 3ff1562ea4
			
		
	
	
	3ff1562ea4
	
	
	
		
			
			* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland/infiniband: (48 commits) IB/srp: Clean up error path in srp_create_target_ib() IB/srp: Split send and recieve CQs to reduce number of interrupts RDMA/nes: Add support for KR device id 0x0110 IB/uverbs: Use anon_inodes instead of private infinibandeventfs IB/core: Fix and clean up ib_ud_header_init() RDMA/cxgb3: Mark RDMA device with CXIO_ERROR_FATAL when removing RDMA/cxgb3: Don't allocate the SW queue for user mode CQs RDMA/cxgb3: Increase the max CQ depth RDMA/cxgb3: Doorbell overflow avoidance and recovery IB/core: Pack struct ib_device a little tighter IB/ucm: Clean whitespace errors IB/ucm: Increase maximum devices supported IB/ucm: Use stack variable 'base' in ib_ucm_add_one IB/ucm: Use stack variable 'devnum' in ib_ucm_add_one IB/umad: Clean whitespace IB/umad: Increase maximum devices supported IB/umad: Use stack variable 'base' in ib_umad_init_port IB/umad: Use stack variable 'devnum' in ib_umad_init_port IB/umad: Remove port_table[] IB/umad: Convert *cdev to cdev in struct ib_umad_port ...
		
			
				
	
	
		
			3970 lines
		
	
	
	
		
			118 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3970 lines
		
	
	
	
		
			118 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and/or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| #include "common.h"
 | |
| #include "regs.h"
 | |
| #include "sge_defs.h"
 | |
| #include "firmware_exports.h"
 | |
| 
 | |
| /**
 | |
|  *	t3_wait_op_done_val - wait until an operation is completed
 | |
|  *	@adapter: the adapter performing the operation
 | |
|  *	@reg: the register to check for completion
 | |
|  *	@mask: a single-bit field within @reg that indicates completion
 | |
|  *	@polarity: the value of the field when the operation is completed
 | |
|  *	@attempts: number of check iterations
 | |
|  *	@delay: delay in usecs between iterations
 | |
|  *	@valp: where to store the value of the register at completion time
 | |
|  *
 | |
|  *	Wait until an operation is completed by checking a bit in a register
 | |
|  *	up to @attempts times.  If @valp is not NULL the value of the register
 | |
|  *	at the time it indicated completion is stored there.  Returns 0 if the
 | |
|  *	operation completes and -EAGAIN otherwise.
 | |
|  */
 | |
| 
 | |
| int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
 | |
| 			int polarity, int attempts, int delay, u32 *valp)
 | |
| {
 | |
| 	while (1) {
 | |
| 		u32 val = t3_read_reg(adapter, reg);
 | |
| 
 | |
| 		if (!!(val & mask) == polarity) {
 | |
| 			if (valp)
 | |
| 				*valp = val;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (--attempts == 0)
 | |
| 			return -EAGAIN;
 | |
| 		if (delay)
 | |
| 			udelay(delay);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_write_regs - write a bunch of registers
 | |
|  *	@adapter: the adapter to program
 | |
|  *	@p: an array of register address/register value pairs
 | |
|  *	@n: the number of address/value pairs
 | |
|  *	@offset: register address offset
 | |
|  *
 | |
|  *	Takes an array of register address/register value pairs and writes each
 | |
|  *	value to the corresponding register.  Register addresses are adjusted
 | |
|  *	by the supplied offset.
 | |
|  */
 | |
| void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
 | |
| 		   int n, unsigned int offset)
 | |
| {
 | |
| 	while (n--) {
 | |
| 		t3_write_reg(adapter, p->reg_addr + offset, p->val);
 | |
| 		p++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_set_reg_field - set a register field to a value
 | |
|  *	@adapter: the adapter to program
 | |
|  *	@addr: the register address
 | |
|  *	@mask: specifies the portion of the register to modify
 | |
|  *	@val: the new value for the register field
 | |
|  *
 | |
|  *	Sets a register field specified by the supplied mask to the
 | |
|  *	given value.
 | |
|  */
 | |
| void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
 | |
| 		      u32 val)
 | |
| {
 | |
| 	u32 v = t3_read_reg(adapter, addr) & ~mask;
 | |
| 
 | |
| 	t3_write_reg(adapter, addr, v | val);
 | |
| 	t3_read_reg(adapter, addr);	/* flush */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_read_indirect - read indirectly addressed registers
 | |
|  *	@adap: the adapter
 | |
|  *	@addr_reg: register holding the indirect address
 | |
|  *	@data_reg: register holding the value of the indirect register
 | |
|  *	@vals: where the read register values are stored
 | |
|  *	@start_idx: index of first indirect register to read
 | |
|  *	@nregs: how many indirect registers to read
 | |
|  *
 | |
|  *	Reads registers that are accessed indirectly through an address/data
 | |
|  *	register pair.
 | |
|  */
 | |
| static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
 | |
| 			     unsigned int data_reg, u32 *vals,
 | |
| 			     unsigned int nregs, unsigned int start_idx)
 | |
| {
 | |
| 	while (nregs--) {
 | |
| 		t3_write_reg(adap, addr_reg, start_idx);
 | |
| 		*vals++ = t3_read_reg(adap, data_reg);
 | |
| 		start_idx++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_mc7_bd_read - read from MC7 through backdoor accesses
 | |
|  *	@mc7: identifies MC7 to read from
 | |
|  *	@start: index of first 64-bit word to read
 | |
|  *	@n: number of 64-bit words to read
 | |
|  *	@buf: where to store the read result
 | |
|  *
 | |
|  *	Read n 64-bit words from MC7 starting at word start, using backdoor
 | |
|  *	accesses.
 | |
|  */
 | |
| int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
 | |
| 		   u64 *buf)
 | |
| {
 | |
| 	static const int shift[] = { 0, 0, 16, 24 };
 | |
| 	static const int step[] = { 0, 32, 16, 8 };
 | |
| 
 | |
| 	unsigned int size64 = mc7->size / 8;	/* # of 64-bit words */
 | |
| 	struct adapter *adap = mc7->adapter;
 | |
| 
 | |
| 	if (start >= size64 || start + n > size64)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	start *= (8 << mc7->width);
 | |
| 	while (n--) {
 | |
| 		int i;
 | |
| 		u64 val64 = 0;
 | |
| 
 | |
| 		for (i = (1 << mc7->width) - 1; i >= 0; --i) {
 | |
| 			int attempts = 10;
 | |
| 			u32 val;
 | |
| 
 | |
| 			t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
 | |
| 			t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
 | |
| 			val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
 | |
| 			while ((val & F_BUSY) && attempts--)
 | |
| 				val = t3_read_reg(adap,
 | |
| 						  mc7->offset + A_MC7_BD_OP);
 | |
| 			if (val & F_BUSY)
 | |
| 				return -EIO;
 | |
| 
 | |
| 			val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
 | |
| 			if (mc7->width == 0) {
 | |
| 				val64 = t3_read_reg(adap,
 | |
| 						    mc7->offset +
 | |
| 						    A_MC7_BD_DATA0);
 | |
| 				val64 |= (u64) val << 32;
 | |
| 			} else {
 | |
| 				if (mc7->width > 1)
 | |
| 					val >>= shift[mc7->width];
 | |
| 				val64 |= (u64) val << (step[mc7->width] * i);
 | |
| 			}
 | |
| 			start += 8;
 | |
| 		}
 | |
| 		*buf++ = val64;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize MI1.
 | |
|  */
 | |
| static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
 | |
| {
 | |
| 	u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
 | |
| 	u32 val = F_PREEN | V_CLKDIV(clkdiv);
 | |
| 
 | |
| 	t3_write_reg(adap, A_MI1_CFG, val);
 | |
| }
 | |
| 
 | |
| #define MDIO_ATTEMPTS 20
 | |
| 
 | |
| /*
 | |
|  * MI1 read/write operations for clause 22 PHYs.
 | |
|  */
 | |
| static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
 | |
| 		       u16 reg_addr)
 | |
| {
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	struct adapter *adapter = pi->adapter;
 | |
| 	int ret;
 | |
| 	u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
 | |
| 
 | |
| 	mutex_lock(&adapter->mdio_lock);
 | |
| 	t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
 | |
| 	t3_write_reg(adapter, A_MI1_ADDR, addr);
 | |
| 	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
 | |
| 	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
 | |
| 	if (!ret)
 | |
| 		ret = t3_read_reg(adapter, A_MI1_DATA);
 | |
| 	mutex_unlock(&adapter->mdio_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
 | |
| 			u16 reg_addr, u16 val)
 | |
| {
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	struct adapter *adapter = pi->adapter;
 | |
| 	int ret;
 | |
| 	u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
 | |
| 
 | |
| 	mutex_lock(&adapter->mdio_lock);
 | |
| 	t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
 | |
| 	t3_write_reg(adapter, A_MI1_ADDR, addr);
 | |
| 	t3_write_reg(adapter, A_MI1_DATA, val);
 | |
| 	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
 | |
| 	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
 | |
| 	mutex_unlock(&adapter->mdio_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct mdio_ops mi1_mdio_ops = {
 | |
| 	.read = t3_mi1_read,
 | |
| 	.write = t3_mi1_write,
 | |
| 	.mode_support = MDIO_SUPPORTS_C22
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Performs the address cycle for clause 45 PHYs.
 | |
|  * Must be called with the MDIO_LOCK held.
 | |
|  */
 | |
| static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
 | |
| 		       int reg_addr)
 | |
| {
 | |
| 	u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
 | |
| 
 | |
| 	t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
 | |
| 	t3_write_reg(adapter, A_MI1_ADDR, addr);
 | |
| 	t3_write_reg(adapter, A_MI1_DATA, reg_addr);
 | |
| 	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
 | |
| 	return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
 | |
| 			       MDIO_ATTEMPTS, 10);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MI1 read/write operations for indirect-addressed PHYs.
 | |
|  */
 | |
| static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
 | |
| 			u16 reg_addr)
 | |
| {
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	struct adapter *adapter = pi->adapter;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&adapter->mdio_lock);
 | |
| 	ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
 | |
| 	if (!ret) {
 | |
| 		t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
 | |
| 		ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
 | |
| 				      MDIO_ATTEMPTS, 10);
 | |
| 		if (!ret)
 | |
| 			ret = t3_read_reg(adapter, A_MI1_DATA);
 | |
| 	}
 | |
| 	mutex_unlock(&adapter->mdio_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
 | |
| 			 u16 reg_addr, u16 val)
 | |
| {
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	struct adapter *adapter = pi->adapter;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&adapter->mdio_lock);
 | |
| 	ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
 | |
| 	if (!ret) {
 | |
| 		t3_write_reg(adapter, A_MI1_DATA, val);
 | |
| 		t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
 | |
| 		ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
 | |
| 				      MDIO_ATTEMPTS, 10);
 | |
| 	}
 | |
| 	mutex_unlock(&adapter->mdio_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct mdio_ops mi1_mdio_ext_ops = {
 | |
| 	.read = mi1_ext_read,
 | |
| 	.write = mi1_ext_write,
 | |
| 	.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	t3_mdio_change_bits - modify the value of a PHY register
 | |
|  *	@phy: the PHY to operate on
 | |
|  *	@mmd: the device address
 | |
|  *	@reg: the register address
 | |
|  *	@clear: what part of the register value to mask off
 | |
|  *	@set: what part of the register value to set
 | |
|  *
 | |
|  *	Changes the value of a PHY register by applying a mask to its current
 | |
|  *	value and ORing the result with a new value.
 | |
|  */
 | |
| int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
 | |
| 			unsigned int set)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	ret = t3_mdio_read(phy, mmd, reg, &val);
 | |
| 	if (!ret) {
 | |
| 		val &= ~clear;
 | |
| 		ret = t3_mdio_write(phy, mmd, reg, val | set);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_phy_reset - reset a PHY block
 | |
|  *	@phy: the PHY to operate on
 | |
|  *	@mmd: the device address of the PHY block to reset
 | |
|  *	@wait: how long to wait for the reset to complete in 1ms increments
 | |
|  *
 | |
|  *	Resets a PHY block and optionally waits for the reset to complete.
 | |
|  *	@mmd should be 0 for 10/100/1000 PHYs and the device address to reset
 | |
|  *	for 10G PHYs.
 | |
|  */
 | |
| int t3_phy_reset(struct cphy *phy, int mmd, int wait)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned int ctl;
 | |
| 
 | |
| 	err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
 | |
| 				  MDIO_CTRL1_RESET);
 | |
| 	if (err || !wait)
 | |
| 		return err;
 | |
| 
 | |
| 	do {
 | |
| 		err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		ctl &= MDIO_CTRL1_RESET;
 | |
| 		if (ctl)
 | |
| 			msleep(1);
 | |
| 	} while (ctl && --wait);
 | |
| 
 | |
| 	return ctl ? -1 : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_phy_advertise - set the PHY advertisement registers for autoneg
 | |
|  *	@phy: the PHY to operate on
 | |
|  *	@advert: bitmap of capabilities the PHY should advertise
 | |
|  *
 | |
|  *	Sets a 10/100/1000 PHY's advertisement registers to advertise the
 | |
|  *	requested capabilities.
 | |
|  */
 | |
| int t3_phy_advertise(struct cphy *phy, unsigned int advert)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned int val = 0;
 | |
| 
 | |
| 	err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 | |
| 	if (advert & ADVERTISED_1000baseT_Half)
 | |
| 		val |= ADVERTISE_1000HALF;
 | |
| 	if (advert & ADVERTISED_1000baseT_Full)
 | |
| 		val |= ADVERTISE_1000FULL;
 | |
| 
 | |
| 	err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	val = 1;
 | |
| 	if (advert & ADVERTISED_10baseT_Half)
 | |
| 		val |= ADVERTISE_10HALF;
 | |
| 	if (advert & ADVERTISED_10baseT_Full)
 | |
| 		val |= ADVERTISE_10FULL;
 | |
| 	if (advert & ADVERTISED_100baseT_Half)
 | |
| 		val |= ADVERTISE_100HALF;
 | |
| 	if (advert & ADVERTISED_100baseT_Full)
 | |
| 		val |= ADVERTISE_100FULL;
 | |
| 	if (advert & ADVERTISED_Pause)
 | |
| 		val |= ADVERTISE_PAUSE_CAP;
 | |
| 	if (advert & ADVERTISED_Asym_Pause)
 | |
| 		val |= ADVERTISE_PAUSE_ASYM;
 | |
| 	return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_phy_advertise_fiber - set fiber PHY advertisement register
 | |
|  *	@phy: the PHY to operate on
 | |
|  *	@advert: bitmap of capabilities the PHY should advertise
 | |
|  *
 | |
|  *	Sets a fiber PHY's advertisement register to advertise the
 | |
|  *	requested capabilities.
 | |
|  */
 | |
| int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
 | |
| {
 | |
| 	unsigned int val = 0;
 | |
| 
 | |
| 	if (advert & ADVERTISED_1000baseT_Half)
 | |
| 		val |= ADVERTISE_1000XHALF;
 | |
| 	if (advert & ADVERTISED_1000baseT_Full)
 | |
| 		val |= ADVERTISE_1000XFULL;
 | |
| 	if (advert & ADVERTISED_Pause)
 | |
| 		val |= ADVERTISE_1000XPAUSE;
 | |
| 	if (advert & ADVERTISED_Asym_Pause)
 | |
| 		val |= ADVERTISE_1000XPSE_ASYM;
 | |
| 	return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_set_phy_speed_duplex - force PHY speed and duplex
 | |
|  *	@phy: the PHY to operate on
 | |
|  *	@speed: requested PHY speed
 | |
|  *	@duplex: requested PHY duplex
 | |
|  *
 | |
|  *	Force a 10/100/1000 PHY's speed and duplex.  This also disables
 | |
|  *	auto-negotiation except for GigE, where auto-negotiation is mandatory.
