 b7058842c9
			
		
	
	
	b7058842c9
	
	
	
		
			
			This provides safety against negative optlen at the type level instead of depending upon (sometimes non-trivial) checks against this sprinkled all over the the place, in each and every implementation. Based upon work done by Arjan van de Ven and feedback from Linus Torvalds. Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			2941 lines
		
	
	
	
		
			84 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2941 lines
		
	
	
	
		
			84 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   Madge Horizon ATM Adapter driver.
 | |
|   Copyright (C) 1995-1999  Madge Networks Ltd.
 | |
|   
 | |
|   This program is free software; you can redistribute it and/or modify
 | |
|   it under the terms of the GNU General Public License as published by
 | |
|   the Free Software Foundation; either version 2 of the License, or
 | |
|   (at your option) any later version.
 | |
|   
 | |
|   This program is distributed in the hope that it will be useful,
 | |
|   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|   GNU General Public License for more details.
 | |
|   
 | |
|   You should have received a copy of the GNU General Public License
 | |
|   along with this program; if not, write to the Free Software
 | |
|   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|   
 | |
|   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
 | |
|   system and in the file COPYING in the Linux kernel source.
 | |
| */
 | |
| 
 | |
| /*
 | |
|   IMPORTANT NOTE: Madge Networks no longer makes the adapters
 | |
|   supported by this driver and makes no commitment to maintain it.
 | |
| */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/atm.h>
 | |
| #include <linux/atmdev.h>
 | |
| #include <linux/sonet.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/wait.h>
 | |
| 
 | |
| #include <asm/system.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/string.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| #include "horizon.h"
 | |
| 
 | |
| #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
 | |
| #define description_string "Madge ATM Horizon [Ultra] driver"
 | |
| #define version_string "1.2.1"
 | |
| 
 | |
| static inline void __init show_version (void) {
 | |
|   printk ("%s version %s\n", description_string, version_string);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   
 | |
|   CREDITS
 | |
|   
 | |
|   Driver and documentation by:
 | |
|   
 | |
|   Chris Aston        Madge Networks
 | |
|   Giuliano Procida   Madge Networks
 | |
|   Simon Benham       Madge Networks
 | |
|   Simon Johnson      Madge Networks
 | |
|   Various Others     Madge Networks
 | |
|   
 | |
|   Some inspiration taken from other drivers by:
 | |
|   
 | |
|   Alexandru Cucos    UTBv
 | |
|   Kari Mettinen      University of Helsinki
 | |
|   Werner Almesberger EPFL LRC
 | |
|   
 | |
|   Theory of Operation
 | |
|   
 | |
|   I Hardware, detection, initialisation and shutdown.
 | |
|   
 | |
|   1. Supported Hardware
 | |
|   
 | |
|   This driver should handle all variants of the PCI Madge ATM adapters
 | |
|   with the Horizon chipset. These are all PCI cards supporting PIO, BM
 | |
|   DMA and a form of MMIO (registers only, not internal RAM).
 | |
|   
 | |
|   The driver is only known to work with SONET and UTP Horizon Ultra
 | |
|   cards at 155Mb/s. However, code is in place to deal with both the
 | |
|   original Horizon and 25Mb/s operation.
 | |
|   
 | |
|   There are two revisions of the Horizon ASIC: the original and the
 | |
|   Ultra. Details of hardware bugs are in section III.
 | |
|   
 | |
|   The ASIC version can be distinguished by chip markings but is NOT
 | |
|   indicated by the PCI revision (all adapters seem to have PCI rev 1).
 | |
|   
 | |
|   I believe that:
 | |
|   
 | |
|   Horizon       => Collage  25 PCI Adapter (UTP and STP)
 | |
|   Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
 | |
|   Ambassador x  => Collage 155 PCI Server (completely different)
 | |
|   
 | |
|   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
 | |
|   have a Madge B154 plus glue logic serializer. I have also found a
 | |
|   really ancient version of this with slightly different glue. It
 | |
|   comes with the revision 0 (140-025-01) ASIC.
 | |
|   
 | |
|   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
 | |
|   output (UTP) or an HP HFBR 5205 output (SONET). It has either
 | |
|   Madge's SAMBA framer or a SUNI-lite device (early versions). It
 | |
|   comes with the revision 1 (140-027-01) ASIC.
 | |
|   
 | |
|   2. Detection
 | |
|   
 | |
|   All Horizon-based cards present with the same PCI Vendor and Device
 | |
|   IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 | |
|   to enable bus-mastering (with appropriate latency).
 | |
|   
 | |
|   ATM_LAYER_STATUS in the control register distinguishes between the
 | |
|   two possible physical layers (25 and 155). It is not clear whether
 | |
|   the 155 cards can also operate at 25Mbps. We rely on the fact that a
 | |
|   card operates at 155 if and only if it has the newer Horizon Ultra
 | |
|   ASIC.
 | |
|   
 | |
|   For 155 cards the two possible framers are probed for and then set
 | |
|   up for loop-timing.
 | |
|   
 | |
|   3. Initialisation
 | |
|   
 | |
|   The card is reset and then put into a known state. The physical
 | |
|   layer is configured for normal operation at the appropriate speed;
 | |
|   in the case of the 155 cards, the framer is initialised with
 | |
|   line-based timing; the internal RAM is zeroed and the allocation of
 | |
|   buffers for RX and TX is made; the Burnt In Address is read and
 | |
|   copied to the ATM ESI; various policy settings for RX (VPI bits,
 | |
|   unknown VCs, oam cells) are made. Ideally all policy items should be
 | |
|   configurable at module load (if not actually on-demand), however,
 | |
|   only the vpi vs vci bit allocation can be specified at insmod.
 | |
|   
 | |
|   4. Shutdown
 | |
|   
 | |
|   This is in response to module_cleaup. No VCs are in use and the card
 | |
|   should be idle; it is reset.
 | |
|   
 | |
|   II Driver software (as it should be)
 | |
|   
 | |
|   0. Traffic Parameters
 | |
|   
 | |
|   The traffic classes (not an enumeration) are currently: ATM_NONE (no
 | |
|   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 | |
|   (compatible with everything). Together with (perhaps only some of)
 | |
|   the following items they make up the traffic specification.
 | |
|   
 | |
|   struct atm_trafprm {
 | |
|     unsigned char traffic_class; traffic class (ATM_UBR, ...)
 | |
|     int           max_pcr;       maximum PCR in cells per second
 | |
|     int           pcr;           desired PCR in cells per second
 | |
|     int           min_pcr;       minimum PCR in cells per second
 | |
|     int           max_cdv;       maximum CDV in microseconds
 | |
|     int           max_sdu;       maximum SDU in bytes
 | |
|   };
 | |
|   
 | |
|   Note that these denote bandwidth available not bandwidth used; the
 | |
|   possibilities according to ATMF are:
 | |
|   
 | |
|   Real Time (cdv and max CDT given)
 | |
|   
 | |
|   CBR(pcr)             pcr bandwidth always available
 | |
|   rtVBR(pcr,scr,mbs)   scr bandwidth always available, upto pcr at mbs too
 | |
|   
 | |
|   Non Real Time
 | |
|   
 | |
|   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, upto pcr at mbs too
 | |
|   UBR()
 | |
|   ABR(mcr,pcr)         mcr bandwidth always available, upto pcr (depending) too
 | |
|   
 | |
|   mbs is max burst size (bucket)
 | |
|   pcr and scr have associated cdvt values
 | |
|   mcr is like scr but has no cdtv
 | |
|   cdtv may differ at each hop
 | |
|   
 | |
|   Some of the above items are qos items (as opposed to traffic
 | |
|   parameters). We have nothing to do with qos. All except ABR can have
 | |
|   their traffic parameters converted to GCRA parameters. The GCRA may
 | |
|   be implemented as a (real-number) leaky bucket. The GCRA can be used
 | |
|   in complicated ways by switches and in simpler ways by end-stations.
 | |
|   It can be used both to filter incoming cells and shape out-going
 | |
|   cells.
 | |
|   
 | |
|   ATM Linux actually supports:
 | |
|   
 | |
|   ATM_NONE() (no traffic in this direction)
 | |
|   ATM_UBR(max_frame_size)
 | |
|   ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 | |
|   
 | |
|   0 or ATM_MAX_PCR are used to indicate maximum available PCR
 | |
|   
 | |
|   A traffic specification consists of the AAL type and separate
 | |
|   traffic specifications for either direction. In ATM Linux it is:
 | |
|   
 | |
|   struct atm_qos {
 | |
|   struct atm_trafprm txtp;
 | |
|   struct atm_trafprm rxtp;
 | |
|   unsigned char aal;
 | |
|   };
 | |
|   
 | |
|   AAL types are:
 | |
|   
 | |
|   ATM_NO_AAL    AAL not specified
 | |
|   ATM_AAL0      "raw" ATM cells
 | |
|   ATM_AAL1      AAL1 (CBR)
 | |
|   ATM_AAL2      AAL2 (VBR)
 | |
|   ATM_AAL34     AAL3/4 (data)
 | |
|   ATM_AAL5      AAL5 (data)
 | |
|   ATM_SAAL      signaling AAL
 | |
|   
 | |
|   The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 | |
|   it does not implement AAL 3/4 SAR and it has a different notion of
 | |
|   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 | |
|   supported by this driver.
 | |
|   
 | |
|   The Horizon has limited support for ABR (including UBR), VBR and
 | |
|   CBR. Each TX channel has a bucket (containing up to 31 cell units)
 | |
|   and two timers (PCR and SCR) associated with it that can be used to
 | |
|   govern cell emissions and host notification (in the case of ABR this
 | |
|   is presumably so that RM cells may be emitted at appropriate times).
 | |
|   The timers may either be disabled or may be set to any of 240 values
 | |
|   (determined by the clock crystal, a fixed (?) per-device divider, a
 | |
|   configurable divider and a configurable timer preload value).
 | |
|   
 | |
|   At the moment only UBR and CBR are supported by the driver. VBR will
 | |
|   be supported as soon as ATM for Linux supports it. ABR support is
 | |
|   very unlikely as RM cell handling is completely up to the driver.
 | |
|   
 | |
|   1. TX (TX channel setup and TX transfer)
 | |
|   
 | |
|   The TX half of the driver owns the TX Horizon registers. The TX
 | |
|   component in the IRQ handler is the BM completion handler. This can
 | |
|   only be entered when tx_busy is true (enforced by hardware). The
 | |
|   other TX component can only be entered when tx_busy is false
 | |
|   (enforced by driver). So TX is single-threaded.
 | |
|   
 | |
|   Apart from a minor optimisation to not re-select the last channel,
 | |
|   the TX send component works as follows:
 | |
|   
 | |
|   Atomic test and set tx_busy until we succeed; we should implement
 | |
|   some sort of timeout so that tx_busy will never be stuck at true.
 | |
|   
 | |
|   If no TX channel is set up for this VC we wait for an idle one (if
 | |
|   necessary) and set it up.
 | |
|   
 | |
|   At this point we have a TX channel ready for use. We wait for enough
 | |
|   buffers to become available then start a TX transmit (set the TX
 | |
|   descriptor, schedule transfer, exit).
 | |
|   
 | |
|   The IRQ component handles TX completion (stats, free buffer, tx_busy
 | |
|   unset, exit). We also re-schedule further transfers for the same
 | |
|   frame if needed.
 | |
|   
 | |
|   TX setup in more detail:
 | |
|   
 | |
|   TX open is a nop, the relevant information is held in the hrz_vcc
 | |
|   (vcc->dev_data) structure and is "cached" on the card.
 | |
|   
 | |
|   TX close gets the TX lock and clears the channel from the "cache".
 | |
|   
 | |
|   2. RX (Data Available and RX transfer)
 | |
|   
 | |
|   The RX half of the driver owns the RX registers. There are two RX
 | |
|   components in the IRQ handler: the data available handler deals with
 | |
|   fresh data that has arrived on the card, the BM completion handler
 | |
|   is very similar to the TX completion handler. The data available
 | |
|   handler grabs the rx_lock and it is only released once the data has
 | |
|   been discarded or completely transferred to the host. The BM
 | |
|   completion handler only runs when the lock is held; the data
 | |
|   available handler is locked out over the same period.
 | |
|   
 | |
|   Data available on the card triggers an interrupt. If the data is not
 | |
|   suitable for our existing RX channels or we cannot allocate a buffer
 | |
|   it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 | |
|   transfers may be scheduled for the same frame.
 | |
|   
 | |
|   RX setup in more detail:
 | |
|   
 | |
|   RX open...
 | |
|   RX close...
 | |
|   
 | |
|   III Hardware Bugs
 | |
|   
 | |
|   0. Byte vs Word addressing of adapter RAM.
 | |
|   
 | |
|   A design feature; see the .h file (especially the memory map).
 | |
|   
 | |
|   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 | |
|   
 | |
|   The host must not start a transmit direction transfer at a
 | |
|   non-four-byte boundary in host memory. Instead the host should
 | |
|   perform a byte, or a two byte, or one byte followed by two byte
 | |
|   transfer in order to start the rest of the transfer on a four byte
 | |
|   boundary. RX is OK.
 | |
|   
 | |
|   Simultaneous transmit and receive direction bus master transfers are
 | |
|   not allowed.
 | |
|   
 | |
|   The simplest solution to these two is to always do PIO (never DMA)
 | |
|   in the TX direction on the original Horizon. More complicated
 | |
|   solutions are likely to hurt my brain.
