 dad52fc011
			
		
	
	
	dad52fc011
	
	
	
		
			
			Now that both Xen and VMI disable allocations of PTE pages from high
memory this paravirt op serves no further purpose.
This effectively reverts ce6234b5 "add kmap_atomic_pte for mapping
highpte pages".
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
LKML-Reference: <1267204562-11844-3-git-send-email-ian.campbell@citrix.com>
Acked-by: Alok Kataria <akataria@vmware.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
		
	
			
		
			
				
	
	
		
			2004 lines
		
	
	
	
		
			49 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2004 lines
		
	
	
	
		
			49 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Xen mmu operations
 | |
|  *
 | |
|  * This file contains the various mmu fetch and update operations.
 | |
|  * The most important job they must perform is the mapping between the
 | |
|  * domain's pfn and the overall machine mfns.
 | |
|  *
 | |
|  * Xen allows guests to directly update the pagetable, in a controlled
 | |
|  * fashion.  In other words, the guest modifies the same pagetable
 | |
|  * that the CPU actually uses, which eliminates the overhead of having
 | |
|  * a separate shadow pagetable.
 | |
|  *
 | |
|  * In order to allow this, it falls on the guest domain to map its
 | |
|  * notion of a "physical" pfn - which is just a domain-local linear
 | |
|  * address - into a real "machine address" which the CPU's MMU can
 | |
|  * use.
 | |
|  *
 | |
|  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 | |
|  * inserted directly into the pagetable.  When creating a new
 | |
|  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 | |
|  * when reading the content back with __(pgd|pmd|pte)_val, it converts
 | |
|  * the mfn back into a pfn.
 | |
|  *
 | |
|  * The other constraint is that all pages which make up a pagetable
 | |
|  * must be mapped read-only in the guest.  This prevents uncontrolled
 | |
|  * guest updates to the pagetable.  Xen strictly enforces this, and
 | |
|  * will disallow any pagetable update which will end up mapping a
 | |
|  * pagetable page RW, and will disallow using any writable page as a
 | |
|  * pagetable.
 | |
|  *
 | |
|  * Naively, when loading %cr3 with the base of a new pagetable, Xen
 | |
|  * would need to validate the whole pagetable before going on.
 | |
|  * Naturally, this is quite slow.  The solution is to "pin" a
 | |
|  * pagetable, which enforces all the constraints on the pagetable even
 | |
|  * when it is not actively in use.  This menas that Xen can be assured
 | |
|  * that it is still valid when you do load it into %cr3, and doesn't
 | |
|  * need to revalidate it.
 | |
|  *
 | |
|  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 | |
|  */
 | |
| #include <linux/sched.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/paravirt.h>
 | |
| #include <asm/linkage.h>
 | |
| 
 | |
| #include <asm/xen/hypercall.h>
 | |
| #include <asm/xen/hypervisor.h>
 | |
| 
 | |
| #include <xen/page.h>
 | |
| #include <xen/interface/xen.h>
 | |
| #include <xen/interface/version.h>
 | |
| #include <xen/hvc-console.h>
 | |
| 
 | |
| #include "multicalls.h"
 | |
| #include "mmu.h"
 | |
| #include "debugfs.h"
 | |
| 
 | |
| #define MMU_UPDATE_HISTO	30
 | |
| 
 | |
| #ifdef CONFIG_XEN_DEBUG_FS
 | |
| 
 | |
| static struct {
 | |
| 	u32 pgd_update;
 | |
| 	u32 pgd_update_pinned;
 | |
| 	u32 pgd_update_batched;
 | |
| 
 | |
| 	u32 pud_update;
 | |
| 	u32 pud_update_pinned;
 | |
| 	u32 pud_update_batched;
 | |
| 
 | |
| 	u32 pmd_update;
 | |
| 	u32 pmd_update_pinned;
 | |
| 	u32 pmd_update_batched;
 | |
| 
 | |
| 	u32 pte_update;
 | |
| 	u32 pte_update_pinned;
 | |
| 	u32 pte_update_batched;
 | |
| 
 | |
| 	u32 mmu_update;
 | |
| 	u32 mmu_update_extended;
 | |
| 	u32 mmu_update_histo[MMU_UPDATE_HISTO];
 | |
| 
 | |
| 	u32 prot_commit;
 | |
| 	u32 prot_commit_batched;
 | |
| 
 | |
| 	u32 set_pte_at;
 | |
| 	u32 set_pte_at_batched;
 | |
| 	u32 set_pte_at_pinned;
 | |
| 	u32 set_pte_at_current;
 | |
| 	u32 set_pte_at_kernel;
 | |
| } mmu_stats;
 | |
| 
 | |
| static u8 zero_stats;
 | |
| 
 | |
| static inline void check_zero(void)
 | |
| {
 | |
| 	if (unlikely(zero_stats)) {
 | |
| 		memset(&mmu_stats, 0, sizeof(mmu_stats));
 | |
| 		zero_stats = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define ADD_STATS(elem, val)			\
 | |
| 	do { check_zero(); mmu_stats.elem += (val); } while(0)
 | |
| 
 | |
| #else  /* !CONFIG_XEN_DEBUG_FS */
 | |
| 
 | |
| #define ADD_STATS(elem, val)	do { (void)(val); } while(0)
 | |
| 
 | |
| #endif /* CONFIG_XEN_DEBUG_FS */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Identity map, in addition to plain kernel map.  This needs to be
 | |
|  * large enough to allocate page table pages to allocate the rest.
 | |
|  * Each page can map 2MB.
 | |
|  */
 | |
| static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| /* l3 pud for userspace vsyscall mapping */
 | |
| static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 | |
| #endif /* CONFIG_X86_64 */
 | |
| 
 | |
| /*
 | |
|  * Note about cr3 (pagetable base) values:
 | |
|  *
 | |
|  * xen_cr3 contains the current logical cr3 value; it contains the
 | |
|  * last set cr3.  This may not be the current effective cr3, because
 | |
|  * its update may be being lazily deferred.  However, a vcpu looking
 | |
|  * at its own cr3 can use this value knowing that it everything will
 | |
|  * be self-consistent.
 | |
|  *
 | |
|  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 | |
|  * hypercall to set the vcpu cr3 is complete (so it may be a little
 | |
|  * out of date, but it will never be set early).  If one vcpu is
 | |
|  * looking at another vcpu's cr3 value, it should use this variable.
 | |
|  */
 | |
| DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
 | |
| DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 | |
|  * redzone above it, so round it up to a PGD boundary.
 | |
|  */
 | |
| #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 | |
| 
 | |
| 
 | |
| #define P2M_ENTRIES_PER_PAGE	(PAGE_SIZE / sizeof(unsigned long))
 | |
| #define TOP_ENTRIES		(MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
 | |
| 
 | |
| /* Placeholder for holes in the address space */
 | |
| static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
 | |
| 		{ [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
 | |
| 
 | |
|  /* Array of pointers to pages containing p2m entries */
 | |
| static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
 | |
| 		{ [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
 | |
| 
 | |
| /* Arrays of p2m arrays expressed in mfns used for save/restore */
 | |
| static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
 | |
| 
 | |
| static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
 | |
| 	__page_aligned_bss;
 | |
| 
 | |
| static inline unsigned p2m_top_index(unsigned long pfn)
 | |
| {
 | |
| 	BUG_ON(pfn >= MAX_DOMAIN_PAGES);
 | |
| 	return pfn / P2M_ENTRIES_PER_PAGE;
 | |
| }
 | |
| 
 | |
| static inline unsigned p2m_index(unsigned long pfn)
 | |
| {
 | |
| 	return pfn % P2M_ENTRIES_PER_PAGE;
 | |
| }
 | |
| 
 | |
| /* Build the parallel p2m_top_mfn structures */
 | |
| void xen_build_mfn_list_list(void)
 | |
| {
 | |
| 	unsigned pfn, idx;
 | |
| 
 | |
| 	for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
 | |
| 		unsigned topidx = p2m_top_index(pfn);
 | |
| 
 | |
| 		p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
 | |
| 	}
 | |
| 
