 2f70a1e936
			
		
	
	
	2f70a1e936
	
	
	
		
			
			Introducing 'gpmc-nand.c' for GPMC specific NAND init. For example: GPMC timing parameters and all. This patch also migrates gpmc related calls from 'nand/omap2.c' to 'gpmc-nand.c'. Signed-off-by: Vimal Singh <vimalsingh@ti.com> Signed-off-by: Tony Lindgren <tony@atomide.com>
		
			
				
	
	
		
			1077 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1077 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
 | |
|  * Copyright © 2004 Micron Technology Inc.
 | |
|  * Copyright © 2004 David Brownell
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <plat/dma.h>
 | |
| #include <plat/gpmc.h>
 | |
| #include <plat/nand.h>
 | |
| 
 | |
| #define GPMC_IRQ_STATUS		0x18
 | |
| #define GPMC_ECC_CONFIG		0x1F4
 | |
| #define GPMC_ECC_CONTROL	0x1F8
 | |
| #define GPMC_ECC_SIZE_CONFIG	0x1FC
 | |
| #define GPMC_ECC1_RESULT	0x200
 | |
| 
 | |
| #define	DRIVER_NAME	"omap2-nand"
 | |
| 
 | |
| #define	NAND_WP_OFF	0
 | |
| #define NAND_WP_BIT	0x00000010
 | |
| 
 | |
| #define	GPMC_BUF_FULL	0x00000001
 | |
| #define	GPMC_BUF_EMPTY	0x00000000
 | |
| 
 | |
| #define NAND_Ecc_P1e		(1 << 0)
 | |
| #define NAND_Ecc_P2e		(1 << 1)
 | |
| #define NAND_Ecc_P4e		(1 << 2)
 | |
| #define NAND_Ecc_P8e		(1 << 3)
 | |
| #define NAND_Ecc_P16e		(1 << 4)
 | |
| #define NAND_Ecc_P32e		(1 << 5)
 | |
| #define NAND_Ecc_P64e		(1 << 6)
 | |
| #define NAND_Ecc_P128e		(1 << 7)
 | |
| #define NAND_Ecc_P256e		(1 << 8)
 | |
| #define NAND_Ecc_P512e		(1 << 9)
 | |
| #define NAND_Ecc_P1024e		(1 << 10)
 | |
| #define NAND_Ecc_P2048e		(1 << 11)
 | |
| 
 | |
| #define NAND_Ecc_P1o		(1 << 16)
 | |
| #define NAND_Ecc_P2o		(1 << 17)
 | |
| #define NAND_Ecc_P4o		(1 << 18)
 | |
| #define NAND_Ecc_P8o		(1 << 19)
 | |
| #define NAND_Ecc_P16o		(1 << 20)
 | |
| #define NAND_Ecc_P32o		(1 << 21)
 | |
| #define NAND_Ecc_P64o		(1 << 22)
 | |
| #define NAND_Ecc_P128o		(1 << 23)
 | |
| #define NAND_Ecc_P256o		(1 << 24)
 | |
| #define NAND_Ecc_P512o		(1 << 25)
 | |
| #define NAND_Ecc_P1024o		(1 << 26)
 | |
| #define NAND_Ecc_P2048o		(1 << 27)
 | |
| 
 | |
| #define TF(value)	(value ? 1 : 0)
 | |
| 
 | |
| #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
 | |
| #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
 | |
| #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
 | |
| #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
 | |
| #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
 | |
| #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
 | |
| #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
 | |
| #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
 | |
| 
 | |
| #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
 | |
| #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
 | |
| #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
 | |
| #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
 | |
| #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
 | |
| #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
 | |
| #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
 | |
| #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
 | |
| 
 | |
| #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
 | |
| #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
 | |
| #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
 | |
| #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
 | |
| #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
 | |
| #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
 | |
| #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
 | |
| #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
 | |
| 
 | |
| #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
 | |
| #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
 | |
| #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
 | |
| #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
 | |
| #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
 | |
| #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
 | |
| #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
