AR8151 is a Gigabit Ethernet device. AR8152 devices are Fast Ethernet devices, there are two revisions, a 1.0 and a 2.0 revision. This has been tested against these devices: Driver Model-name vendor:device Type atl1c AR8131 1969:1063 Gigabit Ethernet atl1c AR8132 1969:1062 Fast Ethernet atl1c AR8151(v1.0) 1969:1073 Gigabit Ethernet atl1c AR8152(v1.1) 1969:2060 Fast Ethernet This device has no hardware available yet so it goes untested, but it should work: atl1c AR8152(v2.0) 1969:2062 Fast Ethernet Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			586 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			586 lines
		
	
	
	
		
			15 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
 | 
						|
 *
 | 
						|
 * Derived from Intel e1000 driver
 | 
						|
 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify it
 | 
						|
 * under the terms of the GNU General Public License as published by the Free
 | 
						|
 * Software Foundation; either version 2 of the License, or (at your option)
 | 
						|
 * any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful, but WITHOUT
 | 
						|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
						|
 * more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License along with
 | 
						|
 * this program; if not, write to the Free Software Foundation, Inc., 59
 | 
						|
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | 
						|
 */
 | 
						|
#include <linux/pci.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/mii.h>
 | 
						|
#include <linux/crc32.h>
 | 
						|
 | 
						|
#include "atl1c.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * check_eeprom_exist
 | 
						|
 * return 1 if eeprom exist
 | 
						|
 */
 | 
						|
int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	u32 data;
 | 
						|
 | 
						|
	AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
 | 
						|
	if (data & TWSI_DEBUG_DEV_EXIST)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void atl1c_hw_set_mac_addr(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	u32 value;
 | 
						|
	/*
 | 
						|
	 * 00-0B-6A-F6-00-DC
 | 
						|
	 * 0:  6AF600DC 1: 000B
 | 
						|
	 * low dword
 | 
						|
	 */
 | 
						|
	value = (((u32)hw->mac_addr[2]) << 24) |
 | 
						|
		(((u32)hw->mac_addr[3]) << 16) |
 | 
						|
		(((u32)hw->mac_addr[4]) << 8)  |
 | 
						|
		(((u32)hw->mac_addr[5])) ;
 | 
						|
	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
 | 
						|
	/* hight dword */
 | 
						|
	value = (((u32)hw->mac_addr[0]) << 8) |
 | 
						|
		(((u32)hw->mac_addr[1])) ;
 | 
						|
	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * atl1c_get_permanent_address
 | 
						|
 * return 0 if get valid mac address,
 | 
						|
 */
 | 
						|
static int atl1c_get_permanent_address(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	u32 addr[2];
 | 
						|
	u32 i;
 | 
						|
	u32 otp_ctrl_data;
 | 
						|
	u32 twsi_ctrl_data;
 | 
						|
	u8  eth_addr[ETH_ALEN];
 | 
						|
	u16 phy_data;
 | 
						|
	bool raise_vol = false;
 | 
						|
 | 
						|
	/* init */
 | 
						|
	addr[0] = addr[1] = 0;
 | 
						|
	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
 | 
						|
	if (atl1c_check_eeprom_exist(hw)) {
 | 
						|
		if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c_b) {
 | 
						|
			/* Enable OTP CLK */
 | 
						|
			if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
 | 
						|
				otp_ctrl_data |= OTP_CTRL_CLK_EN;
 | 
						|
				AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
 | 
						|
				AT_WRITE_FLUSH(hw);
 | 
						|
				msleep(1);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (hw->nic_type == athr_l2c_b ||
 | 
						|
		    hw->nic_type == athr_l2c_b2 ||
 | 
						|
		    hw->nic_type == athr_l1d) {
 | 
						|
			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
 | 
						|
			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
 | 
						|
				goto out;
 | 
						|
			phy_data &= 0xFF7F;
 | 
						|
			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
 | 
						|
 | 
						|
			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
 | 
						|
			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
 | 
						|
				goto out;
 | 
						|
			phy_data |= 0x8;
 | 
						|
			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
 | 
						|
			udelay(20);
 | 
						|
			raise_vol = true;
 | 
						|
		}
 | 
						|
 | 
						|
		AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
 | 
						|
		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
