunk.page = NULL;
 | |
| 
 | |
| 		if (++curr_idx == rx_ring->lbq_len)
 | |
| 			curr_idx = 0;
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bq_desc *sbq_desc;
 | |
| 
 | |
| 	for (i = 0; i < rx_ring->sbq_len; i++) {
 | |
| 		sbq_desc = &rx_ring->sbq[i];
 | |
| 		if (sbq_desc == NULL) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "sbq_desc %d is NULL.\n", i);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (sbq_desc->p.skb) {
 | |
| 			pci_unmap_single(qdev->pdev,
 | |
| 					 pci_unmap_addr(sbq_desc, mapaddr),
 | |
| 					 pci_unmap_len(sbq_desc, maplen),
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 			dev_kfree_skb(sbq_desc->p.skb);
 | |
| 			sbq_desc->p.skb = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Free all large and small rx buffers associated
 | |
|  * with the completion queues for this device.
 | |
|  */
 | |
| static void ql_free_rx_buffers(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct rx_ring *rx_ring;
 | |
| 
 | |
| 	for (i = 0; i < qdev->rx_ring_count; i++) {
 | |
| 		rx_ring = &qdev->rx_ring[i];
 | |
| 		if (rx_ring->lbq)
 | |
| 			ql_free_lbq_buffers(qdev, rx_ring);
 | |
| 		if (rx_ring->sbq)
 | |
| 			ql_free_sbq_buffers(qdev, rx_ring);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
 | |
| {
 | |
| 	struct rx_ring *rx_ring;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < qdev->rx_ring_count; i++) {
 | |
| 		rx_ring = &qdev->rx_ring[i];
 | |
| 		if (rx_ring->type != TX_Q)
 | |
| 			ql_update_buffer_queues(qdev, rx_ring);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_init_lbq_ring(struct ql_adapter *qdev,
 | |
| 				struct rx_ring *rx_ring)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bq_desc *lbq_desc;
 | |
| 	__le64 *bq = rx_ring->lbq_base;
 | |
| 
 | |
| 	memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
 | |
| 	for (i = 0; i < rx_ring->lbq_len; i++) {
 | |
| 		lbq_desc = &rx_ring->lbq[i];
 | |
| 		memset(lbq_desc, 0, sizeof(*lbq_desc));
 | |
| 		lbq_desc->index = i;
 | |
| 		lbq_desc->addr = bq;
 | |
| 		bq++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_init_sbq_ring(struct ql_adapter *qdev,
 | |
| 				struct rx_ring *rx_ring)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bq_desc *sbq_desc;
 | |
| 	__le64 *bq = rx_ring->sbq_base;
 | |
| 
 | |
| 	memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
 | |
| 	for (i = 0; i < rx_ring->sbq_len; i++) {
 | |
| 		sbq_desc = &rx_ring->sbq[i];
 | |
| 		memset(sbq_desc, 0, sizeof(*sbq_desc));
 | |
| 		sbq_desc->index = i;
 | |
| 		sbq_desc->addr = bq;
 | |
| 		bq++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_free_rx_resources(struct ql_adapter *qdev,
 | |
| 				 struct rx_ring *rx_ring)
 | |
| {
 | |
| 	/* Free the small buffer queue. */
 | |
| 	if (rx_ring->sbq_base) {
 | |
| 		pci_free_consistent(qdev->pdev,
 | |
| 				    rx_ring->sbq_size,
 | |
| 				    rx_ring->sbq_base, rx_ring->sbq_base_dma);
 | |
| 		rx_ring->sbq_base = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Free the small buffer queue control blocks. */
 | |
| 	kfree(rx_ring->sbq);
 | |
| 	rx_ring->sbq = NULL;
 | |
| 
 | |
| 	/* Free the large buffer queue. */
 | |
| 	if (rx_ring->lbq_base) {
 | |
| 		pci_free_consistent(qdev->pdev,
 | |
| 				    rx_ring->lbq_size,
 | |
| 				    rx_ring->lbq_base, rx_ring->lbq_base_dma);
 | |
| 		rx_ring->lbq_base = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Free the large buffer queue control blocks. */
 | |
| 	kfree(rx_ring->lbq);
 | |
| 	rx_ring->lbq = NULL;
 | |
| 
 | |
| 	/* Free the rx queue. */
 | |
| 	if (rx_ring->cq_base) {
 | |
| 		pci_free_consistent(qdev->pdev,
 | |
| 				    rx_ring->cq_size,
 | |
| 				    rx_ring->cq_base, rx_ring->cq_base_dma);
 | |
| 		rx_ring->cq_base = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Allocate queues and buffers for this completions queue based
 | |
|  * on the values in the parameter structure. */
 | |
| static int ql_alloc_rx_resources(struct ql_adapter *qdev,
 | |
| 				 struct rx_ring *rx_ring)
 | |
| {
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the completion queue for this rx_ring.
 | |
| 	 */
 | |
| 	rx_ring->cq_base =
 | |
| 	    pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
 | |
| 				 &rx_ring->cq_base_dma);
 | |
| 
 | |
| 	if (rx_ring->cq_base == NULL) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (rx_ring->sbq_len) {
 | |
| 		/*
 | |
| 		 * Allocate small buffer queue.
 | |
| 		 */
 | |
| 		rx_ring->sbq_base =
 | |
| 		    pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
 | |
| 					 &rx_ring->sbq_base_dma);
 | |
| 
 | |
| 		if (rx_ring->sbq_base == NULL) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Small buffer queue allocation failed.\n");
 | |
| 			goto err_mem;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Allocate small buffer queue control blocks.
 | |
| 		 */
 | |
| 		rx_ring->sbq =
 | |
| 		    kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
 | |
| 			    GFP_KERNEL);
 | |
| 		if (rx_ring->sbq == NULL) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Small buffer queue control block allocation failed.\n");
 | |
| 			goto err_mem;
 | |
| 		}
 | |
| 
 | |
| 		ql_init_sbq_ring(qdev, rx_ring);
 | |
| 	}
 | |
| 
 | |
| 	if (rx_ring->lbq_len) {
 | |
| 		/*
 | |
| 		 * Allocate large buffer queue.
 | |
| 		 */
 | |
| 		rx_ring->lbq_base =
 | |
| 		    pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
 | |
| 					 &rx_ring->lbq_base_dma);
 | |
| 
 | |
| 		if (rx_ring->lbq_base == NULL) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Large buffer queue allocation failed.\n");
 | |
| 			goto err_mem;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Allocate large buffer queue control blocks.
 | |
| 		 */
 | |
| 		rx_ring->lbq =
 | |
| 		    kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
 | |
| 			    GFP_KERNEL);
 | |
| 		if (rx_ring->lbq == NULL) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Large buffer queue control block allocation failed.\n");
 | |
| 			goto err_mem;
 | |
| 		}
 | |
| 
 | |
| 		ql_init_lbq_ring(qdev, rx_ring);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_mem:
 | |
| 	ql_free_rx_resources(qdev, rx_ring);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void ql_tx_ring_clean(struct ql_adapter *qdev)
 | |
| {
 | |
| 	struct tx_ring *tx_ring;
 | |
| 	struct tx_ring_desc *tx_ring_desc;
 | |
| 	int i, j;
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop through all queues and free
 | |
| 	 * any resources.
 | |
| 	 */
 | |
| 	for (j = 0; j < qdev->tx_ring_count; j++) {
 | |
| 		tx_ring = &qdev->tx_ring[j];
 | |
| 		for (i = 0; i < tx_ring->wq_len; i++) {
 | |
| 			tx_ring_desc = &tx_ring->q[i];
 | |
| 			if (tx_ring_desc && tx_ring_desc->skb) {
 | |
| 				netif_err(qdev, ifdown, qdev->ndev,
 | |
| 					  "Freeing lost SKB %p, from queue %d, index %d.\n",
 | |
| 					  tx_ring_desc->skb, j,
 | |
| 					  tx_ring_desc->index);
 | |
| 				ql_unmap_send(qdev, tx_ring_desc,
 | |
| 					      tx_ring_desc->map_cnt);
 | |
| 				dev_kfree_skb(tx_ring_desc->skb);
 | |
| 				tx_ring_desc->skb = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ql_free_mem_resources(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < qdev->tx_ring_count; i++)
 | |
| 		ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
 | |
| 	for (i = 0; i < qdev->rx_ring_count; i++)
 | |
| 		ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
 | |
| 	ql_free_shadow_space(qdev);
 | |
| }
 | |
| 
 | |
| static int ql_alloc_mem_resources(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Allocate space for our shadow registers and such. */
 | |
| 	if (ql_alloc_shadow_space(qdev))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < qdev->rx_ring_count; i++) {
 | |
| 		if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "RX resource allocation failed.\n");
 | |
| 			goto err_mem;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Allocate tx queue resources */
 | |
| 	for (i = 0; i < qdev->tx_ring_count; i++) {
 | |
| 		if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "TX resource allocation failed.\n");
 | |
| 			goto err_mem;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err_mem:
 | |
| 	ql_free_mem_resources(qdev);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Set up the rx ring control block and pass it to the chip.
 | |
|  * The control block is defined as
 | |
|  * "Completion Queue Initialization Control Block", or cqicb.