 | |
|   
 | |
|   2. Loss of buffer on close VC
 | |
|   
 | |
|   When a VC is being closed, the buffer associated with it is not
 | |
|   returned to the pool. The host must store the reference to this
 | |
|   buffer and when opening a new VC then give it to that new VC.
 | |
|   
 | |
|   The host intervention currently consists of stacking such a buffer
 | |
|   pointer at VC close and checking the stack at VC open.
 | |
|   
 | |
|   3. Failure to close a VC
 | |
|   
 | |
|   If a VC is currently receiving a frame then closing the VC may fail
 | |
|   and the frame continues to be received.
 | |
|   
 | |
|   The solution is to make sure any received frames are flushed when
 | |
|   ready. This is currently done just before the solution to 2.
 | |
|   
 | |
|   4. PCI bus (original Horizon only, fixed in Ultra)
 | |
|   
 | |
|   Reading from the data port prior to initialisation will hang the PCI
 | |
|   bus. Just don't do that then! We don't.
 | |
|   
 | |
|   IV To Do List
 | |
|   
 | |
|   . Timer code may be broken.
 | |
|   
 | |
|   . Allow users to specify buffer allocation split for TX and RX.
 | |
|   
 | |
|   . Deal once and for all with buggy VC close.
 | |
|   
 | |
|   . Handle interrupted and/or non-blocking operations.
 | |
|   
 | |
|   . Change some macros to functions and move from .h to .c.
 | |
|   
 | |
|   . Try to limit the number of TX frames each VC may have queued, in
 | |
|     order to reduce the chances of TX buffer exhaustion.
 | |
|   
 | |
|   . Implement VBR (bucket and timers not understood) and ABR (need to
 | |
|     do RM cells manually); also no Linux support for either.
 | |
|   
 | |
|   . Implement QoS changes on open VCs (involves extracting parts of VC open
 | |
|     and close into separate functions and using them to make changes).
 | |
|   
 | |
| */
 | |
| 
 | |
| /********** globals **********/
 | |
| 
 | |
| static void do_housekeeping (unsigned long arg);
 | |
| 
 | |
| static unsigned short debug = 0;
 | |
| static unsigned short vpi_bits = 0;
 | |
| static int max_tx_size = 9000;
 | |
| static int max_rx_size = 9000;
 | |
| static unsigned char pci_lat = 0;
 | |
| 
 | |
| /********** access functions **********/
 | |
| 
 | |
| /* Read / Write Horizon registers */
 | |
| static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 | |
|   outl (cpu_to_le32 (data), dev->iobase + reg);
 | |
| }
 | |
| 
 | |
| static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 | |
|   return le32_to_cpu (inl (dev->iobase + reg));
 | |
| }
 | |
| 
 | |
| static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 | |
|   outw (cpu_to_le16 (data), dev->iobase + reg);
 | |
| }
 | |
| 
 | |
| static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 | |
|   return le16_to_cpu (inw (dev->iobase + reg));
 | |
| }
 | |
| 
 | |
| static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 | |
|   outsb (dev->iobase + reg, addr, len);
 | |
| }
 | |
| 
 | |
| static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 | |
|   insb (dev->iobase + reg, addr, len);
 | |
| }
 | |
| 
 | |
| /* Read / Write to a given address in Horizon buffer memory.
 | |
|    Interrupts must be disabled between the address register and data
 | |
|    port accesses as these must form an atomic operation. */
 | |
| static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 | |
|   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 | |
|   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 | |
|   wr_regl (dev, MEMORY_PORT_OFF, data);
 | |
| }
 | |
| 
 | |
| static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 | |
|   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 | |
|   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 | |
|   return rd_regl (dev, MEMORY_PORT_OFF);
 | |
| }
 | |
| 
 | |
| static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 | |
|   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 | |
|   wr_regl (dev, MEMORY_PORT_OFF, data);
 | |
| }
 | |
| 
 | |
| static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 | |
|   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 | |
|   return rd_regl (dev, MEMORY_PORT_OFF);
 | |
| }
 | |
| 
 | |
| /********** specialised access functions **********/
 | |
| 
 | |
| /* RX */
 | |
| 
 | |
| static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 | |
|   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 | |
|   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 | |
|     ;
 | |
|   return;
 | |
| }
 | |
| 
 | |
| static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 | |
|   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 | |
|   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 | |
|     ;
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* TX */
 | |
| 
 | |
| static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 | |
|   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /* Update or query one configuration parameter of a particular channel. */
 | |
| 
 | |
| static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 | |
|   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 | |
| 	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 | |
|     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
 | |
|   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 | |
| 	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 | |
|     return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
 | |
| }
 | |
| 
 | |
| /********** dump functions **********/
 | |
| 
 | |
| static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 | |
| #ifdef DEBUG_HORIZON
 | |
|   unsigned int i;
 | |
|   unsigned char * data = skb->data;
 | |
|   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 | |
|   for (i=0; i<skb->len && i < 256;i++)
 | |
|     PRINTDM (DBG_DATA, "%02x ", data[i]);
 | |
|   PRINTDE (DBG_DATA,"");
 | |
| #else
 | |
|   (void) prefix;
 | |
|   (void) vc;
 | |
|   (void) skb;
 | |
| #endif
 | |
|   return;
 | |
| }
 | |
| 
 | |
| static inline void dump_regs (hrz_dev * dev) {
 | |
| #ifdef DEBUG_HORIZON
 | |
|   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 | |
|   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 | |
|   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 | |
|   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 | |
|   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 | |
|   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 | |
| #else
 | |
|   (void) dev;
 | |
| #endif
 | |
|   return;
 | |
| }
 | |
| 
 | |
| static inline void dump_framer (hrz_dev * dev) {
 | |
| #ifdef DEBUG_HORIZON
 | |
|   unsigned int i;
 | |
|   PRINTDB (DBG_REGS, "framer registers:");
 | |
|   for (i = 0; i < 0x10; ++i)
 | |
|     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 | |
|   PRINTDE (DBG_REGS,"");
 | |
| #else
 | |
|   (void) dev;
 | |
| #endif
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /********** VPI/VCI <-> (RX) channel conversions **********/
 | |
| 
 | |
| /* RX channels are 10 bit integers, these fns are quite paranoid */
 | |
| 
 | |
| static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
 | |
|   unsigned short vci_bits = 10 - vpi_bits;
 | |
|   if ((channel & RX_CHANNEL_MASK) == channel) {
 | |
|     *vci = channel & ((~0)<<vci_bits);
 | |
|     *vpi = channel >> vci_bits;
 | |
|     return channel ? 0 : -EINVAL;
 | |
|   }
 | |
|   return -EINVAL;
 | |
| }
 | |
| 
 | |
| static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 | |
|   unsigned short vci_bits = 10 - vpi_bits;
 | |
|   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 | |
|     *channel = vpi<<vci_bits | vci;
 | |
|     return *channel ? 0 : -EINVAL;
 | |
|   }
 | |
|   return -EINVAL;
 | |
| }
 | |
| 
 | |
| /********** decode RX queue entries **********/
 | |
| 
 | |
| static inline u16 rx_q_entry_to_length (u32 x) {
 | |
|   return x & RX_Q_ENTRY_LENGTH_MASK;
 | |
| }
 | |
| 
 | |
| static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 | |
|   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 | |
| }
 | |
| 
 | |
| /* Cell Transmit Rate Values
 | |
|  *
 | |
|  * the cell transmit rate (cells per sec) can be set to a variety of
 | |
|  * different values by specifying two parameters: a timer preload from
 | |
|  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 | |
|  * an exponent from 0 to 14; the special value 15 disables the timer).
 | |
|  *
 | |
|  * cellrate = baserate / (preload * 2^divider)
 | |
|  *
 | |
|  * The maximum cell rate that can be specified is therefore just the
 | |
|  * base rate. Halving the preload is equivalent to adding 1 to the
 | |
|  * divider and so values 1 to 8 of the preload are redundant except
 | |
|  * in the case of a maximal divider (14).
 | |
|  *
 | |
|  * Given a desired cell rate, an algorithm to determine the preload
 | |
|  * and divider is:
 | |
|  * 
 | |
|  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 | |
|  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 | |
|  *    if x <= 16 then set p = x, d = 0 (high rates), done
 | |
|  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 | |
|  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 | |
|  *    we find the range (n will be between 1 and 14), set d = n
 | |
|  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 | |
|  *
 | |
|  * The algorithm used below is a minor variant of the above.
 | |
|  *
 | |
|  * The base rate is derived from the oscillator frequency (Hz) using a
 | |
|  * fixed divider:
 | |
|  *
 | |
|  * baserate = freq / 32 in the case of some Unknown Card
 | |
|  * baserate = freq / 8  in the case of the Horizon        25
 | |
|  * baserate = freq / 8  in the case of the Horizon Ultra 155
 | |
|  *
 | |
|  * The Horizon cards have oscillators and base rates as follows:
 | |
|  *
 | |
|  * Card               Oscillator  Base Rate
 | |
|  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 | |
|  * Horizon        25  32 MHz      4       MHz
 | |
|  * Horizon Ultra 155  40 MHz      5       MHz
 | |
|  *
 | |
|  * The following defines give the base rates in Hz. These were
 | |
|  * previously a factor of 100 larger, no doubt someone was using
 | |
|  * cps*100.
 | |
|  */
 | |
| 
 | |
| #define BR_UKN 1031250l
 | |
| #define BR_HRZ 4000000l
 | |
| #define BR_ULT 5000000l
 | |
| 
 | |
| // d is an exponent
 | |
| #define CR_MIND 0
 | |
| #define CR_MAXD 14
 | |
| 
 | |
| // p ranges from 1 to a power of 2
 | |
| #define CR_MAXPEXP 4
 | |
|  
 | |
| static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 | |
| 		      u16 * bits, unsigned int * actual)
 | |
| {
 | |
| 	// note: rounding the rate down means rounding 'p' up
 | |
| 	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 | |
|   
 | |
| 	u32 div = CR_MIND;
 | |
| 	u32 pre;
 | |
|   
 | |
| 	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 | |
| 	// the tests below. We could think harder about exact possibilities
 | |
| 	// of failure...
 | |
|   
 | |
| 	unsigned long br_man = br;
 | |
| 	unsigned int br_exp = 0;
 | |
|   
 | |
| 	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 | |
| 		r == round_up ? "up" : r == round_down ? "down" : "nearest");
 | |
|   
 | |
| 	// avoid div by zero
 | |
| 	if (!c) {
 | |
| 		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
|   
 | |
| 	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 | |
| 		br_man = br_man >> 1;
 | |
| 		++br_exp;
 | |
| 	}
 | |
| 	// (br >>br_exp) <<br_exp == br and
 | |
| 	// br_exp <= CR_MAXPEXP+CR_MIND
 | |
|   
 | |
| 	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 | |
| 		// Equivalent to: B <= (c << (MAXPEXP+MIND))
 | |
| 		// take care of rounding
 | |
| 		switch (r) {
 | |
| 			case round_down:
 | |
| 				pre = DIV_ROUND_UP(br, c<<div);
 | |
| 				// but p must be non-zero
 | |
| 				if (!pre)
 | |
| 					pre = 1;
 | |
| 				break;
 | |
| 			case round_nearest:
 | |
| 				pre = DIV_ROUND_CLOSEST(br, c<<div);
 | |
| 				// but p must be non-zero
 | |
| 				if (!pre)
 | |
| 					pre = 1;
 | |
| 				break;
 | |
| 			default:	/* round_up */
 | |
| 				pre = br/(c<<div);
 | |
| 				// but p must be non-zero
 | |
| 				if (!pre)
 | |
| 					return -EINVAL;
 | |
| 		}
 | |
| 		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 | |
| 		goto got_it;
 | |
| 	}
 | |
|   
 | |
| 	// at this point we have
 | |
| 	// d == MIND and (c << (MAXPEXP+MIND)) < B
 | |
| 	while (div < CR_MAXD) {
 | |
| 		div++;
 | |
| 		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 | |
| 			// Equivalent to: B <= (c << (MAXPEXP+d))
 | |
| 			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 | |
| 			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 | |
| 			// MAXP/2 < B/c2^d <= MAXP
 | |
| 			// take care of rounding
 | |
| 			switch (r) {
 | |
| 				case round_down:
 | |
| 					pre = DIV_ROUND_UP(br, c<<div);
 | |
| 					break;
 | |
| 				case round_nearest:
 | |
| 					pre = DIV_ROUND_CLOSEST(br, c<<div);
 | |
| 					break;
 | |
| 				default: /* round_up */
 | |
| 					pre = br/(c<<div);
 | |
| 			}
 | |
| 			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 | |
| 			goto got_it;
 | |
| 		}
 | |
| 	}
 | |
| 	// at this point we have
 | |
| 	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
 | |
| 	// but we cannot go any higher
 | |
| 	// take care of rounding
 | |
| 	if (r == round_down)
 | |
| 		return -EINVAL;
 | |
| 	pre = 1 << CR_MAXPEXP;
 | |
| 	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 | |
| got_it:
 | |
| 	// paranoia
 | |
| 	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 | |
| 		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 | |
| 			div, pre);
 | |
| 		return -EINVAL;
 | |
| 	} else {
 | |
| 		if (bits)
 | |
| 			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 | |
| 		if (actual) {
 | |
| 			*actual = DIV_ROUND_UP(br, pre<<div);
 | |
| 			PRINTD (DBG_QOS, "actual rate: %u", *actual);
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 | |
| 				     u16 * bit_pattern, unsigned int * actual) {
 | |
|   unsigned int my_actual;
 | |
|   
 | |
|   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 | |
| 	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 | |
|   
 | |
|   if (!actual)
 | |
|     // actual rate is not returned
 | |
|     actual = &my_actual;
 | |
|   
 | |
|   if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 | |
|     // should never happen as round_nearest always succeeds
 | |
|     return -1;
 | |
|   
 | |
|   if (c - tol <= *actual && *actual <= c + tol)
 | |
|     // within tolerance
 | |
|     return 0;
 | |
|   else
 | |
|     // intolerant, try rounding instead
 | |
|     return make_rate (dev, c, r, bit_pattern, actual);
 | |
| }
 | |
| 
 | |
| /********** Listen on a VC **********/
 | |
| 
 | |
| static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 | |
|   // is there any guarantee that we don't get two simulataneous
 | |
|   // identical calls of this function from different processes? yes
 | |
|   // rate_lock
 | |
|   unsigned long flags;
 | |
|   u32 channel_type; // u16?
