 817a824b75
			
		
	
	
	817a824b75
	
	
	
		
			
			There's a path in the pagefault code where the kernel deliberately
breaks its own locking rules by kmapping a high pte page without
holding the pagetable lock (in at least page_check_address). This
breaks Xen's ability to track the pinned/unpinned state of the
page. There does not appear to be a viable workaround for this
behaviour so simply disable HIGHPTE for all Xen guests.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
LKML-Reference: <1267204562-11844-1-git-send-email-ian.campbell@citrix.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Pasi Kärkkäinen <pasik@iki.fi>
Cc: <stable@kernel.org> # .32.x: 14315592: Allow highmem user page tables to be disabled at boot time
Cc: <stable@kernel.org> # .32.x
Cc: <xen-devel@lists.xensource.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
		
	
			
		
			
				
	
	
		
			1207 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1207 lines
		
	
	
	
		
			28 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Core of Xen paravirt_ops implementation.
 | |
|  *
 | |
|  * This file contains the xen_paravirt_ops structure itself, and the
 | |
|  * implementations for:
 | |
|  * - privileged instructions
 | |
|  * - interrupt flags
 | |
|  * - segment operations
 | |
|  * - booting and setup
 | |
|  *
 | |
|  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/start_kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/pci.h>
 | |
| 
 | |
| #include <xen/xen.h>
 | |
| #include <xen/interface/xen.h>
 | |
| #include <xen/interface/version.h>
 | |
| #include <xen/interface/physdev.h>
 | |
| #include <xen/interface/vcpu.h>
 | |
| #include <xen/features.h>
 | |
| #include <xen/page.h>
 | |
| #include <xen/hvc-console.h>
 | |
| 
 | |
| #include <asm/paravirt.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/xen/hypercall.h>
 | |
| #include <asm/xen/hypervisor.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/msr-index.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/reboot.h>
 | |
| #include <asm/stackprotector.h>
 | |
| 
 | |
| #include "xen-ops.h"
 | |
| #include "mmu.h"
 | |
| #include "multicalls.h"
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(hypercall_page);
 | |
| 
 | |
| DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
 | |
| DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
 | |
| 
 | |
| enum xen_domain_type xen_domain_type = XEN_NATIVE;
 | |
| EXPORT_SYMBOL_GPL(xen_domain_type);
 | |
| 
 | |
| struct start_info *xen_start_info;
 | |
| EXPORT_SYMBOL_GPL(xen_start_info);
 | |
| 
 | |
| struct shared_info xen_dummy_shared_info;
 | |
| 
 | |
| void *xen_initial_gdt;
 | |
| 
 | |
| /*
 | |
|  * Point at some empty memory to start with. We map the real shared_info
 | |
|  * page as soon as fixmap is up and running.
 | |
|  */
 | |
| struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
 | |
| 
 | |
| /*
 | |
|  * Flag to determine whether vcpu info placement is available on all
 | |
|  * VCPUs.  We assume it is to start with, and then set it to zero on
 | |
|  * the first failure.  This is because it can succeed on some VCPUs
 | |
|  * and not others, since it can involve hypervisor memory allocation,
 | |
|  * or because the guest failed to guarantee all the appropriate
 | |
|  * constraints on all VCPUs (ie buffer can't cross a page boundary).
 | |
|  *
 | |
|  * Note that any particular CPU may be using a placed vcpu structure,
 | |
|  * but we can only optimise if the all are.
 | |
|  *
 | |
|  * 0: not available, 1: available
 | |
|  */
 | |
| static int have_vcpu_info_placement = 1;
 | |
| 
 | |
| static void xen_vcpu_setup(int cpu)
 | |
| {
 | |
| 	struct vcpu_register_vcpu_info info;
 | |
| 	int err;
 | |
| 	struct vcpu_info *vcpup;
 | |
| 
 | |
| 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 | |
| 	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
 | |
| 
 | |
| 	if (!have_vcpu_info_placement)
 | |
| 		return;		/* already tested, not available */
 | |
| 
 | |
| 	vcpup = &per_cpu(xen_vcpu_info, cpu);
 | |
| 
 | |
| 	info.mfn = arbitrary_virt_to_mfn(vcpup);
 | |
| 	info.offset = offset_in_page(vcpup);
 | |
| 
 | |
| 	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
 | |
| 	       cpu, vcpup, info.mfn, info.offset);
 | |
| 
 | |
| 	/* Check to see if the hypervisor will put the vcpu_info
 | |
| 	   structure where we want it, which allows direct access via
 | |
| 	   a percpu-variable. */
 | |
| 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
 | |
| 
 | |
| 	if (err) {
 | |
| 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
 | |
| 		have_vcpu_info_placement = 0;
 | |
| 	} else {
 | |
| 		/* This cpu is using the registered vcpu info, even if
 | |
| 		   later ones fail to. */
 | |
| 		per_cpu(xen_vcpu, cpu) = vcpup;
 | |
| 
 | |
| 		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
 | |
| 		       cpu, vcpup);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On restore, set the vcpu placement up again.