 | |
|  */
 | |
| static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
 | |
| {
 | |
| 	struct cqicb *cqicb = &rx_ring->cqicb;
 | |
| 	void *shadow_reg = qdev->rx_ring_shadow_reg_area +
 | |
| 		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
 | |
| 	u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
 | |
| 		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
 | |
| 	void __iomem *doorbell_area =
 | |
| 	    qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
 | |
| 	int err = 0;
 | |
| 	u16 bq_len;
 | |
| 	u64 tmp;
 | |
| 	__le64 *base_indirect_ptr;
 | |
| 	int page_entries;
 | |
| 
 | |
| 	/* Set up the shadow registers for this ring. */
 | |
| 	rx_ring->prod_idx_sh_reg = shadow_reg;
 | |
| 	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
 | |
| 	*rx_ring->prod_idx_sh_reg = 0;
 | |
| 	shadow_reg += sizeof(u64);
 | |
| 	shadow_reg_dma += sizeof(u64);
 | |
| 	rx_ring->lbq_base_indirect = shadow_reg;
 | |
| 	rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
 | |
| 	shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
 | |
| 	shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
 | |
| 	rx_ring->sbq_base_indirect = shadow_reg;
 | |
| 	rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
 | |
| 
 | |
| 	/* PCI doorbell mem area + 0x00 for consumer index register */
 | |
| 	rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
 | |
| 	rx_ring->cnsmr_idx = 0;
 | |
| 	rx_ring->curr_entry = rx_ring->cq_base;
 | |
| 
 | |
| 	/* PCI doorbell mem area + 0x04 for valid register */
 | |
| 	rx_ring->valid_db_reg = doorbell_area + 0x04;
 | |
| 
 | |
| 	/* PCI doorbell mem area + 0x18 for large buffer consumer */
 | |
| 	rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
 | |
| 
 | |
| 	/* PCI doorbell mem area + 0x1c */
 | |
| 	rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
 | |
| 
 | |
| 	memset((void *)cqicb, 0, sizeof(struct cqicb));
 | |
| 	cqicb->msix_vect = rx_ring->irq;
 | |
| 
 | |
| 	bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
 | |
| 	cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
 | |
| 
 | |
| 	cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
 | |
| 
 | |
| 	cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the control block load flags.
 | |
| 	 */
 | |
| 	cqicb->flags = FLAGS_LC |	/* Load queue base address */
 | |
| 	    FLAGS_LV |		/* Load MSI-X vector */
 | |
| 	    FLAGS_LI;		/* Load irq delay values */
 | |
| 	if (rx_ring->lbq_len) {
 | |
| 		cqicb->flags |= FLAGS_LL;	/* Load lbq values */
 | |
| 		tmp = (u64)rx_ring->lbq_base_dma;
 | |
| 		base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
 | |
| 		page_entries = 0;
 | |
| 		do {
 | |
| 			*base_indirect_ptr = cpu_to_le64(tmp);
 | |
| 			tmp += DB_PAGE_SIZE;
 | |
| 			base_indirect_ptr++;
 | |
| 			page_entries++;
 | |
| 		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
 | |
| 		cqicb->lbq_addr =
 | |
| 		    cpu_to_le64(rx_ring->lbq_base_indirect_dma);
 | |
| 		bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
 | |
| 			(u16) rx_ring->lbq_buf_size;
 | |
| 		cqicb->lbq_buf_size = cpu_to_le16(bq_len);
 | |
| 		bq_len = (rx_ring->lbq_len == 65536) ? 0 :
 | |
| 			(u16) rx_ring->lbq_len;
 | |
| 		cqicb->lbq_len = cpu_to_le16(bq_len);
 | |
| 		rx_ring->lbq_prod_idx = 0;
 | |
| 		rx_ring->lbq_curr_idx = 0;
 | |
| 		rx_ring->lbq_clean_idx = 0;
 | |
| 		rx_ring->lbq_free_cnt = rx_ring->lbq_len;
 | |
| 	}
 | |
| 	if (rx_ring->sbq_len) {
 | |
| 		cqicb->flags |= FLAGS_LS;	/* Load sbq values */
 | |
| 		tmp = (u64)rx_ring->sbq_base_dma;
 | |
| 		base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
 | |
| 		page_entries = 0;
 | |
| 		do {
 | |
| 			*base_indirect_ptr = cpu_to_le64(tmp);
 | |
| 			tmp += DB_PAGE_SIZE;
 | |
| 			base_indirect_ptr++;
 | |
| 			page_entries++;
 | |
| 		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
 | |
| 		cqicb->sbq_addr =
 | |
| 		    cpu_to_le64(rx_ring->sbq_base_indirect_dma);
 | |
| 		cqicb->sbq_buf_size =
 | |
| 		    cpu_to_le16((u16)(rx_ring->sbq_buf_size));
 | |
| 		bq_len = (rx_ring->sbq_len == 65536) ? 0 :
 | |
| 			(u16) rx_ring->sbq_len;
 | |
| 		cqicb->sbq_len = cpu_to_le16(bq_len);
 | |
| 		rx_ring->sbq_prod_idx = 0;
 | |
| 		rx_ring->sbq_curr_idx = 0;
 | |
| 		rx_ring->sbq_clean_idx = 0;
 | |
| 		rx_ring->sbq_free_cnt = rx_ring->sbq_len;
 | |
| 	}
 | |
| 	switch (rx_ring->type) {
 | |
| 	case TX_Q:
 | |
| 		cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
 | |
| 		cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
 | |
| 		break;
 | |
| 	case RX_Q:
 | |
| 		/* Inbound completion handling rx_rings run in
 | |
| 		 * separate NAPI contexts.
 | |
| 		 */
 | |
| 		netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
 | |
| 			       64);
 | |
| 		cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
 | |
| 		cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
 | |
| 		break;
 | |
| 	default:
 | |
| 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Invalid rx_ring->type = %d.\n", rx_ring->type);
 | |
| 	}
 | |
| 	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 		     "Initializing rx work queue.\n");
 | |
| 	err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
 | |
| 			   CFG_LCQ, rx_ring->cq_id);
 | |
| 	if (err) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
 | |
| {
 | |
| 	struct wqicb *wqicb = (struct wqicb *)tx_ring;
 | |
| 	void __iomem *doorbell_area =
 | |
| 	    qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
 | |
| 	void *shadow_reg = qdev->tx_ring_shadow_reg_area +
 | |
| 	    (tx_ring->wq_id * sizeof(u64));
 | |
| 	u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
 | |
| 	    (tx_ring->wq_id * sizeof(u64));
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assign doorbell registers for this tx_ring.
 | |
| 	 */
 | |
| 	/* TX PCI doorbell mem area for tx producer index */
 | |
| 	tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
 | |
| 	tx_ring->prod_idx = 0;
 | |
| 	/* TX PCI doorbell mem area + 0x04 */
 | |
| 	tx_ring->valid_db_reg = doorbell_area + 0x04;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assign shadow registers for this tx_ring.
 | |
| 	 */
 | |
| 	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
 | |
| 	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
 | |
| 
 | |
| 	wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
 | |
| 	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
 | |
| 				   Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
 | |
| 	wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
 | |
| 	wqicb->rid = 0;
 | |
| 	wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
 | |
| 
 | |
| 	wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
 | |
| 
 | |
| 	ql_init_tx_ring(qdev, tx_ring);
 | |
| 
 | |
| 	err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
 | |
| 			   (u16) tx_ring->wq_id);
 | |
| 	if (err) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 		     "Successfully loaded WQICB.\n");
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void ql_disable_msix(struct ql_adapter *qdev)
 | |
| {
 | |
| 	if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
 | |
| 		pci_disable_msix(qdev->pdev);
 | |
| 		clear_bit(QL_MSIX_ENABLED, &qdev->flags);
 | |
| 		kfree(qdev->msi_x_entry);
 | |
| 		qdev->msi_x_entry = NULL;
 | |
| 	} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
 | |
| 		pci_disable_msi(qdev->pdev);
 | |
| 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* We start by trying to get the number of vectors
 | |
|  * stored in qdev->intr_count. If we don't get that
 | |
|  * many then we reduce the count and try again.
 | |
|  */
 | |
| static void ql_enable_msix(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i, err;
 | |
| 
 | |
| 	/* Get the MSIX vectors. */
 | |
| 	if (qlge_irq_type == MSIX_IRQ) {
 | |
| 		/* Try to alloc space for the msix struct,
 | |
| 		 * if it fails then go to MSI/legacy.
 | |
| 		 */
 | |
| 		qdev->msi_x_entry = kcalloc(qdev->intr_count,
 | |
| 					    sizeof(struct msix_entry),
 | |
| 					    GFP_KERNEL);
 | |
| 		if (!qdev->msi_x_entry) {
 | |
| 			qlge_irq_type = MSI_IRQ;
 | |
| 			goto msi;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < qdev->intr_count; i++)
 | |
| 			qdev->msi_x_entry[i].entry = i;
 | |
| 
 | |
| 		/* Loop to get our vectors.  We start with
 | |
| 		 * what we want and settle for what we get.