 | |
|  */
 | |
| int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned int ctl;
 | |
| 
 | |
| 	err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (speed >= 0) {
 | |
| 		ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
 | |
| 		if (speed == SPEED_100)
 | |
| 			ctl |= BMCR_SPEED100;
 | |
| 		else if (speed == SPEED_1000)
 | |
| 			ctl |= BMCR_SPEED1000;
 | |
| 	}
 | |
| 	if (duplex >= 0) {
 | |
| 		ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
 | |
| 		if (duplex == DUPLEX_FULL)
 | |
| 			ctl |= BMCR_FULLDPLX;
 | |
| 	}
 | |
| 	if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
 | |
| 		ctl |= BMCR_ANENABLE;
 | |
| 	return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
 | |
| }
 | |
| 
 | |
| int t3_phy_lasi_intr_enable(struct cphy *phy)
 | |
| {
 | |
| 	return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
 | |
| 			     MDIO_PMA_LASI_LSALARM);
 | |
| }
 | |
| 
 | |
| int t3_phy_lasi_intr_disable(struct cphy *phy)
 | |
| {
 | |
| 	return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
 | |
| }
 | |
| 
 | |
| int t3_phy_lasi_intr_clear(struct cphy *phy)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
 | |
| }
 | |
| 
 | |
| int t3_phy_lasi_intr_handler(struct cphy *phy)
 | |
| {
 | |
| 	unsigned int status;
 | |
| 	int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
 | |
| 			       &status);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
 | |
| }
 | |
| 
 | |
| static const struct adapter_info t3_adap_info[] = {
 | |
| 	{1, 1, 0,
 | |
| 	 F_GPIO2_OEN | F_GPIO4_OEN |
 | |
| 	 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
 | |
| 	 &mi1_mdio_ops, "Chelsio PE9000"},
 | |
| 	{1, 1, 0,
 | |
| 	 F_GPIO2_OEN | F_GPIO4_OEN |
 | |
| 	 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
 | |
| 	 &mi1_mdio_ops, "Chelsio T302"},
 | |
| 	{1, 0, 0,
 | |
| 	 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
 | |
| 	 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
 | |
| 	 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
 | |
| 	 &mi1_mdio_ext_ops, "Chelsio T310"},
 | |
| 	{1, 1, 0,
 | |
| 	 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
 | |
| 	 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
 | |
| 	 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
 | |
| 	 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
 | |
| 	 &mi1_mdio_ext_ops, "Chelsio T320"},
 | |
| 	{},
 | |
| 	{},
 | |
| 	{1, 0, 0,
 | |
| 	 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
 | |
| 	 F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
 | |
| 	 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
 | |
| 	 &mi1_mdio_ext_ops, "Chelsio T310" },
 | |
| 	{1, 0, 0,
 | |
| 	 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
 | |
| 	 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
 | |
| 	 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
 | |
| 	 &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Return the adapter_info structure with a given index.  Out-of-range indices
 | |
|  * return NULL.
 | |
|  */
 | |
| const struct adapter_info *t3_get_adapter_info(unsigned int id)
 | |
| {
 | |
| 	return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
 | |
| }
 | |
| 
 | |
| struct port_type_info {
 | |
| 	int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
 | |
| 			int phy_addr, const struct mdio_ops *ops);
 | |
| };
 | |
| 
 | |
| static const struct port_type_info port_types[] = {
 | |
| 	{ NULL },
 | |
| 	{ t3_ael1002_phy_prep },
 | |
| 	{ t3_vsc8211_phy_prep },
 | |
| 	{ NULL},
 | |
| 	{ t3_xaui_direct_phy_prep },
 | |
| 	{ t3_ael2005_phy_prep },
 | |
| 	{ t3_qt2045_phy_prep },
 | |
| 	{ t3_ael1006_phy_prep },
 | |
| 	{ NULL },
 | |
| 	{ t3_aq100x_phy_prep },
 | |
| 	{ t3_ael2020_phy_prep },
 | |
| };
 | |
| 
 | |
| #define VPD_ENTRY(name, len) \
 | |
| 	u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
 | |
| 
 | |
| /*
 | |
|  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
 | |
|  * VPD-R sections.
 | |
|  */
 | |
| struct t3_vpd {
 | |
| 	u8 id_tag;
 | |
| 	u8 id_len[2];
 | |
| 	u8 id_data[16];
 | |
| 	u8 vpdr_tag;
 | |
| 	u8 vpdr_len[2];
 | |
| 	VPD_ENTRY(pn, 16);	/* part number */
 | |
| 	VPD_ENTRY(ec, 16);	/* EC level */
 | |
| 	VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
 | |
| 	VPD_ENTRY(na, 12);	/* MAC address base */
 | |
| 	VPD_ENTRY(cclk, 6);	/* core clock */
 | |
| 	VPD_ENTRY(mclk, 6);	/* mem clock */
 | |
| 	VPD_ENTRY(uclk, 6);	/* uP clk */
 | |
| 	VPD_ENTRY(mdc, 6);	/* MDIO clk */
 | |
| 	VPD_ENTRY(mt, 2);	/* mem timing */
 | |
| 	VPD_ENTRY(xaui0cfg, 6);	/* XAUI0 config */
 | |
| 	VPD_ENTRY(xaui1cfg, 6);	/* XAUI1 config */
 | |
| 	VPD_ENTRY(port0, 2);	/* PHY0 complex */
 | |
| 	VPD_ENTRY(port1, 2);	/* PHY1 complex */
 | |
| 	VPD_ENTRY(port2, 2);	/* PHY2 complex */
 | |
| 	VPD_ENTRY(port3, 2);	/* PHY3 complex */
 | |
| 	VPD_ENTRY(rv, 1);	/* csum */
 | |
| 	u32 pad;		/* for multiple-of-4 sizing and alignment */
 | |
| };
 | |
| 
 | |
| #define EEPROM_MAX_POLL   40
 | |
| #define EEPROM_STAT_ADDR  0x4000
 | |
| #define VPD_BASE          0xc00
 | |
| 
 | |
| /**
 | |
|  *	t3_seeprom_read - read a VPD EEPROM location
 | |
|  *	@adapter: adapter to read
 | |
|  *	@addr: EEPROM address
 | |
|  *	@data: where to store the read data
 | |
|  *
 | |
|  *	Read a 32-bit word from a location in VPD EEPROM using the card's PCI
 | |
|  *	VPD ROM capability.  A zero is written to the flag bit when the
 | |
|  *	addres is written to the control register.  The hardware device will
 | |
|  *	set the flag to 1 when 4 bytes have been read into the data register.
 | |
|  */
 | |
| int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
 | |
| {
 | |
| 	u16 val;
 | |
| 	int attempts = EEPROM_MAX_POLL;
 | |
| 	u32 v;
 | |
| 	unsigned int base = adapter->params.pci.vpd_cap_addr;
 | |
| 
 | |
| 	if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
 | |
| 	do {
 | |
| 		udelay(10);
 | |
| 		pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
 | |
| 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
 | |
| 
 | |
| 	if (!(val & PCI_VPD_ADDR_F)) {
 | |
| 		CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
 | |
| 	*data = cpu_to_le32(v);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_seeprom_write - write a VPD EEPROM location
 | |
|  *	@adapter: adapter to write
 | |
|  *	@addr: EEPROM address
 | |
|  *	@data: value to write
 | |
|  *
 | |
|  *	Write a 32-bit word to a location in VPD EEPROM using the card's PCI
 | |
|  *	VPD ROM capability.
 | |
|  */
 | |
| int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
 | |
| {
 | |
| 	u16 val;
 | |
| 	int attempts = EEPROM_MAX_POLL;
 | |
| 	unsigned int base = adapter->params.pci.vpd_cap_addr;
 | |
| 
 | |
| 	if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
 | |
| 			       le32_to_cpu(data));
 | |
| 	pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
 | |
| 			      addr | PCI_VPD_ADDR_F);
 | |
| 	do {
 | |
| 		msleep(1);
 | |
| 		pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
 | |
| 	} while ((val & PCI_VPD_ADDR_F) && --attempts);
 | |
| 
 | |
| 	if (val & PCI_VPD_ADDR_F) {
 | |
| 		CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_seeprom_wp - enable/disable EEPROM write protection
 | |
|  *	@adapter: the adapter
 | |
|  *	@enable: 1 to enable write protection, 0 to disable it
 | |
|  *
 | |
|  *	Enables or disables write protection on the serial EEPROM.
 | |
|  */
 | |
| int t3_seeprom_wp(struct adapter *adapter, int enable)
 | |
| {
 | |
| 	return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a character holding a hex digit to a number.
 | |
|  */
 | |
| static unsigned int hex2int(unsigned char c)
 | |
| {
 | |
| 	return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	get_vpd_params - read VPD parameters from VPD EEPROM
 | |
|  *	@adapter: adapter to read
 | |
|  *	@p: where to store the parameters
 | |
|  *
 | |
|  *	Reads card parameters stored in VPD EEPROM.
 | |
|  */
 | |
| static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
 | |
| {
 | |
| 	int i, addr, ret;
 | |
| 	struct t3_vpd vpd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Card information is normally at VPD_BASE but some early cards had
 | |
| 	 * it at 0.
 | |
| 	 */
 | |
| 	ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
 | |
| 
 | |
| 	for (i = 0; i < sizeof(vpd); i += 4) {
 | |
| 		ret = t3_seeprom_read(adapter, addr + i,
 | |
| 				      (__le32 *)((u8 *)&vpd + i));
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
 | |
| 	p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
 | |
| 	p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
 | |
| 	p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
 | |
| 	p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
 | |
| 	memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
 | |
| 
 | |
| 	/* Old eeproms didn't have port information */
 | |
| 	if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
 | |
| 		p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
 | |
| 		p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
 | |
| 	} else {
 | |
| 		p->port_type[0] = hex2int(vpd.port0_data[0]);
 | |
| 		p->port_type[1] = hex2int(vpd.port1_data[0]);
 | |
| 		p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
 | |
| 		p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 6; i++)
 | |
| 		p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
 | |
| 				 hex2int(vpd.na_data[2 * i + 1]);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* serial flash and firmware constants */
 | |
| enum {
 | |
| 	SF_ATTEMPTS = 5,	/* max retries for SF1 operations */
 | |
| 	SF_SEC_SIZE = 64 * 1024,	/* serial flash sector size */
 | |
| 	SF_SIZE = SF_SEC_SIZE * 8,	/* serial flash size */
 | |
| 
 | |
| 	/* flash command opcodes */
 | |
| 	SF_PROG_PAGE = 2,	/* program page */
 | |
| 	SF_WR_DISABLE = 4,	/* disable writes */
 | |
| 	SF_RD_STATUS = 5,	/* read status register */
 | |
| 	SF_WR_ENABLE = 6,	/* enable writes */
 | |
| 	SF_RD_DATA_FAST = 0xb,	/* read flash */
 | |
| 	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
 | |
| 
 | |
| 	FW_FLASH_BOOT_ADDR = 0x70000,	/* start address of FW in flash */
 | |
| 	FW_VERS_ADDR = 0x7fffc,    /* flash address holding FW version */
 | |
| 	FW_MIN_SIZE = 8            /* at least version and csum */
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	sf1_read - read data from the serial flash
 | |
|  *	@adapter: the adapter
 | |
|  *	@byte_cnt: number of bytes to read
 | |
|  *	@cont: whether another operation will be chained
 | |
|  *	@valp: where to store the read data
 | |
|  *
 | |
|  *	Reads up to 4 bytes of data from the serial flash.  The location of
 | |
|  *	the read needs to be specified prior to calling this by issuing the
 | |
|  *	appropriate commands to the serial flash.
 | |
|  */
 | |
| static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
 | |
| 		    u32 *valp)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!byte_cnt || byte_cnt > 4)
 | |
| 		return -EINVAL;
 | |
| 	if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
 | |
| 		return -EBUSY;
 | |
| 	t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
 | |
| 	ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
 | |
| 	if (!ret)
 | |
| 		*valp = t3_read_reg(adapter, A_SF_DATA);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sf1_write - write data to the serial flash
 | |
|  *	@adapter: the adapter
 | |
|  *	@byte_cnt: number of bytes to write
 | |
|  *	@cont: whether another operation will be chained
 | |
|  *	@val: value to write
 | |
|  *
 | |
|  *	Writes up to 4 bytes of data to the serial flash.  The location of
 | |
|  *	the write needs to be specified prior to calling this by issuing the
 | |
|  *	appropriate commands to the serial flash.
 | |
|  */
 | |
| static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
 | |
| 		     u32 val)
 | |
| {
 | |
| 	if (!byte_cnt || byte_cnt > 4)
 | |
| 		return -EINVAL;
 | |
| 	if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
 | |
| 		return -EBUSY;
 | |
| 	t3_write_reg(adapter, A_SF_DATA, val);
 | |
| 	t3_write_reg(adapter, A_SF_OP,
 | |
| 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
 | |
| 	return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	flash_wait_op - wait for a flash operation to complete
 | |
|  *	@adapter: the adapter
 | |
|  *	@attempts: max number of polls of the status register
 | |
|  *	@delay: delay between polls in ms
 | |
|  *
 | |
|  *	Wait for a flash operation to complete by polling the status register.
 | |
|  */
 | |
| static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 status;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
 | |
| 		    (ret = sf1_read(adapter, 1, 0, &status)) != 0)
 | |
| 			return ret;
 | |
| 		if (!(status & 1))
 | |
| 			return 0;
 | |
| 		if (--attempts == 0)
 | |
| 			return -EAGAIN;
 | |
| 		if (delay)
 | |
| 			msleep(delay);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_read_flash - read words from serial flash
 | |
|  *	@adapter: the adapter
 | |
|  *	@addr: the start address for the read
 | |
|  *	@nwords: how many 32-bit words to read
 | |
|  *	@data: where to store the read data
 | |
|  *	@byte_oriented: whether to store data as bytes or as words
 | |
|  *
 | |
|  *	Read the specified number of 32-bit words from the serial flash.
 | |
|  *	If @byte_oriented is set the read data is stored as a byte array
 | |
|  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
 | |
|  *	natural endianess.
 | |
|  */
 | |
| int t3_read_flash(struct adapter *adapter, unsigned int addr,
 | |
| 		  unsigned int nwords, u32 *data, int byte_oriented)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	addr = swab32(addr) | SF_RD_DATA_FAST;
 | |
| 
 | |
| 	if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
 | |
| 	    (ret = sf1_read(adapter, 1, 1, data)) != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (; nwords; nwords--, data++) {
 | |
| 		ret = sf1_read(adapter, 4, nwords > 1, data);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		if (byte_oriented)
 | |
| 			*data = htonl(*data);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_write_flash - write up to a page of data to the serial flash
 | |
|  *	@adapter: the adapter
 | |
|  *	@addr: the start address to write
 | |
|  *	@n: length of data to write
 | |
|  *	@data: the data to write
 | |
|  *
 | |
|  *	Writes up to a page of data (256 bytes) to the serial flash starting
 | |
|  *	at the given address.
 | |
|  */
 | |
| static int t3_write_flash(struct adapter *adapter, unsigned int addr,
 | |
| 			  unsigned int n, const u8 *data)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 buf[64];
 | |
| 	unsigned int i, c, left, val, offset = addr & 0xff;
 | |
| 
 | |
| 	if (addr + n > SF_SIZE || offset + n > 256)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	val = swab32(addr) | SF_PROG_PAGE;
 | |
| 
 | |
| 	if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
 | |
| 	    (ret = sf1_write(adapter, 4, 1, val)) != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (left = n; left; left -= c) {
 | |
| 		c = min(left, 4U);
 | |
| 		for (val = 0, i = 0; i < c; ++i)
 | |
| 			val = (val << 8) + *data++;
 | |
| 
 | |
| 		ret = sf1_write(adapter, c, c != left, val);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Read the page to verify the write succeeded */
 | |
| 	ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (memcmp(data - n, (u8 *) buf + offset, n))
 | |
| 		return -EIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_get_tp_version - read the tp sram version
 | |
|  *	@adapter: the adapter
 | |
|  *	@vers: where to place the version
 | |
|  *
 | |
|  *	Reads the protocol sram version from sram.
 | |
|  */
 | |
| int t3_get_tp_version(struct adapter *adapter, u32 *vers)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Get version loaded in SRAM */
 | |
| 	t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
 | |
| 	ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
 | |
| 			      1, 1, 5, 1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_check_tpsram_version - read the tp sram version
 | |
|  *	@adapter: the adapter
 | |
|  *
 | |
|  *	Reads the protocol sram version from flash.
 | |
|  */
 | |
| int t3_check_tpsram_version(struct adapter *adapter)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 vers;
 | |
| 	unsigned int major, minor;
 | |
| 
 | |
| 	if (adapter->params.rev == T3_REV_A)
 | |
| 		return 0;
 | |
| 
 | |
| 
 | |
| 	ret = t3_get_tp_version(adapter, &vers);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	major = G_TP_VERSION_MAJOR(vers);
 | |
| 	minor = G_TP_VERSION_MINOR(vers);
 | |
| 
 | |
| 	if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
 | |
| 		return 0;
 | |
| 	else {
 | |
| 		CH_ERR(adapter, "found wrong TP version (%u.%u), "
 | |
| 		       "driver compiled for version %d.%d\n", major, minor,
 | |
| 		       TP_VERSION_MAJOR, TP_VERSION_MINOR);
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_check_tpsram - check if provided protocol SRAM
 | |
|  *			  is compatible with this driver
 | |
|  *	@adapter: the adapter
 | |
|  *	@tp_sram: the firmware image to write
 | |
|  *	@size: image size
 | |
|  *
 | |
|  *	Checks if an adapter's tp sram is compatible with the driver.
 | |
|  *	Returns 0 if the versions are compatible, a negative error otherwise.
 | |
|  */
 | |
| int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
 | |
| 		    unsigned int size)
 | |
| {
 | |
| 	u32 csum;
 | |
| 	unsigned int i;
 | |
| 	const __be32 *p = (const __be32 *)tp_sram;
 | |
| 
 | |
| 	/* Verify checksum */
 | |
| 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
 | |
| 		csum += ntohl(p[i]);
 | |
| 	if (csum != 0xffffffff) {
 | |
| 		CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
 | |
| 		       csum);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| enum fw_version_type {
 | |
| 	FW_VERSION_N3,
 | |
| 	FW_VERSION_T3
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	t3_get_fw_version - read the firmware version
 | |
|  *	@adapter: the adapter
 | |
|  *	@vers: where to place the version
 | |
|  *
 | |
|  *	Reads the FW version from flash.