 | |
|  * If it fails, then we're in a bad state, since
 | |
|  * we can't back out from using it...
 | |
|  */
 | |
| void xen_vcpu_restore(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		bool other_cpu = (cpu != smp_processor_id());
 | |
| 
 | |
| 		if (other_cpu &&
 | |
| 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
 | |
| 			BUG();
 | |
| 
 | |
| 		xen_setup_runstate_info(cpu);
 | |
| 
 | |
| 		if (have_vcpu_info_placement)
 | |
| 			xen_vcpu_setup(cpu);
 | |
| 
 | |
| 		if (other_cpu &&
 | |
| 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
 | |
| 			BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init xen_banner(void)
 | |
| {
 | |
| 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 | |
| 	struct xen_extraversion extra;
 | |
| 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 | |
| 
 | |
| 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
 | |
| 	       pv_info.name);
 | |
| 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 | |
| 	       version >> 16, version & 0xffff, extra.extraversion,
 | |
| 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 | |
| }
 | |
| 
 | |
| static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
 | |
| static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
 | |
| 
 | |
| static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 | |
| 		      unsigned int *cx, unsigned int *dx)
 | |
| {
 | |
| 	unsigned maskebx = ~0;
 | |
| 	unsigned maskecx = ~0;
 | |
| 	unsigned maskedx = ~0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask out inconvenient features, to try and disable as many
 | |
| 	 * unsupported kernel subsystems as possible.
 | |
| 	 */
 | |
| 	switch (*ax) {
 | |
| 	case 1:
 | |
| 		maskecx = cpuid_leaf1_ecx_mask;
 | |
| 		maskedx = cpuid_leaf1_edx_mask;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xb:
 | |
| 		/* Suppress extended topology stuff */
 | |
| 		maskebx = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	asm(XEN_EMULATE_PREFIX "cpuid"
 | |
| 		: "=a" (*ax),
 | |
| 		  "=b" (*bx),
 | |
| 		  "=c" (*cx),
 | |
| 		  "=d" (*dx)
 | |
| 		: "0" (*ax), "2" (*cx));
 | |
| 
 | |
| 	*bx &= maskebx;
 | |
| 	*cx &= maskecx;
 | |
| 	*dx &= maskedx;
 | |
| }
 | |
| 
 | |
| static __init void xen_init_cpuid_mask(void)
 | |
| {
 | |
| 	unsigned int ax, bx, cx, dx;
 | |
| 
 | |
| 	cpuid_leaf1_edx_mask =
 | |
| 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
 | |
| 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
 | |
| 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
 | |
| 
 | |
| 	if (!xen_initial_domain())
 | |
| 		cpuid_leaf1_edx_mask &=
 | |
| 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
 | |
| 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
 | |
| 
 | |
| 	ax = 1;
 | |
| 	cx = 0;
 | |
| 	xen_cpuid(&ax, &bx, &cx, &dx);
 | |
| 
 | |
| 	/* cpuid claims we support xsave; try enabling it to see what happens */
 | |
| 	if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
 | |
| 		unsigned long cr4;
 | |
| 
 | |
| 		set_in_cr4(X86_CR4_OSXSAVE);
 | |
| 		
 | |
| 		cr4 = read_cr4();
 | |
| 
 | |
| 		if ((cr4 & X86_CR4_OSXSAVE) == 0)
 | |
| 			cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
 | |
| 
 | |
| 		clear_in_cr4(X86_CR4_OSXSAVE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_set_debugreg(int reg, unsigned long val)
 | |
| {
 | |
| 	HYPERVISOR_set_debugreg(reg, val);
 | |
| }
 | |
| 
 | |
| static unsigned long xen_get_debugreg(int reg)
 | |
| {
 | |
| 	return HYPERVISOR_get_debugreg(reg);
 | |
| }
 | |
| 
 | |
| static void xen_end_context_switch(struct task_struct *next)
 | |
| {
 | |
| 	xen_mc_flush();
 | |
| 	paravirt_end_context_switch(next);
 | |
| }
 | |
| 
 | |
| static unsigned long xen_store_tr(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the page permissions for a particular virtual address.  If the
 | |
|  * address is a vmalloc mapping (or other non-linear mapping), then
 | |
|  * find the linear mapping of the page and also set its protections to
 | |
|  * match.