 | |
| 		 */
 | |
| 		do {
 | |
| 			err = pci_enable_msix(qdev->pdev,
 | |
| 				qdev->msi_x_entry, qdev->intr_count);
 | |
| 			if (err > 0)
 | |
| 				qdev->intr_count = err;
 | |
| 		} while (err > 0);
 | |
| 
 | |
| 		if (err < 0) {
 | |
| 			kfree(qdev->msi_x_entry);
 | |
| 			qdev->msi_x_entry = NULL;
 | |
| 			netif_warn(qdev, ifup, qdev->ndev,
 | |
| 				   "MSI-X Enable failed, trying MSI.\n");
 | |
| 			qdev->intr_count = 1;
 | |
| 			qlge_irq_type = MSI_IRQ;
 | |
| 		} else if (err == 0) {
 | |
| 			set_bit(QL_MSIX_ENABLED, &qdev->flags);
 | |
| 			netif_info(qdev, ifup, qdev->ndev,
 | |
| 				   "MSI-X Enabled, got %d vectors.\n",
 | |
| 				   qdev->intr_count);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| msi:
 | |
| 	qdev->intr_count = 1;
 | |
| 	if (qlge_irq_type == MSI_IRQ) {
 | |
| 		if (!pci_enable_msi(qdev->pdev)) {
 | |
| 			set_bit(QL_MSI_ENABLED, &qdev->flags);
 | |
| 			netif_info(qdev, ifup, qdev->ndev,
 | |
| 				   "Running with MSI interrupts.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	qlge_irq_type = LEG_IRQ;
 | |
| 	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 		     "Running with legacy interrupts.\n");
 | |
| }
 | |
| 
 | |
| /* Each vector services 1 RSS ring and and 1 or more
 | |
|  * TX completion rings.  This function loops through
 | |
|  * the TX completion rings and assigns the vector that
 | |
|  * will service it.  An example would be if there are
 | |
|  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
 | |
|  * This would mean that vector 0 would service RSS ring 0
 | |
|  * and TX competion rings 0,1,2 and 3.  Vector 1 would
 | |
|  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
 | |
|  */
 | |
| static void ql_set_tx_vect(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i, j, vect;
 | |
| 	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
 | |
| 
 | |
| 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
 | |
| 		/* Assign irq vectors to TX rx_rings.*/
 | |
| 		for (vect = 0, j = 0, i = qdev->rss_ring_count;
 | |
| 					 i < qdev->rx_ring_count; i++) {
 | |
| 			if (j == tx_rings_per_vector) {
 | |
| 				vect++;
 | |
| 				j = 0;
 | |
| 			}
 | |
| 			qdev->rx_ring[i].irq = vect;
 | |
| 			j++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* For single vector all rings have an irq
 | |
| 		 * of zero.
 | |
| 		 */
 | |
| 		for (i = 0; i < qdev->rx_ring_count; i++)
 | |
| 			qdev->rx_ring[i].irq = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Set the interrupt mask for this vector.  Each vector
 | |
|  * will service 1 RSS ring and 1 or more TX completion
 | |
|  * rings.  This function sets up a bit mask per vector
 | |
|  * that indicates which rings it services.
 | |
|  */
 | |
| static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
 | |
| {
 | |
| 	int j, vect = ctx->intr;
 | |
| 	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
 | |
| 
 | |
| 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
 | |
| 		/* Add the RSS ring serviced by this vector
 | |
| 		 * to the mask.
 | |
| 		 */
 | |
| 		ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
 | |
| 		/* Add the TX ring(s) serviced by this vector
 | |
| 		 * to the mask. */
 | |
| 		for (j = 0; j < tx_rings_per_vector; j++) {
 | |
| 			ctx->irq_mask |=
 | |
| 			(1 << qdev->rx_ring[qdev->rss_ring_count +
 | |
| 			(vect * tx_rings_per_vector) + j].cq_id);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* For single vector we just shift each queue's
 | |
| 		 * ID into the mask.
 | |
| 		 */
 | |
| 		for (j = 0; j < qdev->rx_ring_count; j++)
 | |
| 			ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Here we build the intr_context structures based on
 | |
|  * our rx_ring count and intr vector count.
 | |
|  * The intr_context structure is used to hook each vector
 | |
|  * to possibly different handlers.
 | |
|  */
 | |
| static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct intr_context *intr_context = &qdev->intr_context[0];
 | |
| 
 | |
| 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
 | |
| 		/* Each rx_ring has it's
 | |
| 		 * own intr_context since we have separate
 | |
| 		 * vectors for each queue.
 | |
| 		 */
 | |
| 		for (i = 0; i < qdev->intr_count; i++, intr_context++) {
 | |
| 			qdev->rx_ring[i].irq = i;
 | |
| 			intr_context->intr = i;
 | |
| 			intr_context->qdev = qdev;
 | |
| 			/* Set up this vector's bit-mask that indicates
 | |
| 			 * which queues it services.
 | |
| 			 */
 | |
| 			ql_set_irq_mask(qdev, intr_context);
 | |
| 			/*
 | |
| 			 * We set up each vectors enable/disable/read bits so
 | |
| 			 * there's no bit/mask calculations in the critical path.
 | |
| 			 */
 | |
| 			intr_context->intr_en_mask =
 | |
| 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
 | |
| 			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
 | |
| 			    | i;
 | |
| 			intr_context->intr_dis_mask =
 | |
| 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
 | |
| 			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
 | |
| 			    INTR_EN_IHD | i;
 | |
| 			intr_context->intr_read_mask =
 | |
| 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
 | |
| 			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
 | |
| 			    i;
 | |
| 			if (i == 0) {
 | |
| 				/* The first vector/queue handles
 | |
| 				 * broadcast/multicast, fatal errors,
 | |
| 				 * and firmware events.  This in addition
 | |
| 				 * to normal inbound NAPI processing.
 | |
| 				 */
 | |
| 				intr_context->handler = qlge_isr;
 | |
| 				sprintf(intr_context->name, "%s-rx-%d",
 | |
| 					qdev->ndev->name, i);
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * Inbound queues handle unicast frames only.
 | |
| 				 */
 | |
| 				intr_context->handler = qlge_msix_rx_isr;
 | |
| 				sprintf(intr_context->name, "%s-rx-%d",
 | |
| 					qdev->ndev->name, i);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * All rx_rings use the same intr_context since
 | |
| 		 * there is only one vector.
 | |
| 		 */
 | |
| 		intr_context->intr = 0;
 | |
| 		intr_context->qdev = qdev;
 | |
| 		/*
 | |
| 		 * We set up each vectors enable/disable/read bits so
 | |
| 		 * there's no bit/mask calculations in the critical path.
 | |
| 		 */
 | |
| 		intr_context->intr_en_mask =
 | |
| 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
 | |
| 		intr_context->intr_dis_mask =
 | |
| 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
 | |
| 		    INTR_EN_TYPE_DISABLE;
 | |
| 		intr_context->intr_read_mask =
 | |
| 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
 | |
| 		/*
 | |
| 		 * Single interrupt means one handler for all rings.
 | |
| 		 */
 | |
| 		intr_context->handler = qlge_isr;
 | |
| 		sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
 | |
| 		/* Set up this vector's bit-mask that indicates
 | |
| 		 * which queues it services. In this case there is
 | |
| 		 * a single vector so it will service all RSS and
 | |
| 		 * TX completion rings.
 | |
| 		 */
 | |
| 		ql_set_irq_mask(qdev, intr_context);
 | |
| 	}
 | |
| 	/* Tell the TX completion rings which MSIx vector
 | |
| 	 * they will be using.
 | |
| 	 */
 | |
| 	ql_set_tx_vect(qdev);
 | |
| }
 | |
| 
 | |
| static void ql_free_irq(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct intr_context *intr_context = &qdev->intr_context[0];
 | |
| 
 | |
| 	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
 | |
| 		if (intr_context->hooked) {
 | |
| 			if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
 | |
| 				free_irq(qdev->msi_x_entry[i].vector,
 | |
| 					 &qdev->rx_ring[i]);
 | |
| 				netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
 | |
| 					     "freeing msix interrupt %d.\n", i);
 | |
| 			} else {
 | |
| 				free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
 | |
| 				netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
 | |
| 					     "freeing msi interrupt %d.\n", i);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	ql_disable_msix(qdev);
 | |
| }
 | |
| 
 | |
| static int ql_request_irq(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i;
 | |
| 	int status = 0;
 | |
| 	struct pci_dev *pdev = qdev->pdev;
 | |
| 	struct intr_context *intr_context = &qdev->intr_context[0];
 | |
| 
 | |
| 	ql_resolve_queues_to_irqs(qdev);
 | |
| 
 | |
| 	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
 | |
| 		atomic_set(&intr_context->irq_cnt, 0);
 | |
| 		if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
 | |
| 			status = request_irq(qdev->msi_x_entry[i].vector,
 | |
| 					     intr_context->handler,
 | |
| 					     0,
 | |
| 					     intr_context->name,
 | |
| 					     &qdev->rx_ring[i]);
 | |
| 			if (status) {
 | |
| 				netif_err(qdev, ifup, qdev->ndev,
 | |
| 					  "Failed request for MSIX interrupt %d.\n",
 | |
| 					  i);
 | |
| 				goto err_irq;
 | |
| 			} else {
 | |
| 				netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 					     "Hooked intr %d, queue type %s, with name %s.\n",
 | |
| 					     i,
 | |
| 					     qdev->rx_ring[i].type == DEFAULT_Q ?
 | |
| 					     "DEFAULT_Q" :
 | |
| 					     qdev->rx_ring[i].type == TX_Q ?
 | |
| 					     "TX_Q" :
 | |
| 					     qdev->rx_ring[i].type == RX_Q ?
 | |
| 					     "RX_Q" : "",
 | |
| 					     intr_context->name);
 | |
| 			}
 | |
| 		} else {
 | |
| 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 				     "trying msi or legacy interrupts.\n");
 | |
| 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 				     "%s: irq = %d.\n", __func__, pdev->irq);
 | |
| 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 				     "%s: context->name = %s.\n", __func__,
 | |
| 				     intr_context->name);
 | |
| 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 				     "%s: dev_id = 0x%p.\n", __func__,
 | |
| 				     &qdev->rx_ring[0]);
 | |
| 			status =
 | |
| 			    request_irq(pdev->irq, qlge_isr,
 | |
| 					test_bit(QL_MSI_ENABLED,
 | |
| 						 &qdev->
 | |
| 						 flags) ? 0 : IRQF_SHARED,
 | |
| 					intr_context->name, &qdev->rx_ring[0]);
 | |
| 			if (status)
 | |
| 				goto err_irq;
 | |
| 
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Hooked intr %d, queue type %s, with name %s.\n",
 | |
| 				  i,
 | |
| 				  qdev->rx_ring[0].type == DEFAULT_Q ?