 | |
| 	for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
 | |
| 		unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
 | |
| 		p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void xen_setup_mfn_list_list(void)
 | |
| {
 | |
| 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 | |
| 
 | |
| 	HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
 | |
| 		virt_to_mfn(p2m_top_mfn_list);
 | |
| 	HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
 | |
| }
 | |
| 
 | |
| /* Set up p2m_top to point to the domain-builder provided p2m pages */
 | |
| void __init xen_build_dynamic_phys_to_machine(void)
 | |
| {
 | |
| 	unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
 | |
| 	unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
 | |
| 	unsigned pfn;
 | |
| 
 | |
| 	for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
 | |
| 		unsigned topidx = p2m_top_index(pfn);
 | |
| 
 | |
| 		p2m_top[topidx] = &mfn_list[pfn];
 | |
| 	}
 | |
| 
 | |
| 	xen_build_mfn_list_list();
 | |
| }
 | |
| 
 | |
| unsigned long get_phys_to_machine(unsigned long pfn)
 | |
| {
 | |
| 	unsigned topidx, idx;
 | |
| 
 | |
| 	if (unlikely(pfn >= MAX_DOMAIN_PAGES))
 | |
| 		return INVALID_P2M_ENTRY;
 | |
| 
 | |
| 	topidx = p2m_top_index(pfn);
 | |
| 	idx = p2m_index(pfn);
 | |
| 	return p2m_top[topidx][idx];
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_phys_to_machine);
 | |
| 
 | |
| /* install a  new p2m_top page */
 | |
| bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
 | |
| {
 | |
| 	unsigned topidx = p2m_top_index(pfn);
 | |
| 	unsigned long **pfnp, *mfnp;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	pfnp = &p2m_top[topidx];
 | |
| 	mfnp = &p2m_top_mfn[topidx];
 | |
| 
 | |
| 	for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
 | |
| 		p[i] = INVALID_P2M_ENTRY;
 | |
| 
 | |
| 	if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
 | |
| 		*mfnp = virt_to_mfn(p);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void alloc_p2m(unsigned long pfn)
 | |
| {
 | |
| 	unsigned long *p;
 | |
| 
 | |
| 	p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
 | |
| 	BUG_ON(p == NULL);
 | |
| 
 | |
| 	if (!install_p2mtop_page(pfn, p))
 | |
| 		free_page((unsigned long)p);
 | |
| }
 | |
| 
 | |
| /* Try to install p2m mapping; fail if intermediate bits missing */
 | |
| bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
 | |
| {
 | |
| 	unsigned topidx, idx;
 | |
| 
 | |
| 	if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
 | |
| 		BUG_ON(mfn != INVALID_P2M_ENTRY);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	topidx = p2m_top_index(pfn);
 | |
| 	if (p2m_top[topidx] == p2m_missing) {
 | |
| 		if (mfn == INVALID_P2M_ENTRY)
 | |
| 			return true;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	idx = p2m_index(pfn);
 | |
| 	p2m_top[topidx][idx] = mfn;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
 | |
| {
 | |
| 	if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
 | |
| 		BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!__set_phys_to_machine(pfn, mfn)))  {
 | |
| 		alloc_p2m(pfn);
 | |
| 
 | |
| 		if (!__set_phys_to_machine(pfn, mfn))
 | |
| 			BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| unsigned long arbitrary_virt_to_mfn(void *vaddr)
 | |
| {
 | |
| 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 | |
| 
 | |
| 	return PFN_DOWN(maddr.maddr);
 | |
| }
 | |
| 
 | |
| xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 | |
| {
 | |
| 	unsigned long address = (unsigned long)vaddr;
 | |
| 	unsigned int level;
 | |
| 	pte_t *pte;
 | |
| 	unsigned offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * if the PFN is in the linear mapped vaddr range, we can just use
 | |
| 	 * the (quick) virt_to_machine() p2m lookup
 | |
| 	 */
 | |
| 	if (virt_addr_valid(vaddr))
 | |
| 		return virt_to_machine(vaddr);
 | |
| 
 | |
| 	/* otherwise we have to do a (slower) full page-table walk */
 | |
| 
 | |
| 	pte = lookup_address(address, &level);
 | |
| 	BUG_ON(pte == NULL);
 | |
| 	offset = address & ~PAGE_MASK;
 | |
| 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 | |
| }
 | |
| 
 | |
| void make_lowmem_page_readonly(void *vaddr)
 | |
| {
 | |
| 	pte_t *pte, ptev;
 | |
| 	unsigned long address = (unsigned long)vaddr;
 | |
| 	unsigned int level;
 | |
| 
 | |
| 	pte = lookup_address(address, &level);
 | |
| 	BUG_ON(pte == NULL);
 | |
| 
 | |
| 	ptev = pte_wrprotect(*pte);
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| void make_lowmem_page_readwrite(void *vaddr)
 | |
| {
 | |
| 	pte_t *pte, ptev;
 | |
| 	unsigned long address = (unsigned long)vaddr;
 | |
| 	unsigned int level;
 | |
| 
 | |
| 	pte = lookup_address(address, &level);
 | |
| 	BUG_ON(pte == NULL);
 | |
| 
 | |
| 	ptev = pte_mkwrite(*pte);
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool xen_page_pinned(void *ptr)
 | |
| {
 | |
| 	struct page *page = virt_to_page(ptr);
 | |
| 
 | |
| 	return PagePinned(page);
 | |
| }
 | |
| 
 | |
| static void xen_extend_mmu_update(const struct mmu_update *update)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 	struct mmu_update *u;
 | |
| 
 | |
| 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 | |
| 
 | |
| 	if (mcs.mc != NULL) {
 | |
| 		ADD_STATS(mmu_update_extended, 1);
 | |
| 		ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
 | |
| 
 | |
| 		mcs.mc->args[1]++;
 | |
| 
 | |
| 		if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
 | |
| 			ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
 | |
| 		else
 | |
| 			ADD_STATS(mmu_update_histo[0], 1);
 | |
| 	} else {
 | |
| 		ADD_STATS(mmu_update, 1);
 | |
| 		mcs = __xen_mc_entry(sizeof(*u));
 | |
| 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 | |
| 		ADD_STATS(mmu_update_histo[1], 1);
 | |
| 	}
 | |
| 
 | |
| 	u = mcs.args;
 | |
| 	*u = *update;
 | |
| }
 | |
| 
 | |
| void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	/* ptr may be ioremapped for 64-bit pagetable setup */
 | |
| 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 | |
| 	u.val = pmd_val_ma(val);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| 
 | |
| 	ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| void xen_set_pmd(pmd_t *ptr, pmd_t val)
 | |
| {
 | |
| 	ADD_STATS(pmd_update, 1);
 | |
| 
 | |
| 	/* If page is not pinned, we can just update the entry
 | |
| 	   directly */
 | |
| 	if (!xen_page_pinned(ptr)) {
 | |
| 		*ptr = val;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ADD_STATS(pmd_update_pinned, 1);
 | |
| 
 | |
| 	xen_set_pmd_hyper(ptr, val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Associate a virtual page frame with a given physical page frame
 | |
|  * and protection flags for that frame.
 | |
|  */
 | |
| void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 | |
| {
 | |
| 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 | |
| }
 | |
| 
 | |
| void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 | |
| 		    pte_t *ptep, pte_t pteval)
 | |
| {
 | |
| 	ADD_STATS(set_pte_at, 1);
 | |
| //	ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
 | |
| 	ADD_STATS(set_pte_at_current, mm == current->mm);
 | |
| 	ADD_STATS(set_pte_at_kernel, mm == &init_mm);
 | |
| 
 | |
| 	if (mm == current->mm || mm == &init_mm) {
 | |
| 		if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
 | |
| 			struct multicall_space mcs;
 | |
| 			mcs = xen_mc_entry(0);
 | |
| 
 | |
| 			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