 | |
| #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
 | |
| 
 | |
| #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
 | |
| #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
 | |
| 
 | |
| #ifdef CONFIG_MTD_PARTITIONS
 | |
| static const char *part_probes[] = { "cmdlinepart", NULL };
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
 | |
| static int use_prefetch = 1;
 | |
| 
 | |
| /* "modprobe ... use_prefetch=0" etc */
 | |
| module_param(use_prefetch, bool, 0);
 | |
| MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH");
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
 | |
| static int use_dma = 1;
 | |
| 
 | |
| /* "modprobe ... use_dma=0" etc */
 | |
| module_param(use_dma, bool, 0);
 | |
| MODULE_PARM_DESC(use_dma, "enable/disable use of DMA");
 | |
| #else
 | |
| const int use_dma;
 | |
| #endif
 | |
| #else
 | |
| const int use_prefetch;
 | |
| const int use_dma;
 | |
| #endif
 | |
| 
 | |
| struct omap_nand_info {
 | |
| 	struct nand_hw_control		controller;
 | |
| 	struct omap_nand_platform_data	*pdata;
 | |
| 	struct mtd_info			mtd;
 | |
| 	struct mtd_partition		*parts;
 | |
| 	struct nand_chip		nand;
 | |
| 	struct platform_device		*pdev;
 | |
| 
 | |
| 	int				gpmc_cs;
 | |
| 	unsigned long			phys_base;
 | |
| 	void __iomem			*gpmc_cs_baseaddr;
 | |
| 	void __iomem			*gpmc_baseaddr;
 | |
| 	void __iomem			*nand_pref_fifo_add;
 | |
| 	struct completion		comp;
 | |
| 	int				dma_ch;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * omap_nand_wp - This function enable or disable the Write Protect feature
 | |
|  * @mtd: MTD device structure
 | |
|  * @mode: WP ON/OFF
 | |
|  */
 | |
| static void omap_nand_wp(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 
 | |
| 	unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
 | |
| 
 | |
| 	if (mode)
 | |
| 		config &= ~(NAND_WP_BIT);	/* WP is ON */
 | |
| 	else
 | |
| 		config |= (NAND_WP_BIT);	/* WP is OFF */
 | |
| 
 | |
| 	__raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_hwcontrol - hardware specific access to control-lines
 | |
|  * @mtd: MTD device structure
 | |
|  * @cmd: command to device
 | |
|  * @ctrl:
 | |
|  * NAND_NCE: bit 0 -> don't care
 | |
|  * NAND_CLE: bit 1 -> Command Latch
 | |
|  * NAND_ALE: bit 2 -> Address Latch
 | |
|  *
 | |
|  * NOTE: boards may use different bits for these!!
 | |
|  */
 | |
| static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 					struct omap_nand_info, mtd);
 | |
| 	switch (ctrl) {
 | |
| 	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
 | |
| 		info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
 | |
| 						GPMC_CS_NAND_COMMAND;
 | |
| 		info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
 | |
| 						GPMC_CS_NAND_DATA;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
 | |
| 		info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
 | |
| 						GPMC_CS_NAND_ADDRESS;
 | |
| 		info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
 | |
| 						GPMC_CS_NAND_DATA;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_CTRL_CHANGE | NAND_NCE:
 | |
| 		info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
 | |
| 						GPMC_CS_NAND_DATA;
 | |
| 		info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
 | |
| 						GPMC_CS_NAND_DATA;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE)
 | |
| 		__raw_writeb(cmd, info->nand.IO_ADDR_W);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_buf8 - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd->priv;
 | |
| 
 | |
| 	ioread8_rep(nand->IO_ADDR_R, buf, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_buf8 - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	u_char *p = (u_char *)buf;
 | |
| 
 | |
| 	while (len--) {
 | |
| 		iowrite8(*p++, info->nand.IO_ADDR_W);
 | |
| 		while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
 | |
| 						GPMC_STATUS) & GPMC_BUF_FULL));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_buf16 - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd->priv;
 | |
| 
 | |