 | 
						|
		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
 | 
						|
		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
 | 
						|
			msleep(10);
 | 
						|
			AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
 | 
						|
			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (i >= AT_TWSI_EEPROM_TIMEOUT)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	/* Disable OTP_CLK */
 | 
						|
	if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
 | 
						|
		if (otp_ctrl_data & OTP_CTRL_CLK_EN) {
 | 
						|
			otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
 | 
						|
			AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
 | 
						|
			AT_WRITE_FLUSH(hw);
 | 
						|
			msleep(1);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (raise_vol) {
 | 
						|
		if (hw->nic_type == athr_l2c_b ||
 | 
						|
		    hw->nic_type == athr_l2c_b2 ||
 | 
						|
		    hw->nic_type == athr_l1d) {
 | 
						|
			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
 | 
						|
			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
 | 
						|
				goto out;
 | 
						|
			phy_data |= 0x80;
 | 
						|
			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
 | 
						|
 | 
						|
			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
 | 
						|
			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
 | 
						|
				goto out;
 | 
						|
			phy_data &= 0xFFF7;
 | 
						|
			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
 | 
						|
			udelay(20);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* maybe MAC-address is from BIOS */
 | 
						|
	AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
 | 
						|
	AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
 | 
						|
	*(u32 *) ð_addr[2] = swab32(addr[0]);
 | 
						|
	*(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]);
 | 
						|
 | 
						|
	if (is_valid_ether_addr(eth_addr)) {
 | 
						|
		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	int ret = false;
 | 
						|
	u32 otp_ctrl_data;
 | 
						|
	u32 control;
 | 
						|
	u32 data;
 | 
						|
 | 
						|
	if (offset & 3)
 | 
						|
		return ret; /* address do not align */
 | 
						|
 | 
						|
	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
 | 
						|
	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
 | 
						|
		AT_WRITE_REG(hw, REG_OTP_CTRL,
 | 
						|
				(otp_ctrl_data | OTP_CTRL_CLK_EN));
 | 
						|
 | 
						|
	AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
 | 
						|
	control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
 | 
						|
	AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
 | 
						|
 | 
						|
	for (i = 0; i < 10; i++) {
 | 
						|
		udelay(100);
 | 
						|
		AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
 | 
						|
		if (control & EEPROM_CTRL_RW)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (control & EEPROM_CTRL_RW) {
 | 
						|
		AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
 | 
						|
		AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
 | 
						|
		data = data & 0xFFFF;
 | 
						|
		*p_value = swab32((data << 16) | (*p_value >> 16));
 | 
						|
		ret = true;
 | 
						|
	}
 | 
						|
	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
 | 
						|
		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
/*
 | 
						|
 * Reads the adapter's MAC address from the EEPROM
 | 
						|
 *
 | 
						|
 * hw - Struct containing variables accessed by shared code
 | 
						|
 */
 | 
						|
int atl1c_read_mac_addr(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	err = atl1c_get_permanent_address(hw);
 | 
						|
	if (err)
 | 
						|
		random_ether_addr(hw->perm_mac_addr);
 | 
						|
 | 
						|
	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * atl1c_hash_mc_addr
 | 
						|
 *  purpose
 | 
						|
 *      set hash value for a multicast address
 | 
						|
 *      hash calcu processing :
 | 
						|
 *          1. calcu 32bit CRC for multicast address
 | 
						|
 *          2. reverse crc with MSB to LSB
 | 
						|
 */
 | 
						|
u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
 | 
						|
{
 | 
						|
	u32 crc32;
 | 
						|
	u32 value = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	crc32 = ether_crc_le(6, mc_addr);
 | 
						|
	for (i = 0; i < 32; i++)
 | 
						|
		value |= (((crc32 >> i) & 1) << (31 - i));
 | 
						|
 | 
						|
	return value;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sets the bit in the multicast table corresponding to the hash value.