 | |
| 			ADD_STATS(set_pte_at_batched, 1);
 | |
| 			xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 			goto out;
 | |
| 		} else
 | |
| 			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
 | |
| 				goto out;
 | |
| 	}
 | |
| 	xen_set_pte(ptep, pteval);
 | |
| 
 | |
| out:	return;
 | |
| }
 | |
| 
 | |
| pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 | |
| 				 unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	/* Just return the pte as-is.  We preserve the bits on commit */
 | |
| 	return *ptep;
 | |
| }
 | |
| 
 | |
| void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 | |
| 				 pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 | |
| 	u.val = pte_val_ma(pte);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| 
 | |
| 	ADD_STATS(prot_commit, 1);
 | |
| 	ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| }
 | |
| 
 | |
| /* Assume pteval_t is equivalent to all the other *val_t types. */
 | |
| static pteval_t pte_mfn_to_pfn(pteval_t val)
 | |
| {
 | |
| 	if (val & _PAGE_PRESENT) {
 | |
| 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 | |
| 		pteval_t flags = val & PTE_FLAGS_MASK;
 | |
| 		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static pteval_t pte_pfn_to_mfn(pteval_t val)
 | |
| {
 | |
| 	if (val & _PAGE_PRESENT) {
 | |
| 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 | |
| 		pteval_t flags = val & PTE_FLAGS_MASK;
 | |
| 		val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| pteval_t xen_pte_val(pte_t pte)
 | |
| {
 | |
| 	return pte_mfn_to_pfn(pte.pte);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 | |
| 
 | |
| pgdval_t xen_pgd_val(pgd_t pgd)
 | |
| {
 | |
| 	return pte_mfn_to_pfn(pgd.pgd);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 | |
| 
 | |
| pte_t xen_make_pte(pteval_t pte)
 | |
| {
 | |
| 	pte = pte_pfn_to_mfn(pte);
 | |
| 	return native_make_pte(pte);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 | |
| 
 | |
| pgd_t xen_make_pgd(pgdval_t pgd)
 | |
| {
 | |
| 	pgd = pte_pfn_to_mfn(pgd);
 | |
| 	return native_make_pgd(pgd);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 | |
| 
 | |
| pmdval_t xen_pmd_val(pmd_t pmd)
 | |
| {
 | |
| 	return pte_mfn_to_pfn(pmd.pmd);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 | |
| 
 | |
| void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	/* ptr may be ioremapped for 64-bit pagetable setup */
 | |
| 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 | |
| 	u.val = pud_val_ma(val);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| 
 | |
| 	ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| void xen_set_pud(pud_t *ptr, pud_t val)
 | |
| {
 | |
| 	ADD_STATS(pud_update, 1);
 | |
| 
 | |
| 	/* If page is not pinned, we can just update the entry
 | |
| 	   directly */
 | |
| 	if (!xen_page_pinned(ptr)) {
 | |
| 		*ptr = val;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ADD_STATS(pud_update_pinned, 1);
 | |
| 
 | |
| 	xen_set_pud_hyper(ptr, val);
 | |
| }
 | |
| 
 | |
| void xen_set_pte(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	ADD_STATS(pte_update, 1);
 | |
| //	ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
 | |
| 	ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	ptep->pte_high = pte.pte_high;
 | |
| 	smp_wmb();
 | |
| 	ptep->pte_low = pte.pte_low;
 | |
| #else
 | |
| 	*ptep = pte;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	set_64bit((u64 *)ptep, native_pte_val(pte));
 | |
| }
 | |
| 
 | |
| void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| 	ptep->pte_low = 0;
 | |
| 	smp_wmb();		/* make sure low gets written first */
 | |
| 	ptep->pte_high = 0;
 | |
| }
 | |
| 
 | |
| void xen_pmd_clear(pmd_t *pmdp)
 | |
| {
 | |
| 	set_pmd(pmdp, __pmd(0));
 | |
| }
 | |
| #endif	/* CONFIG_X86_PAE */
 | |
| 
 | |
| pmd_t xen_make_pmd(pmdval_t pmd)
 | |
| {
 | |
| 	pmd = pte_pfn_to_mfn(pmd);
 | |
| 	return native_make_pmd(pmd);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 | |
| 
 | |
| #if PAGETABLE_LEVELS == 4
 | |
| pudval_t xen_pud_val(pud_t pud)
 | |
| {
 | |
| 	return pte_mfn_to_pfn(pud.pud);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 | |
| 
 | |
| pud_t xen_make_pud(pudval_t pud)
 | |
| {
 | |
| 	pud = pte_pfn_to_mfn(pud);
 | |
| 
 | |
| 	return native_make_pud(pud);
 | |
| }
 | |
| PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 | |
| 
 | |
| pgd_t *xen_get_user_pgd(pgd_t *pgd)
 | |
| {
 | |
| 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 | |
| 	unsigned offset = pgd - pgd_page;
 | |
| 	pgd_t *user_ptr = NULL;
 | |
| 
 | |
| 	if (offset < pgd_index(USER_LIMIT)) {
 | |
| 		struct page *page = virt_to_page(pgd_page);
 | |
| 		user_ptr = (pgd_t *)page->private;
 | |
| 		if (user_ptr)
 | |
| 			user_ptr += offset;
 | |
| 	}
 | |
| 
 | |
| 	return user_ptr;
 | |
| }
 | |
| 
 | |
| static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 | |
| {
 | |
| 	struct mmu_update u;
 | |
| 
 | |
| 	u.ptr = virt_to_machine(ptr).maddr;
 | |
| 	u.val = pgd_val_ma(val);
 | |
| 	xen_extend_mmu_update(&u);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Raw hypercall-based set_pgd, intended for in early boot before
 | |
|  * there's a page structure.  This implies:
 | |
|  *  1. The only existing pagetable is the kernel's
 | |
|  *  2. It is always pinned
 | |
|  *  3. It has no user pagetable attached to it
 | |
|  */
 | |
| void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	__xen_set_pgd_hyper(ptr, val);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| void xen_set_pgd(pgd_t *ptr, pgd_t val)
 | |
| {
 | |
| 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
 | |
| 
 | |
| 	ADD_STATS(pgd_update, 1);
 | |
| 
 | |
| 	/* If page is not pinned, we can just update the entry
 | |
| 	   directly */
 | |
| 	if (!xen_page_pinned(ptr)) {
 | |
| 		*ptr = val;
 | |
| 		if (user_ptr) {
 | |
| 			WARN_ON(xen_page_pinned(user_ptr));
 | |
| 			*user_ptr = val;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ADD_STATS(pgd_update_pinned, 1);
 | |
| 	ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	/* If it's pinned, then we can at least batch the kernel and
 | |
| 	   user updates together. */
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	__xen_set_pgd_hyper(ptr, val);
 | |
| 	if (user_ptr)
 | |
| 		__xen_set_pgd_hyper(user_ptr, val);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| }
 | |
| #endif	/* PAGETABLE_LEVELS == 4 */
 | |
| 
 | |
| /*
 | |
|  * (Yet another) pagetable walker.  This one is intended for pinning a
 | |
|  * pagetable.  This means that it walks a pagetable and calls the
 | |
|  * callback function on each page it finds making up the page table,
 | |
|  * at every level.  It walks the entire pagetable, but it only bothers
 | |
|  * pinning pte pages which are below limit.  In the normal case this
 | |
|  * will be STACK_TOP_MAX, but at boot we need to pin up to
 | |
|  * FIXADDR_TOP.
 | |
|  *
 | |
|  * For 32-bit the important bit is that we don't pin beyond there,
 | |
|  * because then we start getting into Xen's ptes.
 | |
|  *
 | |
|  * For 64-bit, we must skip the Xen hole in the middle of the address
 | |
|  * space, just after the big x86-64 virtual hole.
 | |
|  */
 | |
| static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 | |
| 			  int (*func)(struct mm_struct *mm, struct page *,
 | |
| 				      enum pt_level),
 | |
| 			  unsigned long limit)
 | |
| {
 | |
| 	int flush = 0;
 | |
| 	unsigned hole_low, hole_high;
 | |