| 	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_buf16 - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	u16 *p = (u16 *) buf;
 | |
| 
 | |
| 	/* FIXME try bursts of writesw() or DMA ... */
 | |
| 	len >>= 1;
 | |
| 
 | |
| 	while (len--) {
 | |
| 		iowrite16(*p++, info->nand.IO_ADDR_W);
 | |
| 
 | |
| 		while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
 | |
| 						GPMC_STATUS) & GPMC_BUF_FULL))
 | |
| 			;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_read_buf_pref - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	uint32_t pfpw_status = 0, r_count = 0;
 | |
| 	int ret = 0;
 | |
| 	u32 *p = (u32 *)buf;
 | |
| 
 | |
| 	/* take care of subpage reads */
 | |
| 	for (; len % 4 != 0; ) {
 | |
| 		*buf++ = __raw_readb(info->nand.IO_ADDR_R);
 | |
| 		len--;
 | |
| 	}
 | |
| 	p = (u32 *) buf;
 | |
| 
 | |
| 	/* configure and start prefetch transfer */
 | |
| 	ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0);
 | |
| 	if (ret) {
 | |
| 		/* PFPW engine is busy, use cpu copy method */
 | |
| 		if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 			omap_read_buf16(mtd, buf, len);
 | |
| 		else
 | |
| 			omap_read_buf8(mtd, buf, len);
 | |
| 	} else {
 | |
| 		do {
 | |
| 			pfpw_status = gpmc_prefetch_status();
 | |
| 			r_count = ((pfpw_status >> 24) & 0x7F) >> 2;
 | |
| 			ioread32_rep(info->nand_pref_fifo_add, p, r_count);
 | |
| 			p += r_count;
 | |
| 			len -= r_count << 2;
 | |
| 		} while (len);
 | |
| 
 | |
| 		/* disable and stop the PFPW engine */
 | |
| 		gpmc_prefetch_reset();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_buf_pref - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf_pref(struct mtd_info *mtd,
 | |
| 					const u_char *buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 						struct omap_nand_info, mtd);
 | |
| 	uint32_t pfpw_status = 0, w_count = 0;
 | |
| 	int i = 0, ret = 0;
 | |
| 	u16 *p = (u16 *) buf;
 | |
| 
 | |
| 	/* take care of subpage writes */
 | |
| 	if (len % 2 != 0) {
 | |
| 		writeb(*buf, info->nand.IO_ADDR_R);
 | |
| 		p = (u16 *)(buf + 1);
 | |
| 		len--;
 | |
| 	}
 | |
| 
 | |
| 	/*  configure and start prefetch transfer */
 | |
| 	ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1);
 | |
| 	if (ret) {
 | |
| 		/* PFPW engine is busy, use cpu copy method */
 | |
| 		if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 			omap_write_buf16(mtd, buf, len);
 | |
| 		else
 | |
| 			omap_write_buf8(mtd, buf, len);
 | |
| 	} else {
 | |
| 		pfpw_status = gpmc_prefetch_status();
 | |
| 		while (pfpw_status & 0x3FFF) {
 | |
| 			w_count = ((pfpw_status >> 24) & 0x7F) >> 1;
 | |
| 			for (i = 0; (i < w_count) && len; i++, len -= 2)
 | |
| 				iowrite16(*p++, info->nand_pref_fifo_add);
 | |
| 			pfpw_status = gpmc_prefetch_status();
 | |
| 		}
 | |
| 
 | |
| 		/* disable and stop the PFPW engine */
 | |
| 		gpmc_prefetch_reset();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
 | |
| /*
 | |
|  * omap_nand_dma_cb: callback on the completion of dma transfer
 | |
|  * @lch: logical channel
 | |
|  * @ch_satuts: channel status
 | |
|  * @data: pointer to completion data structure
 | |
|  */
 | |
| static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
 | |
| {
 | |
| 	complete((struct completion *) data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * omap_nand_dma_transfer: configer and start dma transfer
 | |
|  * @mtd: MTD device structure
 | |
|  * @addr: virtual address in RAM of source/destination
 | |
|  * @len: number of data bytes to be transferred
 | |
|  * @is_write: flag for read/write operation
 | |
|  */
 | |
| static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 | |
| 					unsigned int len, int is_write)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd,
 | |
| 					struct omap_nand_info, mtd);
 | |
| 	uint32_t prefetch_status = 0;
 | |
| 	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 | |
| 							DMA_FROM_DEVICE;
 | |
| 	dma_addr_t dma_addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* The fifo depth is 64 bytes. We have a sync at each frame and frame
 | |
| 	 * length is 64 bytes.