 | |
|  */
 | |
| int t3_get_fw_version(struct adapter *adapter, u32 *vers)
 | |
| {
 | |
| 	return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_check_fw_version - check if the FW is compatible with this driver
 | |
|  *	@adapter: the adapter
 | |
|  *
 | |
|  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
 | |
|  *	if the versions are compatible, a negative error otherwise.
 | |
|  */
 | |
| int t3_check_fw_version(struct adapter *adapter)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 vers;
 | |
| 	unsigned int type, major, minor;
 | |
| 
 | |
| 	ret = t3_get_fw_version(adapter, &vers);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	type = G_FW_VERSION_TYPE(vers);
 | |
| 	major = G_FW_VERSION_MAJOR(vers);
 | |
| 	minor = G_FW_VERSION_MINOR(vers);
 | |
| 
 | |
| 	if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
 | |
| 	    minor == FW_VERSION_MINOR)
 | |
| 		return 0;
 | |
| 	else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
 | |
| 		CH_WARN(adapter, "found old FW minor version(%u.%u), "
 | |
| 		        "driver compiled for version %u.%u\n", major, minor,
 | |
| 			FW_VERSION_MAJOR, FW_VERSION_MINOR);
 | |
| 	else {
 | |
| 		CH_WARN(adapter, "found newer FW version(%u.%u), "
 | |
| 		        "driver compiled for version %u.%u\n", major, minor,
 | |
| 			FW_VERSION_MAJOR, FW_VERSION_MINOR);
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_flash_erase_sectors - erase a range of flash sectors
 | |
|  *	@adapter: the adapter
 | |
|  *	@start: the first sector to erase
 | |
|  *	@end: the last sector to erase
 | |
|  *
 | |
|  *	Erases the sectors in the given range.
 | |
|  */
 | |
| static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
 | |
| {
 | |
| 	while (start <= end) {
 | |
| 		int ret;
 | |
| 
 | |
| 		if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
 | |
| 		    (ret = sf1_write(adapter, 4, 0,
 | |
| 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
 | |
| 		    (ret = flash_wait_op(adapter, 5, 500)) != 0)
 | |
| 			return ret;
 | |
| 		start++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	t3_load_fw - download firmware
 | |
|  *	@adapter: the adapter
 | |
|  *	@fw_data: the firmware image to write
 | |
|  *	@size: image size
 | |
|  *
 | |
|  *	Write the supplied firmware image to the card's serial flash.
 | |
|  *	The FW image has the following sections: @size - 8 bytes of code and
 | |
|  *	data, followed by 4 bytes of FW version, followed by the 32-bit
 | |
|  *	1's complement checksum of the whole image.
 | |
|  */
 | |
| int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
 | |
| {
 | |
| 	u32 csum;
 | |
| 	unsigned int i;
 | |
| 	const __be32 *p = (const __be32 *)fw_data;
 | |
| 	int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
 | |
| 
 | |
| 	if ((size & 3) || size < FW_MIN_SIZE)
 | |
| 		return -EINVAL;
 | |
| 	if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
 | |
| 		return -EFBIG;
 | |
| 
 | |
| 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
 | |
| 		csum += ntohl(p[i]);
 | |
| 	if (csum != 0xffffffff) {
 | |
| 		CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
 | |
| 		       csum);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	size -= 8;		/* trim off version and checksum */
 | |
| 	for (addr = FW_FLASH_BOOT_ADDR; size;) {
 | |
| 		unsigned int chunk_size = min(size, 256U);
 | |
| 
 | |
| 		ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		addr += chunk_size;
 | |
| 		fw_data += chunk_size;
 | |
| 		size -= chunk_size;
 | |
| 	}
 | |
| 
 | |
| 	ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
 | |
| out:
 | |
| 	if (ret)
 | |
| 		CH_ERR(adapter, "firmware download failed, error %d\n", ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define CIM_CTL_BASE 0x2000
 | |
| 
 | |
| /**
 | |
|  *      t3_cim_ctl_blk_read - read a block from CIM control region
 | |
|  *
 | |
|  *      @adap: the adapter
 | |
|  *      @addr: the start address within the CIM control region
 | |
|  *      @n: number of words to read
 | |
|  *      @valp: where to store the result
 | |
|  *
 | |
|  *      Reads a block of 4-byte words from the CIM control region.
 | |
|  */
 | |
| int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
 | |
| 			unsigned int n, unsigned int *valp)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	for ( ; !ret && n--; addr += 4) {
 | |
| 		t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
 | |
| 		ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
 | |
| 				      0, 5, 2);
 | |
| 		if (!ret)
 | |
| 			*valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
 | |
| 			       u32 *rx_hash_high, u32 *rx_hash_low)
 | |
| {
 | |
| 	/* stop Rx unicast traffic */
 | |
| 	t3_mac_disable_exact_filters(mac);
 | |
| 
 | |
| 	/* stop broadcast, multicast, promiscuous mode traffic */
 | |
| 	*rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
 | |
| 	t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
 | |
| 			 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
 | |
| 			 F_DISBCAST);
 | |
| 
 | |
| 	*rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
 | |
| 	t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
 | |
| 
 | |
| 	*rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
 | |
| 	t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
 | |
| 
 | |
| 	/* Leave time to drain max RX fifo */
 | |
| 	msleep(1);
 | |
| }
 | |
| 
 | |
| static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
 | |
| 			       u32 rx_hash_high, u32 rx_hash_low)
 | |
| {
 | |
| 	t3_mac_enable_exact_filters(mac);
 | |
| 	t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
 | |
| 			 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
 | |
| 			 rx_cfg);
 | |
| 	t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
 | |
| 	t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_link_changed - handle interface link changes
 | |
|  *	@adapter: the adapter
 | |
|  *	@port_id: the port index that changed link state
 | |
|  *
 | |
|  *	Called when a port's link settings change to propagate the new values
 | |
|  *	to the associated PHY and MAC.  After performing the common tasks it
 | |
|  *	invokes an OS-specific handler.
 | |
|  */
 | |
| void t3_link_changed(struct adapter *adapter, int port_id)
 | |
| {
 | |
| 	int link_ok, speed, duplex, fc;
 | |
| 	struct port_info *pi = adap2pinfo(adapter, port_id);
 | |
| 	struct cphy *phy = &pi->phy;
 | |
| 	struct cmac *mac = &pi->mac;
 | |
| 	struct link_config *lc = &pi->link_config;
 | |
| 
 | |
| 	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
 | |
| 
 | |
| 	if (!lc->link_ok && link_ok) {
 | |
| 		u32 rx_cfg, rx_hash_high, rx_hash_low;
 | |
| 		u32 status;
 | |
| 
 | |
| 		t3_xgm_intr_enable(adapter, port_id);
 | |
| 		t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
 | |
| 		t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
 | |
| 		t3_mac_enable(mac, MAC_DIRECTION_RX);
 | |
| 
 | |
| 		status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
 | |
| 		if (status & F_LINKFAULTCHANGE) {
 | |
| 			mac->stats.link_faults++;
 | |
| 			pi->link_fault = 1;
 | |
| 		}
 | |
| 		t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
 | |
| 	}
 | |
| 
 | |
| 	if (lc->requested_fc & PAUSE_AUTONEG)
 | |
| 		fc &= lc->requested_fc;
 | |
| 	else
 | |
| 		fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
 | |
| 
 | |
| 	if (link_ok == lc->link_ok && speed == lc->speed &&
 | |
| 	    duplex == lc->duplex && fc == lc->fc)
 | |
| 		return;                            /* nothing changed */
 | |
| 
 | |
| 	if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
 | |
| 	    uses_xaui(adapter)) {
 | |
| 		if (link_ok)
 | |
| 			t3b_pcs_reset(mac);
 | |
| 		t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
 | |
| 			     link_ok ? F_TXACTENABLE | F_RXEN : 0);
 | |
| 	}
 | |
| 	lc->link_ok = link_ok;
 | |
| 	lc->speed = speed < 0 ? SPEED_INVALID : speed;
 | |
| 	lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
 | |
| 
 | |
| 	if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
 | |
| 		/* Set MAC speed, duplex, and flow control to match PHY. */
 | |
| 		t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
 | |
| 		lc->fc = fc;
 | |
| 	}
 | |
| 
 | |
| 	t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
 | |
| 			   speed, duplex, fc);
 | |
| }
 | |
| 
 | |
| void t3_link_fault(struct adapter *adapter, int port_id)
 | |
| {
 | |
| 	struct port_info *pi = adap2pinfo(adapter, port_id);
 | |
| 	struct cmac *mac = &pi->mac;
 | |
| 	struct cphy *phy = &pi->phy;
 | |
| 	struct link_config *lc = &pi->link_config;
 | |
| 	int link_ok, speed, duplex, fc, link_fault;
 | |
| 	u32 rx_cfg, rx_hash_high, rx_hash_low;
 | |
| 
 | |
| 	t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
 | |
| 
 | |
| 	if (adapter->params.rev > 0 && uses_xaui(adapter))
 | |
| 		t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
 | |
| 
 | |
| 	t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
 | |
| 	t3_mac_enable(mac, MAC_DIRECTION_RX);
 | |
| 
 | |
| 	t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
 | |
| 
 | |
| 	link_fault = t3_read_reg(adapter,
 | |
| 				 A_XGM_INT_STATUS + mac->offset);
 | |
| 	link_fault &= F_LINKFAULTCHANGE;
 | |
| 
 | |
| 	link_ok = lc->link_ok;
 | |
| 	speed = lc->speed;
 | |
| 	duplex = lc->duplex;
 | |
| 	fc = lc->fc;
 | |
| 
 | |
| 	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
 | |
| 
 | |
| 	if (link_fault) {
 | |
| 		lc->link_ok = 0;
 | |
| 		lc->speed = SPEED_INVALID;
 | |
| 		lc->duplex = DUPLEX_INVALID;
 | |
| 
 | |
| 		t3_os_link_fault(adapter, port_id, 0);
 | |
| 
 | |
| 		/* Account link faults only when the phy reports a link up */
 | |
| 		if (link_ok)
 | |
| 			mac->stats.link_faults++;
 | |
| 	} else {
 | |
| 		if (link_ok)
 | |
| 			t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
 | |
| 				     F_TXACTENABLE | F_RXEN);
 | |
| 
 | |
| 		pi->link_fault = 0;
 | |
| 		lc->link_ok = (unsigned char)link_ok;
 | |
| 		lc->speed = speed < 0 ? SPEED_INVALID : speed;
 | |
| 		lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
 | |
| 		t3_os_link_fault(adapter, port_id, link_ok);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_link_start - apply link configuration to MAC/PHY
 | |
|  *	@phy: the PHY to setup
 | |
|  *	@mac: the MAC to setup
 | |
|  *	@lc: the requested link configuration
 | |
|  *
 | |
|  *	Set up a port's MAC and PHY according to a desired link configuration.
 | |
|  *	- If the PHY can auto-negotiate first decide what to advertise, then
 | |
|  *	  enable/disable auto-negotiation as desired, and reset.
 | |
|  *	- If the PHY does not auto-negotiate just reset it.
 | |
|  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
 | |
|  *	  otherwise do it later based on the outcome of auto-negotiation.
 | |
|  */
 | |
| int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
 | |
| {
 | |
| 	unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
 | |
| 
 | |
| 	lc->link_ok = 0;
 | |
| 	if (lc->supported & SUPPORTED_Autoneg) {
 | |
| 		lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
 | |
| 		if (fc) {
 | |
| 			lc->advertising |= ADVERTISED_Asym_Pause;
 | |
| 			if (fc & PAUSE_RX)
 | |
| 				lc->advertising |= ADVERTISED_Pause;
 | |
| 		}
 | |
| 		phy->ops->advertise(phy, lc->advertising);
 | |
| 
 | |
| 		if (lc->autoneg == AUTONEG_DISABLE) {
 | |
| 			lc->speed = lc->requested_speed;
 | |
| 			lc->duplex = lc->requested_duplex;
 | |
| 			lc->fc = (unsigned char)fc;
 | |
| 			t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
 | |
| 						   fc);
 | |
| 			/* Also disables autoneg */
 | |
| 			phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
 | |
| 		} else
 | |
| 			phy->ops->autoneg_enable(phy);
 | |
| 	} else {
 | |
| 		t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
 | |
| 		lc->fc = (unsigned char)fc;
 | |
| 		phy->ops->reset(phy, 0);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_set_vlan_accel - control HW VLAN extraction
 | |
|  *	@adapter: the adapter
 | |
|  *	@ports: bitmap of adapter ports to operate on
 | |
|  *	@on: enable (1) or disable (0) HW VLAN extraction
 | |
|  *
 | |
|  *	Enables or disables HW extraction of VLAN tags for the given port.
 | |
|  */
 | |
| void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
 | |
| {
 | |
| 	t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
 | |
| 			 ports << S_VLANEXTRACTIONENABLE,
 | |
| 			 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
 | |
| }
 | |
| 
 | |
| struct intr_info {
 | |
| 	unsigned int mask;	/* bits to check in interrupt status */
 | |
| 	const char *msg;	/* message to print or NULL */
 | |
| 	short stat_idx;		/* stat counter to increment or -1 */
 | |
| 	unsigned short fatal;	/* whether the condition reported is fatal */
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	t3_handle_intr_status - table driven interrupt handler
 | |
|  *	@adapter: the adapter that generated the interrupt
 | |
|  *	@reg: the interrupt status register to process
 | |
|  *	@mask: a mask to apply to the interrupt status
 | |
|  *	@acts: table of interrupt actions
 | |
|  *	@stats: statistics counters tracking interrupt occurences
 | |
|  *
 | |
|  *	A table driven interrupt handler that applies a set of masks to an
 | |
|  *	interrupt status word and performs the corresponding actions if the
 | |
|  *	interrupts described by the mask have occured.  The actions include
 | |
|  *	optionally printing a warning or alert message, and optionally
 | |
|  *	incrementing a stat counter.  The table is terminated by an entry
 | |
|  *	specifying mask 0.  Returns the number of fatal interrupt conditions.
 | |
|  */
 | |
| static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
 | |
| 				 unsigned int mask,
 | |
| 				 const struct intr_info *acts,
 | |
| 				 unsigned long *stats)
 | |
| {
 | |
| 	int fatal = 0;
 | |
| 	unsigned int status = t3_read_reg(adapter, reg) & mask;
 | |
| 
 | |
| 	for (; acts->mask; ++acts) {
 | |
| 		if (!(status & acts->mask))
 | |
| 			continue;
 | |
| 		if (acts->fatal) {
 | |
| 			fatal++;
 | |
| 			CH_ALERT(adapter, "%s (0x%x)\n",
 | |
| 				 acts->msg, status & acts->mask);
 | |
| 		} else if (acts->msg)
 | |
| 			CH_WARN(adapter, "%s (0x%x)\n",
 | |
| 				acts->msg, status & acts->mask);
 | |
| 		if (acts->stat_idx >= 0)
 | |
| 			stats[acts->stat_idx]++;
 | |
| 	}
 | |
| 	if (status)		/* clear processed interrupts */
 | |
| 		t3_write_reg(adapter, reg, status);
 | |
| 	return fatal;
 | |
| }
 | |
| 
 | |
| #define SGE_INTR_MASK (F_RSPQDISABLED | \
 | |
| 		       F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
 | |
| 		       F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
 | |
| 		       F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
 | |
| 		       V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
 | |
| 		       F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
 | |
| 		       F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
 | |
| 		       F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
 | |
| 		       F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
 | |
| 		       F_LOPIODRBDROPERR)
 | |
| #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
 | |
| 		       F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
 | |
| 		       F_NFASRCHFAIL)
 | |
| #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
 | |
| #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
 | |
| 		       V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
 | |
| 		       F_TXFIFO_UNDERRUN)
 | |
| #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
 | |
| 			F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
 | |
| 			F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
 | |
| 			F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
 | |
| 			V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
 | |
| 			V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
 | |
| #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
 | |
| 			F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
 | |
| 			/* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
 | |
| 			F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
 | |
| 			F_TXPARERR | V_BISTERR(M_BISTERR))
 | |
| #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
 | |
| 			 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
 | |
| 			 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
 | |
| #define ULPTX_INTR_MASK 0xfc
 | |
| #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
 | |
| 			 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
 | |
| 			 F_ZERO_SWITCH_ERROR)
 | |
| #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
 | |
| 		       F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
 | |
| 		       F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
 | |
| 	 	       F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
 | |
| 		       F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
 | |
| 		       F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
 | |
| 		       F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
 | |
| 		       F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
 | |
| #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
 | |
| 			V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
 | |
| 			V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
 | |
| #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
 | |
| 			V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
 | |
| 			V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
 | |
| #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
 | |
| 		       V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
 | |
| 		       V_RXTPPARERRENB(M_RXTPPARERRENB) | \
 | |
| 		       V_MCAPARERRENB(M_MCAPARERRENB))
 | |
| #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
 | |
| #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
 | |
| 		      F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
 | |
| 		      F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
 | |
| 		      F_MPS0 | F_CPL_SWITCH)
 | |
| /*
 | |
|  * Interrupt handler for the PCIX1 module.