 | |
|  */
 | |
| static void set_aliased_prot(void *v, pgprot_t prot)
 | |
| {
 | |
| 	int level;
 | |
| 	pte_t *ptep;
 | |
| 	pte_t pte;
 | |
| 	unsigned long pfn;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	ptep = lookup_address((unsigned long)v, &level);
 | |
| 	BUG_ON(ptep == NULL);
 | |
| 
 | |
| 	pfn = pte_pfn(*ptep);
 | |
| 	page = pfn_to_page(pfn);
 | |
| 
 | |
| 	pte = pfn_pte(pfn, prot);
 | |
| 
 | |
| 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 | |
| 		BUG();
 | |
| 
 | |
| 	if (!PageHighMem(page)) {
 | |
| 		void *av = __va(PFN_PHYS(pfn));
 | |
| 
 | |
| 		if (av != v)
 | |
| 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 | |
| 				BUG();
 | |
| 	} else
 | |
| 		kmap_flush_unused();
 | |
| }
 | |
| 
 | |
| static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 | |
| {
 | |
| 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 | |
| 	int i;
 | |
| 
 | |
| 	for(i = 0; i < entries; i += entries_per_page)
 | |
| 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 | |
| }
 | |
| 
 | |
| static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 | |
| {
 | |
| 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 | |
| 	int i;
 | |
| 
 | |
| 	for(i = 0; i < entries; i += entries_per_page)
 | |
| 		set_aliased_prot(ldt + i, PAGE_KERNEL);
 | |
| }
 | |
| 
 | |
| static void xen_set_ldt(const void *addr, unsigned entries)
 | |
| {
 | |
| 	struct mmuext_op *op;
 | |
| 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 | |
| 
 | |
| 	op = mcs.args;
 | |
| 	op->cmd = MMUEXT_SET_LDT;
 | |
| 	op->arg1.linear_addr = (unsigned long)addr;
 | |
| 	op->arg2.nr_ents = entries;
 | |
| 
 | |
| 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| static void xen_load_gdt(const struct desc_ptr *dtr)
 | |
| {
 | |
| 	unsigned long va = dtr->address;
 | |
| 	unsigned int size = dtr->size + 1;
 | |
| 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 | |
| 	unsigned long frames[pages];
 | |
| 	int f;
 | |
| 
 | |
| 	/*
 | |
| 	 * A GDT can be up to 64k in size, which corresponds to 8192
 | |
| 	 * 8-byte entries, or 16 4k pages..
 | |
| 	 */
 | |
| 
 | |
| 	BUG_ON(size > 65536);
 | |
| 	BUG_ON(va & ~PAGE_MASK);
 | |
| 
 | |
| 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 | |
| 		int level;
 | |
| 		pte_t *ptep;
 | |
| 		unsigned long pfn, mfn;
 | |
| 		void *virt;
 | |
| 
 | |
| 		/*
 | |
| 		 * The GDT is per-cpu and is in the percpu data area.
 | |
| 		 * That can be virtually mapped, so we need to do a
 | |
| 		 * page-walk to get the underlying MFN for the
 | |
| 		 * hypercall.  The page can also be in the kernel's
 | |
| 		 * linear range, so we need to RO that mapping too.
 | |
| 		 */
 | |
| 		ptep = lookup_address(va, &level);
 | |
| 		BUG_ON(ptep == NULL);
 | |
| 
 | |
| 		pfn = pte_pfn(*ptep);
 | |
| 		mfn = pfn_to_mfn(pfn);
 | |
| 		virt = __va(PFN_PHYS(pfn));
 | |
| 
 | |
| 		frames[f] = mfn;
 | |
| 
 | |
| 		make_lowmem_page_readonly((void *)va);
 | |
| 		make_lowmem_page_readonly(virt);
 | |
| 	}
 | |
| 
 | |
| 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * load_gdt for early boot, when the gdt is only mapped once
 | |
|  */
 | |
| static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
 | |
| {
 | |
| 	unsigned long va = dtr->address;
 | |
| 	unsigned int size = dtr->size + 1;
 | |
| 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 | |
| 	unsigned long frames[pages];
 | |
| 	int f;
 | |
| 
 | |
| 	/*
 | |
| 	 * A GDT can be up to 64k in size, which corresponds to 8192
 | |
| 	 * 8-byte entries, or 16 4k pages..
 | |
| 	 */
 | |
| 
 | |
| 	BUG_ON(size > 65536);
 | |
| 	BUG_ON(va & ~PAGE_MASK);
 | |
| 
 | |
| 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 | |
| 		pte_t pte;
 | |
| 		unsigned long pfn, mfn;
 | |
| 
 | |
| 		pfn = virt_to_pfn(va);
 | |
| 		mfn = pfn_to_mfn(pfn);
 | |
| 
 | |
| 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 | |
| 
 | |
| 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 | |
| 			BUG();
 | |
| 
 | |
| 		frames[f] = mfn;
 | |
| 	}
 | |
| 
 | |
| 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| static void load_TLS_descriptor(struct thread_struct *t,
 | |
| 				unsigned int cpu, unsigned int i)
 | |
| {
 | |
| 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
 | |
| 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 | |
| 	struct multicall_space mc = __xen_mc_entry(0);
 | |
| 
 | |
| 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 | |
| }
 | |
| 
 | |
| static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
 | |
| 	 * and lazy gs handling is enabled, it means we're in a
 | |
| 	 * context switch, and %gs has just been saved.  This means we
 | |
| 	 * can zero it out to prevent faults on exit from the
 | |
| 	 * hypervisor if the next process has no %gs.  Either way, it
 | |
| 	 * has been saved, and the new value will get loaded properly.
 | |
| 	 * This will go away as soon as Xen has been modified to not
 | |
| 	 * save/restore %gs for normal hypercalls.