 | |
| 	 */
 | |
| 	int buf_len = len >> 6;
 | |
| 
 | |
| 	if (addr >= high_memory) {
 | |
| 		struct page *p1;
 | |
| 
 | |
| 		if (((size_t)addr & PAGE_MASK) !=
 | |
| 			((size_t)(addr + len - 1) & PAGE_MASK))
 | |
| 			goto out_copy;
 | |
| 		p1 = vmalloc_to_page(addr);
 | |
| 		if (!p1)
 | |
| 			goto out_copy;
 | |
| 		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 | |
| 	}
 | |
| 
 | |
| 	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
 | |
| 	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
 | |
| 		dev_err(&info->pdev->dev,
 | |
| 			"Couldn't DMA map a %d byte buffer\n", len);
 | |
| 		goto out_copy;
 | |
| 	}
 | |
| 
 | |
| 	if (is_write) {
 | |
| 	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 | |
| 						info->phys_base, 0, 0);
 | |
| 	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 | |
| 							dma_addr, 0, 0);
 | |
| 	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 | |
| 					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 | |
| 					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
 | |
| 	} else {
 | |
| 	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 | |
| 						info->phys_base, 0, 0);
 | |
| 	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 | |
| 							dma_addr, 0, 0);
 | |
| 	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 | |
| 					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 | |
| 					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
 | |
| 	}
 | |
| 	/*  configure and start prefetch transfer */
 | |
| 	ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write);
 | |
| 	if (ret)
 | |
| 		/* PFPW engine is busy, use cpu copy methode */
 | |
| 		goto out_copy;
 | |
| 
 | |
| 	init_completion(&info->comp);
 | |
| 
 | |
| 	omap_start_dma(info->dma_ch);
 | |
| 
 | |
| 	/* setup and start DMA using dma_addr */
 | |
| 	wait_for_completion(&info->comp);
 | |
| 
 | |
| 	while (0x3fff & (prefetch_status = gpmc_prefetch_status()))
 | |
| 		;
 | |
| 	/* disable and stop the PFPW engine */
 | |
| 	gpmc_prefetch_reset();
 | |
| 
 | |
| 	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
 | |
| 	return 0;
 | |
| 
 | |
| out_copy:
 | |
| 	if (info->nand.options & NAND_BUSWIDTH_16)
 | |
| 		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 | |
| 			: omap_write_buf16(mtd, (u_char *) addr, len);
 | |
| 	else
 | |
| 		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 | |
| 			: omap_write_buf8(mtd, (u_char *) addr, len);
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {}
 | |
| static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 | |
| 					unsigned int len, int is_write)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * omap_read_buf_dma_pref - read data from NAND controller into buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer to store date
 | |
|  * @len: number of bytes to read
 | |
|  */
 | |
| static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
| 	if (len <= mtd->oobsize)
 | |
| 		omap_read_buf_pref(mtd, buf, len);
 | |
| 	else
 | |
| 		/* start transfer in DMA mode */
 | |
| 		omap_nand_dma_transfer(mtd, buf, len, 0x0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_write_buf_dma_pref - write buffer to NAND controller
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: data buffer
 | |
|  * @len: number of bytes to write
 | |
|  */
 | |
| static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 | |
| 					const u_char *buf, int len)
 | |
| {
 | |
| 	if (len <= mtd->oobsize)
 | |
| 		omap_write_buf_pref(mtd, buf, len);
 | |
| 	else
 | |
| 		/* start transfer in DMA mode */
 | |
| 		omap_nand_dma_transfer(mtd, buf, len, 0x1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_verify_buf - Verify chip data against buffer
 | |
|  * @mtd: MTD device structure
 | |
|  * @buf: buffer containing the data to compare
 | |
|  * @len: number of bytes to compare
 | |
|  */
 | |
| static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	u16 *p = (u16 *) buf;
 | |
| 
 | |
| 	len >>= 1;
 | |
| 	while (len--) {
 | |
| 		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_HWECC
 | |
| /**
 | |
|  * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller
 | |
|  * @mtd: MTD device structure
 | |
|  */
 | |
| static void omap_hwecc_init(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	unsigned long val = 0x0;
 | |
| 
 | |
| 	/* Read from ECC Control Register */
 | |
| 	val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
 | |
| 	/* Clear all ECC | Enable Reg1 */
 | |
| 	val = ((0x00000001<<8) | 0x00000001);
 | |
| 	__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
 | |
| 
 | |
| 	/* Read from ECC Size Config Register */
 | |
| 	val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
 | |
| 	/* ECCSIZE1=512 | Select eccResultsize[0-3] */
 | |
| 	val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
 | |
| 	__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * gen_true_ecc - This function will generate true ECC value
 | |
|  * @ecc_buf: buffer to store ecc code
 | |
|  *
 | |
|  * This generated true ECC value can be used when correcting
 | |
|  * data read from NAND flash memory core
 | |
|  */
 | |
| static void gen_true_ecc(u8 *ecc_buf)
 | |
| {
 | |
| 	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 | |
| 		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 | |
| 
 | |
| 	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 | |
| 			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 | |
| 	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 | |
| 			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 | |
| 	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 | |
| 			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 | |
|  * @ecc_data1:  ecc code from nand spare area
 | |
|  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 | |
|  * @page_data:  page data
 | |
|  *
 | |
|  * This function compares two ECC's and indicates if there is an error.