 | |
|  */
 | |
| static void pci_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info pcix1_intr_info[] = {
 | |
| 		{F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
 | |
| 		{F_SIGTARABT, "PCI signaled target abort", -1, 1},
 | |
| 		{F_RCVTARABT, "PCI received target abort", -1, 1},
 | |
| 		{F_RCVMSTABT, "PCI received master abort", -1, 1},
 | |
| 		{F_SIGSYSERR, "PCI signaled system error", -1, 1},
 | |
| 		{F_DETPARERR, "PCI detected parity error", -1, 1},
 | |
| 		{F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
 | |
| 		{F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
 | |
| 		{F_RCVSPLCMPERR, "PCI received split completion error", -1,
 | |
| 		 1},
 | |
| 		{F_DETCORECCERR, "PCI correctable ECC error",
 | |
| 		 STAT_PCI_CORR_ECC, 0},
 | |
| 		{F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
 | |
| 		{F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
 | |
| 		{V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
 | |
| 		 1},
 | |
| 		{V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
 | |
| 		 1},
 | |
| 		{V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
 | |
| 		 1},
 | |
| 		{V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
 | |
| 		 "error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
 | |
| 				  pcix1_intr_info, adapter->irq_stats))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt handler for the PCIE module.
 | |
|  */
 | |
| static void pcie_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info pcie_intr_info[] = {
 | |
| 		{F_PEXERR, "PCI PEX error", -1, 1},
 | |
| 		{F_UNXSPLCPLERRR,
 | |
| 		 "PCI unexpected split completion DMA read error", -1, 1},
 | |
| 		{F_UNXSPLCPLERRC,
 | |
| 		 "PCI unexpected split completion DMA command error", -1, 1},
 | |
| 		{F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
 | |
| 		{F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
 | |
| 		{F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
 | |
| 		{F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
 | |
| 		{V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
 | |
| 		 "PCI MSI-X table/PBA parity error", -1, 1},
 | |
| 		{F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
 | |
| 		{F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
 | |
| 		{F_RXPARERR, "PCI Rx parity error", -1, 1},
 | |
| 		{F_TXPARERR, "PCI Tx parity error", -1, 1},
 | |
| 		{V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
 | |
| 		CH_ALERT(adapter, "PEX error code 0x%x\n",
 | |
| 			 t3_read_reg(adapter, A_PCIE_PEX_ERR));
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
 | |
| 				  pcie_intr_info, adapter->irq_stats))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TP interrupt handler.
 | |
|  */
 | |
| static void tp_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info tp_intr_info[] = {
 | |
| 		{0xffffff, "TP parity error", -1, 1},
 | |
| 		{0x1000000, "TP out of Rx pages", -1, 1},
 | |
| 		{0x2000000, "TP out of Tx pages", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	static struct intr_info tp_intr_info_t3c[] = {
 | |
| 		{0x1fffffff, "TP parity error", -1, 1},
 | |
| 		{F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
 | |
| 		{F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
 | |
| 				  adapter->params.rev < T3_REV_C ?
 | |
| 				  tp_intr_info : tp_intr_info_t3c, NULL))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CIM interrupt handler.
 | |
|  */
 | |
| static void cim_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info cim_intr_info[] = {
 | |
| 		{F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
 | |
| 		{F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
 | |
| 		{F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
 | |
| 		{F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
 | |
| 		{F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
 | |
| 		{F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
 | |
| 		{F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
 | |
| 		{F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
 | |
| 		{F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
 | |
| 		{F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
 | |
| 		{F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
 | |
| 		{F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
 | |
| 		{F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
 | |
| 		{F_ICACHEPARERR, "CIM icache parity error", -1, 1},
 | |
| 		{F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
 | |
| 		{F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
 | |
| 		{F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
 | |
| 		{F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
 | |
| 		{F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
 | |
| 		{F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
 | |
| 		{F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
 | |
| 		{F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
 | |
| 		{F_ITAGPARERR, "CIM itag parity error", -1, 1},
 | |
| 		{F_DTAGPARERR, "CIM dtag parity error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
 | |
| 				  cim_intr_info, NULL))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ULP RX interrupt handler.
 | |
|  */
 | |
| static void ulprx_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info ulprx_intr_info[] = {
 | |
| 		{F_PARERRDATA, "ULP RX data parity error", -1, 1},
 | |
| 		{F_PARERRPCMD, "ULP RX command parity error", -1, 1},
 | |
| 		{F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
 | |
| 		{F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
 | |
| 		{F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
 | |
| 		{F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
 | |
| 		{F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
 | |
| 		{F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
 | |
| 				  ulprx_intr_info, NULL))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ULP TX interrupt handler.
 | |
|  */
 | |
| static void ulptx_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info ulptx_intr_info[] = {
 | |
| 		{F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
 | |
| 		 STAT_ULP_CH0_PBL_OOB, 0},
 | |
| 		{F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
 | |
| 		 STAT_ULP_CH1_PBL_OOB, 0},
 | |
| 		{0xfc, "ULP TX parity error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
 | |
| 				  ulptx_intr_info, adapter->irq_stats))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
 | |
| 	F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
 | |
| 	F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
 | |
| 	F_ICSPI1_TX_FRAMING_ERROR)
 | |
| #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
 | |
| 	F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
 | |
| 	F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
 | |
| 	F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
 | |
| 
 | |
| /*
 | |
|  * PM TX interrupt handler.
 | |
|  */
 | |
| static void pmtx_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info pmtx_intr_info[] = {
 | |
| 		{F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
 | |
| 		{ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
 | |
| 		{OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
 | |
| 		{V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
 | |
| 		 "PMTX ispi parity error", -1, 1},
 | |
| 		{V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
 | |
| 		 "PMTX ospi parity error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
 | |
| 				  pmtx_intr_info, NULL))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
 | |
| 	F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
 | |
| 	F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
 | |
| 	F_IESPI1_TX_FRAMING_ERROR)
 | |
| #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
 | |
| 	F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
 | |
| 	F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
 | |
| 	F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
 | |
| 
 | |
| /*
 | |
|  * PM RX interrupt handler.
 | |
|  */
 | |
| static void pmrx_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info pmrx_intr_info[] = {
 | |
| 		{F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
 | |
| 		{IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
 | |
| 		{OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
 | |
| 		{V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
 | |
| 		 "PMRX ispi parity error", -1, 1},
 | |
| 		{V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
 | |
| 		 "PMRX ospi parity error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
 | |
| 				  pmrx_intr_info, NULL))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CPL switch interrupt handler.
 | |
|  */
 | |
| static void cplsw_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info cplsw_intr_info[] = {
 | |
| 		{F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
 | |
| 		{F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
 | |
| 		{F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
 | |
| 		{F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
 | |
| 		{F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
 | |
| 		{F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
 | |
| 				  cplsw_intr_info, NULL))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MPS interrupt handler.
 | |
|  */
 | |
| static void mps_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct intr_info mps_intr_info[] = {
 | |
| 		{0x1ff, "MPS parity error", -1, 1},
 | |
| 		{0}
 | |
| 	};
 | |
| 
 | |
| 	if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
 | |
| 				  mps_intr_info, NULL))
 | |
| 		t3_fatal_err(adapter);
 | |
| }
 | |
| 
 | |
| #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
 | |
| 
 | |
| /*
 | |
|  * MC7 interrupt handler.
 | |
|  */
 | |
| static void mc7_intr_handler(struct mc7 *mc7)
 | |
| {
 | |
| 	struct adapter *adapter = mc7->adapter;
 | |
| 	u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
 | |
| 
 | |
| 	if (cause & F_CE) {
 | |
| 		mc7->stats.corr_err++;
 | |
| 		CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
 | |
| 			"data 0x%x 0x%x 0x%x\n", mc7->name,
 | |
| 			t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
 | |
| 			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
 | |
| 			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
 | |
| 			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
 | |
| 	}
 | |
| 
 | |
| 	if (cause & F_UE) {
 | |
| 		mc7->stats.uncorr_err++;
 | |
| 		CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
 | |
| 			 "data 0x%x 0x%x 0x%x\n", mc7->name,
 | |
| 			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
 | |
| 			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
 | |
| 			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
 | |
| 			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
 | |
| 	}
 | |
| 
 | |
| 	if (G_PE(cause)) {
 | |
| 		mc7->stats.parity_err++;
 | |
| 		CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
 | |
| 			 mc7->name, G_PE(cause));
 | |
| 	}
 | |
| 
 | |
| 	if (cause & F_AE) {
 | |
| 		u32 addr = 0;
 | |
| 
 | |
| 		if (adapter->params.rev > 0)
 | |
| 			addr = t3_read_reg(adapter,
 | |
| 					   mc7->offset + A_MC7_ERR_ADDR);
 | |
| 		mc7->stats.addr_err++;
 | |
| 		CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
 | |
| 			 mc7->name, addr);
 | |
| 	}
 | |
| 
 | |
| 	if (cause & MC7_INTR_FATAL)
 | |
| 		t3_fatal_err(adapter);
 | |
| 
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
 | |
| }
 | |
| 
 | |
| #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
 | |
| 			V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
 | |
| /*
 | |
|  * XGMAC interrupt handler.
 | |
|  */
 | |
| static int mac_intr_handler(struct adapter *adap, unsigned int idx)
 | |
| {
 | |
| 	struct cmac *mac = &adap2pinfo(adap, idx)->mac;
 | |
| 	/*
 | |
| 	 * We mask out interrupt causes for which we're not taking interrupts.
 | |
| 	 * This allows us to use polling logic to monitor some of the other
 | |
| 	 * conditions when taking interrupts would impose too much load on the
 | |
| 	 * system.
 | |
| 	 */
 | |
| 	u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
 | |
| 		    ~F_RXFIFO_OVERFLOW;
 | |
| 
 | |
| 	if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
 | |
| 		mac->stats.tx_fifo_parity_err++;
 | |
| 		CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
 | |
| 	}
 | |
| 	if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
 | |
| 		mac->stats.rx_fifo_parity_err++;
 | |
| 		CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
 | |
| 	}
 | |
| 	if (cause & F_TXFIFO_UNDERRUN)
 | |
| 		mac->stats.tx_fifo_urun++;
 | |
| 	if (cause & F_RXFIFO_OVERFLOW)
 | |
| 		mac->stats.rx_fifo_ovfl++;
 | |
| 	if (cause & V_SERDES_LOS(M_SERDES_LOS))
 | |
| 		mac->stats.serdes_signal_loss++;
 | |
| 	if (cause & F_XAUIPCSCTCERR)
 | |
| 		mac->stats.xaui_pcs_ctc_err++;
 | |
| 	if (cause & F_XAUIPCSALIGNCHANGE)
 | |
| 		mac->stats.xaui_pcs_align_change++;
 | |
| 	if (cause & F_XGM_INT) {
 | |
| 		t3_set_reg_field(adap,
 | |
| 				 A_XGM_INT_ENABLE + mac->offset,
 | |
| 				 F_XGM_INT, 0);
 | |
| 		mac->stats.link_faults++;
 | |
| 
 | |
| 		t3_os_link_fault_handler(adap, idx);
 | |
| 	}
 | |
| 
 | |
| 	t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
 | |
| 
 | |
| 	if (cause & XGM_INTR_FATAL)
 | |
| 		t3_fatal_err(adap);
 | |
| 
 | |
| 	return cause != 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt handler for PHY events.
 | |
|  */
 | |
| int t3_phy_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
 | |
| 
 | |
| 	for_each_port(adapter, i) {
 | |
| 		struct port_info *p = adap2pinfo(adapter, i);
 | |
| 
 | |
| 		if (!(p->phy.caps & SUPPORTED_IRQ))
 | |
| 			continue;
 | |
| 
 | |
| 		if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
 | |
| 			int phy_cause = p->phy.ops->intr_handler(&p->phy);
 | |
| 
 | |
| 			if (phy_cause & cphy_cause_link_change)
 | |
| 				t3_link_changed(adapter, i);
 | |
| 			if (phy_cause & cphy_cause_fifo_error)
 | |
| 				p->phy.fifo_errors++;
 | |
| 			if (phy_cause & cphy_cause_module_change)
 | |
| 				t3_os_phymod_changed(adapter, i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * T3 slow path (non-data) interrupt handler.
 | |
|  */
 | |
| int t3_slow_intr_handler(struct adapter *adapter)
 | |
| {
 | |
| 	u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
 | |
| 
 | |
| 	cause &= adapter->slow_intr_mask;
 | |
| 	if (!cause)
 | |
| 		return 0;
 | |
| 	if (cause & F_PCIM0) {
 | |
| 		if (is_pcie(adapter))
 | |
| 			pcie_intr_handler(adapter);
 | |
| 		else
 | |
| 			pci_intr_handler(adapter);
 | |
| 	}
 | |
| 	if (cause & F_SGE3)
 | |
| 		t3_sge_err_intr_handler(adapter);
 | |
| 	if (cause & F_MC7_PMRX)
 | |
| 		mc7_intr_handler(&adapter->pmrx);
 | |
| 	if (cause & F_MC7_PMTX)
 | |
| 		mc7_intr_handler(&adapter->pmtx);
 | |
| 	if (cause & F_MC7_CM)
 | |
| 		mc7_intr_handler(&adapter->cm);
 | |
| 	if (cause & F_CIM)
 | |
| 		cim_intr_handler(adapter);
 | |
| 	if (cause & F_TP1)
 | |
| 		tp_intr_handler(adapter);
 | |
| 	if (cause & F_ULP2_RX)
 | |
| 		ulprx_intr_handler(adapter);
 | |
| 	if (cause & F_ULP2_TX)
 | |
| 		ulptx_intr_handler(adapter);
 | |
| 	if (cause & F_PM1_RX)
 | |
| 		pmrx_intr_handler(adapter);
 | |
| 	if (cause & F_PM1_TX)
 | |
| 		pmtx_intr_handler(adapter);
 | |
| 	if (cause & F_CPL_SWITCH)
 | |
| 		cplsw_intr_handler(adapter);
 | |
| 	if (cause & F_MPS0)
 | |
| 		mps_intr_handler(adapter);
 | |
| 	if (cause & F_MC5A)
 | |
| 		t3_mc5_intr_handler(&adapter->mc5);
 | |
| 	if (cause & F_XGMAC0_0)
 | |
| 		mac_intr_handler(adapter, 0);
 | |
| 	if (cause & F_XGMAC0_1)
 | |
| 		mac_intr_handler(adapter, 1);
 | |
| 	if (cause & F_T3DBG)
 | |
| 		t3_os_ext_intr_handler(adapter);
 | |
| 
 | |
| 	/* Clear the interrupts just processed. */
 | |
| 	t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
 | |
| 	t3_read_reg(adapter, A_PL_INT_CAUSE0);	/* flush */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static unsigned int calc_gpio_intr(struct adapter *adap)
 | |
| {
 | |
| 	unsigned int i, gpi_intr = 0;
 | |
| 
 | |
| 	for_each_port(adap, i)
 | |
| 		if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
 | |
| 		    adapter_info(adap)->gpio_intr[i])
 | |
| 			gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
 | |
| 	return gpi_intr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_intr_enable - enable interrupts
 | |
|  *	@adapter: the adapter whose interrupts should be enabled
 | |
|  *
 | |
|  *	Enable interrupts by setting the interrupt enable registers of the
 | |
|  *	various HW modules and then enabling the top-level interrupt
 | |
|  *	concentrator.
 | |
|  */
 | |
| void t3_intr_enable(struct adapter *adapter)
 | |
| {
 | |
| 	static const struct addr_val_pair intr_en_avp[] = {
 | |
| 		{A_SG_INT_ENABLE, SGE_INTR_MASK},
 | |
| 		{A_MC7_INT_ENABLE, MC7_INTR_MASK},
 | |
| 		{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
 | |
| 		 MC7_INTR_MASK},
 | |
| 		{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
 | |
| 		 MC7_INTR_MASK},
 | |
| 		{A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
 | |
| 		{A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
 | |
| 		{A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
 | |
| 		{A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
 | |
| 		{A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
 | |
| 		{A_MPS_INT_ENABLE, MPS_INTR_MASK},
 | |
| 	};
 | |
| 
 | |
| 	adapter->slow_intr_mask = PL_INTR_MASK;
 | |
| 
 | |
| 	t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
 | |
| 	t3_write_reg(adapter, A_TP_INT_ENABLE,
 | |
| 		     adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
 | |
| 
 | |
| 	if (adapter->params.rev > 0) {
 | |
| 		t3_write_reg(adapter, A_CPL_INTR_ENABLE,
 | |
| 			     CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
 | |
| 		t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
 | |
| 			     ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
 | |
| 			     F_PBL_BOUND_ERR_CH1);
 | |
| 	} else {
 | |
| 		t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
 | |
| 		t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
 | |
| 	}
 | |
| 
 | |
| 	t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
 | |
| 
 | |
| 	if (is_pcie(adapter))
 | |
| 		t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
 | |
| 	else
 | |
| 		t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
 | |
| 	t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
 | |
| 	t3_read_reg(adapter, A_PL_INT_ENABLE0);	/* flush */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_intr_disable - disable a card's interrupts
 | |
|  *	@adapter: the adapter whose interrupts should be disabled
 | |
|  *
 | |
|  *	Disable interrupts.  We only disable the top-level interrupt
 | |
|  *	concentrator and the SGE data interrupts.