| 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 | |
| 	unsigned pgdidx, pudidx, pmdidx;
 | |
| 
 | |
| 	/* The limit is the last byte to be touched */
 | |
| 	limit--;
 | |
| 	BUG_ON(limit >= FIXADDR_TOP);
 | |
| 
 | |
| 	if (xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * 64-bit has a great big hole in the middle of the address
 | |
| 	 * space, which contains the Xen mappings.  On 32-bit these
 | |
| 	 * will end up making a zero-sized hole and so is a no-op.
 | |
| 	 */
 | |
| 	hole_low = pgd_index(USER_LIMIT);
 | |
| 	hole_high = pgd_index(PAGE_OFFSET);
 | |
| 
 | |
| 	pgdidx_limit = pgd_index(limit);
 | |
| #if PTRS_PER_PUD > 1
 | |
| 	pudidx_limit = pud_index(limit);
 | |
| #else
 | |
| 	pudidx_limit = 0;
 | |
| #endif
 | |
| #if PTRS_PER_PMD > 1
 | |
| 	pmdidx_limit = pmd_index(limit);
 | |
| #else
 | |
| 	pmdidx_limit = 0;
 | |
| #endif
 | |
| 
 | |
| 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 | |
| 		pud_t *pud;
 | |
| 
 | |
| 		if (pgdidx >= hole_low && pgdidx < hole_high)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!pgd_val(pgd[pgdidx]))
 | |
| 			continue;
 | |
| 
 | |
| 		pud = pud_offset(&pgd[pgdidx], 0);
 | |
| 
 | |
| 		if (PTRS_PER_PUD > 1) /* not folded */
 | |
| 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 | |
| 
 | |
| 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 | |
| 			pmd_t *pmd;
 | |
| 
 | |
| 			if (pgdidx == pgdidx_limit &&
 | |
| 			    pudidx > pudidx_limit)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (pud_none(pud[pudidx]))
 | |
| 				continue;
 | |
| 
 | |
| 			pmd = pmd_offset(&pud[pudidx], 0);
 | |
| 
 | |
| 			if (PTRS_PER_PMD > 1) /* not folded */
 | |
| 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 | |
| 
 | |
| 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 | |
| 				struct page *pte;
 | |
| 
 | |
| 				if (pgdidx == pgdidx_limit &&
 | |
| 				    pudidx == pudidx_limit &&
 | |
| 				    pmdidx > pmdidx_limit)
 | |
| 					goto out;
 | |
| 
 | |
| 				if (pmd_none(pmd[pmdidx]))
 | |
| 					continue;
 | |
| 
 | |
| 				pte = pmd_page(pmd[pmdidx]);
 | |
| 				flush |= (*func)(mm, pte, PT_PTE);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* Do the top level last, so that the callbacks can use it as
 | |
| 	   a cue to do final things like tlb flushes. */
 | |
| 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static int xen_pgd_walk(struct mm_struct *mm,
 | |
| 			int (*func)(struct mm_struct *mm, struct page *,
 | |
| 				    enum pt_level),
 | |
| 			unsigned long limit)
 | |
| {
 | |
| 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
 | |
| }
 | |
| 
 | |
| /* If we're using split pte locks, then take the page's lock and
 | |
|    return a pointer to it.  Otherwise return NULL. */
 | |
| static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 | |
| {
 | |
| 	spinlock_t *ptl = NULL;
 | |
| 
 | |
| #if USE_SPLIT_PTLOCKS
 | |
| 	ptl = __pte_lockptr(page);
 | |
| 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
 | |
| #endif
 | |
| 
 | |
| 	return ptl;
 | |
| }
 | |
| 
 | |
| static void xen_pte_unlock(void *v)
 | |
| {
 | |
| 	spinlock_t *ptl = v;
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| 
 | |
| static void xen_do_pin(unsigned level, unsigned long pfn)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	mcs = __xen_mc_entry(sizeof(*op));
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = level;
 | |
| 	op->arg1.mfn = pfn_to_mfn(pfn);
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| }
 | |
| 
 | |
| static int xen_pin_page(struct mm_struct *mm, struct page *page,
 | |
| 			enum pt_level level)
 | |
| {
 | |
| 	unsigned pgfl = TestSetPagePinned(page);
 | |
| 	int flush;
 | |
| 
 | |
| 	if (pgfl)
 | |
| 		flush = 0;		/* already pinned */
 | |
| 	else if (PageHighMem(page))
 | |
| 		/* kmaps need flushing if we found an unpinned
 | |
| 		   highpage */
 | |
| 		flush = 1;
 | |
| 	else {
 | |
| 		void *pt = lowmem_page_address(page);
 | |
| 		unsigned long pfn = page_to_pfn(page);
 | |
| 		struct multicall_space mcs = __xen_mc_entry(0);
 | |
| 		spinlock_t *ptl;
 | |
| 
 | |
| 		flush = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to hold the pagetable lock between the time
 | |
| 		 * we make the pagetable RO and when we actually pin
 | |
| 		 * it.  If we don't, then other users may come in and
 | |
| 		 * attempt to update the pagetable by writing it,
 | |
| 		 * which will fail because the memory is RO but not
 | |
| 		 * pinned, so Xen won't do the trap'n'emulate.
 | |
| 		 *
 | |
| 		 * If we're using split pte locks, we can't hold the
 | |
| 		 * entire pagetable's worth of locks during the
 | |
| 		 * traverse, because we may wrap the preempt count (8
 | |
| 		 * bits).  The solution is to mark RO and pin each PTE
 | |
| 		 * page while holding the lock.  This means the number
 | |
| 		 * of locks we end up holding is never more than a
 | |
| 		 * batch size (~32 entries, at present).
 | |
| 		 *
 | |
| 		 * If we're not using split pte locks, we needn't pin
 | |
| 		 * the PTE pages independently, because we're
 | |
| 		 * protected by the overall pagetable lock.
 | |
| 		 */
 | |
| 		ptl = NULL;
 | |
| 		if (level == PT_PTE)
 | |
| 			ptl = xen_pte_lock(page, mm);
 | |
| 
 | |
| 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 | |
| 					pfn_pte(pfn, PAGE_KERNEL_RO),
 | |
| 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 | |
| 
 | |
| 		if (ptl) {
 | |
| 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 | |
| 
 | |
| 			/* Queue a deferred unlock for when this batch
 | |
| 			   is completed. */
 | |
| 			xen_mc_callback(xen_pte_unlock, ptl);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /* This is called just after a mm has been created, but it has not
 | |
|    been used yet.  We need to make sure that its pagetable is all
 | |
|    read-only, and can be pinned. */
 | |
| static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 | |
| {
 | |
| 	vm_unmap_aliases();
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 | |
| 		/* re-enable interrupts for flushing */
 | |
| 		xen_mc_issue(0);
 | |
| 
 | |
| 		kmap_flush_unused();
 | |
| 
 | |
| 		xen_mc_batch();
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{
 | |
| 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
 | |
| 
 | |
| 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| 
 | |
| 		if (user_pgd) {
 | |
| 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 | |
| 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
 | |
| 				   PFN_DOWN(__pa(user_pgd)));
 | |
| 		}
 | |
| 	}
 | |
| #else /* CONFIG_X86_32 */
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	/* Need to make sure unshared kernel PMD is pinnable */
 | |
| 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 | |
| 		     PT_PMD);
 | |
| #endif
 | |
| 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| #endif /* CONFIG_X86_64 */
 | |
| 	xen_mc_issue(0);
 | |
| }
 | |
| 
 | |
| static void xen_pgd_pin(struct mm_struct *mm)
 | |
| {
 | |
| 	__xen_pgd_pin(mm, mm->pgd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On save, we need to pin all pagetables to make sure they get their
 | |
|  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 | |
|  * them (unpinned pgds are not currently in use, probably because the
 | |
|  * process is under construction or destruction).
 | |
|  *
 | |
|  * Expected to be called in stop_machine() ("equivalent to taking
 | |