 | |
| 	 *
 | |
| 	 * On x86_64, this hack is not used for %gs, because gs points
 | |
| 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
 | |
| 	 * must not zero %gs on x86_64
 | |
| 	 *
 | |
| 	 * For x86_64, we need to zero %fs, otherwise we may get an
 | |
| 	 * exception between the new %fs descriptor being loaded and
 | |
| 	 * %fs being effectively cleared at __switch_to().
 | |
| 	 */
 | |
| 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 | |
| #ifdef CONFIG_X86_32
 | |
| 		lazy_load_gs(0);
 | |
| #else
 | |
| 		loadsegment(fs, 0);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	xen_mc_batch();
 | |
| 
 | |
| 	load_TLS_descriptor(t, cpu, 0);
 | |
| 	load_TLS_descriptor(t, cpu, 1);
 | |
| 	load_TLS_descriptor(t, cpu, 2);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void xen_load_gs_index(unsigned int idx)
 | |
| {
 | |
| 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 | |
| 		BUG();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 | |
| 				const void *ptr)
 | |
| {
 | |
| 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 | |
| 	u64 entry = *(u64 *)ptr;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	xen_mc_flush();
 | |
| 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 | |
| 		BUG();
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static int cvt_gate_to_trap(int vector, const gate_desc *val,
 | |
| 			    struct trap_info *info)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
 | |
| 		return 0;
 | |
| 
 | |
| 	info->vector = vector;
 | |
| 
 | |
| 	addr = gate_offset(*val);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * Look for known traps using IST, and substitute them
 | |
| 	 * appropriately.  The debugger ones are the only ones we care
 | |
| 	 * about.  Xen will handle faults like double_fault and
 | |
| 	 * machine_check, so we should never see them.  Warn if
 | |
| 	 * there's an unexpected IST-using fault handler.
 | |
| 	 */
 | |
| 	if (addr == (unsigned long)debug)
 | |
| 		addr = (unsigned long)xen_debug;
 | |
| 	else if (addr == (unsigned long)int3)
 | |
| 		addr = (unsigned long)xen_int3;
 | |
| 	else if (addr == (unsigned long)stack_segment)
 | |
| 		addr = (unsigned long)xen_stack_segment;
 | |
| 	else if (addr == (unsigned long)double_fault ||
 | |
| 		 addr == (unsigned long)nmi) {
 | |
| 		/* Don't need to handle these */
 | |
| 		return 0;
 | |
| #ifdef CONFIG_X86_MCE
 | |
| 	} else if (addr == (unsigned long)machine_check) {
 | |
| 		return 0;
 | |
| #endif
 | |
| 	} else {
 | |
| 		/* Some other trap using IST? */
 | |
| 		if (WARN_ON(val->ist != 0))
 | |
| 			return 0;
 | |
| 	}
 | |
| #endif	/* CONFIG_X86_64 */
 | |
| 	info->address = addr;
 | |
| 
 | |
| 	info->cs = gate_segment(*val);
 | |
| 	info->flags = val->dpl;
 | |
| 	/* interrupt gates clear IF */
 | |
| 	if (val->type == GATE_INTERRUPT)
 | |
| 		info->flags |= 1 << 2;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Locations of each CPU's IDT */
 | |
| static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 | |
| 
 | |
| /* Set an IDT entry.  If the entry is part of the current IDT, then
 | |
|    also update Xen. */
 | |
| static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 | |
| {
 | |
| 	unsigned long p = (unsigned long)&dt[entrynum];
 | |
| 	unsigned long start, end;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	start = __get_cpu_var(idt_desc).address;
 | |
| 	end = start + __get_cpu_var(idt_desc).size + 1;
 | |
| 
 | |
| 	xen_mc_flush();
 | |
| 
 | |
| 	native_write_idt_entry(dt, entrynum, g);
 | |
| 
 | |
| 	if (p >= start && (p + 8) <= end) {
 | |
| 		struct trap_info info[2];
 | |
| 
 | |
| 		info[1].address = 0;
 | |
| 
 | |
| 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
 | |
| 			if (HYPERVISOR_set_trap_table(info))
 | |
| 				BUG();
 | |
| 	}
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void xen_convert_trap_info(const struct desc_ptr *desc,
 | |
| 				  struct trap_info *traps)
 | |
| {
 | |
| 	unsigned in, out, count;
 | |
| 
 | |
| 	count = (desc->size+1) / sizeof(gate_desc);
 | |
| 	BUG_ON(count > 256);
 | |
| 
 | |
| 	for (in = out = 0; in < count; in++) {
 | |
| 		gate_desc *entry = (gate_desc*)(desc->address) + in;
 | |
| 
 | |
| 		if (cvt_gate_to_trap(in, entry, &traps[out]))
 | |
| 			out++;
 | |
| 	}
 | |
| 	traps[out].address = 0;
 | |
| }
 | |
| 
 | |
| void xen_copy_trap_info(struct trap_info *traps)
 | |
| {
 | |
| 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
 | |
| 
 | |
| 	xen_convert_trap_info(desc, traps);
 | |
| }
 | |
| 
 | |
| /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 | |
|    hold a spinlock to protect the static traps[] array (static because
 | |
|    it avoids allocation, and saves stack space). */
 | |
| static void xen_load_idt(const struct desc_ptr *desc)
 | |
| {
 | |
| 	static DEFINE_SPINLOCK(lock);
 | |
| 	static struct trap_info traps[257];
 | |
| 
 | |
| 	spin_lock(&lock);
 | |
| 
 | |
| 	__get_cpu_var(idt_desc) = *desc;
 | |
| 
 | |
| 	xen_convert_trap_info(desc, traps);
 | |
| 
 | |
| 	xen_mc_flush();
 | |
| 	if (HYPERVISOR_set_trap_table(traps))
 | |
| 		BUG();
 | |
| 
 | |
| 	spin_unlock(&lock);
 | |
| }
 | |
| 
 | |
| /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 | |
|    they're handled differently. */
 | |
| static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 | |
| 				const void *desc, int type)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case DESC_LDT:
 | |
| 	case DESC_TSS:
 | |
| 		/* ignore */
 | |
| 		break;
 | |
| 
 | |
| 	default: {
 | |
| 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 | |
| 
 | |
| 		xen_mc_flush();
 | |
| 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Version of write_gdt_entry for use at early boot-time needed to
 | |
|  * update an entry as simply as possible.