 | 
						|
 * hw - Struct containing variables accessed by shared code
 | 
						|
 * hash_value - Multicast address hash value
 | 
						|
 */
 | 
						|
void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
 | 
						|
{
 | 
						|
	u32 hash_bit, hash_reg;
 | 
						|
	u32 mta;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The HASH Table  is a register array of 2 32-bit registers.
 | 
						|
	 * It is treated like an array of 64 bits.  We want to set
 | 
						|
	 * bit BitArray[hash_value]. So we figure out what register
 | 
						|
	 * the bit is in, read it, OR in the new bit, then write
 | 
						|
	 * back the new value.  The register is determined by the
 | 
						|
	 * upper bit of the hash value and the bit within that
 | 
						|
	 * register are determined by the lower 5 bits of the value.
 | 
						|
	 */
 | 
						|
	hash_reg = (hash_value >> 31) & 0x1;
 | 
						|
	hash_bit = (hash_value >> 26) & 0x1F;
 | 
						|
 | 
						|
	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
 | 
						|
 | 
						|
	mta |= (1 << hash_bit);
 | 
						|
 | 
						|
	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reads the value from a PHY register
 | 
						|
 * hw - Struct containing variables accessed by shared code
 | 
						|
 * reg_addr - address of the PHY register to read
 | 
						|
 */
 | 
						|
int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
 | 
						|
{
 | 
						|
	u32 val;
 | 
						|
	int i;
 | 
						|
 | 
						|
	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
 | 
						|
		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
 | 
						|
		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 | 
						|
 | 
						|
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
 | 
						|
 | 
						|
	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 | 
						|
		udelay(2);
 | 
						|
		AT_READ_REG(hw, REG_MDIO_CTRL, &val);
 | 
						|
		if (!(val & (MDIO_START | MDIO_BUSY)))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (!(val & (MDIO_START | MDIO_BUSY))) {
 | 
						|
		*phy_data = (u16)val;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Writes a value to a PHY register
 | 
						|
 * hw - Struct containing variables accessed by shared code
 | 
						|
 * reg_addr - address of the PHY register to write
 | 
						|
 * data - data to write to the PHY
 | 
						|
 */
 | 
						|
int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	u32 val;
 | 
						|
 | 
						|
	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT   |
 | 
						|
	       (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
 | 
						|
	       MDIO_SUP_PREAMBLE | MDIO_START |
 | 
						|
	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 | 
						|
 | 
						|
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
 | 
						|
 | 
						|
	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 | 
						|
		udelay(2);
 | 
						|
		AT_READ_REG(hw, REG_MDIO_CTRL, &val);
 | 
						|
		if (!(val & (MDIO_START | MDIO_BUSY)))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(val & (MDIO_START | MDIO_BUSY)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Configures PHY autoneg and flow control advertisement settings
 | 
						|
 *
 | 
						|
 * hw - Struct containing variables accessed by shared code
 | 
						|
 */
 | 
						|
static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_SPEED_MASK;
 | 
						|
	u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
 | 
						|
				~GIGA_CR_1000T_SPEED_MASK;
 | 
						|
 | 
						|
	if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
 | 
						|
		mii_adv_data |= ADVERTISE_10HALF;
 | 
						|
	if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
 | 
						|
		mii_adv_data |= ADVERTISE_10FULL;
 | 
						|
	if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
 | 
						|
		mii_adv_data |= ADVERTISE_100HALF;
 | 
						|
	if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
 | 
						|
		mii_adv_data |= ADVERTISE_100FULL;
 | 
						|
 | 
						|
	if (hw->autoneg_advertised & ADVERTISED_Autoneg)
 | 
						|
		mii_adv_data |= ADVERTISE_10HALF  | ADVERTISE_10FULL |
 | 
						|
				ADVERTISE_100HALF | ADVERTISE_100FULL;
 | 
						|
 | 
						|