 | |
|  */
 | |
| void t3_intr_disable(struct adapter *adapter)
 | |
| {
 | |
| 	t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
 | |
| 	t3_read_reg(adapter, A_PL_INT_ENABLE0);	/* flush */
 | |
| 	adapter->slow_intr_mask = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_intr_clear - clear all interrupts
 | |
|  *	@adapter: the adapter whose interrupts should be cleared
 | |
|  *
 | |
|  *	Clears all interrupts.
 | |
|  */
 | |
| void t3_intr_clear(struct adapter *adapter)
 | |
| {
 | |
| 	static const unsigned int cause_reg_addr[] = {
 | |
| 		A_SG_INT_CAUSE,
 | |
| 		A_SG_RSPQ_FL_STATUS,
 | |
| 		A_PCIX_INT_CAUSE,
 | |
| 		A_MC7_INT_CAUSE,
 | |
| 		A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
 | |
| 		A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
 | |
| 		A_CIM_HOST_INT_CAUSE,
 | |
| 		A_TP_INT_CAUSE,
 | |
| 		A_MC5_DB_INT_CAUSE,
 | |
| 		A_ULPRX_INT_CAUSE,
 | |
| 		A_ULPTX_INT_CAUSE,
 | |
| 		A_CPL_INTR_CAUSE,
 | |
| 		A_PM1_TX_INT_CAUSE,
 | |
| 		A_PM1_RX_INT_CAUSE,
 | |
| 		A_MPS_INT_CAUSE,
 | |
| 		A_T3DBG_INT_CAUSE,
 | |
| 	};
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Clear PHY and MAC interrupts for each port. */
 | |
| 	for_each_port(adapter, i)
 | |
| 	    t3_port_intr_clear(adapter, i);
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
 | |
| 		t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
 | |
| 
 | |
| 	if (is_pcie(adapter))
 | |
| 		t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
 | |
| 	t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
 | |
| 	t3_read_reg(adapter, A_PL_INT_CAUSE0);	/* flush */
 | |
| }
 | |
| 
 | |
| void t3_xgm_intr_enable(struct adapter *adapter, int idx)
 | |
| {
 | |
| 	struct port_info *pi = adap2pinfo(adapter, idx);
 | |
| 
 | |
| 	t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
 | |
| 		     XGM_EXTRA_INTR_MASK);
 | |
| }
 | |
| 
 | |
| void t3_xgm_intr_disable(struct adapter *adapter, int idx)
 | |
| {
 | |
| 	struct port_info *pi = adap2pinfo(adapter, idx);
 | |
| 
 | |
| 	t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
 | |
| 		     0x7ff);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_port_intr_enable - enable port-specific interrupts
 | |
|  *	@adapter: associated adapter
 | |
|  *	@idx: index of port whose interrupts should be enabled
 | |
|  *
 | |
|  *	Enable port-specific (i.e., MAC and PHY) interrupts for the given
 | |
|  *	adapter port.
 | |
|  */
 | |
| void t3_port_intr_enable(struct adapter *adapter, int idx)
 | |
| {
 | |
| 	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
 | |
| 
 | |
| 	t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
 | |
| 	t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
 | |
| 	phy->ops->intr_enable(phy);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_port_intr_disable - disable port-specific interrupts
 | |
|  *	@adapter: associated adapter
 | |
|  *	@idx: index of port whose interrupts should be disabled
 | |
|  *
 | |
|  *	Disable port-specific (i.e., MAC and PHY) interrupts for the given
 | |
|  *	adapter port.
 | |
|  */
 | |
| void t3_port_intr_disable(struct adapter *adapter, int idx)
 | |
| {
 | |
| 	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
 | |
| 
 | |
| 	t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
 | |
| 	t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
 | |
| 	phy->ops->intr_disable(phy);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_port_intr_clear - clear port-specific interrupts
 | |
|  *	@adapter: associated adapter
 | |
|  *	@idx: index of port whose interrupts to clear
 | |
|  *
 | |
|  *	Clear port-specific (i.e., MAC and PHY) interrupts for the given
 | |
|  *	adapter port.
 | |
|  */
 | |
| void t3_port_intr_clear(struct adapter *adapter, int idx)
 | |
| {
 | |
| 	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
 | |
| 
 | |
| 	t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
 | |
| 	t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
 | |
| 	phy->ops->intr_clear(phy);
 | |
| }
 | |
| 
 | |
| #define SG_CONTEXT_CMD_ATTEMPTS 100
 | |
| 
 | |
| /**
 | |
|  * 	t3_sge_write_context - write an SGE context
 | |
|  * 	@adapter: the adapter
 | |
|  * 	@id: the context id
 | |
|  * 	@type: the context type
 | |
|  *
 | |
|  * 	Program an SGE context with the values already loaded in the
 | |
|  * 	CONTEXT_DATA? registers.
 | |
|  */
 | |
| static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
 | |
| 				unsigned int type)
 | |
| {
 | |
| 	if (type == F_RESPONSEQ) {
 | |
| 		/*
 | |
| 		 * Can't write the Response Queue Context bits for
 | |
| 		 * Interrupt Armed or the Reserve bits after the chip
 | |
| 		 * has been initialized out of reset.  Writing to these
 | |
| 		 * bits can confuse the hardware.
 | |
| 		 */
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
 | |
| 	} else {
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
 | |
| 	}
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
 | |
| 		     V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
 | |
| 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
 | |
| 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	clear_sge_ctxt - completely clear an SGE context
 | |
|  *	@adapter: the adapter
 | |
|  *	@id: the context id
 | |
|  *	@type: the context type
 | |
|  *
 | |
|  *	Completely clear an SGE context.  Used predominantly at post-reset
 | |
|  *	initialization.  Note in particular that we don't skip writing to any
 | |
|  *	"sensitive bits" in the contexts the way that t3_sge_write_context()
 | |
|  *	does ...
 | |
|  */
 | |
| static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
 | |
| 			  unsigned int type)
 | |
| {
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
 | |
| 	t3_write_reg(adap, A_SG_CONTEXT_CMD,
 | |
| 		     V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
 | |
| 	return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
 | |
| 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_init_ecntxt - initialize an SGE egress context
 | |
|  *	@adapter: the adapter to configure
 | |
|  *	@id: the context id
 | |
|  *	@gts_enable: whether to enable GTS for the context
 | |
|  *	@type: the egress context type
 | |
|  *	@respq: associated response queue
 | |
|  *	@base_addr: base address of queue
 | |
|  *	@size: number of queue entries
 | |
|  *	@token: uP token
 | |
|  *	@gen: initial generation value for the context
 | |
|  *	@cidx: consumer pointer
 | |
|  *
 | |
|  *	Initialize an SGE egress context and make it ready for use.  If the
 | |
|  *	platform allows concurrent context operations, the caller is
 | |
|  *	responsible for appropriate locking.
 | |
|  */
 | |
| int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
 | |
| 		       enum sge_context_type type, int respq, u64 base_addr,
 | |
| 		       unsigned int size, unsigned int token, int gen,
 | |
| 		       unsigned int cidx)
 | |
| {
 | |
| 	unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
 | |
| 
 | |
| 	if (base_addr & 0xfff)	/* must be 4K aligned */
 | |
| 		return -EINVAL;
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	base_addr >>= 12;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
 | |
| 		     V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
 | |
| 		     V_EC_BASE_LO(base_addr & 0xffff));
 | |
| 	base_addr >>= 16;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
 | |
| 	base_addr >>= 32;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
 | |
| 		     V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
 | |
| 		     V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
 | |
| 		     F_EC_VALID);
 | |
| 	return t3_sge_write_context(adapter, id, F_EGRESS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_init_flcntxt - initialize an SGE free-buffer list context
 | |
|  *	@adapter: the adapter to configure
 | |
|  *	@id: the context id
 | |
|  *	@gts_enable: whether to enable GTS for the context
 | |
|  *	@base_addr: base address of queue
 | |
|  *	@size: number of queue entries
 | |
|  *	@bsize: size of each buffer for this queue
 | |
|  *	@cong_thres: threshold to signal congestion to upstream producers
 | |
|  *	@gen: initial generation value for the context
 | |
|  *	@cidx: consumer pointer
 | |
|  *
 | |
|  *	Initialize an SGE free list context and make it ready for use.  The
 | |
|  *	caller is responsible for ensuring only one context operation occurs
 | |
|  *	at a time.
 | |
|  */
 | |
| int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
 | |
| 			int gts_enable, u64 base_addr, unsigned int size,
 | |
| 			unsigned int bsize, unsigned int cong_thres, int gen,
 | |
| 			unsigned int cidx)
 | |
| {
 | |
| 	if (base_addr & 0xfff)	/* must be 4K aligned */
 | |
| 		return -EINVAL;
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	base_addr >>= 12;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
 | |
| 	base_addr >>= 32;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
 | |
| 		     V_FL_BASE_HI((u32) base_addr) |
 | |
| 		     V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
 | |
| 		     V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
 | |
| 		     V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
 | |
| 		     V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
 | |
| 		     V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
 | |
| 	return t3_sge_write_context(adapter, id, F_FREELIST);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_init_rspcntxt - initialize an SGE response queue context
 | |
|  *	@adapter: the adapter to configure
 | |
|  *	@id: the context id
 | |
|  *	@irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
 | |
|  *	@base_addr: base address of queue
 | |
|  *	@size: number of queue entries
 | |
|  *	@fl_thres: threshold for selecting the normal or jumbo free list
 | |
|  *	@gen: initial generation value for the context
 | |
|  *	@cidx: consumer pointer
 | |
|  *
 | |
|  *	Initialize an SGE response queue context and make it ready for use.
 | |
|  *	The caller is responsible for ensuring only one context operation
 | |
|  *	occurs at a time.
 | |
|  */
 | |
| int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
 | |
| 			 int irq_vec_idx, u64 base_addr, unsigned int size,
 | |
| 			 unsigned int fl_thres, int gen, unsigned int cidx)
 | |
| {
 | |
| 	unsigned int intr = 0;
 | |
| 
 | |
| 	if (base_addr & 0xfff)	/* must be 4K aligned */
 | |
| 		return -EINVAL;
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	base_addr >>= 12;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
 | |
| 		     V_CQ_INDEX(cidx));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
 | |
| 	base_addr >>= 32;
 | |
| 	if (irq_vec_idx >= 0)
 | |
| 		intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
 | |
| 		     V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
 | |
| 	return t3_sge_write_context(adapter, id, F_RESPONSEQ);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_init_cqcntxt - initialize an SGE completion queue context
 | |
|  *	@adapter: the adapter to configure
 | |
|  *	@id: the context id
 | |
|  *	@base_addr: base address of queue
 | |
|  *	@size: number of queue entries
 | |
|  *	@rspq: response queue for async notifications
 | |
|  *	@ovfl_mode: CQ overflow mode
 | |
|  *	@credits: completion queue credits
 | |
|  *	@credit_thres: the credit threshold
 | |
|  *
 | |
|  *	Initialize an SGE completion queue context and make it ready for use.
 | |
|  *	The caller is responsible for ensuring only one context operation
 | |
|  *	occurs at a time.
 | |
|  */
 | |
| int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
 | |
| 			unsigned int size, int rspq, int ovfl_mode,
 | |
| 			unsigned int credits, unsigned int credit_thres)
 | |
| {
 | |
| 	if (base_addr & 0xfff)	/* must be 4K aligned */
 | |
| 		return -EINVAL;
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	base_addr >>= 12;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
 | |
| 	base_addr >>= 32;
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
 | |
| 		     V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
 | |
| 		     V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
 | |
| 		     V_CQ_ERR(ovfl_mode));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
 | |
| 		     V_CQ_CREDIT_THRES(credit_thres));
 | |
| 	return t3_sge_write_context(adapter, id, F_CQ);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_enable_ecntxt - enable/disable an SGE egress context
 | |
|  *	@adapter: the adapter
 | |
|  *	@id: the egress context id
 | |
|  *	@enable: enable (1) or disable (0) the context
 | |
|  *
 | |
|  *	Enable or disable an SGE egress context.  The caller is responsible for
 | |
|  *	ensuring only one context operation occurs at a time.
 | |
|  */
 | |
| int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
 | |
| {
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
 | |
| 		     V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
 | |
| 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
 | |
| 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_disable_fl - disable an SGE free-buffer list
 | |
|  *	@adapter: the adapter
 | |
|  *	@id: the free list context id
 | |
|  *
 | |
|  *	Disable an SGE free-buffer list.  The caller is responsible for
 | |
|  *	ensuring only one context operation occurs at a time.
 | |
|  */
 | |
| int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
 | |
| {
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
 | |
| 		     V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
 | |
| 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
 | |
| 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_disable_rspcntxt - disable an SGE response queue
 | |
|  *	@adapter: the adapter
 | |
|  *	@id: the response queue context id
 | |
|  *
 | |
|  *	Disable an SGE response queue.  The caller is responsible for
 | |
|  *	ensuring only one context operation occurs at a time.
 | |
|  */
 | |
| int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
 | |
| {
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
 | |
| 		     V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
 | |
| 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
 | |
| 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_disable_cqcntxt - disable an SGE completion queue
 | |
|  *	@adapter: the adapter
 | |
|  *	@id: the completion queue context id
 | |
|  *
 | |
|  *	Disable an SGE completion queue.  The caller is responsible for
 | |
|  *	ensuring only one context operation occurs at a time.
 | |
|  */
 | |
| int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
 | |
| {
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
 | |
| 		     V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
 | |
| 	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
 | |
| 			       0, SG_CONTEXT_CMD_ATTEMPTS, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_sge_cqcntxt_op - perform an operation on a completion queue context
 | |
|  *	@adapter: the adapter
 | |
|  *	@id: the context id
 | |
|  *	@op: the operation to perform
 | |
|  *
 | |
|  *	Perform the selected operation on an SGE completion queue context.
 | |
|  *	The caller is responsible for ensuring only one context operation
 | |
|  *	occurs at a time.
 | |
|  */
 | |
| int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
 | |
| 		      unsigned int credits)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
 | |
| 		     V_CONTEXT(id) | F_CQ);
 | |
| 	if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
 | |
| 				0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (op >= 2 && op < 7) {
 | |
| 		if (adapter->params.rev > 0)
 | |
| 			return G_CQ_INDEX(val);
 | |
| 
 | |
| 		t3_write_reg(adapter, A_SG_CONTEXT_CMD,
 | |
| 			     V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
 | |
| 		if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
 | |
| 				    F_CONTEXT_CMD_BUSY, 0,
 | |
| 				    SG_CONTEXT_CMD_ATTEMPTS, 1))
 | |
| 			return -EIO;
 | |
| 		return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	t3_sge_read_context - read an SGE context
 | |
|  * 	@type: the context type
 | |
|  * 	@adapter: the adapter
 | |
|  * 	@id: the context id
 | |
|  * 	@data: holds the retrieved context
 | |
|  *
 | |
|  * 	Read an SGE egress context.  The caller is responsible for ensuring
 | |
|  * 	only one context operation occurs at a time.
 | |
|  */
 | |
| static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
 | |
| 			       unsigned int id, u32 data[4])
 | |
| {
 | |
| 	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
 | |
| 		     V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
 | |
| 	if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
 | |
| 			    SG_CONTEXT_CMD_ATTEMPTS, 1))
 | |
| 		return -EIO;
 | |
| 	data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
 | |
| 	data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
 | |
| 	data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
 | |
| 	data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	t3_sge_read_ecntxt - read an SGE egress context
 | |
|  * 	@adapter: the adapter
 | |
|  * 	@id: the context id
 | |
|  * 	@data: holds the retrieved context
 | |
|  *
 | |
|  * 	Read an SGE egress context.  The caller is responsible for ensuring
 | |
|  * 	only one context operation occurs at a time.
 | |
|  */
 | |
| int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
 | |
| {
 | |
| 	if (id >= 65536)
 | |
| 		return -EINVAL;
 | |
| 	return t3_sge_read_context(F_EGRESS, adapter, id, data);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	t3_sge_read_cq - read an SGE CQ context
 | |
|  * 	@adapter: the adapter
 | |
|  * 	@id: the context id
 | |
|  * 	@data: holds the retrieved context
 | |
|  *
 | |
|  * 	Read an SGE CQ context.  The caller is responsible for ensuring
 | |
|  * 	only one context operation occurs at a time.
