 60d9aa758c
			
		
	
	
	60d9aa758c
	
	
	
		
			
			* git://git.infradead.org/mtd-2.6: (90 commits) jffs2: Fix long-standing bug with symlink garbage collection. mtd: OneNAND: Fix test of unsigned in onenand_otp_walk() mtd: cfi_cmdset_0002, fix lock imbalance Revert "mtd: move mxcnd_remove to .exit.text" mtd: m25p80: add support for Macronix MX25L4005A kmsg_dump: fix build for CONFIG_PRINTK=n mtd: nandsim: add support for 4KiB pages mtd: mtdoops: refactor as a kmsg_dumper mtd: mtdoops: make record size configurable mtd: mtdoops: limit the maximum mtd partition size mtd: mtdoops: keep track of used/unused pages in an array mtd: mtdoops: several minor cleanups core: Add kernel message dumper to call on oopses and panics mtd: add ARM pismo support mtd: pxa3xx_nand: Fix PIO data transfer mtd: nand: fix multi-chip suspend problem mtd: add support for switching old SST chips into QRY mode mtd: fix M29W800D dev_id and uaddr mtd: don't use PF_MEMALLOC mtd: Add bad block table overrides to Davinci NAND driver ... Fixed up conflicts (mostly trivial) in drivers/mtd/devices/m25p80.c drivers/mtd/maps/pcmciamtd.c drivers/mtd/nand/pxa3xx_nand.c kernel/printk.c
		
			
				
	
	
		
			534 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			534 lines
		
	
	
	
		