 | |
|  */
 | |
| static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 | |
| 					    const void *desc, int type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case DESC_LDT:
 | |
| 	case DESC_TSS:
 | |
| 		/* ignore */
 | |
| 		break;
 | |
| 
 | |
| 	default: {
 | |
| 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
 | |
| 
 | |
| 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 | |
| 			dt[entry] = *(struct desc_struct *)desc;
 | |
| 	}
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xen_load_sp0(struct tss_struct *tss,
 | |
| 			 struct thread_struct *thread)
 | |
| {
 | |
| 	struct multicall_space mcs = xen_mc_entry(0);
 | |
| 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| static void xen_set_iopl_mask(unsigned mask)
 | |
| {
 | |
| 	struct physdev_set_iopl set_iopl;
 | |
| 
 | |
| 	/* Force the change at ring 0. */
 | |
| 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 | |
| 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 | |
| }
 | |
| 
 | |
| static void xen_io_delay(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| static u32 xen_apic_read(u32 reg)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void xen_apic_write(u32 reg, u32 val)
 | |
| {
 | |
| 	/* Warn to see if there's any stray references */
 | |
| 	WARN_ON(1);
 | |
| }
 | |
| 
 | |
| static u64 xen_apic_icr_read(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void xen_apic_icr_write(u32 low, u32 id)
 | |
| {
 | |
| 	/* Warn to see if there's any stray references */
 | |
| 	WARN_ON(1);
 | |
| }
 | |
| 
 | |
| static void xen_apic_wait_icr_idle(void)
 | |
| {
 | |
|         return;
 | |
| }
 | |
| 
 | |
| static u32 xen_safe_apic_wait_icr_idle(void)
 | |
| {
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| static void set_xen_basic_apic_ops(void)
 | |
| {
 | |
| 	apic->read = xen_apic_read;
 | |
| 	apic->write = xen_apic_write;
 | |
| 	apic->icr_read = xen_apic_icr_read;
 | |
| 	apic->icr_write = xen_apic_icr_write;
 | |
| 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
 | |
| 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static void xen_clts(void)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	mcs = xen_mc_entry(0);
 | |
| 
 | |
| 	MULTI_fpu_taskswitch(mcs.mc, 0);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 | |
| 
 | |
| static unsigned long xen_read_cr0(void)
 | |
| {
 | |
| 	unsigned long cr0 = percpu_read(xen_cr0_value);
 | |
| 
 | |
| 	if (unlikely(cr0 == 0)) {
 | |
| 		cr0 = native_read_cr0();
 | |
| 		percpu_write(xen_cr0_value, cr0);
 | |
| 	}
 | |
| 
 | |
| 	return cr0;
 | |
| }
 | |
| 
 | |
| static void xen_write_cr0(unsigned long cr0)
 | |
| {
 | |
| 	struct multicall_space mcs;
 | |
| 
 | |
| 	percpu_write(xen_cr0_value, cr0);
 | |
| 
 | |
| 	/* Only pay attention to cr0.TS; everything else is
 | |
| 	   ignored. */
 | |
| 	mcs = xen_mc_entry(0);
 | |
| 
 | |
| 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 | |
| 
 | |
| 	xen_mc_issue(PARAVIRT_LAZY_CPU);
 | |
| }
 | |
| 
 | |
| static void xen_write_cr4(unsigned long cr4)
 | |
| {
 | |
| 	cr4 &= ~X86_CR4_PGE;
 | |
| 	cr4 &= ~X86_CR4_PSE;
 | |
| 
 | |
| 	native_write_cr4(cr4);
 | |
| }
 | |
| 
 | |
| static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	switch (msr) {
 | |
| #ifdef CONFIG_X86_64
 | |
| 		unsigned which;
 | |
| 		u64 base;
 | |
| 
 | |
| 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
 | |
| 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
 | |
| 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
 | |
| 
 | |
| 	set:
 | |
| 		base = ((u64)high << 32) | low;
 | |
| 		if (HYPERVISOR_set_segment_base(which, base) != 0)
 | |
| 			ret = -EIO;
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	case MSR_STAR:
 | |
| 	case MSR_CSTAR:
 | |
| 	case MSR_LSTAR:
 | |
| 	case MSR_SYSCALL_MASK:
 | |
| 	case MSR_IA32_SYSENTER_CS:
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 		/* Fast syscall setup is all done in hypercalls, so
 | |
| 		   these are all ignored.  Stub them out here to stop
 | |
| 		   Xen console noise. */