 | |
|  */
 | |
| int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
 | |
| {
 | |
| 	if (id >= 65536)
 | |
| 		return -EINVAL;
 | |
| 	return t3_sge_read_context(F_CQ, adapter, id, data);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	t3_sge_read_fl - read an SGE free-list context
 | |
|  * 	@adapter: the adapter
 | |
|  * 	@id: the context id
 | |
|  * 	@data: holds the retrieved context
 | |
|  *
 | |
|  * 	Read an SGE free-list context.  The caller is responsible for ensuring
 | |
|  * 	only one context operation occurs at a time.
 | |
|  */
 | |
| int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
 | |
| {
 | |
| 	if (id >= SGE_QSETS * 2)
 | |
| 		return -EINVAL;
 | |
| 	return t3_sge_read_context(F_FREELIST, adapter, id, data);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	t3_sge_read_rspq - read an SGE response queue context
 | |
|  * 	@adapter: the adapter
 | |
|  * 	@id: the context id
 | |
|  * 	@data: holds the retrieved context
 | |
|  *
 | |
|  * 	Read an SGE response queue context.  The caller is responsible for
 | |
|  * 	ensuring only one context operation occurs at a time.
 | |
|  */
 | |
| int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
 | |
| {
 | |
| 	if (id >= SGE_QSETS)
 | |
| 		return -EINVAL;
 | |
| 	return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_config_rss - configure Rx packet steering
 | |
|  *	@adapter: the adapter
 | |
|  *	@rss_config: RSS settings (written to TP_RSS_CONFIG)
 | |
|  *	@cpus: values for the CPU lookup table (0xff terminated)
 | |
|  *	@rspq: values for the response queue lookup table (0xffff terminated)
 | |
|  *
 | |
|  *	Programs the receive packet steering logic.  @cpus and @rspq provide
 | |
|  *	the values for the CPU and response queue lookup tables.  If they
 | |
|  *	provide fewer values than the size of the tables the supplied values
 | |
|  *	are used repeatedly until the tables are fully populated.
 | |
|  */
 | |
| void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
 | |
| 		   const u8 * cpus, const u16 *rspq)
 | |
| {
 | |
| 	int i, j, cpu_idx = 0, q_idx = 0;
 | |
| 
 | |
| 	if (cpus)
 | |
| 		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
 | |
| 			u32 val = i << 16;
 | |
| 
 | |
| 			for (j = 0; j < 2; ++j) {
 | |
| 				val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
 | |
| 				if (cpus[cpu_idx] == 0xff)
 | |
| 					cpu_idx = 0;
 | |
| 			}
 | |
| 			t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
 | |
| 		}
 | |
| 
 | |
| 	if (rspq)
 | |
| 		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
 | |
| 			t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
 | |
| 				     (i << 16) | rspq[q_idx++]);
 | |
| 			if (rspq[q_idx] == 0xffff)
 | |
| 				q_idx = 0;
 | |
| 		}
 | |
| 
 | |
| 	t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_read_rss - read the contents of the RSS tables
 | |
|  *	@adapter: the adapter
 | |
|  *	@lkup: holds the contents of the RSS lookup table
 | |
|  *	@map: holds the contents of the RSS map table
 | |
|  *
 | |
|  *	Reads the contents of the receive packet steering tables.
 | |
|  */
 | |
| int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (lkup)
 | |
| 		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
 | |
| 			t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
 | |
| 				     0xffff0000 | i);
 | |
| 			val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
 | |
| 			if (!(val & 0x80000000))
 | |
| 				return -EAGAIN;
 | |
| 			*lkup++ = val;
 | |
| 			*lkup++ = (val >> 8);
 | |
| 		}
 | |
| 
 | |
| 	if (map)
 | |
| 		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
 | |
| 			t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
 | |
| 				     0xffff0000 | i);
 | |
| 			val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
 | |
| 			if (!(val & 0x80000000))
 | |
| 				return -EAGAIN;
 | |
| 			*map++ = val;
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_tp_set_offload_mode - put TP in NIC/offload mode
 | |
|  *	@adap: the adapter
 | |
|  *	@enable: 1 to select offload mode, 0 for regular NIC
 | |
|  *
 | |
|  *	Switches TP to NIC/offload mode.
 | |
|  */
 | |
| void t3_tp_set_offload_mode(struct adapter *adap, int enable)
 | |
| {
 | |
| 	if (is_offload(adap) || !enable)
 | |
| 		t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
 | |
| 				 V_NICMODE(!enable));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	pm_num_pages - calculate the number of pages of the payload memory
 | |
|  *	@mem_size: the size of the payload memory
 | |
|  *	@pg_size: the size of each payload memory page
 | |
|  *
 | |
|  *	Calculate the number of pages, each of the given size, that fit in a
 | |
|  *	memory of the specified size, respecting the HW requirement that the
 | |
|  *	number of pages must be a multiple of 24.
 | |
|  */
 | |
| static inline unsigned int pm_num_pages(unsigned int mem_size,
 | |
| 					unsigned int pg_size)
 | |
| {
 | |
| 	unsigned int n = mem_size / pg_size;
 | |
| 
 | |
| 	return n - n % 24;
 | |
| }
 | |
| 
 | |
| #define mem_region(adap, start, size, reg) \
 | |
| 	t3_write_reg((adap), A_ ## reg, (start)); \
 | |
| 	start += size
 | |
| 
 | |
| /**
 | |
|  *	partition_mem - partition memory and configure TP memory settings
 | |
|  *	@adap: the adapter
 | |
|  *	@p: the TP parameters
 | |
|  *
 | |
|  *	Partitions context and payload memory and configures TP's memory
 | |
|  *	registers.
 | |
|  */
 | |
| static void partition_mem(struct adapter *adap, const struct tp_params *p)
 | |
| {
 | |
| 	unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
 | |
| 	unsigned int timers = 0, timers_shift = 22;
 | |
| 
 | |
| 	if (adap->params.rev > 0) {
 | |
| 		if (tids <= 16 * 1024) {
 | |
| 			timers = 1;
 | |
| 			timers_shift = 16;
 | |
| 		} else if (tids <= 64 * 1024) {
 | |
| 			timers = 2;
 | |
| 			timers_shift = 18;
 | |
| 		} else if (tids <= 256 * 1024) {
 | |
| 			timers = 3;
 | |
| 			timers_shift = 20;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	t3_write_reg(adap, A_TP_PMM_SIZE,
 | |
| 		     p->chan_rx_size | (p->chan_tx_size >> 16));
 | |
| 
 | |
| 	t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
 | |
| 	t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
 | |
| 	t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
 | |
| 	t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
 | |
| 			 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
 | |
| 
 | |
| 	t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
 | |
| 	t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
 | |
| 	t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
 | |
| 
 | |
| 	pstructs = p->rx_num_pgs + p->tx_num_pgs;
 | |
| 	/* Add a bit of headroom and make multiple of 24 */
 | |
| 	pstructs += 48;
 | |
| 	pstructs -= pstructs % 24;
 | |
| 	t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
 | |
| 
 | |
| 	m = tids * TCB_SIZE;
 | |
| 	mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
 | |
| 	mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
 | |
| 	t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
 | |
| 	m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
 | |
| 	mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
 | |
| 	mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
 | |
| 	mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
 | |
| 	mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
 | |
| 
 | |
| 	m = (m + 4095) & ~0xfff;
 | |
| 	t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
 | |
| 	t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
 | |
| 
 | |
| 	tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
 | |
| 	m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
 | |
| 	    adap->params.mc5.nfilters - adap->params.mc5.nroutes;
 | |
| 	if (tids < m)
 | |
| 		adap->params.mc5.nservers += m - tids;
 | |
| }
 | |
| 
 | |
| static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
 | |
| 				  u32 val)
 | |
| {
 | |
| 	t3_write_reg(adap, A_TP_PIO_ADDR, addr);
 | |
| 	t3_write_reg(adap, A_TP_PIO_DATA, val);
 | |
| }
 | |
| 
 | |
| static void tp_config(struct adapter *adap, const struct tp_params *p)
 | |
| {
 | |
| 	t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
 | |
| 		     F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
 | |
| 		     F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
 | |
| 	t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
 | |
| 		     F_MTUENABLE | V_WINDOWSCALEMODE(1) |
 | |
| 		     V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
 | |
| 	t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
 | |
| 		     V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
 | |
| 		     V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
 | |
| 		     F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
 | |
| 	t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
 | |
| 			 F_IPV6ENABLE | F_NICMODE);
 | |
| 	t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
 | |
| 	t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
 | |
| 	t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
 | |
| 			 adap->params.rev > 0 ? F_ENABLEESND :
 | |
| 			 F_T3A_ENABLEESND);
 | |
| 
 | |
| 	t3_set_reg_field(adap, A_TP_PC_CONFIG,
 | |
| 			 F_ENABLEEPCMDAFULL,
 | |
| 			 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
 | |
| 			 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
 | |
| 	t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
 | |
| 			 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
 | |
| 			 F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
 | |
| 	t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
 | |
| 	t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
 | |
| 
 | |
| 	if (adap->params.rev > 0) {
 | |
| 		tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
 | |
| 		t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
 | |
| 				 F_TXPACEAUTO);
 | |
| 		t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
 | |
| 		t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
 | |
| 	} else
 | |
| 		t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
 | |
| 
 | |
| 	if (adap->params.rev == T3_REV_C)
 | |
| 		t3_set_reg_field(adap, A_TP_PC_CONFIG,
 | |
| 				 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
 | |
| 				 V_TABLELATENCYDELTA(4));
 | |
| 
 | |
| 	t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
 | |
| 	t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
 | |
| 	t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
 | |
| 	t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
 | |
| }
 | |
| 
 | |
| /* Desired TP timer resolution in usec */
 | |
| #define TP_TMR_RES 50
 | |
| 
 | |
| /* TCP timer values in ms */
 | |
| #define TP_DACK_TIMER 50
 | |
| #define TP_RTO_MIN    250
 | |
| 
 | |
| /**
 | |
|  *	tp_set_timers - set TP timing parameters
 | |
|  *	@adap: the adapter to set
 | |
|  *	@core_clk: the core clock frequency in Hz
 | |
|  *
 | |
|  *	Set TP's timing parameters, such as the various timer resolutions and
 | |
|  *	the TCP timer values.
 | |
|  */
 | |
| static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
 | |
| {
 | |
| 	unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
 | |
| 	unsigned int dack_re = fls(core_clk / 5000) - 1;	/* 200us */
 | |
| 	unsigned int tstamp_re = fls(core_clk / 1000);	/* 1ms, at least */
 | |
| 	unsigned int tps = core_clk >> tre;
 | |
| 
 | |
| 	t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
 | |
| 		     V_DELAYEDACKRESOLUTION(dack_re) |
 | |
| 		     V_TIMESTAMPRESOLUTION(tstamp_re));
 | |
| 	t3_write_reg(adap, A_TP_DACK_TIMER,
 | |
| 		     (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
 | |
| 	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
 | |
| 	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
 | |
| 	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
 | |
| 	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
 | |
| 	t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
 | |
| 		     V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
 | |
| 		     V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
 | |
| 		     V_KEEPALIVEMAX(9));
 | |
| 
 | |
| #define SECONDS * tps
 | |
| 
 | |
| 	t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
 | |
| 	t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
 | |
| 	t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
 | |
| 	t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
 | |
| 	t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
 | |
| 	t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
 | |
| 	t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
 | |
| 	t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
 | |
| 	t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
 | |
| 
 | |
| #undef SECONDS
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_tp_set_coalescing_size - set receive coalescing size
 | |
|  *	@adap: the adapter
 | |
|  *	@size: the receive coalescing size
 | |
|  *	@psh: whether a set PSH bit should deliver coalesced data
 | |
|  *
 | |
|  *	Set the receive coalescing size and PSH bit handling.
 | |
|  */
 | |
| int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (size > MAX_RX_COALESCING_LEN)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	val = t3_read_reg(adap, A_TP_PARA_REG3);
 | |
| 	val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
 | |
| 
 | |
| 	if (size) {
 | |
| 		val |= F_RXCOALESCEENABLE;
 | |
| 		if (psh)
 | |
| 			val |= F_RXCOALESCEPSHEN;
 | |
| 		size = min(MAX_RX_COALESCING_LEN, size);
 | |
| 		t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
 | |
| 			     V_MAXRXDATA(MAX_RX_COALESCING_LEN));
 | |
| 	}
 | |
| 	t3_write_reg(adap, A_TP_PARA_REG3, val);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_tp_set_max_rxsize - set the max receive size
 | |
|  *	@adap: the adapter
 | |
|  *	@size: the max receive size
 | |
|  *
 | |
|  *	Set TP's max receive size.  This is the limit that applies when
 | |
|  *	receive coalescing is disabled.
 | |
|  */
 | |
| void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
 | |
| {
 | |
| 	t3_write_reg(adap, A_TP_PARA_REG7,
 | |
| 		     V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
 | |
| }
 | |
| 
 | |
| static void init_mtus(unsigned short mtus[])
 | |
| {
 | |
| 	/*
 | |
| 	 * See draft-mathis-plpmtud-00.txt for the values.  The min is 88 so
 | |
| 	 * it can accomodate max size TCP/IP headers when SACK and timestamps
 | |
| 	 * are enabled and still have at least 8 bytes of payload.
 | |
| 	 */
 | |
| 	mtus[0] = 88;
 | |
| 	mtus[1] = 88;
 | |
| 	mtus[2] = 256;
 | |
| 	mtus[3] = 512;
 | |
| 	mtus[4] = 576;
 | |
| 	mtus[5] = 1024;
 | |
| 	mtus[6] = 1280;
 | |
| 	mtus[7] = 1492;
 | |
| 	mtus[8] = 1500;
 | |
| 	mtus[9] = 2002;
 | |
| 	mtus[10] = 2048;
 | |
| 	mtus[11] = 4096;
 | |
| 	mtus[12] = 4352;
 | |
| 	mtus[13] = 8192;
 | |
| 	mtus[14] = 9000;
 | |
| 	mtus[15] = 9600;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initial congestion control parameters.
 | |
|  */
 | |
| static void init_cong_ctrl(unsigned short *a, unsigned short *b)
 | |
| {
 | |
| 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
 | |
| 	a[9] = 2;
 | |
| 	a[10] = 3;
 | |
| 	a[11] = 4;
 | |
| 	a[12] = 5;
 | |
| 	a[13] = 6;
 | |
| 	a[14] = 7;
 | |
| 	a[15] = 8;
 | |
| 	a[16] = 9;
 | |
| 	a[17] = 10;
 | |
| 	a[18] = 14;
 | |
| 	a[19] = 17;
 | |
| 	a[20] = 21;
 | |
| 	a[21] = 25;
 | |
| 	a[22] = 30;
 | |
| 	a[23] = 35;
 | |
| 	a[24] = 45;
 | |
| 	a[25] = 60;
 | |
| 	a[26] = 80;
 | |
| 	a[27] = 100;
 | |
| 	a[28] = 200;
 | |
| 	a[29] = 300;
 | |
| 	a[30] = 400;
 | |
| 	a[31] = 500;
 | |
| 
 | |
| 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
 | |
| 	b[9] = b[10] = 1;
 | |
| 	b[11] = b[12] = 2;
 | |
| 	b[13] = b[14] = b[15] = b[16] = 3;
 | |
| 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
 | |
| 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
 | |
| 	b[28] = b[29] = 6;
 | |
| 	b[30] = b[31] = 7;
 | |
| }
 | |
| 
 | |
| /* The minimum additive increment value for the congestion control table */
 | |
| #define CC_MIN_INCR 2U
 | |
| 
 | |
| /**
 | |
|  *	t3_load_mtus - write the MTU and congestion control HW tables
 | |
|  *	@adap: the adapter
 | |
|  *	@mtus: the unrestricted values for the MTU table
 | |
|  *	@alphs: the values for the congestion control alpha parameter
 | |
|  *	@beta: the values for the congestion control beta parameter
 | |
|  *	@mtu_cap: the maximum permitted effective MTU
 | |
|  *
 | |
|  *	Write the MTU table with the supplied MTUs capping each at &mtu_cap.
 | |
|  *	Update the high-speed congestion control table with the supplied alpha,
 | |
|  * 	beta, and MTUs.
 | |
|  */
 | |
| void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
 | |
| 		  unsigned short alpha[NCCTRL_WIN],
 | |
| 		  unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
 | |
| {
 | |
| 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
 | |
| 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
 | |
| 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
 | |
| 		28672, 40960, 57344, 81920, 114688, 163840, 229376
 | |
| 	};
 | |
| 
 | |
| 	unsigned int i, w;
 | |
| 
 | |
| 	for (i = 0; i < NMTUS; ++i) {
 | |
| 		unsigned int mtu = min(mtus[i], mtu_cap);
 | |
| 		unsigned int log2 = fls(mtu);
 | |
| 
 | |
| 		if (!(mtu & ((1 << log2) >> 2)))	/* round */
 | |
| 			log2--;
 | |
| 		t3_write_reg(adap, A_TP_MTU_TABLE,
 | |
| 			     (i << 24) | (log2 << 16) | mtu);
 | |
| 
 | |
| 		for (w = 0; w < NCCTRL_WIN; ++w) {
 | |
| 			unsigned int inc;
 | |
| 
 | |
| 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
 | |
| 				  CC_MIN_INCR);
 | |
| 
 | |
| 			t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
 | |
| 				     (w << 16) | (beta[w] << 13) | inc);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_read_hw_mtus - returns the values in the HW MTU table
 | |
|  *	@adap: the adapter
 | |
|  *	@mtus: where to store the HW MTU values
 | |
|  *
 | |
|  *	Reads the HW MTU table.