 | |
|   
 | |
|   u16 buf_ptr = RX_CHANNEL_IDLE;
 | |
|   
 | |
|   rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 | |
|   
 | |
|   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 | |
|   
 | |
|   spin_lock_irqsave (&dev->mem_lock, flags);
 | |
|   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 | |
|   spin_unlock_irqrestore (&dev->mem_lock, flags);
 | |
|   
 | |
|   // very serious error, should never occur
 | |
|   if (channel_type != RX_CHANNEL_DISABLED) {
 | |
|     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 | |
|     return -EBUSY; // clean up?
 | |
|   }
 | |
|   
 | |
|   // Give back spare buffer
 | |
|   if (dev->noof_spare_buffers) {
 | |
|     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 | |
|     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 | |
|     // should never occur
 | |
|     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 | |
|       // but easy to recover from
 | |
|       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 | |
|       buf_ptr = RX_CHANNEL_IDLE;
 | |
|     }
 | |
|   } else {
 | |
|     PRINTD (DBG_VCC, "using IDLE buffer pointer");
 | |
|   }
 | |
|   
 | |
|   // Channel is currently disabled so change its status to idle
 | |
|   
 | |
|   // do we really need to save the flags again?
 | |
|   spin_lock_irqsave (&dev->mem_lock, flags);
 | |
|   
 | |
|   wr_mem (dev, &rx_desc->wr_buf_type,
 | |
| 	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 | |
|   if (buf_ptr != RX_CHANNEL_IDLE)
 | |
|     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 | |
|   
 | |
|   spin_unlock_irqrestore (&dev->mem_lock, flags);
 | |
|   
 | |
|   // rxer->rate = make_rate (qos->peak_cells);
 | |
|   
 | |
|   PRINTD (DBG_FLOW, "hrz_open_rx ok");
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /********** change vc rate for a given vc **********/
 | |
| 
 | |
| static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 | |
|   rxer->rate = make_rate (qos->peak_cells);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /********** free an skb (as per ATM device driver documentation) **********/
 | |
| 
 | |
| static void hrz_kfree_skb (struct sk_buff * skb) {
 | |
|   if (ATM_SKB(skb)->vcc->pop) {
 | |
|     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 | |
|   } else {
 | |
|     dev_kfree_skb_any (skb);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /********** cancel listen on a VC **********/
 | |
| 
 | |
| static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 | |
|   unsigned long flags;
 | |
|   
 | |
|   u32 value;
 | |
|   
 | |
|   u32 r1, r2;
 | |
|   
 | |
|   rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 | |
|   
 | |
|   int was_idle = 0;
 | |
|   
 | |
|   spin_lock_irqsave (&dev->mem_lock, flags);
 | |
|   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 | |
|   spin_unlock_irqrestore (&dev->mem_lock, flags);
 | |
|   
 | |
|   if (value == RX_CHANNEL_DISABLED) {
 | |
|     // I suppose this could happen once we deal with _NONE traffic properly
 | |
|     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 | |
|     return;
 | |
|   }
 | |
|   if (value == RX_CHANNEL_IDLE)
 | |
|     was_idle = 1;
 | |
|   
 | |
|   spin_lock_irqsave (&dev->mem_lock, flags);
 | |
|   
 | |
|   for (;;) {
 | |
|     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 | |
|     
 | |
|     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 | |
|       break;
 | |
|     
 | |
|     was_idle = 0;
 | |
|   }
 | |
|   
 | |
|   if (was_idle) {
 | |
|     spin_unlock_irqrestore (&dev->mem_lock, flags);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   WAIT_FLUSH_RX_COMPLETE(dev);
 | |
|   
 | |
|   // XXX Is this all really necessary? We can rely on the rx_data_av
 | |
|   // handler to discard frames that remain queued for delivery. If the
 | |
|   // worry is that immediately reopening the channel (perhaps by a
 | |
|   // different process) may cause some data to be mis-delivered then
 | |
|   // there may still be a simpler solution (such as busy-waiting on
 | |
|   // rx_busy once the channel is disabled or before a new one is
 | |
|   // opened - does this leave any holes?). Arguably setting up and
 | |
|   // tearing down the TX and RX halves of each virtual circuit could
 | |
|   // most safely be done within ?x_busy protected regions.
 | |
|   
 | |
|   // OK, current changes are that Simon's marker is disabled and we DO
 | |
|   // look for NULL rxer elsewhere. The code here seems flush frames
 | |
|   // and then remember the last dead cell belonging to the channel
 | |
|   // just disabled - the cell gets relinked at the next vc_open.
 | |
|   // However, when all VCs are closed or only a few opened there are a
 | |
|   // handful of buffers that are unusable.
 | |
|   
 | |
|   // Does anyone feel like documenting spare_buffers properly?
 | |
|   // Does anyone feel like fixing this in a nicer way?
 | |
|   
 | |
|   // Flush any data which is left in the channel
 | |
|   for (;;) {
 | |
|     // Change the rx channel port to something different to the RX
 | |
|     // channel we are trying to close to force Horizon to flush the rx
 | |
|     // channel read and write pointers.
 | |
|     
 | |
|     u16 other = vc^(RX_CHANS/2);
 | |
|     
 | |
|     SELECT_RX_CHANNEL (dev, other);
 | |
|     WAIT_UPDATE_COMPLETE (dev);
 | |
|     
 | |
|     r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 | |
|     
 | |
|     // Select this RX channel. Flush doesn't seem to work unless we
 | |
|     // select an RX channel before hand
 | |
|     
 | |
|     SELECT_RX_CHANNEL (dev, vc);
 | |
|     WAIT_UPDATE_COMPLETE (dev);
 | |
|     
 | |
|     // Attempt to flush a frame on this RX channel
 | |
|     
 | |
|     FLUSH_RX_CHANNEL (dev, vc);
 | |
|     WAIT_FLUSH_RX_COMPLETE (dev);
 | |
|     
 | |
|     // Force Horizon to flush rx channel read and write pointers as before
 | |
|     
 | |
|     SELECT_RX_CHANNEL (dev, other);
 | |
|     WAIT_UPDATE_COMPLETE (dev);
 | |
|     
 | |
|     r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 | |
|     
 | |
|     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 | |
|     
 | |
|     if (r1 == r2) {
 | |
|       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
| #if 0
 | |
|   {
 | |
|     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 | |
|     rx_q_entry * rd_ptr = dev->rx_q_entry;
 | |
|     
 | |
|     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 | |
|     
 | |
|     while (rd_ptr != wr_ptr) {
 | |
|       u32 x = rd_mem (dev, (HDW *) rd_ptr);
 | |
|       
 | |
|       if (vc == rx_q_entry_to_rx_channel (x)) {
 | |
| 	x |= SIMONS_DODGEY_MARKER;
 | |
| 	
 | |
| 	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 | |
| 	
 | |
| 	wr_mem (dev, (HDW *) rd_ptr, x);
 | |
|       }
 | |
|       
 | |
|       if (rd_ptr == dev->rx_q_wrap)
 | |
| 	rd_ptr = dev->rx_q_reset;
 | |
|       else
 | |
| 	rd_ptr++;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   spin_unlock_irqrestore (&dev->mem_lock, flags);
 | |
|   
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /********** schedule RX transfers **********/
 | |
| 
 | |
| // Note on tail recursion: a GCC developer said that it is not likely
 | |
| // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 | |
| // are sure it does as you may otherwise overflow the kernel stack.
 | |
| 
 | |
| // giving this fn a return value would help GCC, alledgedly
 | |
| 
 | |
| static void rx_schedule (hrz_dev * dev, int irq) {
 | |
|   unsigned int rx_bytes;
 | |
|   
 | |
|   int pio_instead = 0;
 | |
| #ifndef TAILRECURSIONWORKS
 | |
|   pio_instead = 1;
 | |
|   while (pio_instead) {
 | |
| #endif
 | |
|     // bytes waiting for RX transfer
 | |
|     rx_bytes = dev->rx_bytes;
 | |
|     
 | |
| #if 0
 | |
|     spin_count = 0;
 | |
|     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 | |
|       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 | |
|       if (++spin_count > 10) {
 | |
| 	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 | |
| 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 | |
| 	clear_bit (rx_busy, &dev->flags);
 | |
| 	hrz_kfree_skb (dev->rx_skb);
 | |
| 	return;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     
 | |
|     // this code follows the TX code but (at the moment) there is only
 | |
|     // one region - the skb itself. I don't know if this will change,
 | |
|     // but it doesn't hurt to have the code here, disabled.
 | |
|     
 | |
|     if (rx_bytes) {
 | |
|       // start next transfer within same region
 | |
|       if (rx_bytes <= MAX_PIO_COUNT) {
 | |
| 	PRINTD (DBG_RX|DBG_BUS, "(pio)");
 | |
| 	pio_instead = 1;
 | |
|       }
 | |
|       if (rx_bytes <= MAX_TRANSFER_COUNT) {
 | |
| 	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 | |
| 	dev->rx_bytes = 0;
 | |
|       } else {
 | |
| 	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 | |
| 	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 | |
| 	rx_bytes = MAX_TRANSFER_COUNT;
 | |
|       }
 | |
|     } else {
 | |
|       // rx_bytes == 0 -- we're between regions
 | |
|       // regions remaining to transfer
 | |
| #if 0
 | |
|       unsigned int rx_regions = dev->rx_regions;
 | |
| #else
 | |
|       unsigned int rx_regions = 0;
 | |
| #endif
 | |
|       
 | |
|       if (rx_regions) {
 | |
| #if 0
 | |
| 	// start a new region
 | |
| 	dev->rx_addr = dev->rx_iovec->iov_base;
 | |
| 	rx_bytes = dev->rx_iovec->iov_len;
 | |
| 	++dev->rx_iovec;
 | |
| 	dev->rx_regions = rx_regions - 1;
 | |
| 	
 | |
| 	if (rx_bytes <= MAX_PIO_COUNT) {
 | |
| 	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
 | |
| 	  pio_instead = 1;
 | |
| 	}
 | |
| 	if (rx_bytes <= MAX_TRANSFER_COUNT) {
 | |
| 	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
 | |
| 	  dev->rx_bytes = 0;
 | |
| 	} else {
 | |
| 	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
 | |
| 	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 | |
| 	  rx_bytes = MAX_TRANSFER_COUNT;
 | |
| 	}
 | |
| #endif
 | |
|       } else {
 | |
| 	// rx_regions == 0
 | |
| 	// that's all folks - end of frame
 | |
| 	struct sk_buff * skb = dev->rx_skb;
 | |
| 	// dev->rx_iovec = 0;
 | |
| 	
 | |
| 	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
 | |
| 	
 | |
| 	dump_skb ("<<<", dev->rx_channel, skb);
 | |
| 	
 | |
| 	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
 | |
| 	
 | |
| 	{
 | |
| 	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
 | |
| 	  // VC layer stats
 | |
| 	  atomic_inc(&vcc->stats->rx);
 | |
| 	  __net_timestamp(skb);
 | |
| 	  // end of our responsability
 | |
| 	  vcc->push (vcc, skb);
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // note: writing RX_COUNT clears any interrupt condition
 | |
|     if (rx_bytes) {
 | |
|       if (pio_instead) {
 | |
| 	if (irq)
 | |
| 	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 | |
| 	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
 | |
|       } else {
 | |
| 	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
 | |
| 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
 | |
|       }
 | |
|       dev->rx_addr += rx_bytes;
 | |
|     } else {
 | |
|       if (irq)
 | |
| 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 | |
|       // allow another RX thread to start
 | |
|       YELLOW_LED_ON(dev);
 | |
|       clear_bit (rx_busy, &dev->flags);
 | |
|       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
 | |
|     }
 | |
|     
 | |
| #ifdef TAILRECURSIONWORKS
 | |
|     // and we all bless optimised tail calls
 | |
|     if (pio_instead)
 | |
|       return rx_schedule (dev, 0);
 | |
|     return;
 | |
| #else
 | |
|     // grrrrrrr!