			16 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file contains an ECC algorithm that detects and corrects 1 bit
 | |
|  * errors in a 256 byte block of data.
 | |
|  *
 | |
|  * drivers/mtd/nand/nand_ecc.c
 | |
|  *
 | |
|  * Copyright © 2008 Koninklijke Philips Electronics NV.
 | |
|  *                  Author: Frans Meulenbroeks
 | |
|  *
 | |
|  * Completely replaces the previous ECC implementation which was written by:
 | |
|  *   Steven J. Hill (sjhill@realitydiluted.com)
 | |
|  *   Thomas Gleixner (tglx@linutronix.de)
 | |
|  *
 | |
|  * Information on how this algorithm works and how it was developed
 | |
|  * can be found in Documentation/mtd/nand_ecc.txt
 | |
|  *
 | |
|  * This file is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the
 | |
|  * Free Software Foundation; either version 2 or (at your option) any
 | |
|  * later version.
 | |
|  *
 | |
|  * This file is distributed in the hope that it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  * for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along
 | |
|  * with this file; if not, write to the Free Software Foundation, Inc.,
 | |
|  * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The STANDALONE macro is useful when running the code outside the kernel
 | |
|  * e.g. when running the code in a testbed or a benchmark program.
 | |
|  * When STANDALONE is used, the module related macros are commented out
 | |
|  * as well as the linux include files.
 | |
|  * Instead a private definition of mtd_info is given to satisfy the compiler
 | |
|  * (the code does not use mtd_info, so the code does not care)
 | |
|  */
 | |
| #ifndef STANDALONE
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/nand_ecc.h>
 | |
| #include <asm/byteorder.h>
 | |
| #else
 | |
| #include <stdint.h>
 | |
| struct mtd_info;
 | |
| #define EXPORT_SYMBOL(x)  /* x */
 | |
| 
 | |
| #define MODULE_LICENSE(x)	/* x */
 | |
| #define MODULE_AUTHOR(x)	/* x */
 | |
| #define MODULE_DESCRIPTION(x)	/* x */
 | |
| 
 | |
| #define printk printf
 | |
| #define KERN_ERR		""
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * invparity is a 256 byte table that contains the odd parity
 | |
|  * for each byte. So if the number of bits in a byte is even,
 | |
|  * the array element is 1, and when the number of bits is odd
 | |
|  * the array eleemnt is 0.
 | |
|  */
 | |
| static const char invparity[256] = {
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * bitsperbyte contains the number of bits per byte
 | |
|  * this is only used for testing and repairing parity
 | |
|  * (a precalculated value slightly improves performance)
 | |
|  */
 | |
| static const char bitsperbyte[256] = {
 | |
| 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
 | |
| 	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | |
| 	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | |
| 	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | |
| 	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | |
| 	4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * addressbits is a lookup table to filter out the bits from the xor-ed
 | |
|  * ecc data that identify the faulty location.
 | |
|  * this is only used for repairing parity
 | |
|  * see the comments in nand_correct_data for more details
 | |
|  */
 | |
| static const char addressbits[256] = {
 | |
| 	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | |
| 	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | |
| 	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | |
| 	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | |
| 	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | |
| 	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | |
| 	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | |
| 	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | |
| 	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | |
| 	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | |
| 	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | |
| 	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | |
| 	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | |
| 	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | |
| 	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | |
| 	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | |
| 	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | |
| 	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | |
| 	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | |
| 	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | |
| 	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | |
| 	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | |
| 	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | |
| 	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | |
| 	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | |
| 	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | |
| 	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | |
| 	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | |
| 	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | |
| 	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | |
| 	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | |
| 	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
 | |
|  *			 block
 | |
|  * @buf:	input buffer with raw data
 | |
|  * @eccsize:	data bytes per ecc step (256 or 512)
 | |
|  * @code:	output buffer with ECC
 | |
|  */
 | |
| void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
 | |
| 		       unsigned char *code)
 | |
| {
 | |
| 	int i;
 | |
| 	const uint32_t *bp = (uint32_t *)buf;
 | |
| 	/* 256 or 512 bytes/ecc  */
 | |
| 	const uint32_t eccsize_mult = eccsize >> 8;
 | |
| 	uint32_t cur;		/* current value in buffer */
 | |
| 	/* rp0..rp15..rp17 are the various accumulated parities (per byte) */
 | |
| 	uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
 | |
| 	uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
 | |
| 	uint32_t uninitialized_var(rp17);	/* to make compiler happy */
 | |
| 	uint32_t par;		/* the cumulative parity for all data */
 | |
| 	uint32_t tmppar;	/* the cumulative parity for this iteration;
 | |
| 				   for rp12, rp14 and rp16 at the end of the
 | |
| 				   loop */
 | |
| 
 | |
| 	par = 0;
 | |
| 	rp4 = 0;
 | |
| 	rp6 = 0;
 | |
| 	rp8 = 0;
 | |
| 	rp10 = 0;
 | |
| 	rp12 = 0;
 | |
| 	rp14 = 0;
 | |
| 	rp16 = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The loop is unrolled a number of times;
 | |
| 	 * This avoids if statements to decide on which rp value to update
 | |
| 	 * Also we process the data by longwords.
 | |
| 	 * Note: passing unaligned data might give a performance penalty.
 | |
| 	 * It is assumed that the buffers are aligned.
 | |
| 	 * tmppar is the cumulative sum of this iteration.
 | |
| 	 * needed for calculating rp12, rp14, rp16 and par
 | |
| 	 * also used as a performance improvement for rp6, rp8 and rp10
 | |
| 	 */
 | |
| 	for (i = 0; i < eccsize_mult << 2; i++) {
 | |
| 		cur = *bp++;
 | |
| 		tmppar = cur;
 | |
| 		rp4 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp6 ^= tmppar;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp8 ^= tmppar;
 | |
| 
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp10 ^= tmppar;
 | |
| 
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		rp8 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		rp8 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		rp8 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp8 ^= cur;
 | |
| 
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 
 | |
| 		par ^= tmppar;
 | |
| 		if ((i & 0x1) == 0)
 | |
| 			rp12 ^= tmppar;
 | |
| 		if ((i & 0x2) == 0)
 | |
| 			rp14 ^= tmppar;
 | |
| 		if (eccsize_mult == 2 && (i & 0x4) == 0)
 | |
| 			rp16 ^= tmppar;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * handle the fact that we use longword operations
 | |
| 	 * we'll bring rp4..rp14..rp16 back to single byte entities by
 | |
| 	 * shifting and xoring first fold the upper and lower 16 bits,
 | |
| 	 * then the upper and lower 8 bits.
 | |
| 	 */
 | |
| 	rp4 ^= (rp4 >> 16);
 | |
| 	rp4 ^= (rp4 >> 8);
 | |
| 	rp4 &= 0xff;
 | |
| 	rp6 ^= (rp6 >> 16);
 | |
| 	rp6 ^= (rp6 >> 8);
 | |
| 	rp6 &= 0xff;
 | |
| 	rp8 ^= (rp8 >> 16);
 | |
| 	rp8 ^= (rp8 >> 8);
 | |
| 	rp8 &= 0xff;
 | |
| 	rp10 ^= (rp10 >> 16);
 | |
| 	rp10 ^= (rp10 >> 8);
 | |
| 	rp10 &= 0xff;
 | |
| 	rp12 ^= (rp12 >> 16);
 | |
| 	rp12 ^= (rp12 >> 8);
 | |
| 	rp12 &= 0xff;
 | |
| 	rp14 ^= (rp14 >> 16);
 | |
| 	rp14 ^= (rp14 >> 8);
 | |
| 	rp14 &= 0xff;
 | |
| 	if (eccsize_mult == 2) {
 | |
| 		rp16 ^= (rp16 >> 16);
 | |
| 		rp16 ^= (rp16 >> 8);
 | |