 | |
|  * If the error can be corrected it will be corrected to the buffer.
 | |
|  */
 | |
| static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
 | |
| 			    u8 *ecc_data2,	/* read from register */
 | |
| 			    u8 *page_data)
 | |
| {
 | |
| 	uint	i;
 | |
| 	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 | |
| 	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
 | |
| 	u8	ecc_bit[24];
 | |
| 	u8	ecc_sum = 0;
 | |
| 	u8	find_bit = 0;
 | |
| 	uint	find_byte = 0;
 | |
| 	int	isEccFF;
 | |
| 
 | |
| 	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 | |
| 
 | |
| 	gen_true_ecc(ecc_data1);
 | |
| 	gen_true_ecc(ecc_data2);
 | |
| 
 | |
| 	for (i = 0; i <= 2; i++) {
 | |
| 		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
 | |
| 		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		tmp0_bit[i]     = *ecc_data1 % 2;
 | |
| 		*ecc_data1	= *ecc_data1 / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
 | |
| 		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
 | |
| 		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		comp0_bit[i]     = *ecc_data2 % 2;
 | |
| 		*ecc_data2       = *ecc_data2 / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 | |
| 		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 | |
| 		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 6; i++)
 | |
| 		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 | |
| 
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 | |
| 
 | |
| 	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 | |
| 	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 | |
| 
 | |
| 	for (i = 0; i < 24; i++)
 | |
| 		ecc_sum += ecc_bit[i];
 | |
| 
 | |
| 	switch (ecc_sum) {
 | |
| 	case 0:
 | |
| 		/* Not reached because this function is not called if
 | |
| 		 *  ECC values are equal
 | |
| 		 */
 | |
| 		return 0;
 | |
| 
 | |
| 	case 1:
 | |
| 		/* Uncorrectable error */
 | |
| 		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
 | |
| 		return -1;
 | |
| 
 | |
| 	case 11:
 | |
| 		/* UN-Correctable error */
 | |
| 		DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
 | |
| 		return -1;
 | |
| 
 | |
| 	case 12:
 | |
| 		/* Correctable error */
 | |
| 		find_byte = (ecc_bit[23] << 8) +
 | |
| 			    (ecc_bit[21] << 7) +
 | |
| 			    (ecc_bit[19] << 6) +
 | |
| 			    (ecc_bit[17] << 5) +
 | |
| 			    (ecc_bit[15] << 4) +
 | |
| 			    (ecc_bit[13] << 3) +
 | |
| 			    (ecc_bit[11] << 2) +
 | |
| 			    (ecc_bit[9]  << 1) +
 | |
| 			    ecc_bit[7];
 | |
| 
 | |
| 		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 | |
| 
 | |
| 		DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
 | |
| 				"offset: %d, bit: %d\n", find_byte, find_bit);
 | |
| 
 | |
| 		page_data[find_byte] ^= (1 << find_bit);
 | |
| 
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		if (isEccFF) {
 | |
| 			if (ecc_data2[0] == 0 &&
 | |
| 			    ecc_data2[1] == 0 &&
 | |
| 			    ecc_data2[2] == 0)
 | |
| 				return 0;
 | |
| 		}
 | |
| 		DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_correct_data - Compares the ECC read with HW generated ECC
 | |
|  * @mtd: MTD device structure
 | |
|  * @dat: page data
 | |
|  * @read_ecc: ecc read from nand flash
 | |
|  * @calc_ecc: ecc read from HW ECC registers
 | |
|  *
 | |
|  * Compares the ecc read from nand spare area with ECC registers values
 | |
|  * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
 | |
|  * and correction.