|  * every spinlock in the system"), so the locking doesn't really
 | |
|  * matter all that much.
 | |
|  */
 | |
| void xen_mm_pin_all(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry(page, &pgd_list, lru) {
 | |
| 		if (!PagePinned(page)) {
 | |
| 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 | |
| 			SetPageSavePinned(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The init_mm pagetable is really pinned as soon as its created, but
 | |
|  * that's before we have page structures to store the bits.  So do all
 | |
|  * the book-keeping now.
 | |
|  */
 | |
| static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
 | |
| 				  enum pt_level level)
 | |
| {
 | |
| 	SetPagePinned(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init xen_mark_init_mm_pinned(void)
 | |
| {
 | |
| 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 | |
| }
 | |
| 
 | |
| static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 | |
| 			  enum pt_level level)
 | |
| {
 | |
| 	unsigned pgfl = TestClearPagePinned(page);
 | |
| 
 | |
| 	if (pgfl && !PageHighMem(page)) {
 | |
| 		void *pt = lowmem_page_address(page);
 | |
| 		unsigned long pfn = page_to_pfn(page);
 | |
| 		spinlock_t *ptl = NULL;
 | |
| 		struct multicall_space mcs;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do the converse to pin_page.  If we're using split
 | |
| 		 * pte locks, we must be holding the lock for while
 | |
| 		 * the pte page is unpinned but still RO to prevent
 | |
| 		 * concurrent updates from seeing it in this
 | |
| 		 * partially-pinned state.
 | |
| 		 */
 | |
| 		if (level == PT_PTE) {
 | |
| 			ptl = xen_pte_lock(page, mm);
 | |
| 
 | |
| 			if (ptl)
 | |
| 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 | |
| 		}
 | |
| 
 | |
| 		mcs = __xen_mc_entry(0);
 | |
| 
 | |
| 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 | |
| 					pfn_pte(pfn, PAGE_KERNEL),
 | |
| 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 | |
| 
 | |
| 		if (ptl) {
 | |
| 			/* unlock when batch completed */
 | |
| 			xen_mc_callback(xen_pte_unlock, ptl);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;		/* never need to flush on unpin */
 | |
| }
 | |
| 
 | |
| /* Release a pagetables pages back as normal RW */
 | |
| static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
 | |
| {
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{
 | |
| 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
 | |
| 
 | |
| 		if (user_pgd) {
 | |
| 			xen_do_pin(MMUEXT_UNPIN_TABLE,
 | |
| 				   PFN_DOWN(__pa(user_pgd)));
 | |
| 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	/* Need to make sure unshared kernel PMD is unpinned */
 | |
| 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 | |
| 		       PT_PMD);
 | |
| #endif
 | |
| 
 | |
| 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
 | |
| 
 | |
| 	xen_mc_issue(0);
 | |
| }
 | |
| 
 | |
| static void xen_pgd_unpin(struct mm_struct *mm)
 | |
| {
 | |
| 	__xen_pgd_unpin(mm, mm->pgd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On resume, undo any pinning done at save, so that the rest of the
 | |
|  * kernel doesn't see any unexpected pinned pagetables.
 | |
|  */
 | |
| void xen_mm_unpin_all(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry(page, &pgd_list, lru) {
 | |
| 		if (PageSavePinned(page)) {
 | |
| 			BUG_ON(!PagePinned(page));
 | |
| 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
 | |
| 			ClearPageSavePinned(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| }
 | |
| 
 | |
| void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
 | |
| {
 | |
| 	spin_lock(&next->page_table_lock);
 | |
| 	xen_pgd_pin(next);
 | |
| 	spin_unlock(&next->page_table_lock);
 | |
| }
 | |
| 
 | |
| void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
 | |
| {
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	xen_pgd_pin(mm);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /* Another cpu may still have their %cr3 pointing at the pagetable, so
 | |
|    we need to repoint it somewhere else before we can unpin it. */
 | |
| static void drop_other_mm_ref(void *info)
 | |
| {
 | |
| 	struct mm_struct *mm = info;
 | |
| 	struct mm_struct *active_mm;
 | |
| 
 | |
| 	active_mm = percpu_read(cpu_tlbstate.active_mm);
 | |
| 
 | |
| 	if (active_mm == mm)
 | |
| 		leave_mm(smp_processor_id());
 | |
| 
 | |
| 	/* If this cpu still has a stale cr3 reference, then make sure
 | |
| 	   it has been flushed. */
 | |
| 	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
 | |
| 		load_cr3(swapper_pg_dir);
 | |
| }
 | |
| 
 | |
| static void xen_drop_mm_ref(struct mm_struct *mm)
 | |
| {
 | |
| 	cpumask_var_t mask;
 | |
| 	unsigned cpu;
 | |
| 
 | |
| 	if (current->active_mm == mm) {
 | |
| 		if (current->mm == mm)
 | |
| 			load_cr3(swapper_pg_dir);
 | |
| 		else
 | |
| 			leave_mm(smp_processor_id());
 | |
| 	}
 | |
| 
 | |
| 	/* Get the "official" set of cpus referring to our pagetable. */
 | |
| 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
 | |
| 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
 | |
| 				continue;
 | |
| 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 	cpumask_copy(mask, mm_cpumask(mm));
 | |
| 
 | |
| 	/* It's possible that a vcpu may have a stale reference to our
 | |
| 	   cr3, because its in lazy mode, and it hasn't yet flushed
 | |
| 	   its set of pending hypercalls yet.  In this case, we can
 | |
| 	   look at its actual current cr3 value, and force it to flush
 | |
| 	   if needed. */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
 | |
| 			cpumask_set_cpu(cpu, mask);
 | |
| 	}
 | |
| 
 | |
| 	if (!cpumask_empty(mask))
 | |
| 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
 | |
| 	free_cpumask_var(mask);
 | |
| }
 | |
| #else
 | |
| static void xen_drop_mm_ref(struct mm_struct *mm)
 | |
| {
 | |
| 	if (current->active_mm == mm)
 | |
| 		load_cr3(swapper_pg_dir);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * While a process runs, Xen pins its pagetables, which means that the
 | |
|  * hypervisor forces it to be read-only, and it controls all updates
 | |
|  * to it.  This means that all pagetable updates have to go via the
 | |
|  * hypervisor, which is moderately expensive.
 | |
|  *
 | |
|  * Since we're pulling the pagetable down, we switch to use init_mm,
 | |
|  * unpin old process pagetable and mark it all read-write, which
 | |
|  * allows further operations on it to be simple memory accesses.
 | |
|  *
 | |
|  * The only subtle point is that another CPU may be still using the
 | |
|  * pagetable because of lazy tlb flushing.  This means we need need to
 | |
|  * switch all CPUs off this pagetable before we can unpin it.
 | |
|  */
 | |
| void xen_exit_mmap(struct mm_struct *mm)
 | |
| {
 | |
| 	get_cpu();		/* make sure we don't move around */
 | |
| 	xen_drop_mm_ref(mm);
 | |
| 	put_cpu();
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 
 | |
| 	/* pgd may not be pinned in the error exit path of execve */
 | |
| 	if (xen_page_pinned(mm->pgd))
 | |
| 		xen_pgd_unpin(mm);
 | |
| 
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| }
 | |
| 
 | |
| static __init void xen_pagetable_setup_start(pgd_t *base)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void xen_post_allocator_init(void);
 | |
| 
 | |
| static __init void xen_pagetable_setup_done(pgd_t *base)
 | |
| {
 | |
| 	xen_setup_shared_info();
 | |
| 	xen_post_allocator_init();
 | |
| }
 | |
| 
 | |