 | |
|     irq = 0;
 | |
|   }
 | |
|   return;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /********** handle RX bus master complete events **********/
 | |
| 
 | |
| static void rx_bus_master_complete_handler (hrz_dev * dev) {
 | |
|   if (test_bit (rx_busy, &dev->flags)) {
 | |
|     rx_schedule (dev, 1);
 | |
|   } else {
 | |
|     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
 | |
|     // clear interrupt condition on adapter
 | |
|     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /********** (queue to) become the next TX thread **********/
 | |
| 
 | |
| static int tx_hold (hrz_dev * dev) {
 | |
|   PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
 | |
|   wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
 | |
|   PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
 | |
|   if (signal_pending (current))
 | |
|     return -1;
 | |
|   PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /********** allow another TX thread to start **********/
 | |
| 
 | |
| static inline void tx_release (hrz_dev * dev) {
 | |
|   clear_bit (tx_busy, &dev->flags);
 | |
|   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
 | |
|   wake_up_interruptible (&dev->tx_queue);
 | |
| }
 | |
| 
 | |
| /********** schedule TX transfers **********/
 | |
| 
 | |
| static void tx_schedule (hrz_dev * const dev, int irq) {
 | |
|   unsigned int tx_bytes;
 | |
|   
 | |
|   int append_desc = 0;
 | |
|   
 | |
|   int pio_instead = 0;
 | |
| #ifndef TAILRECURSIONWORKS
 | |
|   pio_instead = 1;
 | |
|   while (pio_instead) {
 | |
| #endif
 | |
|     // bytes in current region waiting for TX transfer
 | |
|     tx_bytes = dev->tx_bytes;
 | |
|     
 | |
| #if 0
 | |
|     spin_count = 0;
 | |
|     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
 | |
|       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
 | |
|       if (++spin_count > 10) {
 | |
| 	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
 | |
| 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
 | |
| 	tx_release (dev);
 | |
| 	hrz_kfree_skb (dev->tx_skb);
 | |
| 	return;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     
 | |
|     if (tx_bytes) {
 | |
|       // start next transfer within same region
 | |
|       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
 | |
| 	PRINTD (DBG_TX|DBG_BUS, "(pio)");
 | |
| 	pio_instead = 1;
 | |
|       }
 | |
|       if (tx_bytes <= MAX_TRANSFER_COUNT) {
 | |
| 	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
 | |
| 	if (!dev->tx_iovec) {
 | |
| 	  // end of last region
 | |
| 	  append_desc = 1;
 | |
| 	}
 | |
| 	dev->tx_bytes = 0;
 | |
|       } else {
 | |
| 	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
 | |
| 	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
 | |
| 	tx_bytes = MAX_TRANSFER_COUNT;
 | |
|       }
 | |
|     } else {
 | |
|       // tx_bytes == 0 -- we're between regions
 | |
|       // regions remaining to transfer
 | |
|       unsigned int tx_regions = dev->tx_regions;
 | |
|       
 | |
|       if (tx_regions) {
 | |
| 	// start a new region
 | |
| 	dev->tx_addr = dev->tx_iovec->iov_base;
 | |
| 	tx_bytes = dev->tx_iovec->iov_len;
 | |
| 	++dev->tx_iovec;
 | |
| 	dev->tx_regions = tx_regions - 1;
 | |
| 	
 | |
| 	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
 | |
| 	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
 | |
| 	  pio_instead = 1;
 | |
| 	}
 | |
| 	if (tx_bytes <= MAX_TRANSFER_COUNT) {
 | |
| 	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
 | |
| 	  dev->tx_bytes = 0;
 | |
| 	} else {
 | |
| 	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
 | |
| 	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
 | |
| 	  tx_bytes = MAX_TRANSFER_COUNT;
 | |
| 	}
 | |
|       } else {
 | |
| 	// tx_regions == 0
 | |
| 	// that's all folks - end of frame
 | |
| 	struct sk_buff * skb = dev->tx_skb;
 | |
| 	dev->tx_iovec = NULL;
 | |
| 	
 | |
| 	// VC layer stats
 | |
| 	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
 | |
| 	
 | |
| 	// free the skb
 | |
| 	hrz_kfree_skb (skb);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // note: writing TX_COUNT clears any interrupt condition
 | |
|     if (tx_bytes) {
 | |
|       if (pio_instead) {
 | |
| 	if (irq)
 | |
| 	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
 | |
| 	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
 | |
| 	if (append_desc)
 | |
| 	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
 | |
|       } else {
 | |
| 	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
 | |
| 	if (append_desc)
 | |
| 	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
 | |
| 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
 | |
| 		 append_desc
 | |
| 		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
 | |
| 		 : tx_bytes);
 | |
|       }
 | |
|       dev->tx_addr += tx_bytes;
 | |
|     } else {
 | |
|       if (irq)
 | |
| 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
 | |
|       YELLOW_LED_ON(dev);
 | |
|       tx_release (dev);
 | |
|     }
 | |
|     
 | |
| #ifdef TAILRECURSIONWORKS
 | |
|     // and we all bless optimised tail calls
 | |
|     if (pio_instead)
 | |
|       return tx_schedule (dev, 0);
 | |
|     return;
 | |
| #else
 | |
|     // grrrrrrr!
 | |
|     irq = 0;
 | |
|   }
 | |
|   return;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /********** handle TX bus master complete events **********/
 | |
| 
 | |
| static void tx_bus_master_complete_handler (hrz_dev * dev) {
 | |
|   if (test_bit (tx_busy, &dev->flags)) {
 | |
|     tx_schedule (dev, 1);
 | |
|   } else {
 | |
|     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
 | |
|     // clear interrupt condition on adapter
 | |
|     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /********** move RX Q pointer to next item in circular buffer **********/
 | |
| 
 | |
| // called only from IRQ sub-handler
 | |
| static u32 rx_queue_entry_next (hrz_dev * dev) {
 | |
|   u32 rx_queue_entry;
 | |
|   spin_lock (&dev->mem_lock);
 | |
|   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
 | |
|   if (dev->rx_q_entry == dev->rx_q_wrap)
 | |
|     dev->rx_q_entry = dev->rx_q_reset;
 | |
|   else
 | |
|     dev->rx_q_entry++;
 | |
|   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
 | |
|   spin_unlock (&dev->mem_lock);
 | |
|   return rx_queue_entry;
 | |
| }
 | |
| 
 | |
| /********** handle RX disabled by device **********/
 | |
| 
 | |
| static inline void rx_disabled_handler (hrz_dev * dev) {
 | |
|   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
 | |
|   // count me please
 | |
|   PRINTK (KERN_WARNING, "RX was disabled!");
 | |
| }
 | |
| 
 | |
| /********** handle RX data received by device **********/
 | |
| 
 | |
| // called from IRQ handler
 | |
| static void rx_data_av_handler (hrz_dev * dev) {
 | |
|   u32 rx_queue_entry;
 | |
|   u32 rx_queue_entry_flags;
 | |
|   u16 rx_len;
 | |
|   u16 rx_channel;
 | |
|   
 | |
|   PRINTD (DBG_FLOW, "hrz_data_av_handler");
 | |
|   
 | |
|   // try to grab rx lock (not possible during RX bus mastering)
 | |
|   if (test_and_set_bit (rx_busy, &dev->flags)) {
 | |
|     PRINTD (DBG_RX, "locked out of rx lock");
 | |
|     return;
 | |
|   }
 | |
|   PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
 | |
|   // lock is cleared if we fail now, o/w after bus master completion
 | |
|   
 | |
|   YELLOW_LED_OFF(dev);
 | |
|   
 | |
|   rx_queue_entry = rx_queue_entry_next (dev);
 | |
|   
 | |
|   rx_len = rx_q_entry_to_length (rx_queue_entry);
 | |
|   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
 | |
|   
 | |
|   WAIT_FLUSH_RX_COMPLETE (dev);
 | |
|   
 | |
|   SELECT_RX_CHANNEL (dev, rx_channel);
 | |
|   
 | |
|   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
 | |
|   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
 | |
|   
 | |
|   if (!rx_len) {
 | |
|     // (at least) bus-mastering breaks if we try to handle a
 | |
|     // zero-length frame, besides AAL5 does not support them
 | |
|     PRINTK (KERN_ERR, "zero-length frame!");
 | |
|     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
 | |
|   }
 | |
|   
 | |
|   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
 | |
|     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
 | |
|   }
 | |
|   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
 | |
|     struct atm_vcc * atm_vcc;
 | |
|     
 | |
|     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
 | |
|     
 | |
|     atm_vcc = dev->rxer[rx_channel];
 | |
|     // if no vcc is assigned to this channel, we should drop the frame
 | |
|     // (is this what SIMONS etc. was trying to achieve?)
 | |
|     
 | |
|     if (atm_vcc) {
 | |
|       
 | |
|       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
 | |
| 	
 | |
| 	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
 | |
| 	    
 | |
| 	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
 | |
| 	  if (skb) {
 | |
| 	    // remember this so we can push it later
 | |
| 	    dev->rx_skb = skb;
 | |
| 	    // remember this so we can flush it later
 | |
| 	    dev->rx_channel = rx_channel;
 | |
| 	    
 | |
| 	    // prepare socket buffer
 | |
| 	    skb_put (skb, rx_len);
 | |
| 	    ATM_SKB(skb)->vcc = atm_vcc;
 | |
| 	    
 | |
| 	    // simple transfer
 | |
| 	    // dev->rx_regions = 0;
 | |
| 	    // dev->rx_iovec = 0;
 | |
| 	    dev->rx_bytes = rx_len;
 | |
| 	    dev->rx_addr = skb->data;
 | |
| 	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
 | |
| 		    skb->data, rx_len);
 | |
| 	    
 | |
| 	    // do the business
 | |
| 	    rx_schedule (dev, 0);
 | |
| 	    return;
 | |
| 	    
 | |
| 	  } else {
 | |
| 	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
 | |
| 	  }
 | |
| 	  
 | |
| 	} else {
 | |
| 	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
 | |
| 	  // do we count this?
 | |
| 	}
 | |
| 	
 | |
|       } else {
 | |
| 	PRINTK (KERN_WARNING, "dropped over-size frame");
 | |
| 	// do we count this?
 | |
|       }
 | |
|       
 | |
|     } else {
 | |
|       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
 | |
|       // do we count this?
 | |
|     }
 | |
|     
 | |
|   } else {
 | |
|     // Wait update complete ? SPONG
 | |
|   }
 | |
|   
 | |
|   // RX was aborted
 | |
|   YELLOW_LED_ON(dev);
 | |
|   
 | |
|   FLUSH_RX_CHANNEL (dev,rx_channel);
 | |
|   clear_bit (rx_busy, &dev->flags);
 | |
|   
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /********** interrupt handler **********/
 | |
| 
 | |
| static irqreturn_t interrupt_handler(int irq, void *dev_id)
 | |
| {
 | |
|   hrz_dev *dev = dev_id;
 | |
|   u32 int_source;
 | |
|   unsigned int irq_ok;
 | |
|   
 | |
|   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
 | |
|   
 | |
|   // definitely for us
 | |
|   irq_ok = 0;
 | |
|   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
 | |
| 	  & INTERESTING_INTERRUPTS)) {
 | |
|     // In the interests of fairness, the handlers below are
 | |
|     // called in sequence and without immediate return to the head of
 | |
|     // the while loop. This is only of issue for slow hosts (or when
 | |
|     // debugging messages are on). Really slow hosts may find a fast
 | |
|     // sender keeps them permanently in the IRQ handler. :(
 | |
|     
 | |
|     // (only an issue for slow hosts) RX completion goes before
 | |
|     // rx_data_av as the former implies rx_busy and so the latter
 | |
|     // would just abort. If it reschedules another transfer
 | |
|     // (continuing the same frame) then it will not clear rx_busy.
 | |
|     
 | |
|     // (only an issue for slow hosts) TX completion goes before RX
 | |
|     // data available as it is a much shorter routine - there is the
 | |
|     // chance that any further transfers it schedules will be complete
 | |
|     // by the time of the return to the head of the while loop
 | |
|     
 | |
|     if (int_source & RX_BUS_MASTER_COMPLETE) {
 | |
|       ++irq_ok;
 | |
|       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
 | |
|       rx_bus_master_complete_handler (dev);
 | |
|     }
 | |
|     if (int_source & TX_BUS_MASTER_COMPLETE) {
 | |
|       ++irq_ok;
 | |
|       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
 | |
|       tx_bus_master_complete_handler (dev);
 | |
|     }
 | |
|     if (int_source & RX_DATA_AV) {
 | |
|       ++irq_ok;
 | |
|       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
 | |
|       rx_data_av_handler (dev);
 | |
|     }
 | |
|   }
 | |
|   if (irq_ok) {
 | |
|     PRINTD (DBG_IRQ, "work done: %u", irq_ok);
 | |
|   } else {
 | |
|     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
 | |
|   }
 | |
|   
 | |
|   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
 | |
|   if (irq_ok)
 | |
| 	return IRQ_HANDLED;
 | |
|   return IRQ_NONE;
 | |
| }
 | |
| 
 | |
| /********** housekeeping **********/
 | |
| 
 | |
| static void do_housekeeping (unsigned long arg) {
 | |
|   // just stats at the moment
 | |
|   hrz_dev * dev = (hrz_dev *) arg;
 | |
| 
 | |
|   // collect device-specific (not driver/atm-linux) stats here
 | |
|   dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
 | |
|   dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
 | |
|   dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
 | |
|   dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
 | |
| 
 | |
|   mod_timer (&dev->housekeeping, jiffies + HZ/10);
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /********** find an idle channel for TX and set it up **********/
 | |
| 
 | |
| // called with tx_busy set
 | |
| static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
 | |
|   unsigned short idle_channels;
 | |
|   short tx_channel = -1;
 | |
|   unsigned int spin_count;
 | |
|   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
 | |
|   
 | |
|   // better would be to fail immediately, the caller can then decide whether
 | |
|   // to wait or drop (depending on whether this is UBR etc.)