 | |
|  */
 | |
| static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 | |
| 				u_char *read_ecc, u_char *calc_ecc)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	int blockCnt = 0, i = 0, ret = 0;
 | |
| 
 | |
| 	/* Ex NAND_ECC_HW12_2048 */
 | |
| 	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 | |
| 			(info->nand.ecc.size  == 2048))
 | |
| 		blockCnt = 4;
 | |
| 	else
 | |
| 		blockCnt = 1;
 | |
| 
 | |
| 	for (i = 0; i < blockCnt; i++) {
 | |
| 		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 | |
| 			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 		read_ecc += 3;
 | |
| 		calc_ecc += 3;
 | |
| 		dat      += 512;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 | |
|  * @mtd: MTD device structure
 | |
|  * @dat: The pointer to data on which ecc is computed
 | |
|  * @ecc_code: The ecc_code buffer
 | |
|  *
 | |
|  * Using noninverted ECC can be considered ugly since writing a blank
 | |
|  * page ie. padding will clear the ECC bytes. This is no problem as long
 | |
|  * nobody is trying to write data on the seemingly unused page. Reading
 | |
|  * an erased page will produce an ECC mismatch between generated and read
 | |
|  * ECC bytes that has to be dealt with separately.
 | |
|  */
 | |
| static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 | |
| 				u_char *ecc_code)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	unsigned long val = 0x0;
 | |
| 	unsigned long reg;
 | |
| 
 | |
| 	/* Start Reading from HW ECC1_Result = 0x200 */
 | |
| 	reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
 | |
| 	val = __raw_readl(reg);
 | |
| 	*ecc_code++ = val;          /* P128e, ..., P1e */
 | |
| 	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 | |
| 	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 | |
| 	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 | |
| 	reg += 4;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_enable_hwecc - This function enables the hardware ecc functionality
 | |
|  * @mtd: MTD device structure
 | |
|  * @mode: Read/Write mode
 | |
|  */
 | |
| static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	struct nand_chip *chip = mtd->priv;
 | |
| 	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 | |
| 	unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case NAND_ECC_READ:
 | |
| 		__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
 | |
| 		/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 | |
| 		val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 | |
| 		break;
 | |
| 	case NAND_ECC_READSYN:
 | |
| 		 __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
 | |
| 		/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 | |
| 		val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 | |
| 		break;
 | |
| 	case NAND_ECC_WRITE:
 | |
| 		__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
 | |
| 		/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 | |
| 		val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
 | |
| 					mode);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * omap_wait - wait until the command is done
 | |
|  * @mtd: MTD device structure
 | |
|  * @chip: NAND Chip structure
 | |
|  *
 | |
|  * Wait function is called during Program and erase operations and
 | |
|  * the way it is called from MTD layer, we should wait till the NAND
 | |
|  * chip is ready after the programming/erase operation has completed.
 | |
|  *
 | |
|  * Erase can take up to 400ms and program up to 20ms according to
 | |
|  * general NAND and SmartMedia specs
 | |
|  */
 | |
| static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 | |
| {
 | |
| 	struct nand_chip *this = mtd->priv;
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	unsigned long timeo = jiffies;
 | |
| 	int status = NAND_STATUS_FAIL, state = this->state;
 | |
| 
 | |
| 	if (state == FL_ERASING)
 | |
| 		timeo += (HZ * 400) / 1000;
 | |
| 	else
 | |
| 		timeo += (HZ * 20) / 1000;
 | |
| 
 | |