| 		rp16 &= 0xff;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we also need to calculate the row parity for rp0..rp3
 | |
| 	 * This is present in par, because par is now
 | |
| 	 * rp3 rp3 rp2 rp2 in little endian and
 | |
| 	 * rp2 rp2 rp3 rp3 in big endian
 | |
| 	 * as well as
 | |
| 	 * rp1 rp0 rp1 rp0 in little endian and
 | |
| 	 * rp0 rp1 rp0 rp1 in big endian
 | |
| 	 * First calculate rp2 and rp3
 | |
| 	 */
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	rp2 = (par >> 16);
 | |
| 	rp2 ^= (rp2 >> 8);
 | |
| 	rp2 &= 0xff;
 | |
| 	rp3 = par & 0xffff;
 | |
| 	rp3 ^= (rp3 >> 8);
 | |
| 	rp3 &= 0xff;
 | |
| #else
 | |
| 	rp3 = (par >> 16);
 | |
| 	rp3 ^= (rp3 >> 8);
 | |
| 	rp3 &= 0xff;
 | |
| 	rp2 = par & 0xffff;
 | |
| 	rp2 ^= (rp2 >> 8);
 | |
| 	rp2 &= 0xff;
 | |
| #endif
 | |
| 
 | |
| 	/* reduce par to 16 bits then calculate rp1 and rp0 */
 | |
| 	par ^= (par >> 16);
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	rp0 = (par >> 8) & 0xff;
 | |
| 	rp1 = (par & 0xff);
 | |
| #else
 | |
| 	rp1 = (par >> 8) & 0xff;
 | |
| 	rp0 = (par & 0xff);
 | |
| #endif
 | |
| 
 | |
| 	/* finally reduce par to 8 bits */
 | |
| 	par ^= (par >> 8);
 | |
| 	par &= 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * and calculate rp5..rp15..rp17
 | |
| 	 * note that par = rp4 ^ rp5 and due to the commutative property
 | |
| 	 * of the ^ operator we can say:
 | |
| 	 * rp5 = (par ^ rp4);
 | |
| 	 * The & 0xff seems superfluous, but benchmarking learned that
 | |
| 	 * leaving it out gives slightly worse results. No idea why, probably
 | |
| 	 * it has to do with the way the pipeline in pentium is organized.
 | |
| 	 */
 | |
| 	rp5 = (par ^ rp4) & 0xff;
 | |
| 	rp7 = (par ^ rp6) & 0xff;
 | |
| 	rp9 = (par ^ rp8) & 0xff;
 | |
| 	rp11 = (par ^ rp10) & 0xff;
 | |
| 	rp13 = (par ^ rp12) & 0xff;
 | |
| 	rp15 = (par ^ rp14) & 0xff;
 | |
| 	if (eccsize_mult == 2)
 | |
| 		rp17 = (par ^ rp16) & 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally calculate the ecc bits.
 | |
| 	 * Again here it might seem that there are performance optimisations
 | |
| 	 * possible, but benchmarks showed that on the system this is developed
 | |
| 	 * the code below is the fastest
 | |
| 	 */
 | |
| #ifdef CONFIG_MTD_NAND_ECC_SMC
 | |
| 	code[0] =
 | |
| 	    (invparity[rp7] << 7) |
 | |
| 	    (invparity[rp6] << 6) |
 | |
| 	    (invparity[rp5] << 5) |
 | |
| 	    (invparity[rp4] << 4) |
 | |
| 	    (invparity[rp3] << 3) |
 | |
| 	    (invparity[rp2] << 2) |
 | |
| 	    (invparity[rp1] << 1) |
 | |
| 	    (invparity[rp0]);
 | |
| 	code[1] =
 | |
| 	    (invparity[rp15] << 7) |
 | |
| 	    (invparity[rp14] << 6) |
 | |
| 	    (invparity[rp13] << 5) |
 | |
| 	    (invparity[rp12] << 4) |
 | |
| 	    (invparity[rp11] << 3) |
 | |
| 	    (invparity[rp10] << 2) |
 | |
| 	    (invparity[rp9] << 1)  |
 | |
| 	    (invparity[rp8]);
 | |
| #else
 | |
| 	code[1] =
 | |
| 	    (invparity[rp7] << 7) |
 | |
| 	    (invparity[rp6] << 6) |
 | |
| 	    (invparity[rp5] << 5) |
 | |
| 	    (invparity[rp4] << 4) |
 | |
| 	    (invparity[rp3] << 3) |
 | |
| 	    (invparity[rp2] << 2) |
 | |
| 	    (invparity[rp1] << 1) |
 | |
| 	    (invparity[rp0]);
 | |
| 	code[0] =
 | |
| 	    (invparity[rp15] << 7) |
 | |
| 	    (invparity[rp14] << 6) |
 | |
| 	    (invparity[rp13] << 5) |
 | |
| 	    (invparity[rp12] << 4) |
 | |
| 	    (invparity[rp11] << 3) |
 | |
| 	    (invparity[rp10] << 2) |
 | |
| 	    (invparity[rp9] << 1)  |
 | |
| 	    (invparity[rp8]);
 | |
| #endif
 | |
| 	if (eccsize_mult == 1)
 | |
| 		code[2] =
 | |
| 		    (invparity[par & 0xf0] << 7) |
 | |
| 		    (invparity[par & 0x0f] << 6) |
 | |
| 		    (invparity[par & 0xcc] << 5) |
 | |
| 		    (invparity[par & 0x33] << 4) |
 | |
| 		    (invparity[par & 0xaa] << 3) |
 | |
| 		    (invparity[par & 0x55] << 2) |
 | |
| 		    3;
 | |
| 	else
 | |
| 		code[2] =
 | |
| 		    (invparity[par & 0xf0] << 7) |
 | |
| 		    (invparity[par & 0x0f] << 6) |
 | |
| 		    (invparity[par & 0xcc] << 5) |
 | |
| 		    (invparity[par & 0x33] << 4) |
 | |
| 		    (invparity[par & 0xaa] << 3) |
 | |
| 		    (invparity[par & 0x55] << 2) |
 | |
| 		    (invparity[rp17] << 1) |
 | |
| 		    (invparity[rp16] << 0);
 | |
| }
 | |
| EXPORT_SYMBOL(__nand_calculate_ecc);
 | |
| 
 | |
| /**
 | |
|  * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
 | |
|  *			 block
 | |
|  * @mtd:	MTD block structure