 | |
| 				  "DEFAULT_Q" :
 | |
| 				  qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
 | |
| 				  qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
 | |
| 				  intr_context->name);
 | |
| 		}
 | |
| 		intr_context->hooked = 1;
 | |
| 	}
 | |
| 	return status;
 | |
| err_irq:
 | |
| 	netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
 | |
| 	ql_free_irq(qdev);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_start_rss(struct ql_adapter *qdev)
 | |
| {
 | |
| 	u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
 | |
| 				0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
 | |
| 				0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
 | |
| 				0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
 | |
| 				0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
 | |
| 				0xbe, 0xac, 0x01, 0xfa};
 | |
| 	struct ricb *ricb = &qdev->ricb;
 | |
| 	int status = 0;
 | |
| 	int i;
 | |
| 	u8 *hash_id = (u8 *) ricb->hash_cq_id;
 | |
| 
 | |
| 	memset((void *)ricb, 0, sizeof(*ricb));
 | |
| 
 | |
| 	ricb->base_cq = RSS_L4K;
 | |
| 	ricb->flags =
 | |
| 		(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
 | |
| 	ricb->mask = cpu_to_le16((u16)(0x3ff));
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill out the Indirection Table.
 | |
| 	 */
 | |
| 	for (i = 0; i < 1024; i++)
 | |
| 		hash_id[i] = (i & (qdev->rss_ring_count - 1));
 | |
| 
 | |
| 	memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
 | |
| 	memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
 | |
| 
 | |
| 	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
 | |
| 
 | |
| 	status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
 | |
| 		return status;
 | |
| 	}
 | |
| 	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 		     "Successfully loaded RICB.\n");
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_clear_routing_entries(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i, status = 0;
 | |
| 
 | |
| 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 	/* Clear all the entries in the routing table. */
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		status = ql_set_routing_reg(qdev, i, 0, 0);
 | |
| 		if (status) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Failed to init routing register for CAM packets.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* Initialize the frame-to-queue routing. */
 | |
| static int ql_route_initialize(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	/* Clear all the entries in the routing table. */
 | |
| 	status = ql_clear_routing_entries(qdev);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 
 | |
| 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 
 | |
| 	status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Failed to init routing register for error packets.\n");
 | |
| 		goto exit;
 | |
| 	}
 | |
| 	status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Failed to init routing register for broadcast packets.\n");
 | |
| 		goto exit;
 | |
| 	}
 | |
| 	/* If we have more than one inbound queue, then turn on RSS in the
 | |
| 	 * routing block.
 | |
| 	 */
 | |
| 	if (qdev->rss_ring_count > 1) {
 | |
| 		status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
 | |
| 					RT_IDX_RSS_MATCH, 1);
 | |
| 		if (status) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Failed to init routing register for MATCH RSS packets.\n");
 | |
| 			goto exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
 | |
| 				    RT_IDX_CAM_HIT, 1);
 | |
| 	if (status)
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Failed to init routing register for CAM packets.\n");
 | |
| exit:
 | |
| 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| int ql_cam_route_initialize(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int status, set;
 | |
| 
 | |
| 	/* If check if the link is up and use to
 | |
| 	 * determine if we are setting or clearing
 | |
| 	 * the MAC address in the CAM.
 | |
| 	 */
 | |
| 	set = ql_read32(qdev, STS);
 | |
| 	set &= qdev->port_link_up;
 | |
| 	status = ql_set_mac_addr(qdev, set);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	status = ql_route_initialize(qdev);
 | |
| 	if (status)
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_adapter_initialize(struct ql_adapter *qdev)
 | |
| {
 | |
| 	u32 value, mask;
 | |
| 	int i;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the System register to halt on errors.
 | |
| 	 */
 | |
| 	value = SYS_EFE | SYS_FAE;
 | |
| 	mask = value << 16;
 | |
| 	ql_write32(qdev, SYS, mask | value);
 | |
| 
 | |
| 	/* Set the default queue, and VLAN behavior. */
 | |
| 	value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
 | |
| 	mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
 | |
| 	ql_write32(qdev, NIC_RCV_CFG, (mask | value));
 | |
| 
 | |
| 	/* Set the MPI interrupt to enabled. */
 | |
| 	ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
 | |
| 
 | |
| 	/* Enable the function, set pagesize, enable error checking. */
 | |
| 	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
 | |
| 	    FSC_EC | FSC_VM_PAGE_4K;
 | |
| 	value |= SPLT_SETTING;
 | |
| 
 | |
| 	/* Set/clear header splitting. */
 | |
| 	mask = FSC_VM_PAGESIZE_MASK |
 | |
| 	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
 | |
| 	ql_write32(qdev, FSC, mask | value);
 | |
| 
 | |
| 	ql_write32(qdev, SPLT_HDR, SPLT_LEN);
 | |
| 
 | |
| 	/* Set RX packet routing to use port/pci function on which the
 | |
| 	 * packet arrived on in addition to usual frame routing.
 | |
| 	 * This is helpful on bonding where both interfaces can have
 | |
| 	 * the same MAC address.
 | |
| 	 */
 | |
| 	ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
 | |
| 	/* Reroute all packets to our Interface.
 | |
| 	 * They may have been routed to MPI firmware
 | |
| 	 * due to WOL.
 | |
| 	 */
 | |
| 	value = ql_read32(qdev, MGMT_RCV_CFG);
 | |
| 	value &= ~MGMT_RCV_CFG_RM;
 | |
| 	mask = 0xffff0000;
 | |
| 
 | |
| 	/* Sticky reg needs clearing due to WOL. */
 | |
| 	ql_write32(qdev, MGMT_RCV_CFG, mask);
 | |
| 	ql_write32(qdev, MGMT_RCV_CFG, mask | value);
 | |
| 
 | |
| 	/* Default WOL is enable on Mezz cards */
 | |
| 	if (qdev->pdev->subsystem_device == 0x0068 ||
 | |
| 			qdev->pdev->subsystem_device == 0x0180)
 | |
| 		qdev->wol = WAKE_MAGIC;
 | |
| 
 | |
| 	/* Start up the rx queues. */
 | |
| 	for (i = 0; i < qdev->rx_ring_count; i++) {
 | |
| 		status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
 | |
| 		if (status) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Failed to start rx ring[%d].\n", i);
 | |
| 			return status;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If there is more than one inbound completion queue
 | |
| 	 * then download a RICB to configure RSS.
 | |
| 	 */
 | |
| 	if (qdev->rss_ring_count > 1) {
 | |
| 		status = ql_start_rss(qdev);
 | |
| 		if (status) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
 | |
| 			return status;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Start up the tx queues. */
 | |
| 	for (i = 0; i < qdev->tx_ring_count; i++) {
 | |
| 		status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
 | |
| 		if (status) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Failed to start tx ring[%d].\n", i);
 | |
| 			return status;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize the port and set the max framesize. */
 | |
| 	status = qdev->nic_ops->port_initialize(qdev);
 | |
| 	if (status)
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
 | |
| 
 | |
| 	/* Set up the MAC address and frame routing filter. */
 | |
| 	status = ql_cam_route_initialize(qdev);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Failed to init CAM/Routing tables.\n");
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	/* Start NAPI for the RSS queues. */
 | |
| 	for (i = 0; i < qdev->rss_ring_count; i++) {
 | |
| 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 			     "Enabling NAPI for rx_ring[%d].\n", i);
 | |
| 		napi_enable(&qdev->rx_ring[i].napi);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* Issue soft reset to chip. */
 | |
| static int ql_adapter_reset(struct ql_adapter *qdev)
 | |
| {
 | |
| 	u32 value;
 | |
| 	int status = 0;
 | |
| 	unsigned long end_jiffies;
 | |
| 
 | |
| 	/* Clear all the entries in the routing table. */
 | |
| 	status = ql_clear_routing_entries(qdev);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	end_jiffies = jiffies +
 | |
| 		max((unsigned long)1, usecs_to_jiffies(30));
 | |
| 
 | |
| 	/* Stop management traffic. */
 | |
| 	ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
 | |
| 
 | |
| 	/* Wait for the NIC and MGMNT FIFOs to empty. */
 | |
| 	ql_wait_fifo_empty(qdev);
 | |
| 
 | |
| 	ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
 | |
| 
 | |
| 	do {
 | |
| 		value = ql_read32(qdev, RST_FO);
 | |
| 		if ((value & RST_FO_FR) == 0)
 | |
| 			break;
 | |
| 		cpu_relax();
 | |
| 	} while (time_before(jiffies, end_jiffies));
 | |
| 
 | |
| 	if (value & RST_FO_FR) {
 | |
| 		netif_err(qdev, ifdown, qdev->ndev,
 | |
| 			  "ETIMEDOUT!!! errored out of resetting the chip!\n");
 | |
| 		status = -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	/* Resume management traffic. */
 | |
| 	ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void ql_display_dev_info(struct net_device *ndev)
 | |
| {
 | |
| 	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
 | |
| 
 | |
| 	netif_info(qdev, probe, qdev->ndev,
 | |
| 		   "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
 | |
| 		   "XG Roll = %d, XG Rev = %d.\n",
 | |
| 		   qdev->func,
 | |
| 		   qdev->port,
 | |
| 		   qdev->chip_rev_id & 0x0000000f,
 | |
| 		   qdev->chip_rev_id >> 4 & 0x0000000f,
 | |
| 		   qdev->chip_rev_id >> 8 & 0x0000000f,
 | |
| 		   qdev->chip_rev_id >> 12 & 0x0000000f);
 | |
| 	netif_info(qdev, probe, qdev->ndev,
 | |
| 		   "MAC address %pM\n", ndev->dev_addr);
 | |
| }
 | |
| 
 | |
| int ql_wol(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u32 wol = MB_WOL_DISABLE;
 | |
| 
 | |
| 	/* The CAM is still intact after a reset, but if we
 | |
| 	 * are doing WOL, then we may need to program the
 | |
| 	 * routing regs. We would also need to issue the mailbox
 | |
| 	 * commands to instruct the MPI what to do per the ethtool
 | |
| 	 * settings.