 | |
|   spin_count = 0;
 | |
|   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
 | |
|     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
 | |
|     // delay a bit here
 | |
|     if (++spin_count > 100) {
 | |
|       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
 | |
|       return -EBUSY;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // got an idle channel
 | |
|   {
 | |
|     // tx_idle ensures we look for idle channels in RR order
 | |
|     int chan = dev->tx_idle;
 | |
|     
 | |
|     int keep_going = 1;
 | |
|     while (keep_going) {
 | |
|       if (idle_channels & (1<<chan)) {
 | |
| 	tx_channel = chan;
 | |
| 	keep_going = 0;
 | |
|       }
 | |
|       ++chan;
 | |
|       if (chan == TX_CHANS)
 | |
| 	chan = 0;
 | |
|     }
 | |
|     
 | |
|     dev->tx_idle = chan;
 | |
|   }
 | |
|   
 | |
|   // set up the channel we found
 | |
|   {
 | |
|     // Initialise the cell header in the transmit channel descriptor
 | |
|     // a.k.a. prepare the channel and remember that we have done so.
 | |
|     
 | |
|     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
 | |
|     u32 rd_ptr;
 | |
|     u32 wr_ptr;
 | |
|     u16 channel = vcc->channel;
 | |
|     
 | |
|     unsigned long flags;
 | |
|     spin_lock_irqsave (&dev->mem_lock, flags);
 | |
|     
 | |
|     // Update the transmit channel record.
 | |
|     dev->tx_channel_record[tx_channel] = channel;
 | |
|     
 | |
|     // xBR channel
 | |
|     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
 | |
| 			      vcc->tx_xbr_bits);
 | |
|     
 | |
|     // Update the PCR counter preload value etc.
 | |
|     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
 | |
| 			      vcc->tx_pcr_bits);
 | |
| 
 | |
| #if 0
 | |
|     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
 | |
|       // SCR timer
 | |
|       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
 | |
| 				vcc->tx_scr_bits);
 | |
|       
 | |
|       // Bucket size...
 | |
|       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
 | |
| 				vcc->tx_bucket_bits);
 | |
|       
 | |
|       // ... and fullness
 | |
|       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
 | |
| 				vcc->tx_bucket_bits);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // Initialise the read and write buffer pointers
 | |
|     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
 | |
|     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 | |
|     
 | |
|     // idle TX channels should have identical pointers
 | |
|     if (rd_ptr != wr_ptr) {
 | |
|       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
 | |
|       // spin_unlock... return -E...
 | |
|       // I wonder if gcc would get rid of one of the pointer aliases
 | |
|     }
 | |
|     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
 | |
| 	    rd_ptr, wr_ptr);
 | |
|     
 | |
|     switch (vcc->aal) {
 | |
|       case aal0:
 | |
| 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
 | |
| 	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
 | |
| 	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
 | |
| 	break;
 | |
|       case aal34:
 | |
| 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
 | |
| 	rd_ptr |= CHANNEL_TYPE_AAL3_4;
 | |
| 	wr_ptr |= CHANNEL_TYPE_AAL3_4;
 | |
| 	break;
 | |
|       case aal5:
 | |
| 	rd_ptr |= CHANNEL_TYPE_AAL5;
 | |
| 	wr_ptr |= CHANNEL_TYPE_AAL5;
 | |
| 	// Initialise the CRC
 | |
| 	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
 | |
| 	break;
 | |
|     }
 | |
|     
 | |
|     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
 | |
|     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
 | |
|     
 | |
|     // Write the Cell Header
 | |
|     // Payload Type, CLP and GFC would go here if non-zero
 | |
|     wr_mem (dev, &tx_desc->cell_header, channel);
 | |
|     
 | |
|     spin_unlock_irqrestore (&dev->mem_lock, flags);
 | |
|   }
 | |
|   
 | |
|   return tx_channel;
 | |
| }
 | |
| 
 | |
| /********** send a frame **********/
 | |
| 
 | |
| static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
 | |
|   unsigned int spin_count;
 | |
|   int free_buffers;
 | |
|   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
 | |
|   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
 | |
|   u16 channel = vcc->channel;
 | |
|   
 | |
|   u32 buffers_required;
 | |
|   
 | |
|   /* signed for error return */
 | |
|   short tx_channel;
 | |
|   
 | |
|   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
 | |
| 	  channel, skb->data, skb->len);
 | |
|   
 | |
|   dump_skb (">>>", channel, skb);
 | |
|   
 | |
|   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
 | |
|     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
 | |
|     hrz_kfree_skb (skb);
 | |
|     return -EIO;
 | |
|   }
 | |
|   
 | |
|   // don't understand this
 | |
|   ATM_SKB(skb)->vcc = atm_vcc;
 | |
|   
 | |
|   if (skb->len > atm_vcc->qos.txtp.max_sdu) {
 | |
|     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
 | |
|     hrz_kfree_skb (skb);
 | |
|     return -EIO;
 | |
|   }
 | |
|   
 | |
|   if (!channel) {
 | |
|     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
 | |
|     hrz_kfree_skb (skb);
 | |
|     return -EIO;
 | |
|   }
 | |
|   
 | |
| #if 0
 | |
|   {
 | |
|     // where would be a better place for this? housekeeping?
 | |
|     u16 status;
 | |
|     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
 | |
|     if (status & PCI_STATUS_REC_MASTER_ABORT) {
 | |
|       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
 | |
|       status &= ~PCI_STATUS_REC_MASTER_ABORT;
 | |
|       pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
 | |
|       if (test_bit (tx_busy, &dev->flags)) {
 | |
| 	hrz_kfree_skb (dev->tx_skb);
 | |
| 	tx_release (dev);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   
 | |
| #ifdef DEBUG_HORIZON
 | |
|   /* wey-hey! */
 | |
|   if (channel == 1023) {
 | |
|     unsigned int i;
 | |
|     unsigned short d = 0;
 | |
|     char * s = skb->data;
 | |
|     if (*s++ == 'D') {
 | |
|       for (i = 0; i < 4; ++i) {
 | |
| 	d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10));
 | |
| 	++s;
 | |
|       }
 | |
|       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   // wait until TX is free and grab lock
 | |
|   if (tx_hold (dev)) {
 | |
|     hrz_kfree_skb (skb);
 | |
|     return -ERESTARTSYS;
 | |
|   }
 | |
|  
 | |
|   // Wait for enough space to be available in transmit buffer memory.
 | |
|   
 | |
|   // should be number of cells needed + 2 (according to hardware docs)
 | |
|   // = ((framelen+8)+47) / 48 + 2
 | |
|   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
 | |
|   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
 | |
|   
 | |
|   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
 | |
|   spin_count = 0;
 | |
|   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
 | |
|     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
 | |
| 	    free_buffers, buffers_required);
 | |
|     // what is the appropriate delay? implement a timeout? (depending on line speed?)
 | |
|     // mdelay (1);
 | |
|     // what happens if we kill (current_pid, SIGKILL) ?
 | |
|     schedule();
 | |
|     if (++spin_count > 1000) {
 | |
|       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
 | |
| 	      free_buffers, buffers_required);
 | |
|       tx_release (dev);
 | |
|       hrz_kfree_skb (skb);
 | |
|       return -ERESTARTSYS;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Select a channel to transmit the frame on.
 | |
|   if (channel == dev->last_vc) {
 | |
|     PRINTD (DBG_TX, "last vc hack: hit");
 | |
|     tx_channel = dev->tx_last;
 | |
|   } else {
 | |
|     PRINTD (DBG_TX, "last vc hack: miss");
 | |
|     // Are we currently transmitting this VC on one of the channels?
 | |
|     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
 | |
|       if (dev->tx_channel_record[tx_channel] == channel) {
 | |
| 	PRINTD (DBG_TX, "vc already on channel: hit");
 | |
| 	break;
 | |
|       }
 | |
|     if (tx_channel == TX_CHANS) { 
 | |
|       PRINTD (DBG_TX, "vc already on channel: miss");
 | |
|       // Find and set up an idle channel.
 | |
|       tx_channel = setup_idle_tx_channel (dev, vcc);
 | |
|       if (tx_channel < 0) {
 | |
| 	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
 | |
| 	tx_release (dev);
 | |
| 	return tx_channel;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     PRINTD (DBG_TX, "got channel");
 | |
|     SELECT_TX_CHANNEL(dev, tx_channel);
 | |
|     
 | |
|     dev->last_vc = channel;
 | |
|     dev->tx_last = tx_channel;
 | |
|   }
 | |
|   
 | |
|   PRINTD (DBG_TX, "using channel %u", tx_channel);
 | |
|   
 | |
|   YELLOW_LED_OFF(dev);
 | |
|   
 | |
|   // TX start transfer
 | |
|   
 | |
|   {
 | |
|     unsigned int tx_len = skb->len;
 | |
|     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
 | |
|     // remember this so we can free it later
 | |
|     dev->tx_skb = skb;
 | |
|     
 | |
|     if (tx_iovcnt) {
 | |
|       // scatter gather transfer
 | |
|       dev->tx_regions = tx_iovcnt;
 | |
|       dev->tx_iovec = NULL;		/* @@@ needs rewritten */
 | |
|       dev->tx_bytes = 0;
 | |
|       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
 | |
| 	      skb->data, tx_len);
 | |
|       tx_release (dev);
 | |
|       hrz_kfree_skb (skb);
 | |
|       return -EIO;
 | |
|     } else {
 | |
|       // simple transfer
 | |
|       dev->tx_regions = 0;
 | |
|       dev->tx_iovec = NULL;
 | |
|       dev->tx_bytes = tx_len;
 | |
|       dev->tx_addr = skb->data;
 | |
|       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
 | |
| 	      skb->data, tx_len);
 | |
|     }
 | |
|     
 | |
|     // and do the business
 | |
|     tx_schedule (dev, 0);
 | |
|     
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /********** reset a card **********/
 | |
| 
 | |
| static void hrz_reset (const hrz_dev * dev) {
 | |
|   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
 | |
|   
 | |
|   // why not set RESET_HORIZON to one and wait for the card to
 | |
|   // reassert that bit as zero? Like so:
 | |
|   control_0_reg = control_0_reg & RESET_HORIZON;
 | |
|   wr_regl (dev, CONTROL_0_REG, control_0_reg);
 | |
|   while (control_0_reg & RESET_HORIZON)
 | |
|     control_0_reg = rd_regl (dev, CONTROL_0_REG);
 | |
|   
 | |
|   // old reset code retained:
 | |
|   wr_regl (dev, CONTROL_0_REG, control_0_reg |
 | |
| 	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
 | |
|   // just guessing here
 | |
|   udelay (1000);
 | |
|   
 | |
|   wr_regl (dev, CONTROL_0_REG, control_0_reg);
 | |
| }
 | |
| 
 | |
| /********** read the burnt in address **********/
 | |
| 
 | |
| static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
 | |
| {
 | |
| 	wr_regl (dev, CONTROL_0_REG, ctrl);
 | |
| 	udelay (5);
 | |
| }
 | |
|   
 | |
| static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
 | |
| {
 | |
| 	// DI must be valid around rising SK edge
 | |
| 	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
 | |
| 	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
 | |
| }
 | |
| 
 | |
| static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
 | |
| {
 | |
|   u32 ctrl = rd_regl (dev, CONTROL_0_REG);
 | |
|   
 | |
|   const unsigned int addr_bits = 6;
 | |
|   const unsigned int data_bits = 16;
 | |
|   
 | |
|   unsigned int i;
 | |
|   
 | |
|   u16 res;
 | |
|   
 | |
|   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
 | |
|   WRITE_IT_WAIT(dev, ctrl);
 | |
|   
 | |
|   // wake Serial EEPROM and send 110 (READ) command
 | |
|   ctrl |=  (SEEPROM_CS | SEEPROM_DI);
 | |
|   CLOCK_IT(dev, ctrl);
 | |
|   
 | |
|   ctrl |= SEEPROM_DI;
 | |
|   CLOCK_IT(dev, ctrl);
 | |
|   
 | |
|   ctrl &= ~SEEPROM_DI;
 | |
|   CLOCK_IT(dev, ctrl);
 | |
|   
 | |
|   for (i=0; i<addr_bits; i++) {
 | |
|     if (addr & (1 << (addr_bits-1)))
 | |
|       ctrl |= SEEPROM_DI;
 | |
|     else
 | |
|       ctrl &= ~SEEPROM_DI;
 | |
|     
 | |
|     CLOCK_IT(dev, ctrl);
 | |
|     
 | |
|     addr = addr << 1;
 | |
|   }
 | |
|   
 | |
|   // we could check that we have DO = 0 here
 | |
|   ctrl &= ~SEEPROM_DI;
 | |
|   
 | |
|   res = 0;
 | |
|   for (i=0;i<data_bits;i++) {
 | |
|     res = res >> 1;
 | |
|     
 | |
|     CLOCK_IT(dev, ctrl);
 | |
|     
 | |
|     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
 | |
|       res |= (1 << (data_bits-1));
 | |
|   }
 | |
|   
 | |
|   ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
 | |
|   WRITE_IT_WAIT(dev, ctrl);
 | |
|   
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /********** initialise a card **********/
 | |
| 
 | |
| static int __devinit hrz_init (hrz_dev * dev) {
 | |
|   int onefivefive;
 | |
|   
 | |
|   u16 chan;
 | |
|   
 | |
|   int buff_count;
 | |
|   
 | |
|   HDW * mem;
 | |
|   
 | |
|   cell_buf * tx_desc;
 | |
|   cell_buf * rx_desc;
 | |
|   
 | |
|   u32 ctrl;
 | |
|   
 | |
|   ctrl = rd_regl (dev, CONTROL_0_REG);
 | |
|   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
 | |
|   onefivefive = ctrl & ATM_LAYER_STATUS;
 | |
|   
 | |
|   if (onefivefive)
 | |
|     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
 | |
|   else
 | |
|     printk (DEV_LABEL ": Horizon (at 25 MBps)");
 | |
|   
 | |
|   printk (":");
 | |
|   // Reset the card to get everything in a known state
 | |
|   
 | |
|   printk (" reset");
 | |
|   hrz_reset (dev);
 | |
|   
 | |
|   // Clear all the buffer memory
 | |
|   
 | |
|   printk (" clearing memory");
 | |
|   
 | |
|   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
 | |
|     wr_mem (dev, mem, 0);
 | |
|   
 | |
|   printk (" tx channels");
 | |
|   
 | |
|   // All transmit eight channels are set up as AAL5 ABR channels with
 | |
|   // a 16us cell spacing. Why?