 | |
|  */
 | |
| void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NMTUS; ++i) {
 | |
| 		unsigned int val;
 | |
| 
 | |
| 		t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
 | |
| 		val = t3_read_reg(adap, A_TP_MTU_TABLE);
 | |
| 		mtus[i] = val & 0x3fff;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_get_cong_cntl_tab - reads the congestion control table
 | |
|  *	@adap: the adapter
 | |
|  *	@incr: where to store the alpha values
 | |
|  *
 | |
|  *	Reads the additive increments programmed into the HW congestion
 | |
|  *	control table.
 | |
|  */
 | |
| void t3_get_cong_cntl_tab(struct adapter *adap,
 | |
| 			  unsigned short incr[NMTUS][NCCTRL_WIN])
 | |
| {
 | |
| 	unsigned int mtu, w;
 | |
| 
 | |
| 	for (mtu = 0; mtu < NMTUS; ++mtu)
 | |
| 		for (w = 0; w < NCCTRL_WIN; ++w) {
 | |
| 			t3_write_reg(adap, A_TP_CCTRL_TABLE,
 | |
| 				     0xffff0000 | (mtu << 5) | w);
 | |
| 			incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
 | |
| 				       0x1fff;
 | |
| 		}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_tp_get_mib_stats - read TP's MIB counters
 | |
|  *	@adap: the adapter
 | |
|  *	@tps: holds the returned counter values
 | |
|  *
 | |
|  *	Returns the values of TP's MIB counters.
 | |
|  */
 | |
| void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
 | |
| {
 | |
| 	t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
 | |
| 			 sizeof(*tps) / sizeof(u32), 0);
 | |
| }
 | |
| 
 | |
| #define ulp_region(adap, name, start, len) \
 | |
| 	t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
 | |
| 	t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
 | |
| 		     (start) + (len) - 1); \
 | |
| 	start += len
 | |
| 
 | |
| #define ulptx_region(adap, name, start, len) \
 | |
| 	t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
 | |
| 	t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
 | |
| 		     (start) + (len) - 1)
 | |
| 
 | |
| static void ulp_config(struct adapter *adap, const struct tp_params *p)
 | |
| {
 | |
| 	unsigned int m = p->chan_rx_size;
 | |
| 
 | |
| 	ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
 | |
| 	ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
 | |
| 	ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
 | |
| 	ulp_region(adap, STAG, m, p->chan_rx_size / 4);
 | |
| 	ulp_region(adap, RQ, m, p->chan_rx_size / 4);
 | |
| 	ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
 | |
| 	ulp_region(adap, PBL, m, p->chan_rx_size / 4);
 | |
| 	t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_set_proto_sram - set the contents of the protocol sram
 | |
|  *	@adapter: the adapter
 | |
|  *	@data: the protocol image
 | |
|  *
 | |
|  *	Write the contents of the protocol SRAM.
 | |
|  */
 | |
| int t3_set_proto_sram(struct adapter *adap, const u8 *data)
 | |
| {
 | |
| 	int i;
 | |
| 	const __be32 *buf = (const __be32 *)data;
 | |
| 
 | |
| 	for (i = 0; i < PROTO_SRAM_LINES; i++) {
 | |
| 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
 | |
| 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
 | |
| 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
 | |
| 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
 | |
| 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
 | |
| 
 | |
| 		t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
 | |
| 		if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 	t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void t3_config_trace_filter(struct adapter *adapter,
 | |
| 			    const struct trace_params *tp, int filter_index,
 | |
| 			    int invert, int enable)
 | |
| {
 | |
| 	u32 addr, key[4], mask[4];
 | |
| 
 | |
| 	key[0] = tp->sport | (tp->sip << 16);
 | |
| 	key[1] = (tp->sip >> 16) | (tp->dport << 16);
 | |
| 	key[2] = tp->dip;
 | |
| 	key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
 | |
| 
 | |
| 	mask[0] = tp->sport_mask | (tp->sip_mask << 16);
 | |
| 	mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
 | |
| 	mask[2] = tp->dip_mask;
 | |
| 	mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
 | |
| 
 | |
| 	if (invert)
 | |
| 		key[3] |= (1 << 29);
 | |
| 	if (enable)
 | |
| 		key[3] |= (1 << 28);
 | |
| 
 | |
| 	addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
 | |
| 	tp_wr_indirect(adapter, addr++, key[0]);
 | |
| 	tp_wr_indirect(adapter, addr++, mask[0]);
 | |
| 	tp_wr_indirect(adapter, addr++, key[1]);
 | |
| 	tp_wr_indirect(adapter, addr++, mask[1]);
 | |
| 	tp_wr_indirect(adapter, addr++, key[2]);
 | |
| 	tp_wr_indirect(adapter, addr++, mask[2]);
 | |
| 	tp_wr_indirect(adapter, addr++, key[3]);
 | |
| 	tp_wr_indirect(adapter, addr, mask[3]);
 | |
| 	t3_read_reg(adapter, A_TP_PIO_DATA);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t3_config_sched - configure a HW traffic scheduler
 | |
|  *	@adap: the adapter
 | |
|  *	@kbps: target rate in Kbps
 | |
|  *	@sched: the scheduler index
 | |
|  *
 | |
|  *	Configure a HW scheduler for the target rate
 | |
|  */
 | |
| int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
 | |
| {
 | |
| 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
 | |
| 	unsigned int clk = adap->params.vpd.cclk * 1000;
 | |
| 	unsigned int selected_cpt = 0, selected_bpt = 0;
 | |
| 
 | |
| 	if (kbps > 0) {
 | |
| 		kbps *= 125;	/* -> bytes */
 | |
| 		for (cpt = 1; cpt <= 255; cpt++) {
 | |
| 			tps = clk / cpt;
 | |
| 			bpt = (kbps + tps / 2) / tps;
 | |
| 			if (bpt > 0 && bpt <= 255) {
 | |
| 				v = bpt * tps;
 | |
| 				delta = v >= kbps ? v - kbps : kbps - v;
 | |
| 				if (delta <= mindelta) {
 | |
| 					mindelta = delta;
 | |
| 					selected_cpt = cpt;
 | |
| 					selected_bpt = bpt;
 | |
| 				}
 | |
| 			} else if (selected_cpt)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (!selected_cpt)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	t3_write_reg(adap, A_TP_TM_PIO_ADDR,
 | |
| 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
 | |
| 	v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
 | |
| 	if (sched & 1)
 | |
| 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
 | |
| 	else
 | |
| 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
 | |
| 	t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tp_init(struct adapter *adap, const struct tp_params *p)
 | |
| {
 | |
| 	int busy = 0;
 | |
| 
 | |
| 	tp_config(adap, p);
 | |
| 	t3_set_vlan_accel(adap, 3, 0);
 | |
| 
 | |
| 	if (is_offload(adap)) {
 | |
| 		tp_set_timers(adap, adap->params.vpd.cclk * 1000);
 | |
| 		t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
 | |
| 		busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
 | |
| 				       0, 1000, 5);
 | |
| 		if (busy)
 | |
| 			CH_ERR(adap, "TP initialization timed out\n");
 | |
| 	}
 | |
| 
 | |
| 	if (!busy)
 | |
| 		t3_write_reg(adap, A_TP_RESET, F_TPRESET);
 | |
| 	return busy;
 | |
| }
 | |
| 
 | |
| int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
 | |
| {
 | |
| 	if (port_mask & ~((1 << adap->params.nports) - 1))
 | |
| 		return -EINVAL;
 | |
| 	t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
 | |
| 			 port_mask << S_PORT0ACTIVE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform the bits of HW initialization that are dependent on the Tx
 | |
|  * channels being used.
 | |
|  */
 | |
| static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (chan_map != 3) {                                 /* one channel */
 | |
| 		t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
 | |
| 		t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
 | |
| 		t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
 | |
| 			     (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
 | |
| 					      F_TPTXPORT1EN | F_PORT1ACTIVE));
 | |
| 		t3_write_reg(adap, A_PM1_TX_CFG,
 | |
| 			     chan_map == 1 ? 0xffffffff : 0);
 | |
| 	} else {                                             /* two channels */
 | |
| 		t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
 | |
| 		t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
 | |
| 		t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
 | |
| 			     V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
 | |
| 		t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
 | |
| 			     F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
 | |
| 			     F_ENFORCEPKT);
 | |
| 		t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
 | |
| 		t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
 | |
| 		t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
 | |
| 			     V_TX_MOD_QUEUE_REQ_MAP(0xaa));
 | |
| 		for (i = 0; i < 16; i++)
 | |
| 			t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
 | |
| 				     (i << 16) | 0x1010);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int calibrate_xgm(struct adapter *adapter)
 | |
| {
 | |
| 	if (uses_xaui(adapter)) {
 | |
| 		unsigned int v, i;
 | |
| 
 | |
| 		for (i = 0; i < 5; ++i) {
 | |
| 			t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
 | |
| 			t3_read_reg(adapter, A_XGM_XAUI_IMP);
 | |
| 			msleep(1);
 | |
| 			v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
 | |
| 			if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
 | |
| 				t3_write_reg(adapter, A_XGM_XAUI_IMP,
 | |
| 					     V_XAUIIMP(G_CALIMP(v) >> 2));
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 		CH_ERR(adapter, "MAC calibration failed\n");
 | |
| 		return -1;
 | |
| 	} else {
 | |
| 		t3_write_reg(adapter, A_XGM_RGMII_IMP,
 | |
| 			     V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
 | |
| 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
 | |
| 				 F_XGM_IMPSETUPDATE);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void calibrate_xgm_t3b(struct adapter *adapter)
 | |
| {
 | |
| 	if (!uses_xaui(adapter)) {
 | |
| 		t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
 | |
| 			     F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
 | |
| 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
 | |
| 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
 | |
| 				 F_XGM_IMPSETUPDATE);
 | |
| 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
 | |
| 				 0);
 | |
| 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
 | |
| 		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct mc7_timing_params {
 | |
| 	unsigned char ActToPreDly;
 | |
| 	unsigned char ActToRdWrDly;
 | |
| 	unsigned char PreCyc;
 | |
| 	unsigned char RefCyc[5];
 | |
| 	unsigned char BkCyc;
 | |
| 	unsigned char WrToRdDly;
 | |
| 	unsigned char RdToWrDly;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Write a value to a register and check that the write completed.  These
 | |
|  * writes normally complete in a cycle or two, so one read should suffice.
 | |
|  * The very first read exists to flush the posted write to the device.
 | |
|  */
 | |
| static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
 | |
| {
 | |
| 	t3_write_reg(adapter, addr, val);
 | |
| 	t3_read_reg(adapter, addr);	/* flush */
 | |
| 	if (!(t3_read_reg(adapter, addr) & F_BUSY))
 | |
| 		return 0;
 | |
| 	CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
 | |
| {
 | |
| 	static const unsigned int mc7_mode[] = {
 | |
| 		0x632, 0x642, 0x652, 0x432, 0x442
 | |
| 	};
 | |
| 	static const struct mc7_timing_params mc7_timings[] = {
 | |
| 		{12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
 | |
| 		{12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
 | |
| 		{12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
 | |
| 		{9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
 | |
| 		{9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
 | |
| 	};
 | |
| 
 | |
| 	u32 val;
 | |
| 	unsigned int width, density, slow, attempts;
 | |
| 	struct adapter *adapter = mc7->adapter;
 | |
| 	const struct mc7_timing_params *p = &mc7_timings[mem_type];
 | |
| 
 | |
| 	if (!mc7->size)
 | |
| 		return 0;
 | |
| 
 | |
| 	val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
 | |
| 	slow = val & F_SLOW;
 | |
| 	width = G_WIDTH(val);
 | |
| 	density = G_DEN(val);
 | |
| 
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
 | |
| 	val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);	/* flush */
 | |
| 	msleep(1);
 | |
| 
 | |
| 	if (!slow) {
 | |
| 		t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
 | |
| 		t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
 | |
| 		msleep(1);
 | |
| 		if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
 | |
| 		    (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
 | |
| 			CH_ERR(adapter, "%s MC7 calibration timed out\n",
 | |
| 			       mc7->name);
 | |
| 			goto out_fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
 | |
| 		     V_ACTTOPREDLY(p->ActToPreDly) |
 | |
| 		     V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
 | |
| 		     V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
 | |
| 		     V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
 | |
| 
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
 | |
| 		     val | F_CLKEN | F_TERM150);
 | |
| 	t3_read_reg(adapter, mc7->offset + A_MC7_CFG);	/* flush */
 | |
| 
 | |
| 	if (!slow)
 | |
| 		t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
 | |
| 				 F_DLLENB);
 | |
| 	udelay(1);
 | |
| 
 | |
| 	val = slow ? 3 : 6;
 | |
| 	if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
 | |
| 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
 | |
| 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
 | |
| 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
 | |
| 		goto out_fail;
 | |
| 
 | |
| 	if (!slow) {
 | |
| 		t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
 | |
| 		t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 
 | |
| 	if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
 | |
| 	    wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
 | |
| 	    wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
 | |
| 	    wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
 | |
| 		       mc7_mode[mem_type]) ||
 | |
| 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
 | |
| 	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
 | |
| 		goto out_fail;
 | |
| 
 | |
| 	/* clock value is in KHz */
 | |
| 	mc7_clock = mc7_clock * 7812 + mc7_clock / 2;	/* ns */
 | |
| 	mc7_clock /= 1000000;	/* KHz->MHz, ns->us */
 | |
| 
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_REF,
 | |
| 		     F_PERREFEN | V_PREREFDIV(mc7_clock));
 | |
| 	t3_read_reg(adapter, mc7->offset + A_MC7_REF);	/* flush */
 | |
| 
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
 | |
| 		     (mc7->size << width) - 1);
 | |
| 	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
 | |
| 	t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);	/* flush */
 | |
| 
 | |
| 	attempts = 50;
 | |
| 	do {
 | |
| 		msleep(250);
 | |
| 		val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
 | |
| 	} while ((val & F_BUSY) && --attempts);
 | |
| 	if (val & F_BUSY) {
 | |
| 		CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
 | |
| 		goto out_fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable normal memory accesses. */
 | |
| 	t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
 | |
| 	return 0;
 | |
| 
 | |
| out_fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void config_pcie(struct adapter *adap)
 | |
| {
 | |
| 	static const u16 ack_lat[4][6] = {
 | |
| 		{237, 416, 559, 1071, 2095, 4143},
 | |
| 		{128, 217, 289, 545, 1057, 2081},
 | |
| 		{73, 118, 154, 282, 538, 1050},
 | |
| 		{67, 107, 86, 150, 278, 534}
 | |
| 	};
 | |
| 	static const u16 rpl_tmr[4][6] = {
 | |
| 		{711, 1248, 1677, 3213, 6285, 12429},
 | |
| 		{384, 651, 867, 1635, 3171, 6243},
 | |
| 		{219, 354, 462, 846, 1614, 3150},
 | |
| 		{201, 321, 258, 450, 834, 1602}
 | |
| 	};
 | |
| 
 | |
| 	u16 val, devid;
 | |
| 	unsigned int log2_width, pldsize;
 | |
| 	unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
 | |
| 
 | |
| 	pci_read_config_word(adap->pdev,
 | |
| 			     adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
 | |
| 			     &val);
 | |
| 	pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
 | |
| 
 | |
| 	pci_read_config_word(adap->pdev, 0x2, &devid);
 | |
| 	if (devid == 0x37) {
 | |
| 		pci_write_config_word(adap->pdev,
 | |
| 				      adap->params.pci.pcie_cap_addr +
 | |
| 				      PCI_EXP_DEVCTL,
 | |
| 				      val & ~PCI_EXP_DEVCTL_READRQ &
 | |
| 				      ~PCI_EXP_DEVCTL_PAYLOAD);
 | |
| 		pldsize = 0;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_word(adap->pdev,
 | |
| 			     adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
 | |
| 			     &val);
 | |
| 
 | |
| 	fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
 | |
| 	fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
 | |
| 	    G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
 | |
| 	log2_width = fls(adap->params.pci.width) - 1;
 | |
| 	acklat = ack_lat[log2_width][pldsize];
 | |
| 	if (val & 1)		/* check LOsEnable */
 | |
| 		acklat += fst_trn_tx * 4;
 | |
| 	rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
 | |
| 
 | |
| 	if (adap->params.rev == 0)
 | |
| 		t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
 | |
| 				 V_T3A_ACKLAT(M_T3A_ACKLAT),
 | |
| 				 V_T3A_ACKLAT(acklat));
 | |
| 	else
 | |
| 		t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
 | |
| 				 V_ACKLAT(acklat));
 | |
| 
 | |
| 	t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
 | |
| 			 V_REPLAYLMT(rpllmt));
 | |
| 
 | |
| 	t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
 | |
| 	t3_set_reg_field(adap, A_PCIE_CFG, 0,
 | |
| 			 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
 | |
| 			 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize and configure T3 HW modules.  This performs the
 | |
|  * initialization steps that need to be done once after a card is reset.