 | |
| 	 */
 | |
| 
 | |
| 	if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
 | |
| 			WAKE_MCAST | WAKE_BCAST)) {
 | |
| 		netif_err(qdev, ifdown, qdev->ndev,
 | |
| 			  "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
 | |
| 			  qdev->wol);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (qdev->wol & WAKE_MAGIC) {
 | |
| 		status = ql_mb_wol_set_magic(qdev, 1);
 | |
| 		if (status) {
 | |
| 			netif_err(qdev, ifdown, qdev->ndev,
 | |
| 				  "Failed to set magic packet on %s.\n",
 | |
| 				  qdev->ndev->name);
 | |
| 			return status;
 | |
| 		} else
 | |
| 			netif_info(qdev, drv, qdev->ndev,
 | |
| 				   "Enabled magic packet successfully on %s.\n",
 | |
| 				   qdev->ndev->name);
 | |
| 
 | |
| 		wol |= MB_WOL_MAGIC_PKT;
 | |
| 	}
 | |
| 
 | |
| 	if (qdev->wol) {
 | |
| 		wol |= MB_WOL_MODE_ON;
 | |
| 		status = ql_mb_wol_mode(qdev, wol);
 | |
| 		netif_err(qdev, drv, qdev->ndev,
 | |
| 			  "WOL %s (wol code 0x%x) on %s\n",
 | |
| 			  (status == 0) ? "Successfully set" : "Failed",
 | |
| 			  wol, qdev->ndev->name);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_adapter_down(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i, status = 0;
 | |
| 
 | |
| 	ql_link_off(qdev);
 | |
| 
 | |
| 	/* Don't kill the reset worker thread if we
 | |
| 	 * are in the process of recovery.
 | |
| 	 */
 | |
| 	if (test_bit(QL_ADAPTER_UP, &qdev->flags))
 | |
| 		cancel_delayed_work_sync(&qdev->asic_reset_work);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_reset_work);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_work);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_idc_work);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_core_to_log);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
 | |
| 
 | |
| 	for (i = 0; i < qdev->rss_ring_count; i++)
 | |
| 		napi_disable(&qdev->rx_ring[i].napi);
 | |
| 
 | |
| 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
 | |
| 
 | |
| 	ql_disable_interrupts(qdev);
 | |
| 
 | |
| 	ql_tx_ring_clean(qdev);
 | |
| 
 | |
| 	/* Call netif_napi_del() from common point.
 | |
| 	 */
 | |
| 	for (i = 0; i < qdev->rss_ring_count; i++)
 | |
| 		netif_napi_del(&qdev->rx_ring[i].napi);
 | |
| 
 | |
| 	ql_free_rx_buffers(qdev);
 | |
| 
 | |
| 	status = ql_adapter_reset(qdev);
 | |
| 	if (status)
 | |
| 		netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
 | |
| 			  qdev->func);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_adapter_up(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	err = ql_adapter_initialize(qdev);
 | |
| 	if (err) {
 | |
| 		netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
 | |
| 		goto err_init;
 | |
| 	}
 | |
| 	set_bit(QL_ADAPTER_UP, &qdev->flags);
 | |
| 	ql_alloc_rx_buffers(qdev);
 | |
| 	/* If the port is initialized and the
 | |
| 	 * link is up the turn on the carrier.
 | |
| 	 */
 | |
| 	if ((ql_read32(qdev, STS) & qdev->port_init) &&
 | |
| 			(ql_read32(qdev, STS) & qdev->port_link_up))
 | |
| 		ql_link_on(qdev);
 | |
| 	ql_enable_interrupts(qdev);
 | |
| 	ql_enable_all_completion_interrupts(qdev);
 | |
| 	netif_tx_start_all_queues(qdev->ndev);
 | |
| 
 | |
| 	return 0;
 | |
| err_init:
 | |
| 	ql_adapter_reset(qdev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void ql_release_adapter_resources(struct ql_adapter *qdev)
 | |
| {
 | |
| 	ql_free_mem_resources(qdev);
 | |
| 	ql_free_irq(qdev);
 | |
| }
 | |
| 
 | |
| static int ql_get_adapter_resources(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	if (ql_alloc_mem_resources(qdev)) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	status = ql_request_irq(qdev);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int qlge_close(struct net_device *ndev)
 | |
| {
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 
 | |
| 	/* If we hit pci_channel_io_perm_failure
 | |
| 	 * failure condition, then we already
 | |
| 	 * brought the adapter down.
 | |
| 	 */
 | |
| 	if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
 | |
| 		netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
 | |
| 		clear_bit(QL_EEH_FATAL, &qdev->flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for device to recover from a reset.
 | |
| 	 * (Rarely happens, but possible.)
 | |
| 	 */
 | |
| 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
 | |
| 		msleep(1);
 | |
| 	ql_adapter_down(qdev);
 | |
| 	ql_release_adapter_resources(qdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ql_configure_rings(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct rx_ring *rx_ring;
 | |
| 	struct tx_ring *tx_ring;
 | |
| 	int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
 | |
| 	unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
 | |
| 		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
 | |
| 
 | |
| 	qdev->lbq_buf_order = get_order(lbq_buf_len);
 | |
| 
 | |
| 	/* In a perfect world we have one RSS ring for each CPU
 | |
| 	 * and each has it's own vector.  To do that we ask for
 | |
| 	 * cpu_cnt vectors.  ql_enable_msix() will adjust the
 | |
| 	 * vector count to what we actually get.  We then
 | |
| 	 * allocate an RSS ring for each.
 | |
| 	 * Essentially, we are doing min(cpu_count, msix_vector_count).
 | |
| 	 */
 | |
| 	qdev->intr_count = cpu_cnt;
 | |
| 	ql_enable_msix(qdev);
 | |
| 	/* Adjust the RSS ring count to the actual vector count. */
 | |
| 	qdev->rss_ring_count = qdev->intr_count;
 | |
| 	qdev->tx_ring_count = cpu_cnt;
 | |
| 	qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
 | |
| 
 | |
| 	for (i = 0; i < qdev->tx_ring_count; i++) {
 | |
| 		tx_ring = &qdev->tx_ring[i];
 | |
| 		memset((void *)tx_ring, 0, sizeof(*tx_ring));
 | |
| 		tx_ring->qdev = qdev;
 | |
| 		tx_ring->wq_id = i;
 | |
| 		tx_ring->wq_len = qdev->tx_ring_size;
 | |
| 		tx_ring->wq_size =
 | |
| 		    tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
 | |
| 
 | |
| 		/*
 | |
| 		 * The completion queue ID for the tx rings start
 | |
| 		 * immediately after the rss rings.
 | |
| 		 */
 | |
| 		tx_ring->cq_id = qdev->rss_ring_count + i;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < qdev->rx_ring_count; i++) {
 | |
| 		rx_ring = &qdev->rx_ring[i];
 | |
| 		memset((void *)rx_ring, 0, sizeof(*rx_ring));
 | |
| 		rx_ring->qdev = qdev;
 | |
| 		rx_ring->cq_id = i;
 | |
| 		rx_ring->cpu = i % cpu_cnt;	/* CPU to run handler on. */
 | |
| 		if (i < qdev->rss_ring_count) {
 | |
| 			/*
 | |
| 			 * Inbound (RSS) queues.
 | |
| 			 */
 | |
| 			rx_ring->cq_len = qdev->rx_ring_size;
 | |
| 			rx_ring->cq_size =
 | |
| 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
 | |
| 			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
 | |
| 			rx_ring->lbq_size =
 | |
| 			    rx_ring->lbq_len * sizeof(__le64);
 | |
| 			rx_ring->lbq_buf_size = (u16)lbq_buf_len;
 | |
| 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
 | |
| 				     "lbq_buf_size %d, order = %d\n",
 | |
| 				     rx_ring->lbq_buf_size,
 | |
| 				     qdev->lbq_buf_order);
 | |
| 			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
 | |
| 			rx_ring->sbq_size =
 | |
| 			    rx_ring->sbq_len * sizeof(__le64);
 | |
| 			rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
 | |
| 			rx_ring->type = RX_Q;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Outbound queue handles outbound completions only.