| 	this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
 | |
| 						GPMC_CS_NAND_COMMAND;
 | |
| 	this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
 | |
| 
 | |
| 	__raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
 | |
| 
 | |
| 	while (time_before(jiffies, timeo)) {
 | |
| 		status = __raw_readb(this->IO_ADDR_R);
 | |
| 		if (status & NAND_STATUS_READY)
 | |
| 			break;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * omap_dev_ready - calls the platform specific dev_ready function
 | |
|  * @mtd: MTD device structure
 | |
|  */
 | |
| static int omap_dev_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 | |
| 							mtd);
 | |
| 	unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
 | |
| 
 | |
| 	if ((val & 0x100) == 0x100) {
 | |
| 		/* Clear IRQ Interrupt */
 | |
| 		val |= 0x100;
 | |
| 		val &= ~(0x0);
 | |
| 		__raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
 | |
| 	} else {
 | |
| 		unsigned int cnt = 0;
 | |
| 		while (cnt++ < 0x1FF) {
 | |
| 			if  ((val & 0x100) == 0x100)
 | |
| 				return 0;
 | |
| 			val = __raw_readl(info->gpmc_baseaddr +
 | |
| 							GPMC_IRQ_STATUS);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __devinit omap_nand_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct omap_nand_info		*info;
 | |
| 	struct omap_nand_platform_data	*pdata;
 | |
| 	int				err;
 | |
| 
 | |
| 	pdata = pdev->dev.platform_data;
 | |
| 	if (pdata == NULL) {
 | |
| 		dev_err(&pdev->dev, "platform data missing\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, info);
 | |
| 
 | |
| 	spin_lock_init(&info->controller.lock);
 | |
| 	init_waitqueue_head(&info->controller.wq);
 | |
| 
 | |
| 	info->pdev = pdev;
 | |
| 
 | |
| 	info->gpmc_cs		= pdata->cs;
 | |
| 	info->gpmc_baseaddr	= pdata->gpmc_baseaddr;
 | |
| 	info->gpmc_cs_baseaddr	= pdata->gpmc_cs_baseaddr;
 | |
| 	info->phys_base		= pdata->phys_base;
 | |
| 
 | |
| 	info->mtd.priv		= &info->nand;
 | |
| 	info->mtd.name		= dev_name(&pdev->dev);
 | |
| 	info->mtd.owner		= THIS_MODULE;
 | |
| 
 | |
| 	info->nand.options	|= pdata->devsize ? NAND_BUSWIDTH_16 : 0;
 | |
| 	info->nand.options	|= NAND_SKIP_BBTSCAN;
 | |
| 
 | |
| 	/* NAND write protect off */
 | |
| 	omap_nand_wp(&info->mtd, NAND_WP_OFF);
 | |
| 
 | |
| 	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
 | |
| 				pdev->dev.driver->name)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto out_free_info;
 | |
| 	}
 | |
| 
 | |
| 	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
 | |
| 	if (!info->nand.IO_ADDR_R) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_release_mem_region;
 | |
| 	}
 | |
| 
 | |
| 	info->nand.controller = &info->controller;
 | |
| 
 | |
| 	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
 | |
| 	info->nand.cmd_ctrl  = omap_hwcontrol;
 | |
| 
 | |
| 	/*
 | |
| 	 * If RDY/BSY line is connected to OMAP then use the omap ready
 | |
| 	 * funcrtion and the generic nand_wait function which reads the status
 | |
| 	 * register after monitoring the RDY/BSY line.Otherwise use a standard
 | |
| 	 * chip delay which is slightly more than tR (AC Timing) of the NAND
 | |
| 	 * device and read status register until you get a failure or success
 | |
| 	 */
 | |
| 	if (pdata->dev_ready) {
 | |
| 		info->nand.dev_ready = omap_dev_ready;
 | |
| 		info->nand.chip_delay = 0;
 | |
| 	} else {
 | |
| 		info->nand.waitfunc = omap_wait;
 | |
| 		info->nand.chip_delay = 50;
 | |
| 	}
 | |
| 
 | |
| 	if (use_prefetch) {
 | |
| 		/* copy the virtual address of nand base for fifo access */
 | |
| 		info->nand_pref_fifo_add = info->nand.IO_ADDR_R;
 | |
| 
 | |
| 		info->nand.read_buf   = omap_read_buf_pref;
 | |
| 		info->nand.write_buf  = omap_write_buf_pref;
 | |
| 		if (use_dma) {
 | |
| 			err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
 | |
| 				omap_nand_dma_cb, &info->comp, &info->dma_ch);
 | |
| 			if (err < 0) {
 | |
| 				info->dma_ch = -1;
 | |
| 				printk(KERN_WARNING "DMA request failed."