 | |
|  * MAC and PHY initialization is handled separarely whenever a port is enabled.
 | |
|  *
 | |
|  * fw_params are passed to FW and their value is platform dependent.  Only the
 | |
|  * top 8 bits are available for use, the rest must be 0.
 | |
|  */
 | |
| int t3_init_hw(struct adapter *adapter, u32 fw_params)
 | |
| {
 | |
| 	int err = -EIO, attempts, i;
 | |
| 	const struct vpd_params *vpd = &adapter->params.vpd;
 | |
| 
 | |
| 	if (adapter->params.rev > 0)
 | |
| 		calibrate_xgm_t3b(adapter);
 | |
| 	else if (calibrate_xgm(adapter))
 | |
| 		goto out_err;
 | |
| 
 | |
| 	if (vpd->mclk) {
 | |
| 		partition_mem(adapter, &adapter->params.tp);
 | |
| 
 | |
| 		if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
 | |
| 		    mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
 | |
| 		    mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
 | |
| 		    t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
 | |
| 				adapter->params.mc5.nfilters,
 | |
| 				adapter->params.mc5.nroutes))
 | |
| 			goto out_err;
 | |
| 
 | |
| 		for (i = 0; i < 32; i++)
 | |
| 			if (clear_sge_ctxt(adapter, i, F_CQ))
 | |
| 				goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	if (tp_init(adapter, &adapter->params.tp))
 | |
| 		goto out_err;
 | |
| 
 | |
| 	t3_tp_set_coalescing_size(adapter,
 | |
| 				  min(adapter->params.sge.max_pkt_size,
 | |
| 				      MAX_RX_COALESCING_LEN), 1);
 | |
| 	t3_tp_set_max_rxsize(adapter,
 | |
| 			     min(adapter->params.sge.max_pkt_size, 16384U));
 | |
| 	ulp_config(adapter, &adapter->params.tp);
 | |
| 
 | |
| 	if (is_pcie(adapter))
 | |
| 		config_pcie(adapter);
 | |
| 	else
 | |
| 		t3_set_reg_field(adapter, A_PCIX_CFG, 0,
 | |
| 				 F_DMASTOPEN | F_CLIDECEN);
 | |
| 
 | |
| 	if (adapter->params.rev == T3_REV_C)
 | |
| 		t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
 | |
| 				 F_CFG_CQE_SOP_MASK);
 | |
| 
 | |
| 	t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
 | |
| 	t3_write_reg(adapter, A_PM1_RX_MODE, 0);
 | |
| 	t3_write_reg(adapter, A_PM1_TX_MODE, 0);
 | |
| 	chan_init_hw(adapter, adapter->params.chan_map);
 | |
| 	t3_sge_init(adapter, &adapter->params.sge);
 | |
| 
 | |
| 	t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
 | |
| 
 | |
| 	t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
 | |
| 	t3_write_reg(adapter, A_CIM_BOOT_CFG,
 | |
| 		     V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
 | |
| 	t3_read_reg(adapter, A_CIM_BOOT_CFG);	/* flush */
 | |
| 
 | |
| 	attempts = 100;
 | |
| 	do {			/* wait for uP to initialize */
 | |
| 		msleep(20);
 | |
| 	} while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
 | |
| 	if (!attempts) {
 | |
| 		CH_ERR(adapter, "uP initialization timed out\n");
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| out_err:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	get_pci_mode - determine a card's PCI mode
 | |
|  *	@adapter: the adapter
 | |
|  *	@p: where to store the PCI settings
 | |
|  *
 | |
|  *	Determines a card's PCI mode and associated parameters, such as speed
 | |
|  *	and width.
 | |
|  */
 | |
| static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
 | |
| {
 | |
| 	static unsigned short speed_map[] = { 33, 66, 100, 133 };
 | |
| 	u32 pci_mode, pcie_cap;
 | |
| 
 | |
| 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
 | |
| 	if (pcie_cap) {
 | |
| 		u16 val;
 | |
| 
 | |
| 		p->variant = PCI_VARIANT_PCIE;
 | |
| 		p->pcie_cap_addr = pcie_cap;
 | |
| 		pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
 | |
| 					&val);
 | |
| 		p->width = (val >> 4) & 0x3f;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
 | |
| 	p->speed = speed_map[G_PCLKRANGE(pci_mode)];
 | |
| 	p->width = (pci_mode & F_64BIT) ? 64 : 32;
 | |
| 	pci_mode = G_PCIXINITPAT(pci_mode);
 | |
| 	if (pci_mode == 0)
 | |
| 		p->variant = PCI_VARIANT_PCI;
 | |
| 	else if (pci_mode < 4)
 | |
| 		p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
 | |
| 	else if (pci_mode < 8)
 | |
| 		p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
 | |
| 	else
 | |
| 		p->variant = PCI_VARIANT_PCIX_266_MODE2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	init_link_config - initialize a link's SW state
 | |
|  *	@lc: structure holding the link state
 | |
|  *	@ai: information about the current card
 | |
|  *
 | |
|  *	Initializes the SW state maintained for each link, including the link's
 | |
|  *	capabilities and default speed/duplex/flow-control/autonegotiation
 | |
|  *	settings.
 | |
|  */
 | |
| static void init_link_config(struct link_config *lc, unsigned int caps)
 | |
| {
 | |
| 	lc->supported = caps;
 | |
| 	lc->requested_speed = lc->speed = SPEED_INVALID;
 | |
| 	lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
 | |
| 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
 | |
| 	if (lc->supported & SUPPORTED_Autoneg) {
 | |
| 		lc->advertising = lc->supported;
 | |
| 		lc->autoneg = AUTONEG_ENABLE;
 | |
| 		lc->requested_fc |= PAUSE_AUTONEG;
 | |
| 	} else {
 | |
| 		lc->advertising = 0;
 | |
| 		lc->autoneg = AUTONEG_DISABLE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	mc7_calc_size - calculate MC7 memory size
 | |
|  *	@cfg: the MC7 configuration
 | |
|  *
 | |
|  *	Calculates the size of an MC7 memory in bytes from the value of its
 | |
|  *	configuration register.
 | |
|  */
 | |
| static unsigned int mc7_calc_size(u32 cfg)
 | |
| {
 | |
| 	unsigned int width = G_WIDTH(cfg);
 | |
| 	unsigned int banks = !!(cfg & F_BKS) + 1;
 | |
| 	unsigned int org = !!(cfg & F_ORG) + 1;
 | |
| 	unsigned int density = G_DEN(cfg);
 | |
| 	unsigned int MBs = ((256 << density) * banks) / (org << width);
 | |
| 
 | |
| 	return MBs << 20;
 | |
| }
 | |
| 
 | |
| static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
 | |
| 		     unsigned int base_addr, const char *name)
 | |
| {
 | |
| 	u32 cfg;
 | |
| 
 | |
| 	mc7->adapter = adapter;
 | |
| 	mc7->name = name;
 | |
| 	mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
 | |
| 	cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
 | |
| 	mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
 | |
| 	mc7->width = G_WIDTH(cfg);
 | |
| }
 | |
| 
 | |
| void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
 | |
| {
 | |
| 	u16 devid;
 | |
| 
 | |
| 	mac->adapter = adapter;
 | |
| 	pci_read_config_word(adapter->pdev, 0x2, &devid);
 | |
| 
 | |
| 	if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
 | |
| 		index = 0;
 | |
| 	mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
 | |
| 	mac->nucast = 1;
 | |
| 
 | |
| 	if (adapter->params.rev == 0 && uses_xaui(adapter)) {
 | |
| 		t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
 | |
| 			     is_10G(adapter) ? 0x2901c04 : 0x2301c04);
 | |
| 		t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
 | |
| 				 F_ENRGMII, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
 | |
| {
 | |
| 	u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
 | |
| 
 | |
| 	mi1_init(adapter, ai);
 | |
| 	t3_write_reg(adapter, A_I2C_CFG,	/* set for 80KHz */
 | |
| 		     V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
 | |
| 	t3_write_reg(adapter, A_T3DBG_GPIO_EN,
 | |
| 		     ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
 | |
| 	t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
 | |
| 	t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
 | |
| 
 | |
| 	if (adapter->params.rev == 0 || !uses_xaui(adapter))
 | |
| 		val |= F_ENRGMII;
 | |
| 
 | |
| 	/* Enable MAC clocks so we can access the registers */
 | |
| 	t3_write_reg(adapter, A_XGM_PORT_CFG, val);
 | |
| 	t3_read_reg(adapter, A_XGM_PORT_CFG);
 | |
| 
 | |
| 	val |= F_CLKDIVRESET_;
 | |
| 	t3_write_reg(adapter, A_XGM_PORT_CFG, val);
 | |
| 	t3_read_reg(adapter, A_XGM_PORT_CFG);
 | |
| 	t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
 | |
| 	t3_read_reg(adapter, A_XGM_PORT_CFG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset the adapter.
 | |
|  * Older PCIe cards lose their config space during reset, PCI-X
 | |
|  * ones don't.
 | |
|  */
 | |
| int t3_reset_adapter(struct adapter *adapter)
 | |
| {
 | |
| 	int i, save_and_restore_pcie =
 | |
| 	    adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
 | |
| 	uint16_t devid = 0;
 | |
| 
 | |
| 	if (save_and_restore_pcie)
 | |
| 		pci_save_state(adapter->pdev);
 | |
| 	t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Delay. Give Some time to device to reset fully.
 | |
| 	 * XXX The delay time should be modified.
 | |
| 	 */
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		msleep(50);
 | |
| 		pci_read_config_word(adapter->pdev, 0x00, &devid);
 | |
| 		if (devid == 0x1425)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (devid != 0x1425)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (save_and_restore_pcie)
 | |
| 		pci_restore_state(adapter->pdev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int init_parity(struct adapter *adap)
 | |
| {
 | |
| 		int i, err, addr;
 | |
| 
 | |
| 	if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	for (err = i = 0; !err && i < 16; i++)
 | |
| 		err = clear_sge_ctxt(adap, i, F_EGRESS);
 | |
| 	for (i = 0xfff0; !err && i <= 0xffff; i++)
 | |
| 		err = clear_sge_ctxt(adap, i, F_EGRESS);
 | |
| 	for (i = 0; !err && i < SGE_QSETS; i++)
 | |
| 		err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 		for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
 | |
| 			t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
 | |
| 				     F_IBQDBGWR | V_IBQDBGQID(i) |
 | |
| 				     V_IBQDBGADDR(addr));
 | |
| 			err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
 | |
| 					      F_IBQDBGBUSY, 0, 2, 1);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize adapter SW state for the various HW modules, set initial values
 | |
|  * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
 | |
|  * interface.
 | |
|  */
 | |
| int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
 | |
| 		    int reset)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned int i, j = -1;
 | |
| 
 | |
| 	get_pci_mode(adapter, &adapter->params.pci);
 | |
| 
 | |
| 	adapter->params.info = ai;
 | |
| 	adapter->params.nports = ai->nports0 + ai->nports1;
 | |
| 	adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
 | |
| 	adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
 | |
| 	/*
 | |
| 	 * We used to only run the "adapter check task" once a second if
 | |
| 	 * we had PHYs which didn't support interrupts (we would check
 | |
| 	 * their link status once a second).  Now we check other conditions
 | |
| 	 * in that routine which could potentially impose a very high
 | |
| 	 * interrupt load on the system.  As such, we now always scan the
 | |
| 	 * adapter state once a second ...
 | |
| 	 */
 | |
| 	adapter->params.linkpoll_period = 10;
 | |
| 	adapter->params.stats_update_period = is_10G(adapter) ?
 | |
| 	    MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
 | |
| 	adapter->params.pci.vpd_cap_addr =
 | |
| 	    pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
 | |
| 	ret = get_vpd_params(adapter, &adapter->params.vpd);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (reset && t3_reset_adapter(adapter))
 | |
| 		return -1;
 | |
| 
 | |
| 	t3_sge_prep(adapter, &adapter->params.sge);
 | |
| 
 | |
| 	if (adapter->params.vpd.mclk) {
 | |
| 		struct tp_params *p = &adapter->params.tp;
 | |
| 
 | |
| 		mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
 | |
| 		mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
 | |
| 		mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
 | |
| 
 | |
| 		p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
 | |
| 		p->pmrx_size = t3_mc7_size(&adapter->pmrx);
 | |
| 		p->pmtx_size = t3_mc7_size(&adapter->pmtx);
 | |
| 		p->cm_size = t3_mc7_size(&adapter->cm);
 | |
| 		p->chan_rx_size = p->pmrx_size / 2;	/* only 1 Rx channel */
 | |
| 		p->chan_tx_size = p->pmtx_size / p->nchan;
 | |
| 		p->rx_pg_size = 64 * 1024;
 | |
| 		p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
 | |
| 		p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
 | |
| 		p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
 | |
| 		p->ntimer_qs = p->cm_size >= (128 << 20) ||
 | |
| 		    adapter->params.rev > 0 ? 12 : 6;
 | |
| 	}
 | |
| 
 | |
| 	adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
 | |
| 				  t3_mc7_size(&adapter->pmtx) &&
 | |
| 				  t3_mc7_size(&adapter->cm);
 | |
| 
 | |
| 	if (is_offload(adapter)) {
 | |
| 		adapter->params.mc5.nservers = DEFAULT_NSERVERS;
 | |
| 		adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
 | |
| 		    DEFAULT_NFILTERS : 0;
 | |
| 		adapter->params.mc5.nroutes = 0;
 | |
| 		t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
 | |
| 
 | |
| 		init_mtus(adapter->params.mtus);
 | |
| 		init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
 | |
| 	}
 | |
| 
 | |
| 	early_hw_init(adapter, ai);
 | |
| 	ret = init_parity(adapter);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for_each_port(adapter, i) {
 | |
| 		u8 hw_addr[6];
 | |
| 		const struct port_type_info *pti;
 | |
| 		struct port_info *p = adap2pinfo(adapter, i);
 | |
| 
 | |
| 		while (!adapter->params.vpd.port_type[++j])
 | |
| 			;
 | |
| 
 | |
| 		pti = &port_types[adapter->params.vpd.port_type[j]];
 | |
| 		if (!pti->phy_prep) {
 | |
| 			CH_ALERT(adapter, "Invalid port type index %d\n",
 | |
| 				 adapter->params.vpd.port_type[j]);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		p->phy.mdio.dev = adapter->port[i];
 | |
| 		ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
 | |
| 				    ai->mdio_ops);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		mac_prep(&p->mac, adapter, j);
 | |
| 
 | |
| 		/*
 | |
| 		 * The VPD EEPROM stores the base Ethernet address for the
 | |
| 		 * card.  A port's address is derived from the base by adding
 | |
| 		 * the port's index to the base's low octet.
 | |
| 		 */
 | |
| 		memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
 | |
| 		hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
 | |
| 
 | |
| 		memcpy(adapter->port[i]->dev_addr, hw_addr,
 | |
| 		       ETH_ALEN);
 | |
| 		memcpy(adapter->port[i]->perm_addr, hw_addr,
 | |
| 		       ETH_ALEN);
 | |
| 		init_link_config(&p->link_config, p->phy.caps);
 | |
| 		p->phy.ops->power_down(&p->phy, 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the PHY doesn't support interrupts for link status
 | |
| 		 * changes, schedule a scan of the adapter links at least
 | |
| 		 * once a second.
 | |
| 		 */
 | |
| 		if (!(p->phy.caps & SUPPORTED_IRQ) &&
 | |
| 		    adapter->params.linkpoll_period > 10)
 | |
| 			adapter->params.linkpoll_period = 10;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void t3_led_ready(struct adapter *adapter)
 | |
| {
 | |
| 	t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
 | |
| 			 F_GPIO0_OUT_VAL);
 | |
| }
 | |
| 
 | |
| int t3_replay_prep_adapter(struct adapter *adapter)
 | |
| {
 | |
| 	const struct adapter_info *ai = adapter->params.info;
 | |
| 	unsigned int i, j = -1;
 | |
| 	int ret;
 | |
| 
 | |
| 	early_hw_init(adapter, ai);
 | |
| 	ret = init_parity(adapter);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for_each_port(adapter, i) {
 | |
| 		const struct port_type_info *pti;
 | |
| 		struct port_info *p = adap2pinfo(adapter, i);
 | |
| 
 | |
| 		while (!adapter->params.vpd.port_type[++j])
 | |
| 			;
 | |
| 
 | |
| 		pti = &port_types[adapter->params.vpd.port_type[j]];
 | |
| 		ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		p->phy.ops->power_down(&p->phy, 1);
 | |
| 	}
 | |
| 
 | |
| return 0;
 | |
| }
 | |
| 
 |