 | |
| 			 */
 | |
| 			/* outbound cq is same size as tx_ring it services. */
 | |
| 			rx_ring->cq_len = qdev->tx_ring_size;
 | |
| 			rx_ring->cq_size =
 | |
| 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
 | |
| 			rx_ring->lbq_len = 0;
 | |
| 			rx_ring->lbq_size = 0;
 | |
| 			rx_ring->lbq_buf_size = 0;
 | |
| 			rx_ring->sbq_len = 0;
 | |
| 			rx_ring->sbq_size = 0;
 | |
| 			rx_ring->sbq_buf_size = 0;
 | |
| 			rx_ring->type = TX_Q;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int qlge_open(struct net_device *ndev)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 
 | |
| 	err = ql_adapter_reset(qdev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ql_configure_rings(qdev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = ql_get_adapter_resources(qdev);
 | |
| 	if (err)
 | |
| 		goto error_up;
 | |
| 
 | |
| 	err = ql_adapter_up(qdev);
 | |
| 	if (err)
 | |
| 		goto error_up;
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| error_up:
 | |
| 	ql_release_adapter_resources(qdev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ql_change_rx_buffers(struct ql_adapter *qdev)
 | |
| {
 | |
| 	struct rx_ring *rx_ring;
 | |
| 	int i, status;
 | |
| 	u32 lbq_buf_len;
 | |
| 
 | |
| 	/* Wait for an oustanding reset to complete. */
 | |
| 	if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
 | |
| 		int i = 3;
 | |
| 		while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Waiting for adapter UP...\n");
 | |
| 			ssleep(1);
 | |
| 		}
 | |
| 
 | |
| 		if (!i) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Timed out waiting for adapter UP\n");
 | |
| 			return -ETIMEDOUT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	status = ql_adapter_down(qdev);
 | |
| 	if (status)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* Get the new rx buffer size. */
 | |
| 	lbq_buf_len = (qdev->ndev->mtu > 1500) ?
 | |
| 		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
 | |
| 	qdev->lbq_buf_order = get_order(lbq_buf_len);
 | |
| 
 | |
| 	for (i = 0; i < qdev->rss_ring_count; i++) {
 | |
| 		rx_ring = &qdev->rx_ring[i];
 | |
| 		/* Set the new size. */
 | |
| 		rx_ring->lbq_buf_size = lbq_buf_len;
 | |
| 	}
 | |
| 
 | |
| 	status = ql_adapter_up(qdev);
 | |
| 	if (status)
 | |
| 		goto error;
 | |
| 
 | |
| 	return status;
 | |
| error:
 | |
| 	netif_alert(qdev, ifup, qdev->ndev,
 | |
| 		    "Driver up/down cycle failed, closing device.\n");
 | |
| 	set_bit(QL_ADAPTER_UP, &qdev->flags);
 | |
| 	dev_close(qdev->ndev);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
 | |
| {
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	int status;
 | |
| 
 | |
| 	if (ndev->mtu == 1500 && new_mtu == 9000) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
 | |
| 	} else if (ndev->mtu == 9000 && new_mtu == 1500) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	queue_delayed_work(qdev->workqueue,
 | |
| 			&qdev->mpi_port_cfg_work, 3*HZ);
 | |
| 
 | |
| 	ndev->mtu = new_mtu;
 | |
| 
 | |
| 	if (!netif_running(qdev->ndev)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	status = ql_change_rx_buffers(qdev);
 | |
| 	if (status) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Changing MTU failed.\n");
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static struct net_device_stats *qlge_get_stats(struct net_device
 | |
| 					       *ndev)
 | |
| {
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	struct rx_ring *rx_ring = &qdev->rx_ring[0];
 | |
| 	struct tx_ring *tx_ring = &qdev->tx_ring[0];
 | |
| 	unsigned long pkts, mcast, dropped, errors, bytes;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Get RX stats. */
 | |
| 	pkts = mcast = dropped = errors = bytes = 0;
 | |
| 	for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
 | |
| 			pkts += rx_ring->rx_packets;
 | |
| 			bytes += rx_ring->rx_bytes;
 | |
| 			dropped += rx_ring->rx_dropped;
 | |
| 			errors += rx_ring->rx_errors;
 | |
| 			mcast += rx_ring->rx_multicast;
 | |
| 	}
 | |
| 	ndev->stats.rx_packets = pkts;
 | |
| 	ndev->stats.rx_bytes = bytes;
 | |
| 	ndev->stats.rx_dropped = dropped;
 | |
| 	ndev->stats.rx_errors = errors;
 | |
| 	ndev->stats.multicast = mcast;
 | |
| 
 | |
| 	/* Get TX stats. */
 | |
| 	pkts = errors = bytes = 0;
 | |
| 	for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
 | |
| 			pkts += tx_ring->tx_packets;
 | |
| 			bytes += tx_ring->tx_bytes;
 | |
| 			errors += tx_ring->tx_errors;
 | |
| 	}
 | |
| 	ndev->stats.tx_packets = pkts;
 | |
| 	ndev->stats.tx_bytes = bytes;
 | |
| 	ndev->stats.tx_errors = errors;
 | |
| 	return &ndev->stats;
 | |
| }
 | |
| 
 | |
| static void qlge_set_multicast_list(struct net_device *ndev)
 | |
| {
 | |
| 	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
 | |
| 	struct dev_mc_list *mc_ptr;
 | |
| 	int i, status;
 | |
| 
 | |
| 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
 | |
| 	if (status)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Set or clear promiscuous mode if a
 | |
| 	 * transition is taking place.
 | |
| 	 */
 | |
| 	if (ndev->flags & IFF_PROMISC) {
 | |
| 		if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
 | |
| 			if (ql_set_routing_reg
 | |
| 			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
 | |
| 				netif_err(qdev, hw, qdev->ndev,
 | |
| 					  "Failed to set promiscous mode.\n");
 | |
| 			} else {
 | |
| 				set_bit(QL_PROMISCUOUS, &qdev->flags);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
 | |
| 			if (ql_set_routing_reg
 | |
| 			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
 | |
| 				netif_err(qdev, hw, qdev->ndev,
 | |
| 					  "Failed to clear promiscous mode.\n");
 | |
| 			} else {
 | |
| 				clear_bit(QL_PROMISCUOUS, &qdev->flags);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set or clear all multicast mode if a
 | |
| 	 * transition is taking place.
 | |
| 	 */
 | |
| 	if ((ndev->flags & IFF_ALLMULTI) ||
 | |
| 	    (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
 | |
| 		if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
 | |
| 			if (ql_set_routing_reg
 | |
| 			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
 | |
| 				netif_err(qdev, hw, qdev->ndev,
 | |
| 					  "Failed to set all-multi mode.\n");
 | |
| 			} else {
 | |
| 				set_bit(QL_ALLMULTI, &qdev->flags);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (test_bit(QL_ALLMULTI, &qdev->flags)) {
 | |
| 			if (ql_set_routing_reg
 | |
| 			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
 | |
| 				netif_err(qdev, hw, qdev->ndev,
 | |
| 					  "Failed to clear all-multi mode.\n");
 | |
| 			} else {
 | |
| 				clear_bit(QL_ALLMULTI, &qdev->flags);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!netdev_mc_empty(ndev)) {
 | |
| 		status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 		if (status)
 | |
| 			goto exit;
 | |
| 		i = 0;
 | |
| 		netdev_for_each_mc_addr(mc_ptr, ndev) {
 | |
| 			if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
 | |
| 						MAC_ADDR_TYPE_MULTI_MAC, i)) {
 | |
| 				netif_err(qdev, hw, qdev->ndev,
 | |
| 					  "Failed to loadmulticast address.\n");
 | |
| 				ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 				goto exit;
 | |
| 			}
 | |
| 			i++;
 | |
| 		}
 | |
| 		ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 		if (ql_set_routing_reg
 | |
| 		    (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
 | |
| 			netif_err(qdev, hw, qdev->ndev,
 | |
| 				  "Failed to set multicast match mode.\n");
 | |
| 		} else {
 | |
| 			set_bit(QL_ALLMULTI, &qdev->flags);
 | |
| 		}
 | |
| 	}
 | |
| exit:
 | |
| 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
 | |
| }
 | |
| 
 | |
| static int qlge_set_mac_address(struct net_device *ndev, void *p)
 | |
| {
 | |
| 	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
 | |
| 	struct sockaddr *addr = p;
 | |
| 	int status;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 | |
| 	/* Update local copy of current mac address. */
 | |
| 	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
 | |
| 
 | |
| 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 	status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
 | |
| 			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
 | |
| 	if (status)
 | |
| 		netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
 | |
| 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void qlge_tx_timeout(struct net_device *ndev)
 | |
| {
 | |
| 	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
 | |
| 	ql_queue_asic_error(qdev);
 | |
| }
 | |
| 
 | |
| static void ql_asic_reset_work(struct work_struct *work)
 | |
| {
 | |
| 	struct ql_adapter *qdev =
 | |
| 	    container_of(work, struct ql_adapter, asic_reset_work.work);
 | |
| 	int status;
 | |
| 	rtnl_lock();
 | |
| 	status = ql_adapter_down(qdev);
 | |
| 	if (status)
 | |
| 		goto error;
 | |
| 
 | |
| 	status = ql_adapter_up(qdev);
 | |
| 	if (status)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* Restore rx mode. */
 | |
| 	clear_bit(QL_ALLMULTI, &qdev->flags);
 | |
| 	clear_bit(QL_PROMISCUOUS, &qdev->flags);
 | |
| 	qlge_set_multicast_list(qdev->ndev);
 | |
| 
 | |
| 	rtnl_unlock();
 | |
| 	return;
 | |
| error:
 | |
| 	netif_alert(qdev, ifup, qdev->ndev,
 | |
| 		    "Driver up/down cycle failed, closing device\n");
 | |
| 
 | |
| 	set_bit(QL_ADAPTER_UP, &qdev->flags);
 | |
| 	dev_close(qdev->ndev);
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| static struct nic_operations qla8012_nic_ops = {
 | |
| 	.get_flash		= ql_get_8012_flash_params,
 | |
| 	.port_initialize	= ql_8012_port_initialize,
 | |
| };
 | |
| 
 | |
| static struct nic_operations qla8000_nic_ops = {
 | |
| 	.get_flash		= ql_get_8000_flash_params,
 | |
| 	.port_initialize	= ql_8000_port_initialize,
 | |
| };
 | |
| 
 | |
| /* Find the pcie function number for the other NIC
 | |
|  * on this chip.  Since both NIC functions share a
 | |
|  * common firmware we have the lowest enabled function
 | |
|  * do any common work.  Examples would be resetting
 | |
|  * after a fatal firmware error, or doing a firmware
 | |
|  * coredump.