| static void xen_write_cr2(unsigned long cr2)
 | |
| {
 | |
| 	percpu_read(xen_vcpu)->arch.cr2 = cr2;
 | |
| }
 | |
| 
 | |
| static unsigned long xen_read_cr2(void)
 | |
| {
 | |
| 	return percpu_read(xen_vcpu)->arch.cr2;
 | |
| }
 | |
| 
 | |
| unsigned long xen_read_cr2_direct(void)
 | |
| {
 | |
| 	return percpu_read(xen_vcpu_info.arch.cr2);
 | |
| }
 | |
| 
 | |
| static void xen_flush_tlb(void)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	mcs = xen_mc_entry(sizeof(*op));
 | |
| 
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_flush_tlb_single(unsigned long addr)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	mcs = xen_mc_entry(sizeof(*op));
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = MMUEXT_INVLPG_LOCAL;
 | |
| 	op->arg1.linear_addr = addr & PAGE_MASK;
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_flush_tlb_others(const struct cpumask *cpus,
 | |
| 				 struct mm_struct *mm, unsigned long va)
 | |
| {
 | |
| 	struct {
 | |
| 		struct mmuext_op op;
 | |
| 		DECLARE_BITMAP(mask, NR_CPUS);
 | |
| 	} *args;
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	if (cpumask_empty(cpus))
 | |
| 		return;		/* nothing to do */
 | |
| 
 | |
| 	mcs = xen_mc_entry(sizeof(*args));
 | |
| 	args = mcs.args;
 | |
| 	args->op.arg2.vcpumask = to_cpumask(args->mask);
 | |
| 
 | |
| 	/* Remove us, and any offline CPUS. */
 | |
| 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
 | |
| 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
 | |
| 
 | |
| 	if (va == TLB_FLUSH_ALL) {
 | |
| 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
 | |
| 	} else {
 | |
| 		args->op.cmd = MMUEXT_INVLPG_MULTI;
 | |
| 		args->op.arg1.linear_addr = va;
 | |
| 	}
 | |
| 
 | |
| 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_MMU);
 | |
| }
 | |
| 
 | |
| static unsigned long xen_read_cr3(void)
 | |
| {
 | |
| 	return percpu_read(xen_cr3);
 | |
| }
 | |
| 
 | |
| static void set_current_cr3(void *v)
 | |
| {
 | |
| 	percpu_write(xen_current_cr3, (unsigned long)v);
 | |
| }
 | |
| 
 | |
| static void __xen_write_cr3(bool kernel, unsigned long cr3)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs;
 | |
| 	unsigned long mfn;
 | |
| 
 | |
| 	if (cr3)
 | |
| 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
 | |
| 	else
 | |
| 		mfn = 0;
 | |
| 
 | |
| 	WARN_ON(mfn == 0 && kernel);
 | |
| 
 | |
| 	mcs = __xen_mc_entry(sizeof(*op));
 | |
| 
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
 | |
| 	op->arg1.mfn = mfn;
 | |
| 
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	if (kernel) {
 | |
| 		percpu_write(xen_cr3, cr3);
 | |
| 
 | |
| 		/* Update xen_current_cr3 once the batch has actually
 | |
| 		   been submitted. */
 | |
| 		xen_mc_callback(set_current_cr3, (void *)cr3);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_write_cr3(unsigned long cr3)
 | |
| {
 | |
| 	BUG_ON(preemptible());
 | |
| 
 | |
| 	xen_mc_batch();  /* disables interrupts */
 | |
| 
 | |
| 	/* Update while interrupts are disabled, so its atomic with
 | |
| 	   respect to ipis */
 | |
| 	percpu_write(xen_cr3, cr3);
 | |
| 
 | |
| 	__xen_write_cr3(true, cr3);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{
 | |
| 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
 | |
| 		if (user_pgd)
 | |
| 			__xen_write_cr3(false, __pa(user_pgd));
 | |
| 		else
 | |
| 			__xen_write_cr3(false, 0);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
 | |
| }
 | |
| 
 | |
| static int xen_pgd_alloc(struct mm_struct *mm)
 | |
| {
 | |
| 	pgd_t *pgd = mm->pgd;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(PagePinned(virt_to_page(pgd)));
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{
 | |
| 		struct page *page = virt_to_page(pgd);
 | |
| 		pgd_t *user_pgd;
 | |
| 
 | |
| 		BUG_ON(page->private != 0);
 | |
| 
 | |
| 		ret = -ENOMEM;
 | |
| 
 | |
| 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 		page->private = (unsigned long)user_pgd;
 | |
| 
 | |
| 		if (user_pgd != NULL) {
 | |
| 			user_pgd[pgd_index(VSYSCALL_START)] =
 | |
| 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
 | |
| 
 | |
| 	if (user_pgd)
 | |
| 		free_page((unsigned long)user_pgd);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
 | |
| 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
 | |
| 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
 | |
| 			       pte_val_ma(pte));
 | |
| 
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| /* Init-time set_pte while constructing initial pagetables, which
 | |
|    doesn't allow RO pagetable pages to be remapped RW */
 | |
| static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	pte = mask_rw_pte(ptep, pte);
 | |
| 
 | |
| 	xen_set_pte(ptep, pte);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
 | |
| {
 | |
| 	struct mmuext_op op;
 | |
| 	op.cmd = cmd;
 | |
| 	op.arg1.mfn = pfn_to_mfn(pfn);
 | |
| 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| /* Early in boot, while setting up the initial pagetable, assume
 | |
|    everything is pinned. */
 | |
| static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	BUG_ON(mem_map);	/* should only be used early */
 | |
| #endif
 | |
| 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
 | |
| 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
 | |
| }
 | |
| 
 | |
| /* Used for pmd and pud */
 | |
| static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	BUG_ON(mem_map);	/* should only be used early */
 | |
| #endif
 | |
| 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
 | |
| }
 | |
| 
 | |
| /* Early release_pte assumes that all pts are pinned, since there's
 | |
|    only init_mm and anything attached to that is pinned. */
 | |
| static __init void xen_release_pte_init(unsigned long pfn)
 | |
| {
 | |
| 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
 | |
| 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
 | |
| }
 | |
| 
 | |
| static __init void xen_release_pmd_init(unsigned long pfn)
 | |
| {
 | |
| 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
 | |
| }
 | |
| 
 | |
| /* This needs to make sure the new pte page is pinned iff its being
 | |
|    attached to a pinned pagetable. */
 | |
| static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
 | |
| {
 | |
| 	struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 	if (PagePinned(virt_to_page(mm->pgd))) {
 | |
| 		SetPagePinned(page);
 | |
| 
 | |
| 		vm_unmap_aliases();
 | |
| 		if (!PageHighMem(page)) {
 | |
| 			make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
 | |
| 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
 | |
| 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
 | |
| 		} else {
 | |
| 			/* make sure there are no stray mappings of
 | |
| 			   this page */
 | |
| 			kmap_flush_unused();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| 	xen_alloc_ptpage(mm, pfn, PT_PTE);
 | |
| }
 | |
| 
 | |
| static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| 	xen_alloc_ptpage(mm, pfn, PT_PMD);
 | |
| }
 | |
| 
 | |
| /* This should never happen until we're OK to use struct page */
 | |
| static void xen_release_ptpage(unsigned long pfn, unsigned level)
 | |
| {
 | |
| 	struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 	if (PagePinned(page)) {
 | |
| 		if (!PageHighMem(page)) {
 | |
| 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
 | |
| 				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
 | |
| 			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
 | |