 | |
|   
 | |
|   // Channel 0 gets the free buffer at 100h, channel 1 gets the free
 | |
|   // buffer at 110h etc.
 | |
|   
 | |
|   for (chan = 0; chan < TX_CHANS; ++chan) {
 | |
|     tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
 | |
|     cell_buf * buf = &memmap->inittxbufs[chan];
 | |
|     
 | |
|     // initialise the read and write buffer pointers
 | |
|     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
 | |
|     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
 | |
|     
 | |
|     // set the status of the initial buffers to empty
 | |
|     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
 | |
|   }
 | |
|   
 | |
|   // Use space bufn3 at the moment for tx buffers
 | |
|   
 | |
|   printk (" tx buffers");
 | |
|   
 | |
|   tx_desc = memmap->bufn3;
 | |
|   
 | |
|   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
 | |
|   
 | |
|   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
 | |
|     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
 | |
|     tx_desc++;
 | |
|   }
 | |
|   
 | |
|   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
 | |
|   
 | |
|   // Initialise the transmit free buffer count
 | |
|   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
 | |
|   
 | |
|   printk (" rx channels");
 | |
|   
 | |
|   // Initialise all of the receive channels to be AAL5 disabled with
 | |
|   // an interrupt threshold of 0
 | |
|   
 | |
|   for (chan = 0; chan < RX_CHANS; ++chan) {
 | |
|     rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
 | |
|     
 | |
|     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
 | |
|   }
 | |
|   
 | |
|   printk (" rx buffers");
 | |
|   
 | |
|   // Use space bufn4 at the moment for rx buffers
 | |
|   
 | |
|   rx_desc = memmap->bufn4;
 | |
|   
 | |
|   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
 | |
|   
 | |
|   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
 | |
|     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
 | |
|     
 | |
|     rx_desc++;
 | |
|   }
 | |
|   
 | |
|   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
 | |
|   
 | |
|   // Initialise the receive free buffer count
 | |
|   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
 | |
|   
 | |
|   // Initialize Horizons registers
 | |
|   
 | |
|   // TX config
 | |
|   wr_regw (dev, TX_CONFIG_OFF,
 | |
| 	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
 | |
|   
 | |
|   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
 | |
|   wr_regw (dev, RX_CONFIG_OFF,
 | |
| 	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
 | |
|   
 | |
|   // RX line config
 | |
|   wr_regw (dev, RX_LINE_CONFIG_OFF,
 | |
| 	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
 | |
|   
 | |
|   // Set the max AAL5 cell count to be just enough to contain the
 | |
|   // largest AAL5 frame that the user wants to receive
 | |
|   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
 | |
| 	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
 | |
|   
 | |
|   // Enable receive
 | |
|   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
 | |
|   
 | |
|   printk (" control");
 | |
|   
 | |
|   // Drive the OE of the LEDs then turn the green LED on
 | |
|   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
 | |
|   wr_regl (dev, CONTROL_0_REG, ctrl);
 | |
|   
 | |
|   // Test for a 155-capable card
 | |
|   
 | |
|   if (onefivefive) {
 | |
|     // Select 155 mode... make this a choice (or: how do we detect
 | |
|     // external line speed and switch?)
 | |
|     ctrl |= ATM_LAYER_SELECT;
 | |
|     wr_regl (dev, CONTROL_0_REG, ctrl);
 | |
|     
 | |
|     // test SUNI-lite vs SAMBA
 | |
|     
 | |
|     // Register 0x00 in the SUNI will have some of bits 3-7 set, and
 | |
|     // they will always be zero for the SAMBA.  Ha!  Bloody hardware
 | |
|     // engineers.  It'll never work.
 | |
|     
 | |
|     if (rd_framer (dev, 0) & 0x00f0) {
 | |
|       // SUNI
 | |
|       printk (" SUNI");
 | |
|       
 | |
|       // Reset, just in case
 | |
|       wr_framer (dev, 0x00, 0x0080);
 | |
|       wr_framer (dev, 0x00, 0x0000);
 | |
|       
 | |
|       // Configure transmit FIFO
 | |
|       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
 | |
|       
 | |
|       // Set line timed mode
 | |
|       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
 | |
|     } else {
 | |
|       // SAMBA
 | |
|       printk (" SAMBA");
 | |
|       
 | |
|       // Reset, just in case
 | |
|       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
 | |
|       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
 | |
|       
 | |
|       // Turn off diagnostic loopback and enable line-timed mode
 | |
|       wr_framer (dev, 0, 0x0002);
 | |
|       
 | |
|       // Turn on transmit outputs
 | |
|       wr_framer (dev, 2, 0x0B80);
 | |
|     }
 | |
|   } else {
 | |
|     // Select 25 mode
 | |
|     ctrl &= ~ATM_LAYER_SELECT;
 | |
|     
 | |
|     // Madge B154 setup
 | |
|     // none required?
 | |
|   }
 | |
|   
 | |
|   printk (" LEDs");
 | |
|   
 | |
|   GREEN_LED_ON(dev);
 | |
|   YELLOW_LED_ON(dev);
 | |
|   
 | |
|   printk (" ESI=");
 | |
|   
 | |
|   {
 | |
|     u16 b = 0;
 | |
|     int i;
 | |
|     u8 * esi = dev->atm_dev->esi;
 | |
|     
 | |
|     // in the card I have, EEPROM
 | |
|     // addresses 0, 1, 2 contain 0
 | |
|     // addresess 5, 6 etc. contain ffff
 | |
|     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
 | |
|     // the read_bia routine gets the BIA in Ethernet bit order
 | |
|     
 | |
|     for (i=0; i < ESI_LEN; ++i) {
 | |
|       if (i % 2 == 0)
 | |
| 	b = read_bia (dev, i/2 + 2);
 | |
|       else
 | |
| 	b = b >> 8;
 | |
|       esi[i] = b & 0xFF;
 | |
|       printk ("%02x", esi[i]);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Enable RX_Q and ?X_COMPLETE interrupts only
 | |
|   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
 | |
|   printk (" IRQ on");
 | |
|   
 | |
|   printk (".\n");
 | |
|   
 | |
|   return onefivefive;
 | |
| }
 | |
| 
 | |
| /********** check max_sdu **********/
 | |
| 
 | |
| static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
 | |
|   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
 | |
|   
 | |
|   switch (aal) {
 | |
|     case aal0:
 | |
|       if (!(tp->max_sdu)) {
 | |
| 	PRINTD (DBG_QOS, "defaulting max_sdu");
 | |
| 	tp->max_sdu = ATM_AAL0_SDU;
 | |
|       } else if (tp->max_sdu != ATM_AAL0_SDU) {
 | |
| 	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
 | |
| 	return -EINVAL;
 | |
|       }
 | |
|       break;
 | |
|     case aal34:
 | |
|       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
 | |
| 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
 | |
| 	tp->max_sdu = ATM_MAX_AAL34_PDU;
 | |
|       }
 | |
|       break;
 | |
|     case aal5:
 | |
|       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
 | |
| 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
 | |
| 	tp->max_sdu = max_frame_size;
 | |
|       }
 | |
|       break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /********** check pcr **********/
 | |
| 
 | |
| // something like this should be part of ATM Linux
 | |
| static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
 | |
|   // we are assuming non-UBR, and non-special values of pcr
 | |
|   if (tp->min_pcr == ATM_MAX_PCR)
 | |
|     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
 | |
|   else if (tp->min_pcr < 0)
 | |
|     PRINTD (DBG_QOS, "luser gave negative min_pcr");
 | |
|   else if (tp->min_pcr && tp->min_pcr > pcr)
 | |
|     PRINTD (DBG_QOS, "pcr less than min_pcr");
 | |
|   else
 | |
|     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
 | |
|     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
 | |
|     // [this would get rid of next two conditionals]
 | |
|     if ((0) && tp->max_pcr == ATM_MAX_PCR)
 | |
|       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
 | |
|     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
 | |
|       PRINTD (DBG_QOS, "luser gave negative max_pcr");
 | |
|     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
 | |
|       PRINTD (DBG_QOS, "pcr greater than max_pcr");
 | |
|     else {
 | |
|       // each limit unspecified or not violated
 | |
|       PRINTD (DBG_QOS, "xBR(pcr) OK");
 | |
|       return 0;
 | |
|     }
 | |
|   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
 | |
| 	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
 | |
|   return -EINVAL;
 | |
| }
 | |
| 
 | |
| /********** open VC **********/
 | |
| 
 | |
| static int hrz_open (struct atm_vcc *atm_vcc)
 | |
| {
 | |
|   int error;
 | |
|   u16 channel;
 | |
|   
 | |
|   struct atm_qos * qos;
 | |
|   struct atm_trafprm * txtp;
 | |
|   struct atm_trafprm * rxtp;
 | |
|   
 | |
|   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
 | |
|   hrz_vcc vcc;
 | |
|   hrz_vcc * vccp; // allocated late
 | |
|   short vpi = atm_vcc->vpi;
 | |
|   int vci = atm_vcc->vci;
 | |
|   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
 | |
|   
 | |
| #ifdef ATM_VPI_UNSPEC
 | |
|   // UNSPEC is deprecated, remove this code eventually
 | |
|   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
 | |
|     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
 | |
|     return -EINVAL;
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   error = vpivci_to_channel (&channel, vpi, vci);
 | |
|   if (error) {
 | |
|     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
 | |
|     return error;
 | |
|   }
 | |
|   
 | |
|   vcc.channel = channel;
 | |
|   // max speed for the moment
 | |
|   vcc.tx_rate = 0x0;
 | |
|   
 | |
|   qos = &atm_vcc->qos;
 | |
|   
 | |
|   // check AAL and remember it
 | |
|   switch (qos->aal) {
 | |
|     case ATM_AAL0:
 | |
|       // we would if it were 48 bytes and not 52!
 | |
|       PRINTD (DBG_QOS|DBG_VCC, "AAL0");
 | |
|       vcc.aal = aal0;
 | |
|       break;
 | |
|     case ATM_AAL34:
 | |
|       // we would if I knew how do the SAR!
 | |
|       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
 | |
|       vcc.aal = aal34;
 | |
|       break;
 | |
|     case ATM_AAL5:
 | |
|       PRINTD (DBG_QOS|DBG_VCC, "AAL5");
 | |
|       vcc.aal = aal5;
 | |
|       break;
 | |
|     default:
 | |
|       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
 | |
|       return -EINVAL;
 | |
|       break;
 | |
|   }
 | |
|   
 | |
|   // TX traffic parameters
 | |
|   
 | |
|   // there are two, interrelated problems here: 1. the reservation of
 | |
|   // PCR is not a binary choice, we are given bounds and/or a
 | |
|   // desirable value; 2. the device is only capable of certain values,
 | |
|   // most of which are not integers. It is almost certainly acceptable
 | |
|   // to be off by a maximum of 1 to 10 cps.
 | |
|   
 | |
|   // Pragmatic choice: always store an integral PCR as that which has
 | |
|   // been allocated, even if we allocate a little (or a lot) less,
 | |
|   // after rounding. The actual allocation depends on what we can
 | |
|   // manage with our rate selection algorithm. The rate selection
 | |
|   // algorithm is given an integral PCR and a tolerance and told
 | |
|   // whether it should round the value up or down if the tolerance is
 | |
|   // exceeded; it returns: a) the actual rate selected (rounded up to
 | |
|   // the nearest integer), b) a bit pattern to feed to the timer
 | |
|   // register, and c) a failure value if no applicable rate exists.
 | |
|   
 | |
|   // Part of the job is done by atm_pcr_goal which gives us a PCR
 | |
|   // specification which says: EITHER grab the maximum available PCR
 | |
|   // (and perhaps a lower bound which we musn't pass), OR grab this
 | |
|   // amount, rounding down if you have to (and perhaps a lower bound
 | |
|   // which we musn't pass) OR grab this amount, rounding up if you
 | |
|   // have to (and perhaps an upper bound which we musn't pass). If any
 | |
|   // bounds ARE passed we fail. Note that rounding is only rounding to
 | |
|   // match device limitations, we do not round down to satisfy
 | |
|   // bandwidth availability even if this would not violate any given
 | |
|   // lower bound.