 | |
|  * @buf:	input buffer with raw data
 | |
|  * @code:	output buffer with ECC
 | |
|  */
 | |
| int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
 | |
| 		       unsigned char *code)
 | |
| {
 | |
| 	__nand_calculate_ecc(buf,
 | |
| 			((struct nand_chip *)mtd->priv)->ecc.size, code);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(nand_calculate_ecc);
 | |
| 
 | |
| /**
 | |
|  * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
 | |
|  * @buf:	raw data read from the chip
 | |
|  * @read_ecc:	ECC from the chip
 | |
|  * @calc_ecc:	the ECC calculated from raw data
 | |
|  * @eccsize:	data bytes per ecc step (256 or 512)
 | |
|  *
 | |
|  * Detect and correct a 1 bit error for eccsize byte block
 | |
|  */
 | |
| int __nand_correct_data(unsigned char *buf,
 | |
| 			unsigned char *read_ecc, unsigned char *calc_ecc,
 | |
| 			unsigned int eccsize)
 | |
| {
 | |
| 	unsigned char b0, b1, b2, bit_addr;
 | |
| 	unsigned int byte_addr;
 | |
| 	/* 256 or 512 bytes/ecc  */
 | |
| 	const uint32_t eccsize_mult = eccsize >> 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * b0 to b2 indicate which bit is faulty (if any)
 | |
| 	 * we might need the xor result  more than once,
 | |
| 	 * so keep them in a local var
 | |
| 	*/
 | |
| #ifdef CONFIG_MTD_NAND_ECC_SMC
 | |
| 	b0 = read_ecc[0] ^ calc_ecc[0];
 | |
| 	b1 = read_ecc[1] ^ calc_ecc[1];
 | |
| #else
 | |
| 	b0 = read_ecc[1] ^ calc_ecc[1];
 | |
| 	b1 = read_ecc[0] ^ calc_ecc[0];
 | |
| #endif
 | |
| 	b2 = read_ecc[2] ^ calc_ecc[2];
 | |
| 
 | |
| 	/* check if there are any bitfaults */
 | |
| 
 | |
| 	/* repeated if statements are slightly more efficient than switch ... */
 | |
| 	/* ordered in order of likelihood */
 | |
| 
 | |
| 	if ((b0 | b1 | b2) == 0)
 | |
| 		return 0;	/* no error */
 | |
| 
 | |
| 	if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
 | |
| 	    (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
 | |
| 	    ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
 | |
| 	     (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
 | |
| 	/* single bit error */
 | |
| 		/*
 | |
| 		 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
 | |
| 		 * byte, cp 5/3/1 indicate the faulty bit.
 | |
| 		 * A lookup table (called addressbits) is used to filter
 | |
| 		 * the bits from the byte they are in.
 | |
| 		 * A marginal optimisation is possible by having three
 | |
| 		 * different lookup tables.
 | |
| 		 * One as we have now (for b0), one for b2
 | |
| 		 * (that would avoid the >> 1), and one for b1 (with all values
 | |
| 		 * << 4). However it was felt that introducing two more tables
 | |
| 		 * hardly justify the gain.
 | |
| 		 *
 | |
| 		 * The b2 shift is there to get rid of the lowest two bits.
 | |
| 		 * We could also do addressbits[b2] >> 1 but for the
 | |
| 		 * performance it does not make any difference
 | |
| 		 */
 | |
| 		if (eccsize_mult == 1)
 | |
| 			byte_addr = (addressbits[b1] << 4) + addressbits[b0];
 | |
| 		else
 | |
| 			byte_addr = (addressbits[b2 & 0x3] << 8) +
 | |
| 				    (addressbits[b1] << 4) + addressbits[b0];
 | |
| 		bit_addr = addressbits[b2 >> 2];
 | |
| 		/* flip the bit */
 | |
| 		buf[byte_addr] ^= (1 << bit_addr);
 | |
| 		return 1;
 | |
| 
 | |
| 	}
 | |
| 	/* count nr of bits; use table lookup, faster than calculating it */
 | |
| 	if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
 | |
| 		return 1;	/* error in ecc data; no action needed */
 | |
| 
 | |
| 	printk(KERN_ERR "uncorrectable error : ");
 | |
| 	return -1;
 | |
| }
 | |
| EXPORT_SYMBOL(__nand_correct_data);
 | |
| 
 | |
| /**
 | |
|  * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
 | |
|  * @mtd:	MTD block structure
 | |
|  * @buf:	raw data read from the chip
 | |
|  * @read_ecc:	ECC from the chip
 | |
|  * @calc_ecc:	the ECC calculated from raw data
 | |
|  *
 | |
|  * Detect and correct a 1 bit error for 256/512 byte block
 | |
|  */
 | |
| int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
 | |
| 		      unsigned char *read_ecc, unsigned char *calc_ecc)
 | |
| {
 | |
| 	return __nand_correct_data(buf, read_ecc, calc_ecc,
 | |
| 				   ((struct nand_chip *)mtd->priv)->ecc.size);
 | |
| }
 | |
| EXPORT_SYMBOL(nand_correct_data);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
 | |
| MODULE_DESCRIPTION("Generic NAND ECC support");
 |