| 		}
 | |
| 		ClearPagePinned(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_release_pte(unsigned long pfn)
 | |
| {
 | |
| 	xen_release_ptpage(pfn, PT_PTE);
 | |
| }
 | |
| 
 | |
| static void xen_release_pmd(unsigned long pfn)
 | |
| {
 | |
| 	xen_release_ptpage(pfn, PT_PMD);
 | |
| }
 | |
| 
 | |
| #if PAGETABLE_LEVELS == 4
 | |
| static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
 | |
| {
 | |
| 	xen_alloc_ptpage(mm, pfn, PT_PUD);
 | |
| }
 | |
| 
 | |
| static void xen_release_pud(unsigned long pfn)
 | |
| {
 | |
| 	xen_release_ptpage(pfn, PT_PUD);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init xen_reserve_top(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_32
 | |
| 	unsigned long top = HYPERVISOR_VIRT_START;
 | |
| 	struct xen_platform_parameters pp;
 | |
| 
 | |
| 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
 | |
| 		top = pp.virt_start;
 | |
| 
 | |
| 	reserve_top_address(-top);
 | |
| #endif	/* CONFIG_X86_32 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Like __va(), but returns address in the kernel mapping (which is
 | |
|  * all we have until the physical memory mapping has been set up.
 | |
|  */
 | |
| static void *__ka(phys_addr_t paddr)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	return (void *)(paddr + __START_KERNEL_map);
 | |
| #else
 | |
| 	return __va(paddr);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Convert a machine address to physical address */
 | |
| static unsigned long m2p(phys_addr_t maddr)
 | |
| {
 | |
| 	phys_addr_t paddr;
 | |
| 
 | |
| 	maddr &= PTE_PFN_MASK;
 | |
| 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
 | |
| 
 | |
| 	return paddr;
 | |
| }
 | |
| 
 | |
| /* Convert a machine address to kernel virtual */
 | |
| static void *m2v(phys_addr_t maddr)
 | |
| {
 | |
| 	return __ka(m2p(maddr));
 | |
| }
 | |
| 
 | |
| static void set_page_prot(void *addr, pgprot_t prot)
 | |
| {
 | |
| 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
 | |
| 	pte_t pte = pfn_pte(pfn, prot);
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
 | |
| {
 | |
| 	unsigned pmdidx, pteidx;
 | |
| 	unsigned ident_pte;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	ident_pte = 0;
 | |
| 	pfn = 0;
 | |
| 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
 | |
| 		pte_t *pte_page;
 | |
| 
 | |
| 		/* Reuse or allocate a page of ptes */
 | |
| 		if (pmd_present(pmd[pmdidx]))
 | |
| 			pte_page = m2v(pmd[pmdidx].pmd);
 | |
| 		else {
 | |
| 			/* Check for free pte pages */
 | |
| 			if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
 | |
| 				break;
 | |
| 
 | |
| 			pte_page = &level1_ident_pgt[ident_pte];
 | |
| 			ident_pte += PTRS_PER_PTE;
 | |
| 
 | |
| 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
 | |
| 		}
 | |
| 
 | |
| 		/* Install mappings */
 | |
| 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
 | |
| 			pte_t pte;
 | |
| 
 | |
| 			if (pfn > max_pfn_mapped)
 | |
| 				max_pfn_mapped = pfn;
 | |
| 
 | |
| 			if (!pte_none(pte_page[pteidx]))
 | |
| 				continue;
 | |
| 
 | |
| 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
 | |
| 			pte_page[pteidx] = pte;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
 | |
| 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
 | |
| 
 | |
| 	set_page_prot(pmd, PAGE_KERNEL_RO);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void convert_pfn_mfn(void *v)
 | |
| {
 | |
| 	pte_t *pte = v;
 | |
| 	int i;
 | |
| 
 | |
| 	/* All levels are converted the same way, so just treat them
 | |
| 	   as ptes. */
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++)
 | |
| 		pte[i] = xen_make_pte(pte[i].pte);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up the inital kernel pagetable.
 | |
|  *
 | |
|  * We can construct this by grafting the Xen provided pagetable into
 | |
|  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
 | |
|  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
 | |
|  * means that only the kernel has a physical mapping to start with -
 | |
|  * but that's enough to get __va working.  We need to fill in the rest
 | |
|  * of the physical mapping once some sort of allocator has been set
 | |
|  * up.
 | |
|  */
 | |
| __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
 | |
| 					 unsigned long max_pfn)
 | |
| {
 | |
| 	pud_t *l3;
 | |
| 	pmd_t *l2;
 | |
| 
 | |
| 	/* Zap identity mapping */
 | |
| 	init_level4_pgt[0] = __pgd(0);
 | |
| 
 | |
| 	/* Pre-constructed entries are in pfn, so convert to mfn */
 | |
| 	convert_pfn_mfn(init_level4_pgt);
 | |
| 	convert_pfn_mfn(level3_ident_pgt);
 | |
| 	convert_pfn_mfn(level3_kernel_pgt);
 | |
| 
 | |
| 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
 | |
| 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
 | |
| 
 | |
| 	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
 | |
| 	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
 | |
| 
 | |
| 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
 | |
| 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
 | |
| 	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
 | |
| 
 | |
| 	/* Set up identity map */
 | |
| 	xen_map_identity_early(level2_ident_pgt, max_pfn);
 | |
| 
 | |
| 	/* Make pagetable pieces RO */
 | |
| 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
 | |
| 
 | |
| 	/* Pin down new L4 */
 | |
| 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
 | |
| 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
 | |
| 
 | |
| 	/* Unpin Xen-provided one */
 | |
| 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| 
 | |
| 	/* Switch over */
 | |
| 	pgd = init_level4_pgt;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this stage there can be no user pgd, and no page
 | |
| 	 * structure to attach it to, so make sure we just set kernel
 | |
| 	 * pgd.
 | |
| 	 */
 | |
| 	xen_mc_batch();
 | |
| 	__xen_write_cr3(true, __pa(pgd));
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);
 | |
| 
 | |
| 	reserve_early(__pa(xen_start_info->pt_base),
 | |
| 		      __pa(xen_start_info->pt_base +
 | |
| 			   xen_start_info->nr_pt_frames * PAGE_SIZE),
 | |
| 		      "XEN PAGETABLES");
 | |
| 
 | |
| 	return pgd;
 | |
| }
 | |
| #else	/* !CONFIG_X86_64 */
 | |
| static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
 | |
| 
 | |
| __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
 | |
| 					 unsigned long max_pfn)
 | |
| {
 | |
| 	pmd_t *kernel_pmd;
 | |
| 
 | |
| 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
 | |
| 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
 | |
| 				  512*1024);
 | |
| 
 | |
| 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
 | |
| 	memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
 | |
| 
 | |
| 	xen_map_identity_early(level2_kernel_pgt, max_pfn);
 | |
| 
 | |
| 	memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
 | |
| 	set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
 | |
| 			__pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
 | |
| 
 | |
| 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
 | |
| 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
 | |
| 
 | |
| 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 | |
| 
 | |
| 	xen_write_cr3(__pa(swapper_pg_dir));
 | |
| 
 | |
| 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
 | |
| 
 | |
| 	reserve_early(__pa(xen_start_info->pt_base),
 | |
| 		      __pa(xen_start_info->pt_base +
 | |
| 			   xen_start_info->nr_pt_frames * PAGE_SIZE),