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ret = native_write_msr_safe(msr, low, high);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void xen_setup_shared_info(void)
 | |
| {
 | |
| 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
 | |
| 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
 | |
| 			   xen_start_info->shared_info);
 | |
| 
 | |
| 		HYPERVISOR_shared_info =
 | |
| 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 | |
| 	} else
 | |
| 		HYPERVISOR_shared_info =
 | |
| 			(struct shared_info *)__va(xen_start_info->shared_info);
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| 	/* In UP this is as good a place as any to set up shared info */
 | |
| 	xen_setup_vcpu_info_placement();
 | |
| #endif
 | |
| 
 | |
| 	xen_setup_mfn_list_list();
 | |
| }
 | |
| 
 | |
| /* This is called once we have the cpu_possible_map */
 | |
| void xen_setup_vcpu_info_placement(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		xen_vcpu_setup(cpu);
 | |
| 
 | |
| 	/* xen_vcpu_setup managed to place the vcpu_info within the
 | |
| 	   percpu area for all cpus, so make use of it */
 | |
| 	if (have_vcpu_info_placement) {
 | |
| 		printk(KERN_INFO "Xen: using vcpu_info placement\n");
 | |
| 
 | |
| 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
 | |
| 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
 | |
| 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
 | |
| 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
 | |
| 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
 | |
| 			  unsigned long addr, unsigned len)
 | |
| {
 | |
| 	char *start, *end, *reloc;
 | |
| 	unsigned ret;
 | |
| 
 | |
| 	start = end = reloc = NULL;
 | |
| 
 | |
| #define SITE(op, x)							\
 | |
| 	case PARAVIRT_PATCH(op.x):					\
 | |
| 	if (have_vcpu_info_placement) {					\
 | |
| 		start = (char *)xen_##x##_direct;			\
 | |
| 		end = xen_##x##_direct_end;				\
 | |
| 		reloc = xen_##x##_direct_reloc;				\
 | |
| 	}								\
 | |
| 	goto patch_site
 | |
| 
 | |
| 	switch (type) {
 | |
| 		SITE(pv_irq_ops, irq_enable);
 | |
| 		SITE(pv_irq_ops, irq_disable);
 | |
| 		SITE(pv_irq_ops, save_fl);
 | |
| 		SITE(pv_irq_ops, restore_fl);
 | |
| #undef SITE
 | |
| 
 | |
| 	patch_site:
 | |
| 		if (start == NULL || (end-start) > len)
 | |
| 			goto default_patch;
 | |
| 
 | |
| 		ret = paravirt_patch_insns(insnbuf, len, start, end);
 | |
| 
 | |
| 		/* Note: because reloc is assigned from something that
 | |
| 		   appears to be an array, gcc assumes it's non-null,
 | |
| 		   but doesn't know its relationship with start and
 | |
| 		   end. */
 | |
| 		if (reloc > start && reloc < end) {
 | |
| 			int reloc_off = reloc - start;
 | |
| 			long *relocp = (long *)(insnbuf + reloc_off);
 | |
| 			long delta = start - (char *)addr;
 | |
| 
 | |
| 			*relocp += delta;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default_patch:
 | |
| 	default:
 | |
| 		ret = paravirt_patch_default(type, clobbers, insnbuf,
 | |
| 					     addr, len);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct pv_info xen_info __initdata = {
 | |
| 	.paravirt_enabled = 1,
 | |
| 	.shared_kernel_pmd = 0,
 | |
| 
 | |
| 	.name = "Xen",
 | |
| };
 | |
| 
 | |
| static const struct pv_init_ops xen_init_ops __initdata = {
 | |
| 	.patch = xen_patch,
 | |
| };
 | |
| 
 | |
| static const struct pv_time_ops xen_time_ops __initdata = {
 | |
| 	.sched_clock = xen_sched_clock,
 | |
| };
 | |
| 
 | |
| static const struct pv_cpu_ops xen_cpu_ops __initdata = {
 | |
| 	.cpuid = xen_cpuid,
 | |
| 
 | |
| 	.set_debugreg = xen_set_debugreg,
 | |
| 	.get_debugreg = xen_get_debugreg,
 | |
| 
 | |
| 	.clts = xen_clts,
 | |
| 
 | |
| 	.read_cr0 = xen_read_cr0,
 | |
| 	.write_cr0 = xen_write_cr0,
 | |
| 
 | |
| 	.read_cr4 = native_read_cr4,
 | |
| 	.read_cr4_safe = native_read_cr4_safe,
 | |
| 	.write_cr4 = xen_write_cr4,
 | |
| 
 | |
| 	.wbinvd = native_wbinvd,
 | |
| 
 | |
| 	.read_msr = native_read_msr_safe,
 | |
| 	.write_msr = xen_write_msr_safe,
 | |
| 	.read_tsc = native_read_tsc,
 | |
| 	.read_pmc = native_read_pmc,
 | |
| 
 | |
| 	.iret = xen_iret,
 | |
| 	.irq_enable_sysexit = xen_sysexit,