 | |
|   
 | |
|   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
 | |
|   // (say) so this is not even a binary fixpoint cell rate (but this
 | |
|   // device can do it). To avoid this sort of hassle we use a
 | |
|   // tolerance parameter (currently fixed at 10 cps).
 | |
|   
 | |
|   PRINTD (DBG_QOS, "TX:");
 | |
|   
 | |
|   txtp = &qos->txtp;
 | |
|   
 | |
|   // set up defaults for no traffic
 | |
|   vcc.tx_rate = 0;
 | |
|   // who knows what would actually happen if you try and send on this?
 | |
|   vcc.tx_xbr_bits = IDLE_RATE_TYPE;
 | |
|   vcc.tx_pcr_bits = CLOCK_DISABLE;
 | |
| #if 0
 | |
|   vcc.tx_scr_bits = CLOCK_DISABLE;
 | |
|   vcc.tx_bucket_bits = 0;
 | |
| #endif
 | |
|   
 | |
|   if (txtp->traffic_class != ATM_NONE) {
 | |
|     error = check_max_sdu (vcc.aal, txtp, max_tx_size);
 | |
|     if (error) {
 | |
|       PRINTD (DBG_QOS, "TX max_sdu check failed");
 | |
|       return error;
 | |
|     }
 | |
|     
 | |
|     switch (txtp->traffic_class) {
 | |
|       case ATM_UBR: {
 | |
| 	// we take "the PCR" as a rate-cap
 | |
| 	// not reserved
 | |
| 	vcc.tx_rate = 0;
 | |
| 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
 | |
| 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
 | |
| 	break;
 | |
|       }
 | |
| #if 0
 | |
|       case ATM_ABR: {
 | |
| 	// reserve min, allow up to max
 | |
| 	vcc.tx_rate = 0; // ?
 | |
| 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
 | |
| 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
 | |
| 	break;
 | |
|       }
 | |
| #endif
 | |
|       case ATM_CBR: {
 | |
| 	int pcr = atm_pcr_goal (txtp);
 | |
| 	rounding r;
 | |
| 	if (!pcr) {
 | |
| 	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
 | |
| 	  // should really have: once someone gets unlimited bandwidth
 | |
| 	  // that no more non-UBR channels can be opened until the
 | |
| 	  // unlimited one closes?? For the moment, round_down means
 | |
| 	  // greedy people actually get something and not nothing
 | |
| 	  r = round_down;
 | |
| 	  // slight race (no locking) here so we may get -EAGAIN
 | |
| 	  // later; the greedy bastards would deserve it :)
 | |
| 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
 | |
| 	  pcr = dev->tx_avail;
 | |
| 	} else if (pcr < 0) {
 | |
| 	  r = round_down;
 | |
| 	  pcr = -pcr;
 | |
| 	} else {
 | |
| 	  r = round_up;
 | |
| 	}
 | |
| 	error = make_rate_with_tolerance (dev, pcr, r, 10,
 | |
| 					  &vcc.tx_pcr_bits, &vcc.tx_rate);
 | |
| 	if (error) {
 | |
| 	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
 | |
| 	  return error;
 | |
| 	}
 | |
| 	// not really clear what further checking is needed
 | |
| 	error = atm_pcr_check (txtp, vcc.tx_rate);
 | |
| 	if (error) {
 | |
| 	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
 | |
| 	  return error;
 | |
| 	}
 | |
| 	vcc.tx_xbr_bits = CBR_RATE_TYPE;
 | |
| 	break;
 | |
|       }
 | |
| #if 0
 | |
|       case ATM_VBR: {
 | |
| 	int pcr = atm_pcr_goal (txtp);
 | |
| 	// int scr = atm_scr_goal (txtp);
 | |
| 	int scr = pcr/2; // just for fun
 | |
| 	unsigned int mbs = 60; // just for fun
 | |
| 	rounding pr;
 | |
| 	rounding sr;
 | |
| 	unsigned int bucket;
 | |
| 	if (!pcr) {
 | |
| 	  pr = round_nearest;
 | |
| 	  pcr = 1<<30;
 | |
| 	} else if (pcr < 0) {
 | |
| 	  pr = round_down;
 | |
| 	  pcr = -pcr;
 | |
| 	} else {
 | |
| 	  pr = round_up;
 | |
| 	}
 | |
| 	error = make_rate_with_tolerance (dev, pcr, pr, 10,
 | |
| 					  &vcc.tx_pcr_bits, 0);
 | |
| 	if (!scr) {
 | |
| 	  // see comments for PCR with CBR above
 | |
| 	  sr = round_down;
 | |
| 	  // slight race (no locking) here so we may get -EAGAIN
 | |
| 	  // later; the greedy bastards would deserve it :)
 | |
| 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
 | |
| 	  scr = dev->tx_avail;
 | |
| 	} else if (scr < 0) {
 | |
| 	  sr = round_down;
 | |
| 	  scr = -scr;
 | |
| 	} else {
 | |
| 	  sr = round_up;
 | |
| 	}
 | |
| 	error = make_rate_with_tolerance (dev, scr, sr, 10,
 | |
| 					  &vcc.tx_scr_bits, &vcc.tx_rate);
 | |
| 	if (error) {
 | |
| 	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
 | |
| 	  return error;
 | |
| 	}
 | |
| 	// not really clear what further checking is needed
 | |
| 	// error = atm_scr_check (txtp, vcc.tx_rate);
 | |
| 	if (error) {
 | |
| 	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
 | |
| 	  return error;
 | |
| 	}
 | |
| 	// bucket calculations (from a piece of paper...) cell bucket
 | |
| 	// capacity must be largest integer smaller than m(p-s)/p + 1
 | |
| 	// where m = max burst size, p = pcr, s = scr
 | |
| 	bucket = mbs*(pcr-scr)/pcr;
 | |
| 	if (bucket*pcr != mbs*(pcr-scr))
 | |
| 	  bucket += 1;
 | |
| 	if (bucket > BUCKET_MAX_SIZE) {
 | |
| 	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
 | |
| 		  bucket, BUCKET_MAX_SIZE);
 | |
| 	  bucket = BUCKET_MAX_SIZE;
 | |
| 	}
 | |
| 	vcc.tx_xbr_bits = VBR_RATE_TYPE;
 | |
| 	vcc.tx_bucket_bits = bucket;
 | |
| 	break;
 | |
|       }
 | |
| #endif
 | |
|       default: {
 | |
| 	PRINTD (DBG_QOS, "unsupported TX traffic class");
 | |
| 	return -EINVAL;
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // RX traffic parameters
 | |
|   
 | |
|   PRINTD (DBG_QOS, "RX:");
 | |
|   
 | |
|   rxtp = &qos->rxtp;
 | |
|   
 | |
|   // set up defaults for no traffic
 | |
|   vcc.rx_rate = 0;
 | |
|   
 | |
|   if (rxtp->traffic_class != ATM_NONE) {
 | |
|     error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
 | |
|     if (error) {
 | |
|       PRINTD (DBG_QOS, "RX max_sdu check failed");
 | |
|       return error;
 | |
|     }
 | |
|     switch (rxtp->traffic_class) {
 | |
|       case ATM_UBR: {
 | |
| 	// not reserved
 | |
| 	break;
 | |
|       }
 | |
| #if 0
 | |
|       case ATM_ABR: {
 | |
| 	// reserve min
 | |
| 	vcc.rx_rate = 0; // ?
 | |
| 	break;
 | |
|       }
 | |
| #endif
 | |
|       case ATM_CBR: {
 | |
| 	int pcr = atm_pcr_goal (rxtp);
 | |
| 	if (!pcr) {
 | |
| 	  // slight race (no locking) here so we may get -EAGAIN
 | |
| 	  // later; the greedy bastards would deserve it :)
 | |
| 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
 | |
| 	  pcr = dev->rx_avail;
 | |
| 	} else if (pcr < 0) {
 | |
| 	  pcr = -pcr;
 | |
| 	}
 | |
| 	vcc.rx_rate = pcr;
 | |
| 	// not really clear what further checking is needed
 | |
| 	error = atm_pcr_check (rxtp, vcc.rx_rate);
 | |
| 	if (error) {
 | |
| 	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
 | |
| 	  return error;
 | |
| 	}
 | |
| 	break;
 | |
|       }
 | |
| #if 0
 | |
|       case ATM_VBR: {
 | |
| 	// int scr = atm_scr_goal (rxtp);
 | |
| 	int scr = 1<<16; // just for fun
 | |
| 	if (!scr) {
 | |
| 	  // slight race (no locking) here so we may get -EAGAIN
 | |
| 	  // later; the greedy bastards would deserve it :)
 | |
| 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
 | |
| 	  scr = dev->rx_avail;
 | |
| 	} else if (scr < 0) {
 | |
| 	  scr = -scr;
 | |
| 	}
 | |
| 	vcc.rx_rate = scr;
 | |
| 	// not really clear what further checking is needed
 | |
| 	// error = atm_scr_check (rxtp, vcc.rx_rate);
 | |
| 	if (error) {
 | |
| 	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
 | |
| 	  return error;
 | |
| 	}
 | |
| 	break;
 | |
|       }
 | |
| #endif
 | |
|       default: {
 | |
| 	PRINTD (DBG_QOS, "unsupported RX traffic class");
 | |
| 	return -EINVAL;
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // late abort useful for diagnostics
 | |
|   if (vcc.aal != aal5) {
 | |
|     PRINTD (DBG_QOS, "AAL not supported");
 | |
|     return -EINVAL;
 | |
|   }
 | |
|   
 | |
|   // get space for our vcc stuff and copy parameters into it
 | |
|   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
 | |
|   if (!vccp) {
 | |
|     PRINTK (KERN_ERR, "out of memory!");
 | |
|     return -ENOMEM;
 | |
|   }
 | |
|   *vccp = vcc;
 | |
|   
 | |
|   // clear error and grab cell rate resource lock
 | |
|   error = 0;
 | |
|   spin_lock (&dev->rate_lock);
 | |
|   
 | |
|   if (vcc.tx_rate > dev->tx_avail) {
 | |
|     PRINTD (DBG_QOS, "not enough TX PCR left");
 | |
|     error = -EAGAIN;
 | |
|   }
 | |
|   
 | |
|   if (vcc.rx_rate > dev->rx_avail) {
 | |
|     PRINTD (DBG_QOS, "not enough RX PCR left");
 | |
|     error = -EAGAIN;
 | |
|   }
 | |
|   
 | |
|   if (!error) {
 | |
|     // really consume cell rates
 | |
|     dev->tx_avail -= vcc.tx_rate;
 | |
|     dev->rx_avail -= vcc.rx_rate;
 | |
|     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
 | |
| 	    vcc.tx_rate, vcc.rx_rate);
 | |
|   }
 | |
|   
 | |
|   // release lock and exit on error
 | |
|   spin_unlock (&dev->rate_lock);
 | |
|   if (error) {
 | |
|     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
 | |
|     kfree (vccp);
 | |
|     return error;
 | |
|   }
 | |
|   
 | |
|   // this is "immediately before allocating the connection identifier
 | |
|   // in hardware" - so long as the next call does not fail :)
 | |
|   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
 | |
|   
 | |
|   // any errors here are very serious and should never occur
 | |
|   
 | |
|   if (rxtp->traffic_class != ATM_NONE) {
 | |
|     if (dev->rxer[channel]) {
 | |
|       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
 | |
|       error = -EBUSY;
 | |
|     }
 | |
|     if (!error)
 | |
|       error = hrz_open_rx (dev, channel);
 | |
|     if (error) {
 | |
|       kfree (vccp);
 | |
|       return error;
 | |
|     }
 | |
|     // this link allows RX frames through
 | |
|     dev->rxer[channel] = atm_vcc;
 | |
|   }
 | |
|   
 | |
|   // success, set elements of atm_vcc
 | |
|   atm_vcc->dev_data = (void *) vccp;
 | |
|   
 | |
|   // indicate readiness
 | |
|   set_bit(ATM_VF_READY,&atm_vcc->flags);
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /********** close VC **********/
 | |
| 
 | |
| static void hrz_close (struct atm_vcc * atm_vcc) {
 | |
|   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
 | |
|   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
 | |
|   u16 channel = vcc->channel;
 | |
|   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
 | |
|   
 | |
|   // indicate unreadiness
 | |
|   clear_bit(ATM_VF_READY,&atm_vcc->flags);
 | |
| 
 | |
|   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
 | |
|     unsigned int i;
 | |
|     
 | |
|     // let any TX on this channel that has started complete
 | |
|     // no restart, just keep trying
 | |
|     while (tx_hold (dev))
 | |
|       ;
 | |
|     // remove record of any tx_channel having been setup for this channel
 | |
|     for (i = 0; i < TX_CHANS; ++i)
 | |
|       if (dev->tx_channel_record[i] == channel) {
 | |
| 	dev->tx_channel_record[i] = -1;
 | |
| 	break;
 | |
|       }
 | |
|     if (dev->last_vc == channel)
 | |
|       dev->tx_last = -1;
 | |
|     tx_release (dev);
 | |
|   }
 | |
| 
 | |
|   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
 | |
|     // disable RXing - it tries quite hard
 | |
|     hrz_close_rx (dev, channel);
 | |
|     // forget the vcc - no more skbs will be pushed
 | |
|     if (atm_vcc != dev->rxer[channel])
 | |
|       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
 | |
| 	      "arghhh! we're going to die!",
 | |
| 	      atm_vcc, dev->rxer[channel]);
 | |
|     dev->rxer[channel] = NULL;
 | |
|   }
 | |
|   
 | |
|   // atomically release our rate reservation
 | |
|   spin_lock (&dev->rate_lock);
 | |
|   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
 | |
| 	  vcc->tx_rate, vcc->rx_rate);
 | |
|   dev->tx_avail += vcc->tx_rate;
 | |
|   dev->rx_avail += vcc->rx_rate;
 | |
|   spin_unlock (&dev->rate_lock);
 | |
|   
 | |
|   // free our structure
 | |
|   kfree (vcc);
 | |
|   // say the VPI/VCI is free again