 | |
|  */
 | |
| static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u32 temp;
 | |
| 	u32 nic_func1, nic_func2;
 | |
| 
 | |
| 	status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
 | |
| 			&temp);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 
 | |
| 	nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
 | |
| 			MPI_TEST_NIC_FUNC_MASK);
 | |
| 	nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
 | |
| 			MPI_TEST_NIC_FUNC_MASK);
 | |
| 
 | |
| 	if (qdev->func == nic_func1)
 | |
| 		qdev->alt_func = nic_func2;
 | |
| 	else if (qdev->func == nic_func2)
 | |
| 		qdev->alt_func = nic_func1;
 | |
| 	else
 | |
| 		status = -EIO;
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ql_get_board_info(struct ql_adapter *qdev)
 | |
| {
 | |
| 	int status;
 | |
| 	qdev->func =
 | |
| 	    (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
 | |
| 	if (qdev->func > 3)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	status = ql_get_alt_pcie_func(qdev);
 | |
| 	if (status)
 | |
| 		return status;
 | |
| 
 | |
| 	qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
 | |
| 	if (qdev->port) {
 | |
| 		qdev->xg_sem_mask = SEM_XGMAC1_MASK;
 | |
| 		qdev->port_link_up = STS_PL1;
 | |
| 		qdev->port_init = STS_PI1;
 | |
| 		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
 | |
| 		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
 | |
| 	} else {
 | |
| 		qdev->xg_sem_mask = SEM_XGMAC0_MASK;
 | |
| 		qdev->port_link_up = STS_PL0;
 | |
| 		qdev->port_init = STS_PI0;
 | |
| 		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
 | |
| 		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
 | |
| 	}
 | |
| 	qdev->chip_rev_id = ql_read32(qdev, REV_ID);
 | |
| 	qdev->device_id = qdev->pdev->device;
 | |
| 	if (qdev->device_id == QLGE_DEVICE_ID_8012)
 | |
| 		qdev->nic_ops = &qla8012_nic_ops;
 | |
| 	else if (qdev->device_id == QLGE_DEVICE_ID_8000)
 | |
| 		qdev->nic_ops = &qla8000_nic_ops;
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void ql_release_all(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *ndev = pci_get_drvdata(pdev);
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 
 | |
| 	if (qdev->workqueue) {
 | |
| 		destroy_workqueue(qdev->workqueue);
 | |
| 		qdev->workqueue = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (qdev->reg_base)
 | |
| 		iounmap(qdev->reg_base);
 | |
| 	if (qdev->doorbell_area)
 | |
| 		iounmap(qdev->doorbell_area);
 | |
| 	vfree(qdev->mpi_coredump);
 | |
| 	pci_release_regions(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| }
 | |
| 
 | |
| static int __devinit ql_init_device(struct pci_dev *pdev,
 | |
| 				    struct net_device *ndev, int cards_found)
 | |
| {
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	memset((void *)qdev, 0, sizeof(*qdev));
 | |
| 	err = pci_enable_device(pdev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "PCI device enable failed.\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	qdev->ndev = ndev;
 | |
| 	qdev->pdev = pdev;
 | |
| 	pci_set_drvdata(pdev, ndev);
 | |
| 
 | |
| 	/* Set PCIe read request size */
 | |
| 	err = pcie_set_readrq(pdev, 4096);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "Set readrq failed.\n");
 | |
| 		goto err_out1;
 | |
| 	}
 | |
| 
 | |
| 	err = pci_request_regions(pdev, DRV_NAME);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "PCI region request failed.\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
 | |
| 		set_bit(QL_DMA64, &qdev->flags);
 | |
| 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
 | |
| 	} else {
 | |
| 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
 | |
| 		if (!err)
 | |
| 		       err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "No usable DMA configuration.\n");
 | |
| 		goto err_out2;
 | |
| 	}
 | |
| 
 | |
| 	/* Set PCIe reset type for EEH to fundamental. */
 | |
| 	pdev->needs_freset = 1;
 | |
| 	pci_save_state(pdev);
 | |
| 	qdev->reg_base =
 | |
| 	    ioremap_nocache(pci_resource_start(pdev, 1),
 | |
| 			    pci_resource_len(pdev, 1));
 | |
| 	if (!qdev->reg_base) {
 | |
| 		dev_err(&pdev->dev, "Register mapping failed.\n");
 | |
| 		err = -ENOMEM;
 | |
| 		goto err_out2;
 | |
| 	}
 | |
| 
 | |
| 	qdev->doorbell_area_size = pci_resource_len(pdev, 3);
 | |
| 	qdev->doorbell_area =
 | |
| 	    ioremap_nocache(pci_resource_start(pdev, 3),
 | |
| 			    pci_resource_len(pdev, 3));
 | |
| 	if (!qdev->doorbell_area) {
 | |
| 		dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
 | |
| 		err = -ENOMEM;
 | |
| 		goto err_out2;
 | |
| 	}
 | |
| 
 | |
| 	err = ql_get_board_info(qdev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "Register access failed.\n");
 | |
| 		err = -EIO;
 | |
| 		goto err_out2;
 | |
| 	}
 | |
| 	qdev->msg_enable = netif_msg_init(debug, default_msg);
 | |
| 	spin_lock_init(&qdev->hw_lock);
 | |
| 	spin_lock_init(&qdev->stats_lock);
 | |
| 
 | |
| 	if (qlge_mpi_coredump) {
 | |
| 		qdev->mpi_coredump =
 | |
| 			vmalloc(sizeof(struct ql_mpi_coredump));
 | |
| 		if (qdev->mpi_coredump == NULL) {
 | |
| 			dev_err(&pdev->dev, "Coredump alloc failed.\n");
 | |
| 			err = -ENOMEM;
 | |
| 			goto err_out2;
 | |
| 		}
 | |
| 		if (qlge_force_coredump)
 | |
| 			set_bit(QL_FRC_COREDUMP, &qdev->flags);
 | |
| 	}
 | |
| 	/* make sure the EEPROM is good */
 | |
| 	err = qdev->nic_ops->get_flash(qdev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "Invalid FLASH.\n");
 | |
| 		goto err_out2;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
 | |
| 	/* Keep local copy of current mac address. */
 | |
| 	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
 | |
| 
 | |
| 	/* Set up the default ring sizes. */
 | |
| 	qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
 | |
| 	qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
 | |
| 
 | |
| 	/* Set up the coalescing parameters. */
 | |
| 	qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
 | |
| 	qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
 | |
| 	qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
 | |
| 	qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the operating parameters.
 | |
| 	 */
 | |
| 	qdev->rx_csum = 1;
 | |
| 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
 | |
| 	INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
 | |
| 	INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
 | |
| 	INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
 | |
| 	INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
 | |
| 	INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
 | |
| 	INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
 | |
| 	init_completion(&qdev->ide_completion);
 | |
| 
 | |
| 	if (!cards_found) {
 | |
| 		dev_info(&pdev->dev, "%s\n", DRV_STRING);
 | |
| 		dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
 | |
| 			 DRV_NAME, DRV_VERSION);
 | |
| 	}
 | |
| 	return 0;
 | |
| err_out2:
 | |
| 	ql_release_all(pdev);
 | |
| err_out1:
 | |
| 	pci_disable_device(pdev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops qlge_netdev_ops = {
 | |
| 	.ndo_open		= qlge_open,
 | |
| 	.ndo_stop		= qlge_close,
 | |
| 	.ndo_start_xmit		= qlge_send,
 | |
| 	.ndo_change_mtu		= qlge_change_mtu,
 | |
| 	.ndo_get_stats		= qlge_get_stats,
 | |
| 	.ndo_set_multicast_list = qlge_set_multicast_list,
 | |
| 	.ndo_set_mac_address	= qlge_set_mac_address,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_tx_timeout		= qlge_tx_timeout,
 | |
| 	.ndo_vlan_rx_register	= qlge_vlan_rx_register,
 | |
| 	.ndo_vlan_rx_add_vid	= qlge_vlan_rx_add_vid,
 | |
| 	.ndo_vlan_rx_kill_vid	= qlge_vlan_rx_kill_vid,
 | |
| };
 | |
| 
 | |
| static void ql_timer(unsigned long data)
 | |
| {
 | |
| 	struct ql_adapter *qdev = (struct ql_adapter *)data;
 | |
| 	u32 var = 0;
 | |
| 
 | |
| 	var = ql_read32(qdev, STS);
 | |
| 	if (pci_channel_offline(qdev->pdev)) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	qdev->timer.expires = jiffies + (5*HZ);
 | |
| 	add_timer(&qdev->timer);
 | |
| }
 | |
| 
 | |
| static int __devinit qlge_probe(struct pci_dev *pdev,
 | |
| 				const struct pci_device_id *pci_entry)
 | |
| {
 | |
| 	struct net_device *ndev = NULL;
 | |
| 	struct ql_adapter *qdev = NULL;
 | |
| 	static int cards_found = 0;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
 | |
| 			min(MAX_CPUS, (int)num_online_cpus()));
 | |
| 	if (!ndev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = ql_init_device(pdev, ndev, cards_found);
 | |
| 	if (err < 0) {
 | |
| 		free_netdev(ndev);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	qdev = netdev_priv(ndev);
 | |
| 	SET_NETDEV_DEV(ndev, &pdev->dev);
 | |
| 	ndev->features = (0
 | |
| 			  | NETIF_F_IP_CSUM
 | |
| 			  | NETIF_F_SG
 | |
| 			  | NETIF_F_TSO
 | |
| 			  | NETIF_F_TSO6
 | |
| 			  | NETIF_F_TSO_ECN
 | |
| 			  | NETIF_F_HW_VLAN_TX
 | |
| 			  | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
 | |
| 	ndev->features |= NETIF_F_GRO;
 | |
| 
 | |
| 	if (test_bit(QL_DMA64, &qdev->flags))
 | |
| 		ndev->features |= NETIF_F_HIGHDMA;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up net_device structure.