 | |
| #ifdef CONFIG_X86_64
 | |
| 	.usergs_sysret32 = xen_sysret32,
 | |
| 	.usergs_sysret64 = xen_sysret64,
 | |
| #endif
 | |
| 
 | |
| 	.load_tr_desc = paravirt_nop,
 | |
| 	.set_ldt = xen_set_ldt,
 | |
| 	.load_gdt = xen_load_gdt,
 | |
| 	.load_idt = xen_load_idt,
 | |
| 	.load_tls = xen_load_tls,
 | |
| #ifdef CONFIG_X86_64
 | |
| 	.load_gs_index = xen_load_gs_index,
 | |
| #endif
 | |
| 
 | |
| 	.alloc_ldt = xen_alloc_ldt,
 | |
| 	.free_ldt = xen_free_ldt,
 | |
| 
 | |
| 	.store_gdt = native_store_gdt,
 | |
| 	.store_idt = native_store_idt,
 | |
| 	.store_tr = xen_store_tr,
 | |
| 
 | |
| 	.write_ldt_entry = xen_write_ldt_entry,
 | |
| 	.write_gdt_entry = xen_write_gdt_entry,
 | |
| 	.write_idt_entry = xen_write_idt_entry,
 | |
| 	.load_sp0 = xen_load_sp0,
 | |
| 
 | |
| 	.set_iopl_mask = xen_set_iopl_mask,
 | |
| 	.io_delay = xen_io_delay,
 | |
| 
 | |
| 	/* Xen takes care of %gs when switching to usermode for us */
 | |
| 	.swapgs = paravirt_nop,
 | |
| 
 | |
| 	.start_context_switch = paravirt_start_context_switch,
 | |
| 	.end_context_switch = xen_end_context_switch,
 | |
| };
 | |
| 
 | |
| static const struct pv_apic_ops xen_apic_ops __initdata = {
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| 	.startup_ipi_hook = paravirt_nop,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static void xen_reboot(int reason)
 | |
| {
 | |
| 	struct sched_shutdown r = { .reason = reason };
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	smp_send_stop();
 | |
| #endif
 | |
| 
 | |
| 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
 | |
| 		BUG();
 | |
| }
 | |
| 
 | |
| static void xen_restart(char *msg)
 | |
| {
 | |
| 	xen_reboot(SHUTDOWN_reboot);
 | |
| }
 | |
| 
 | |
| static void xen_emergency_restart(void)
 | |
| {
 | |
| 	xen_reboot(SHUTDOWN_reboot);
 | |
| }
 | |
| 
 | |
| static void xen_machine_halt(void)
 | |
| {
 | |
| 	xen_reboot(SHUTDOWN_poweroff);
 | |
| }
 | |
| 
 | |
| static void xen_crash_shutdown(struct pt_regs *regs)
 | |
| {
 | |
| 	xen_reboot(SHUTDOWN_crash);
 | |
| }
 | |
| 
 | |
| static const struct machine_ops __initdata xen_machine_ops = {
 | |
| 	.restart = xen_restart,
 | |
| 	.halt = xen_machine_halt,
 | |
| 	.power_off = xen_machine_halt,
 | |
| 	.shutdown = xen_machine_halt,
 | |
| 	.crash_shutdown = xen_crash_shutdown,
 | |
| 	.emergency_restart = xen_emergency_restart,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Set up the GDT and segment registers for -fstack-protector.  Until
 | |
|  * we do this, we have to be careful not to call any stack-protected
 | |
|  * function, which is most of the kernel.
 | |
|  */
 | |
| static void __init xen_setup_stackprotector(void)
 | |
| {
 | |
| 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
 | |
| 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
 | |
| 
 | |
| 	setup_stack_canary_segment(0);
 | |
| 	switch_to_new_gdt(0);
 | |
| 
 | |
| 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
 | |
| 	pv_cpu_ops.load_gdt = xen_load_gdt;
 | |
| }
 | |
| 
 | |
| /* First C function to be called on Xen boot */
 | |
| asmlinkage void __init xen_start_kernel(void)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	if (!xen_start_info)
 | |
| 		return;
 | |
| 
 | |
| 	xen_domain_type = XEN_PV_DOMAIN;
 | |
| 
 | |
| 	/* Install Xen paravirt ops */
 | |
| 	pv_info = xen_info;
 | |
| 	pv_init_ops = xen_init_ops;
 | |
| 	pv_time_ops = xen_time_ops;
 | |
| 	pv_cpu_ops = xen_cpu_ops;
 | |
| 	pv_apic_ops = xen_apic_ops;
 | |
| 
 | |
| 	x86_init.resources.memory_setup = xen_memory_setup;
 | |
| 	x86_init.oem.arch_setup = xen_arch_setup;
 | |
| 	x86_init.oem.banner = xen_banner;
 | |
| 
 | |
| 	x86_init.timers.timer_init = xen_time_init;
 | |
| 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
 | |
| 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
 | |
| 
 | |
| 	x86_platform.calibrate_tsc = xen_tsc_khz;
 | |
| 	x86_platform.get_wallclock = xen_get_wallclock;
 | |
| 	x86_platform.set_wallclock = xen_set_wallclock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up some pagetable state before starting to set any ptes.