	if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
 | 
						|
		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
 | 
						|
			mii_giga_ctrl_data |= ADVERTISE_1000HALF;
 | 
						|
		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
 | 
						|
			mii_giga_ctrl_data |= ADVERTISE_1000FULL;
 | 
						|
		if (hw->autoneg_advertised & ADVERTISED_Autoneg)
 | 
						|
			mii_giga_ctrl_data |= ADVERTISE_1000HALF |
 | 
						|
					ADVERTISE_1000FULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
 | 
						|
	    atl1c_write_phy_reg(hw, MII_GIGA_CR, mii_giga_ctrl_data) != 0)
 | 
						|
		return -1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void atl1c_phy_disable(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
 | 
						|
			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
 | 
						|
}
 | 
						|
 | 
						|
static void atl1c_phy_magic_data(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	u16 data;
 | 
						|
 | 
						|
	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
 | 
						|
		((1 & ANA_INTERVAL_SEL_TIMER_MASK) <<
 | 
						|
		ANA_INTERVAL_SEL_TIMER_SHIFT);
 | 
						|
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18);
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
 | 
						|
 | 
						|
	data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG |
 | 
						|
		ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
 | 
						|
		ANA_SERDES_EN_LCKDT;
 | 
						|
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5);
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
 | 
						|
 | 
						|
	data = (44 & ANA_LONG_CABLE_TH_100_MASK) |
 | 
						|
		((33 & ANA_SHORT_CABLE_TH_100_MASK) <<
 | 
						|
		ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM |
 | 
						|
		ANA_BP_SMALL_BW;
 | 
						|
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54);
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
 | 
						|
 | 
						|
	data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) <<
 | 
						|
		ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
 | 
						|
		ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
 | 
						|
		ANA_IECHO_ADJ_0_SHIFT);
 | 
						|
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4);
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
 | 
						|
 | 
						|
	data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) <<
 | 
						|
		ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE |
 | 
						|
		ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M;
 | 
						|
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0);
 | 
						|
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
 | 
						|
 | 
						|
	if (hw->ctrl_flags & ATL1C_HIB_DISABLE) {
 | 
						|
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41);
 | 
						|
		if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
 | 
						|
			return;
 | 
						|
		data &= ~ANA_TOP_PS_EN;
 | 
						|
		atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
 | 
						|
 | 
						|
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11);
 | 
						|
		if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
 | 
						|
			return;
 | 
						|
		data &= ~ANA_PS_HIB_EN;
 | 
						|
		atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int atl1c_phy_reset(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	struct atl1c_adapter *adapter = hw->adapter;
 | 
						|
	struct pci_dev *pdev = adapter->pdev;
 | 
						|
	u16 phy_data;
 | 
						|
	u32 phy_ctrl_data = GPHY_CTRL_DEFAULT;
 | 
						|
	u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (hw->ctrl_flags & ATL1C_HIB_DISABLE)
 | 
						|
		phy_ctrl_data &= ~GPHY_CTRL_HIB_EN;
 | 
						|
 | 
						|
	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
 | 
						|
	AT_WRITE_FLUSH(hw);
 | 
						|
	msleep(40);
 | 
						|
	phy_ctrl_data |= GPHY_CTRL_EXT_RESET;
 | 
						|
	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
 | 
						|
	AT_WRITE_FLUSH(hw);
 | 
						|
	msleep(10);
 | 
						|
 | 
						|
	if (hw->nic_type == athr_l2c_b) {
 | 
						|
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x0A);
 | 
						|
		atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data);
 | 
						|
		atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data & 0xDFFF);
 | 
						|
	}
 | 
						|
 | 
						|
	if (hw->nic_type == athr_l2c_b ||
 | 
						|
	    hw->nic_type == athr_l2c_b2 ||
 | 
						|
	    hw->nic_type == athr_l1d) {
 | 
						|
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
 | 
						|
		atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data);
 | 
						|
		atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data & 0xFFF7);
 | 
						|
		msleep(20);
 | 
						|
	}
 | 
						|
 | 
						|
	/*Enable PHY LinkChange Interrupt */
 | 
						|
	err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data);
 | 
						|
	if (err) {
 | 
						|
		if (netif_msg_hw(adapter))
 | 
						|
			dev_err(&pdev->dev,
 | 
						|
				"Error enable PHY linkChange Interrupt\n");
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
 | 
						|
		atl1c_phy_magic_data(hw);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int atl1c_phy_init(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
 | 
						|
	struct pci_dev *pdev = adapter->pdev;
 | 
						|
	int ret_val;
 | 
						|
	u16 mii_bmcr_data = BMCR_RESET;
 | 
						|
	u16 phy_id1, phy_id2;
 | 
						|
 | 
						|
	if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &phy_id1) != 0) ||
 | 
						|
		(atl1c_read_phy_reg(hw, MII_PHYSID2, &phy_id2) != 0)) {
 | 
						|
			if (netif_msg_link(adapter))
 | 
						|
				dev_err(&pdev->dev, "Error get phy ID\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	switch (hw->media_type) {
 | 
						|
	case MEDIA_TYPE_AUTO_SENSOR:
 | 
						|
		ret_val = atl1c_phy_setup_adv(hw);
 | 
						|
		if (ret_val) {
 | 
						|
			if (netif_msg_link(adapter))
 | 
						|
				dev_err(&pdev->dev,
 | 
						|
					"Error Setting up Auto-Negotiation\n");
 | 
						|
			return ret_val;
 | 
						|
		}
 | 
						|
		mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
 | 
						|
		break;
 | 
						|
	case MEDIA_TYPE_100M_FULL:
 | 
						|
		mii_bmcr_data |= BMCR_SPEED_100 | BMCR_FULL_DUPLEX;
 | 
						|
		break;
 | 
						|
	case MEDIA_TYPE_100M_HALF:
 | 
						|
		mii_bmcr_data |= BMCR_SPEED_100;
 | 
						|
		break;
 | 
						|
	case MEDIA_TYPE_10M_FULL:
 | 
						|
		mii_bmcr_data |= BMCR_SPEED_10 | BMCR_FULL_DUPLEX;
 | 
						|
		break;
 | 
						|
	case MEDIA_TYPE_10M_HALF:
 | 
						|
		mii_bmcr_data |= BMCR_SPEED_10;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		if (netif_msg_link(adapter))
 | 
						|
			dev_err(&pdev->dev, "Wrong Media type %d\n",
 | 
						|
				hw->media_type);
 | 
						|
		return -1;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
 | 
						|
	if (ret_val)
 | 
						|
		return ret_val;
 | 
						|
	hw->phy_configured = true;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Detects the current speed and duplex settings of the hardware.
 | 
						|
 *
 | 
						|
 * hw - Struct containing variables accessed by shared code
 | 
						|
 * speed - Speed of the connection
 | 
						|
 * duplex - Duplex setting of the connection
 | 
						|
 */
 | 
						|
int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	u16 phy_data;
 | 
						|
 | 
						|
	/* Read   PHY Specific Status Register (17) */
 | 
						|
	err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	switch (phy_data & GIGA_PSSR_SPEED) {
 | 
						|
	case GIGA_PSSR_1000MBS:
 | 
						|
		*speed = SPEED_1000;
 | 
						|
		break;
 | 
						|
	case GIGA_PSSR_100MBS:
 | 
						|
		*speed = SPEED_100;
 | 
						|
		break;
 | 
						|
	case  GIGA_PSSR_10MBS:
 | 
						|
		*speed = SPEED_10;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -1;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (phy_data & GIGA_PSSR_DPLX)
 | 
						|
		*duplex = FULL_DUPLEX;
 | 
						|
	else
 | 
						|
		*duplex = HALF_DUPLEX;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int atl1c_restart_autoneg(struct atl1c_hw *hw)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
	u16 mii_bmcr_data = BMCR_RESET;
 | 
						|
 | 
						|
	err = atl1c_phy_setup_adv(hw);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
	mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
 | 
						|
 | 
						|
	return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
 | 
						|
}
 |