 | |
| 	 */
 | |
| 	ndev->tx_queue_len = qdev->tx_ring_size;
 | |
| 	ndev->irq = pdev->irq;
 | |
| 
 | |
| 	ndev->netdev_ops = &qlge_netdev_ops;
 | |
| 	SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
 | |
| 	ndev->watchdog_timeo = 10 * HZ;
 | |
| 
 | |
| 	err = register_netdev(ndev);
 | |
| 	if (err) {
 | |
| 		dev_err(&pdev->dev, "net device registration failed.\n");
 | |
| 		ql_release_all(pdev);
 | |
| 		pci_disable_device(pdev);
 | |
| 		return err;
 | |
| 	}
 | |
| 	/* Start up the timer to trigger EEH if
 | |
| 	 * the bus goes dead
 | |
| 	 */
 | |
| 	init_timer_deferrable(&qdev->timer);
 | |
| 	qdev->timer.data = (unsigned long)qdev;
 | |
| 	qdev->timer.function = ql_timer;
 | |
| 	qdev->timer.expires = jiffies + (5*HZ);
 | |
| 	add_timer(&qdev->timer);
 | |
| 	ql_link_off(qdev);
 | |
| 	ql_display_dev_info(ndev);
 | |
| 	atomic_set(&qdev->lb_count, 0);
 | |
| 	cards_found++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
 | |
| {
 | |
| 	return qlge_send(skb, ndev);
 | |
| }
 | |
| 
 | |
| int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
 | |
| {
 | |
| 	return ql_clean_inbound_rx_ring(rx_ring, budget);
 | |
| }
 | |
| 
 | |
| static void __devexit qlge_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *ndev = pci_get_drvdata(pdev);
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	del_timer_sync(&qdev->timer);
 | |
| 	unregister_netdev(ndev);
 | |
| 	ql_release_all(pdev);
 | |
| 	pci_disable_device(pdev);
 | |
| 	free_netdev(ndev);
 | |
| }
 | |
| 
 | |
| /* Clean up resources without touching hardware. */
 | |
| static void ql_eeh_close(struct net_device *ndev)
 | |
| {
 | |
| 	int i;
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 
 | |
| 	if (netif_carrier_ok(ndev)) {
 | |
| 		netif_carrier_off(ndev);
 | |
| 		netif_stop_queue(ndev);
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(QL_ADAPTER_UP, &qdev->flags))
 | |
| 		cancel_delayed_work_sync(&qdev->asic_reset_work);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_reset_work);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_work);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_idc_work);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_core_to_log);
 | |
| 	cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
 | |
| 
 | |
| 	for (i = 0; i < qdev->rss_ring_count; i++)
 | |
| 		netif_napi_del(&qdev->rx_ring[i].napi);
 | |
| 
 | |
| 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
 | |
| 	ql_tx_ring_clean(qdev);
 | |
| 	ql_free_rx_buffers(qdev);
 | |
| 	ql_release_adapter_resources(qdev);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This callback is called by the PCI subsystem whenever
 | |
|  * a PCI bus error is detected.
 | |
|  */
 | |
| static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
 | |
| 					       enum pci_channel_state state)
 | |
| {
 | |
| 	struct net_device *ndev = pci_get_drvdata(pdev);
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case pci_channel_io_normal:
 | |
| 		return PCI_ERS_RESULT_CAN_RECOVER;
 | |
| 	case pci_channel_io_frozen:
 | |
| 		netif_device_detach(ndev);
 | |
| 		if (netif_running(ndev))
 | |
| 			ql_eeh_close(ndev);
 | |
| 		pci_disable_device(pdev);
 | |
| 		return PCI_ERS_RESULT_NEED_RESET;
 | |
| 	case pci_channel_io_perm_failure:
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"%s: pci_channel_io_perm_failure.\n", __func__);
 | |
| 		ql_eeh_close(ndev);
 | |
| 		set_bit(QL_EEH_FATAL, &qdev->flags);
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 
 | |
| 	/* Request a slot reset. */
 | |
| 	return PCI_ERS_RESULT_NEED_RESET;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This callback is called after the PCI buss has been reset.
 | |
|  * Basically, this tries to restart the card from scratch.
 | |
|  * This is a shortened version of the device probe/discovery code,
 | |
|  * it resembles the first-half of the () routine.
 | |
|  */
 | |
| static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *ndev = pci_get_drvdata(pdev);
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 
 | |
| 	pdev->error_state = pci_channel_io_normal;
 | |
| 
 | |
| 	pci_restore_state(pdev);
 | |
| 	if (pci_enable_device(pdev)) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Cannot re-enable PCI device after reset.\n");
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	if (ql_adapter_reset(qdev)) {
 | |
| 		netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
 | |
| 		set_bit(QL_EEH_FATAL, &qdev->flags);
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 
 | |
| 	return PCI_ERS_RESULT_RECOVERED;
 | |
| }
 | |
| 
 | |
| static void qlge_io_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *ndev = pci_get_drvdata(pdev);
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (netif_running(ndev)) {
 | |
| 		err = qlge_open(ndev);
 | |
| 		if (err) {
 | |
| 			netif_err(qdev, ifup, qdev->ndev,
 | |
| 				  "Device initialization failed after reset.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		netif_err(qdev, ifup, qdev->ndev,
 | |
| 			  "Device was not running prior to EEH.\n");
 | |
| 	}
 | |
| 	qdev->timer.expires = jiffies + (5*HZ);
 | |
| 	add_timer(&qdev->timer);
 | |
| 	netif_device_attach(ndev);
 | |
| }
 | |
| 
 | |
| static struct pci_error_handlers qlge_err_handler = {
 | |
| 	.error_detected = qlge_io_error_detected,
 | |
| 	.slot_reset = qlge_io_slot_reset,
 | |
| 	.resume = qlge_io_resume,
 | |
| };
 | |
| 
 | |
| static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
 | |
| {
 | |
| 	struct net_device *ndev = pci_get_drvdata(pdev);
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	int err;
 | |
| 
 | |
| 	netif_device_detach(ndev);
 | |
| 	del_timer_sync(&qdev->timer);
 | |
| 
 | |
| 	if (netif_running(ndev)) {
 | |
| 		err = ql_adapter_down(qdev);
 | |
| 		if (!err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	ql_wol(qdev);
 | |
| 	err = pci_save_state(pdev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int qlge_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *ndev = pci_get_drvdata(pdev);
 | |
| 	struct ql_adapter *qdev = netdev_priv(ndev);
 | |
| 	int err;
 | |
| 
 | |
| 	pci_set_power_state(pdev, PCI_D0);
 | |
| 	pci_restore_state(pdev);
 | |
| 	err = pci_enable_device(pdev);
 | |
| 	if (err) {
 | |
| 		netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	pci_enable_wake(pdev, PCI_D3hot, 0);
 | |
| 	pci_enable_wake(pdev, PCI_D3cold, 0);
 | |
| 
 | |
| 	if (netif_running(ndev)) {
 | |
| 		err = ql_adapter_up(qdev);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	qdev->timer.expires = jiffies + (5*HZ);
 | |
| 	add_timer(&qdev->timer);
 | |
| 	netif_device_attach(ndev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_PM */
 | |
| 
 | |
| static void qlge_shutdown(struct pci_dev *pdev)
 | |
| {
 | |
| 	qlge_suspend(pdev, PMSG_SUSPEND);
 | |
| }
 | |
| 
 | |
| static struct pci_driver qlge_driver = {
 | |
| 	.name = DRV_NAME,
 | |
| 	.id_table = qlge_pci_tbl,
 | |
| 	.probe = qlge_probe,
 | |
| 	.remove = __devexit_p(qlge_remove),
 | |
| #ifdef CONFIG_PM
 | |
| 	.suspend = qlge_suspend,
 | |
| 	.resume = qlge_resume,
 | |
| #endif
 | |
| 	.shutdown = qlge_shutdown,
 | |
| 	.err_handler = &qlge_err_handler
 | |
| };
 | |
| 
 | |
| static int __init qlge_init_module(void)
 | |
| {
 | |
| 	return pci_register_driver(&qlge_driver);
 | |
| }
 | |
| 
 | |
| static void __exit qlge_exit(void)
 | |
| {
 | |
| 	pci_unregister_driver(&qlge_driver);
 | |
| }
 | |
| 
 | |
| module_init(qlge_init_module);
 | |
| module_exit(qlge_exit);
 |