 | |
| 	 */
 | |
| 
 | |
| 	xen_init_mmu_ops();
 | |
| 
 | |
| 	/* Prevent unwanted bits from being set in PTEs. */
 | |
| 	__supported_pte_mask &= ~_PAGE_GLOBAL;
 | |
| 	if (!xen_initial_domain())
 | |
| 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
 | |
| 
 | |
| 	__supported_pte_mask |= _PAGE_IOMAP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent page tables from being allocated in highmem, even
 | |
| 	 * if CONFIG_HIGHPTE is enabled.
 | |
| 	 */
 | |
| 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 | |
| 
 | |
| 	/* Work out if we support NX */
 | |
| 	x86_configure_nx();
 | |
| 
 | |
| 	xen_setup_features();
 | |
| 
 | |
| 	/* Get mfn list */
 | |
| 	if (!xen_feature(XENFEAT_auto_translated_physmap))
 | |
| 		xen_build_dynamic_phys_to_machine();
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up kernel GDT and segment registers, mainly so that
 | |
| 	 * -fstack-protector code can be executed.
 | |
| 	 */
 | |
| 	xen_setup_stackprotector();
 | |
| 
 | |
| 	xen_init_irq_ops();
 | |
| 	xen_init_cpuid_mask();
 | |
| 
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| 	/*
 | |
| 	 * set up the basic apic ops.
 | |
| 	 */
 | |
| 	set_xen_basic_apic_ops();
 | |
| #endif
 | |
| 
 | |
| 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
 | |
| 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
 | |
| 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
 | |
| 	}
 | |
| 
 | |
| 	machine_ops = xen_machine_ops;
 | |
| 
 | |
| 	/*
 | |
| 	 * The only reliable way to retain the initial address of the
 | |
| 	 * percpu gdt_page is to remember it here, so we can go and
 | |
| 	 * mark it RW later, when the initial percpu area is freed.
 | |
| 	 */
 | |
| 	xen_initial_gdt = &per_cpu(gdt_page, 0);
 | |
| 
 | |
| 	xen_smp_init();
 | |
| 
 | |
| 	pgd = (pgd_t *)xen_start_info->pt_base;
 | |
| 
 | |
| 	/* Don't do the full vcpu_info placement stuff until we have a
 | |
| 	   possible map and a non-dummy shared_info. */
 | |
| 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	early_boot_irqs_off();
 | |
| 
 | |
| 	xen_raw_console_write("mapping kernel into physical memory\n");
 | |
| 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
 | |
| 
 | |
| 	init_mm.pgd = pgd;
 | |
| 
 | |
| 	/* keep using Xen gdt for now; no urgent need to change it */
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	pv_info.kernel_rpl = 1;
 | |
| 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
 | |
| 		pv_info.kernel_rpl = 0;
 | |
| #else
 | |
| 	pv_info.kernel_rpl = 0;
 | |
| #endif
 | |
| 
 | |
| 	/* set the limit of our address space */
 | |
| 	xen_reserve_top();
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 	/* set up basic CPUID stuff */
 | |
| 	cpu_detect(&new_cpu_data);
 | |
| 	new_cpu_data.hard_math = 1;
 | |
| 	new_cpu_data.wp_works_ok = 1;
 | |
| 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
 | |
| #endif
 | |
| 
 | |
| 	/* Poke various useful things into boot_params */
 | |
| 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
 | |
| 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
 | |
| 		? __pa(xen_start_info->mod_start) : 0;
 | |
| 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
 | |
| 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
 | |
| 
 | |
| 	if (!xen_initial_domain()) {
 | |
| 		add_preferred_console("xenboot", 0, NULL);
 | |
| 		add_preferred_console("tty", 0, NULL);
 | |
| 		add_preferred_console("hvc", 0, NULL);
 | |
| 	} else {
 | |
| 		/* Make sure ACS will be enabled */
 | |
| 		pci_request_acs();
 | |
| 	}
 | |
| 		
 | |
| 
 | |
| 	xen_raw_console_write("about to get started...\n");
 | |
| 
 | |
| 	xen_setup_runstate_info(0);
 | |
| 
 | |
| 	/* Start the world */
 | |
| #ifdef CONFIG_X86_32
 | |
| 	i386_start_kernel();
 | |
| #else
 | |
| 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
 | |
| #endif
 | |
| }
 |