 | |
|   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
 | |
| 			   void *optval, int optlen) {
 | |
|   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
 | |
|   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
 | |
|   switch (level) {
 | |
|     case SOL_SOCKET:
 | |
|       switch (optname) {
 | |
| //	case SO_BCTXOPT:
 | |
| //	  break;
 | |
| //	case SO_BCRXOPT:
 | |
| //	  break;
 | |
| 	default:
 | |
| 	  return -ENOPROTOOPT;
 | |
| 	  break;
 | |
|       };
 | |
|       break;
 | |
|   }
 | |
|   return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
 | |
| 			   void *optval, unsigned int optlen) {
 | |
|   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
 | |
|   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
 | |
|   switch (level) {
 | |
|     case SOL_SOCKET:
 | |
|       switch (optname) {
 | |
| //	case SO_BCTXOPT:
 | |
| //	  break;
 | |
| //	case SO_BCRXOPT:
 | |
| //	  break;
 | |
| 	default:
 | |
| 	  return -ENOPROTOOPT;
 | |
| 	  break;
 | |
|       };
 | |
|       break;
 | |
|   }
 | |
|   return -EINVAL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
| static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
 | |
|   hrz_dev * dev = HRZ_DEV(atm_dev);
 | |
|   PRINTD (DBG_FLOW, "hrz_ioctl");
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
 | |
|   hrz_dev * dev = HRZ_DEV(atm_dev);
 | |
|   PRINTD (DBG_FLOW, "hrz_phy_get");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
 | |
| 			 unsigned long addr) {
 | |
|   hrz_dev * dev = HRZ_DEV(atm_dev);
 | |
|   PRINTD (DBG_FLOW, "hrz_phy_put");
 | |
| }
 | |
| 
 | |
| static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
 | |
|   hrz_dev * dev = HRZ_DEV(vcc->dev);
 | |
|   PRINTD (DBG_FLOW, "hrz_change_qos");
 | |
|   return -1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /********** proc file contents **********/
 | |
| 
 | |
| static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
 | |
|   hrz_dev * dev = HRZ_DEV(atm_dev);
 | |
|   int left = *pos;
 | |
|   PRINTD (DBG_FLOW, "hrz_proc_read");
 | |
|   
 | |
|   /* more diagnostics here? */
 | |
|   
 | |
| #if 0
 | |
|   if (!left--) {
 | |
|     unsigned int count = sprintf (page, "vbr buckets:");
 | |
|     unsigned int i;
 | |
|     for (i = 0; i < TX_CHANS; ++i)
 | |
|       count += sprintf (page, " %u/%u",
 | |
| 			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
 | |
| 			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
 | |
|     count += sprintf (page+count, ".\n");
 | |
|     return count;
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   if (!left--)
 | |
|     return sprintf (page,
 | |
| 		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
 | |
| 		    dev->tx_cell_count, dev->rx_cell_count,
 | |
| 		    dev->hec_error_count, dev->unassigned_cell_count);
 | |
|   
 | |
|   if (!left--)
 | |
|     return sprintf (page,
 | |
| 		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
 | |
| 		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
 | |
| 		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
 | |
| 		    dev->noof_spare_buffers);
 | |
|   
 | |
|   if (!left--)
 | |
|     return sprintf (page,
 | |
| 		    "cps remaining: TX %u, RX %u\n",
 | |
| 		    dev->tx_avail, dev->rx_avail);
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static const struct atmdev_ops hrz_ops = {
 | |
|   .open	= hrz_open,
 | |
|   .close	= hrz_close,
 | |
|   .send	= hrz_send,
 | |
|   .proc_read	= hrz_proc_read,
 | |
|   .owner	= THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
 | |
| {
 | |
| 	hrz_dev * dev;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	// adapter slot free, read resources from PCI configuration space
 | |
| 	u32 iobase = pci_resource_start (pci_dev, 0);
 | |
| 	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
 | |
| 	unsigned int irq;
 | |
| 	unsigned char lat;
 | |
| 
 | |
| 	PRINTD (DBG_FLOW, "hrz_probe");
 | |
| 
 | |
| 	if (pci_enable_device(pci_dev))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* XXX DEV_LABEL is a guess */
 | |
| 	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out_disable;
 | |
| 	}
 | |
| 
 | |
| 	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
 | |
| 	if (!dev) {
 | |
| 		// perhaps we should be nice: deregister all adapters and abort?
 | |
| 		PRINTD(DBG_ERR, "out of memory");
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_release;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_drvdata(pci_dev, dev);
 | |
| 
 | |
| 	// grab IRQ and install handler - move this someplace more sensible
 | |
| 	irq = pci_dev->irq;
 | |
| 	if (request_irq(irq,
 | |
| 			interrupt_handler,
 | |
| 			IRQF_SHARED, /* irqflags guess */
 | |
| 			DEV_LABEL, /* name guess */
 | |
| 			dev)) {
 | |
| 		PRINTD(DBG_WARN, "request IRQ failed!");
 | |
| 		err = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
 | |
| 	       iobase, irq, membase);
 | |
| 
 | |
| 	dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL);
 | |
| 	if (!(dev->atm_dev)) {
 | |
| 		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
 | |
| 		err = -EINVAL;
 | |
| 		goto out_free_irq;
 | |
| 	}
 | |
| 
 | |
| 	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
 | |
| 	       dev->atm_dev->number, dev, dev->atm_dev);
 | |
| 	dev->atm_dev->dev_data = (void *) dev;
 | |
| 	dev->pci_dev = pci_dev; 
 | |
| 
 | |
| 	// enable bus master accesses
 | |
| 	pci_set_master(pci_dev);
 | |
| 
 | |
| 	// frobnicate latency (upwards, usually)
 | |
| 	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
 | |
| 	if (pci_lat) {
 | |
| 		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
 | |
| 		       "changing", lat, pci_lat);
 | |
| 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
 | |
| 	} else if (lat < MIN_PCI_LATENCY) {
 | |
| 		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
 | |
| 		       "increasing", lat, MIN_PCI_LATENCY);
 | |
| 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
 | |
| 	}
 | |
| 
 | |
| 	dev->iobase = iobase;
 | |
| 	dev->irq = irq; 
 | |
| 	dev->membase = membase; 
 | |
| 
 | |
| 	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
 | |
| 	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
 | |
| 
 | |
| 	// these next three are performance hacks
 | |
| 	dev->last_vc = -1;
 | |
| 	dev->tx_last = -1;
 | |
| 	dev->tx_idle = 0;
 | |
| 
 | |
| 	dev->tx_regions = 0;
 | |
| 	dev->tx_bytes = 0;
 | |
| 	dev->tx_skb = NULL;
 | |
| 	dev->tx_iovec = NULL;
 | |
| 
 | |
| 	dev->tx_cell_count = 0;
 | |
| 	dev->rx_cell_count = 0;
 | |
| 	dev->hec_error_count = 0;
 | |
| 	dev->unassigned_cell_count = 0;
 | |
| 
 | |
| 	dev->noof_spare_buffers = 0;
 | |
| 
 | |
| 	{
 | |
| 		unsigned int i;
 | |
| 		for (i = 0; i < TX_CHANS; ++i)
 | |
| 			dev->tx_channel_record[i] = -1;
 | |
| 	}
 | |
| 
 | |
| 	dev->flags = 0;
 | |
| 
 | |
| 	// Allocate cell rates and remember ASIC version
 | |
| 	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
 | |
| 	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
 | |
| 	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
 | |
| 
 | |
| 	if (hrz_init(dev)) {
 | |
| 		// to be really pedantic, this should be ATM_OC3c_PCR
 | |
| 		dev->tx_avail = ATM_OC3_PCR;
 | |
| 		dev->rx_avail = ATM_OC3_PCR;
 | |
| 		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
 | |
| 	} else {
 | |
| 		dev->tx_avail = ((25600000/8)*26)/(27*53);
 | |
| 		dev->rx_avail = ((25600000/8)*26)/(27*53);
 | |
| 		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
 | |
| 	}
 | |
| 
 | |
| 	// rate changes spinlock
 | |
| 	spin_lock_init(&dev->rate_lock);
 | |
| 
 | |
| 	// on-board memory access spinlock; we want atomic reads and
 | |
| 	// writes to adapter memory (handles IRQ and SMP)
 | |
| 	spin_lock_init(&dev->mem_lock);
 | |
| 
 | |
| 	init_waitqueue_head(&dev->tx_queue);
 | |
| 
 | |
| 	// vpi in 0..4, vci in 6..10
 | |
| 	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
 | |
| 	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
 | |
| 
 | |
| 	init_timer(&dev->housekeeping);
 | |
| 	dev->housekeeping.function = do_housekeeping;
 | |
| 	dev->housekeeping.data = (unsigned long) dev;
 | |
| 	mod_timer(&dev->housekeeping, jiffies);
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| 
 | |
| out_free_irq:
 | |
| 	free_irq(dev->irq, dev);
 | |
| out_free:
 | |
| 	kfree(dev);
 | |
| out_release:
 | |
| 	release_region(iobase, HRZ_IO_EXTENT);
 | |
| out_disable:
 | |
| 	pci_disable_device(pci_dev);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
 | |
| {
 | |
| 	hrz_dev *dev;
 | |
| 
 | |
| 	dev = pci_get_drvdata(pci_dev);
 | |
| 
 | |
| 	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
 | |
| 	del_timer_sync(&dev->housekeeping);
 | |
| 	hrz_reset(dev);
 | |
| 	atm_dev_deregister(dev->atm_dev);
 | |
| 	free_irq(dev->irq, dev);
 | |
| 	release_region(dev->iobase, HRZ_IO_EXTENT);
 | |
| 	kfree(dev);
 | |
| 
 | |
| 	pci_disable_device(pci_dev);
 | |
| }
 | |
| 
 | |
| static void __init hrz_check_args (void) {
 | |
| #ifdef DEBUG_HORIZON
 | |
|   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
 | |
| #else
 | |
|   if (debug)
 | |
|     PRINTK (KERN_NOTICE, "no debug support in this image");
 | |
| #endif
 | |
|   
 | |
|   if (vpi_bits > HRZ_MAX_VPI)
 | |
|     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
 | |
| 	    vpi_bits = HRZ_MAX_VPI);
 | |
|   
 | |
|   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
 | |
|     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
 | |
| 	    max_tx_size = TX_AAL5_LIMIT);
 | |
|   
 | |
|   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
 | |
|     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
 | |
| 	    max_rx_size = RX_AAL5_LIMIT);
 | |
|   
 | |
|   return;
 | |
| }
 | |
| 
 | |
| MODULE_AUTHOR(maintainer_string);
 | |
| MODULE_DESCRIPTION(description_string);
 | |
| MODULE_LICENSE("GPL");
 | |
| module_param(debug, ushort, 0644);
 | |
| module_param(vpi_bits, ushort, 0);
 | |
| module_param(max_tx_size, int, 0);
 | |
| module_param(max_rx_size, int, 0);
 | |
| module_param(pci_lat, byte, 0);
 | |
| MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
 | |
| MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
 | |
| MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
 | |
| MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
 | |
| MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
 | |
| 
 | |
| static struct pci_device_id hrz_pci_tbl[] = {
 | |
| 	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
 | |
| 	  0, 0, 0 },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
 | |
| 
 | |
| static struct pci_driver hrz_driver = {
 | |
| 	.name =		"horizon",
 | |
| 	.probe =	hrz_probe,
 | |
| 	.remove =	__devexit_p(hrz_remove_one),
 | |
| 	.id_table =	hrz_pci_tbl,
 | |
| };
 | |
| 
 | |
| /********** module entry **********/
 | |
| 
 | |
| static int __init hrz_module_init (void) {
 | |
|   // sanity check - cast is needed since printk does not support %Zu
 | |
|   if (sizeof(struct MEMMAP) != 128*1024/4) {
 | |
|     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
 | |
| 	    (unsigned long) sizeof(struct MEMMAP));
 | |
|     return -ENOMEM;
 | |
|   }
 | |
|   
 | |
|   show_version();
 | |
|   
 | |
|   // check arguments
 | |
|   hrz_check_args();
 | |
|   
 | |
|   // get the juice
 | |
|   return pci_register_driver(&hrz_driver);
 | |
| }
 | |
| 
 | |
| /********** module exit **********/
 | |
| 
 | |
| static void __exit hrz_module_exit (void) {
 | |
|   PRINTD (DBG_FLOW, "cleanup_module");
 | |
| 
 | |
|   pci_unregister_driver(&hrz_driver);
 | |
| }
 | |
| 
 | |
| module_init(hrz_module_init);
 | |
| module_exit(hrz_module_exit);
 |