 | |
| 					" Non-dma data transfer mode\n");
 | |
| 			} else {
 | |
| 				omap_set_dma_dest_burst_mode(info->dma_ch,
 | |
| 						OMAP_DMA_DATA_BURST_16);
 | |
| 				omap_set_dma_src_burst_mode(info->dma_ch,
 | |
| 						OMAP_DMA_DATA_BURST_16);
 | |
| 
 | |
| 				info->nand.read_buf   = omap_read_buf_dma_pref;
 | |
| 				info->nand.write_buf  = omap_write_buf_dma_pref;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (info->nand.options & NAND_BUSWIDTH_16) {
 | |
| 			info->nand.read_buf   = omap_read_buf16;
 | |
| 			info->nand.write_buf  = omap_write_buf16;
 | |
| 		} else {
 | |
| 			info->nand.read_buf   = omap_read_buf8;
 | |
| 			info->nand.write_buf  = omap_write_buf8;
 | |
| 		}
 | |
| 	}
 | |
| 	info->nand.verify_buf = omap_verify_buf;
 | |
| 
 | |
| #ifdef CONFIG_MTD_NAND_OMAP_HWECC
 | |
| 	info->nand.ecc.bytes		= 3;
 | |
| 	info->nand.ecc.size		= 512;
 | |
| 	info->nand.ecc.calculate	= omap_calculate_ecc;
 | |
| 	info->nand.ecc.hwctl		= omap_enable_hwecc;
 | |
| 	info->nand.ecc.correct		= omap_correct_data;
 | |
| 	info->nand.ecc.mode		= NAND_ECC_HW;
 | |
| 
 | |
| 	/* init HW ECC */
 | |
| 	omap_hwecc_init(&info->mtd);
 | |
| #else
 | |
| 	info->nand.ecc.mode = NAND_ECC_SOFT;
 | |
| #endif
 | |
| 
 | |
| 	/* DIP switches on some boards change between 8 and 16 bit
 | |
| 	 * bus widths for flash.  Try the other width if the first try fails.
 | |
| 	 */
 | |
| 	if (nand_scan(&info->mtd, 1)) {
 | |
| 		info->nand.options ^= NAND_BUSWIDTH_16;
 | |
| 		if (nand_scan(&info->mtd, 1)) {
 | |
| 			err = -ENXIO;
 | |
| 			goto out_release_mem_region;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_MTD_PARTITIONS
 | |
| 	err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
 | |
| 	if (err > 0)
 | |
| 		add_mtd_partitions(&info->mtd, info->parts, err);
 | |
| 	else if (pdata->parts)
 | |
| 		add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
 | |
| 	else
 | |
| #endif
 | |
| 		add_mtd_device(&info->mtd);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, &info->mtd);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_release_mem_region:
 | |
| 	release_mem_region(info->phys_base, NAND_IO_SIZE);
 | |
| out_free_info:
 | |
| 	kfree(info);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int omap_nand_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct mtd_info *mtd = platform_get_drvdata(pdev);
 | |
| 	struct omap_nand_info *info = mtd->priv;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, NULL);
 | |
| 	if (use_dma)
 | |
| 		omap_free_dma(info->dma_ch);
 | |
| 
 | |
| 	/* Release NAND device, its internal structures and partitions */
 | |
| 	nand_release(&info->mtd);
 | |
| 	iounmap(info->nand_pref_fifo_add);
 | |
| 	kfree(&info->mtd);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct platform_driver omap_nand_driver = {
 | |
| 	.probe		= omap_nand_probe,
 | |
| 	.remove		= omap_nand_remove,
 | |
| 	.driver		= {
 | |
| 		.name	= DRIVER_NAME,
 | |
| 		.owner	= THIS_MODULE,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init omap_nand_init(void)
 | |
| {
 | |
| 	printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
 | |
| 
 | |
| 	/* This check is required if driver is being
 | |
| 	 * loaded run time as a module
 | |
| 	 */
 | |
| 	if ((1 == use_dma) && (0 == use_prefetch)) {
 | |
| 		printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 "
 | |
| 				"without use_prefetch'. Prefetch will not be"
 | |
| 				" used in either mode (mpu or dma)\n");
 | |
| 	}
 | |
| 	return platform_driver_register(&omap_nand_driver);
 | |
| }
 | |
| 
 | |
| static void __exit omap_nand_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&omap_nand_driver);
 | |
| }
 | |
| 
 | |
| module_init(omap_nand_init);
 | |
| module_exit(omap_nand_exit);
 | |
| 
 | |
| MODULE_ALIAS(DRIVER_NAME);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
 |