 | |
| 		      "XEN PAGETABLES");
 | |
| 
 | |
| 	return swapper_pg_dir;
 | |
| }
 | |
| #endif	/* CONFIG_X86_64 */
 | |
| 
 | |
| static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
 | |
| {
 | |
| 	pte_t pte;
 | |
| 
 | |
| 	phys >>= PAGE_SHIFT;
 | |
| 
 | |
| 	switch (idx) {
 | |
| 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
 | |
| #ifdef CONFIG_X86_F00F_BUG
 | |
| 	case FIX_F00F_IDT:
 | |
| #endif
 | |
| #ifdef CONFIG_X86_32
 | |
| 	case FIX_WP_TEST:
 | |
| 	case FIX_VDSO:
 | |
| # ifdef CONFIG_HIGHMEM
 | |
| 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
 | |
| # endif
 | |
| #else
 | |
| 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
 | |
| #endif
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| 	case FIX_APIC_BASE:	/* maps dummy local APIC */
 | |
| #endif
 | |
| 	case FIX_TEXT_POKE0:
 | |
| 	case FIX_TEXT_POKE1:
 | |
| 		/* All local page mappings */
 | |
| 		pte = pfn_pte(phys, prot);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		pte = mfn_pte(phys, prot);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	__native_set_fixmap(idx, pte);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/* Replicate changes to map the vsyscall page into the user
 | |
| 	   pagetable vsyscall mapping. */
 | |
| 	if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
 | |
| 		unsigned long vaddr = __fix_to_virt(idx);
 | |
| 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __init void xen_post_allocator_init(void)
 | |
| {
 | |
| 	pv_mmu_ops.set_pte = xen_set_pte;
 | |
| 	pv_mmu_ops.set_pmd = xen_set_pmd;
 | |
| 	pv_mmu_ops.set_pud = xen_set_pud;
 | |
| #if PAGETABLE_LEVELS == 4
 | |
| 	pv_mmu_ops.set_pgd = xen_set_pgd;
 | |
| #endif
 | |
| 
 | |
| 	/* This will work as long as patching hasn't happened yet
 | |
| 	   (which it hasn't) */
 | |
| 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
 | |
| 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
 | |
| 	pv_mmu_ops.release_pte = xen_release_pte;
 | |
| 	pv_mmu_ops.release_pmd = xen_release_pmd;
 | |
| #if PAGETABLE_LEVELS == 4
 | |
| 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
 | |
| 	pv_mmu_ops.release_pud = xen_release_pud;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	SetPagePinned(virt_to_page(level3_user_vsyscall));
 | |
| #endif
 | |
| 	xen_mark_init_mm_pinned();
 | |
| }
 | |
| 
 | |
| static void xen_leave_lazy_mmu(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	xen_mc_flush();
 | |
| 	paravirt_leave_lazy_mmu();
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static const struct pv_mmu_ops xen_mmu_ops __initdata = {
 | |
| 	.read_cr2 = xen_read_cr2,
 | |
| 	.write_cr2 = xen_write_cr2,
 | |
| 
 | |
| 	.read_cr3 = xen_read_cr3,
 | |
| 	.write_cr3 = xen_write_cr3,
 | |
| 
 | |
| 	.flush_tlb_user = xen_flush_tlb,
 | |
| 	.flush_tlb_kernel = xen_flush_tlb,
 | |
| 	.flush_tlb_single = xen_flush_tlb_single,
 | |
| 	.flush_tlb_others = xen_flush_tlb_others,
 | |
| 
 | |
| 	.pte_update = paravirt_nop,
 | |
| 	.pte_update_defer = paravirt_nop,
 | |
| 
 | |
| 	.pgd_alloc = xen_pgd_alloc,
 | |
| 	.pgd_free = xen_pgd_free,
 | |
| 
 | |
| 	.alloc_pte = xen_alloc_pte_init,
 | |
| 	.release_pte = xen_release_pte_init,
 | |
| 	.alloc_pmd = xen_alloc_pmd_init,
 | |
| 	.alloc_pmd_clone = paravirt_nop,
 | |
| 	.release_pmd = xen_release_pmd_init,
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	.set_pte = xen_set_pte,
 | |
| #else
 | |
| 	.set_pte = xen_set_pte_init,
 | |
| #endif
 | |
| 	.set_pte_at = xen_set_pte_at,
 | |
| 	.set_pmd = xen_set_pmd_hyper,
 | |
| 
 | |
| 	.ptep_modify_prot_start = __ptep_modify_prot_start,
 | |
| 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
 | |
| 
 | |
| 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
 | |
| 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
 | |
| 
 | |
| 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
 | |
| 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	.set_pte_atomic = xen_set_pte_atomic,
 | |
| 	.pte_clear = xen_pte_clear,
 | |
| 	.pmd_clear = xen_pmd_clear,
 | |
| #endif	/* CONFIG_X86_PAE */
 | |
| 	.set_pud = xen_set_pud_hyper,
 | |
| 
 | |
| 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
 | |
| 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
 | |
| 
 | |
| #if PAGETABLE_LEVELS == 4
 | |
| 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
 | |
| 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
 | |
| 	.set_pgd = xen_set_pgd_hyper,
 | |
| 
 | |
| 	.alloc_pud = xen_alloc_pmd_init,
 | |
| 	.release_pud = xen_release_pmd_init,
 | |
| #endif	/* PAGETABLE_LEVELS == 4 */
 | |
| 
 | |
| 	.activate_mm = xen_activate_mm,
 | |
| 	.dup_mmap = xen_dup_mmap,
 | |
| 	.exit_mmap = xen_exit_mmap,
 | |
| 
 | |
| 	.lazy_mode = {
 | |
| 		.enter = paravirt_enter_lazy_mmu,
 | |
| 		.leave = xen_leave_lazy_mmu,
 | |
| 	},
 | |
| 
 | |
| 	.set_fixmap = xen_set_fixmap,
 | |
| };
 | |
| 
 | |
| void __init xen_init_mmu_ops(void)
 | |
| {
 | |
| 	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
 | |
| 	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
 | |
| 	pv_mmu_ops = xen_mmu_ops;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_XEN_DEBUG_FS
 | |
| 
 | |
| static struct dentry *d_mmu_debug;
 | |
| 
 | |
| static int __init xen_mmu_debugfs(void)
 | |
| {
 | |
| 	struct dentry *d_xen = xen_init_debugfs();
 | |
| 
 | |
| 	if (d_xen == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	d_mmu_debug = debugfs_create_dir("mmu", d_xen);
 | |
| 
 | |
| 	debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
 | |
| 
 | |
| 	debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
 | |
| 	debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.pgd_update_pinned);
 | |
| 	debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.pgd_update_pinned);
 | |
| 
 | |
| 	debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
 | |
| 	debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.pud_update_pinned);
 | |
| 	debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.pud_update_pinned);
 | |
| 
 | |
| 	debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
 | |
| 	debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.pmd_update_pinned);
 | |
| 	debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.pmd_update_pinned);
 | |
| 
 | |
| 	debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
 | |
| //	debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
 | |
| //			   &mmu_stats.pte_update_pinned);
 | |
| 	debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.pte_update_pinned);
 | |
| 
 | |
| 	debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
 | |
| 	debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.mmu_update_extended);
 | |
| 	xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
 | |
| 				     mmu_stats.mmu_update_histo, 20);
 | |
| 
 | |
| 	debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
 | |
| 	debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.set_pte_at_batched);
 | |
| 	debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.set_pte_at_current);
 | |
| 	debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.set_pte_at_kernel);
 | |
| 
 | |
| 	debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
 | |
| 	debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
 | |
| 			   &mmu_stats.prot_commit_batched);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(xen_mmu_debugfs);
 | |
| 
 | |
| #endif	/* CONFIG_XEN_DEBUG_FS */
 |