 59be5a8e8c
			
		
	
	
	59be5a8e8c
	
	
	
		
			
			Let's make 32bit consistent with 64bit. -v2: Andrew pointed out for 32bit that we should use -1ULL Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-25-git-send-email-yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
		
			
				
	
	
		
			457 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			457 lines
		
	
	
	
		
			14 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
 | |
|  * August 2002: added remote node KVA remap - Martin J. Bligh 
 | |
|  *
 | |
|  * Copyright (C) 2002, IBM Corp.
 | |
|  *
 | |
|  * All rights reserved.          
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 | |
|  * NON INFRINGEMENT.  See the GNU General Public License for more
 | |
|  * details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/acpi.h>
 | |
| 
 | |
| #include <asm/e820.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/mmzone.h>
 | |
| #include <asm/bios_ebda.h>
 | |
| #include <asm/proto.h>
 | |
| 
 | |
| struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| /*
 | |
|  * numa interface - we expect the numa architecture specific code to have
 | |
|  *                  populated the following initialisation.
 | |
|  *
 | |
|  * 1) node_online_map  - the map of all nodes configured (online) in the system
 | |
|  * 2) node_start_pfn   - the starting page frame number for a node
 | |
|  * 3) node_end_pfn     - the ending page fram number for a node
 | |
|  */
 | |
| unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
 | |
| unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_DISCONTIGMEM
 | |
| /*
 | |
|  * 4) physnode_map     - the mapping between a pfn and owning node
 | |
|  * physnode_map keeps track of the physical memory layout of a generic
 | |
|  * numa node on a 64Mb break (each element of the array will
 | |
|  * represent 64Mb of memory and will be marked by the node id.  so,
 | |
|  * if the first gig is on node 0, and the second gig is on node 1
 | |
|  * physnode_map will contain:
 | |
|  *
 | |
|  *     physnode_map[0-15] = 0;
 | |
|  *     physnode_map[16-31] = 1;
 | |
|  *     physnode_map[32- ] = -1;
 | |
|  */
 | |
| s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
 | |
| EXPORT_SYMBOL(physnode_map);
 | |
| 
 | |
| void memory_present(int nid, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
 | |
| 			nid, start, end);
 | |
| 	printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid);
 | |
| 	printk(KERN_DEBUG "  ");
 | |
| 	for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
 | |
| 		physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
 | |
| 		printk(KERN_CONT "%lx ", pfn);
 | |
| 	}
 | |
| 	printk(KERN_CONT "\n");
 | |
| }
 | |
| 
 | |
| unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
 | |
| 					      unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long nr_pages = end_pfn - start_pfn;
 | |
| 
 | |
| 	if (!nr_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	return (nr_pages + 1) * sizeof(struct page);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern unsigned long find_max_low_pfn(void);
 | |
| extern unsigned long highend_pfn, highstart_pfn;
 | |
| 
 | |
| #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
 | |
| 
 | |
| unsigned long node_remap_size[MAX_NUMNODES];
 | |
| static void *node_remap_start_vaddr[MAX_NUMNODES];
 | |
| void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
 | |
| 
 | |
| static unsigned long kva_start_pfn;
 | |
| static unsigned long kva_pages;
 | |
| /*
 | |
|  * FLAT - support for basic PC memory model with discontig enabled, essentially
 | |
|  *        a single node with all available processors in it with a flat
 | |
|  *        memory map.
 | |
|  */
 | |
| int __init get_memcfg_numa_flat(void)
 | |
| {
 | |
| 	printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
 | |
| 
 | |
| 	node_start_pfn[0] = 0;
 | |
| 	node_end_pfn[0] = max_pfn;
 | |
| 	e820_register_active_regions(0, 0, max_pfn);
 | |
| 	memory_present(0, 0, max_pfn);
 | |
| 	node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);
 | |
| 
 | |
|         /* Indicate there is one node available. */
 | |
| 	nodes_clear(node_online_map);
 | |
| 	node_set_online(0);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the highest page frame number we have available for the node
 | |
|  */
 | |
| static void __init propagate_e820_map_node(int nid)
 | |
| {
 | |
| 	if (node_end_pfn[nid] > max_pfn)
 | |
| 		node_end_pfn[nid] = max_pfn;
 | |
| 	/*
 | |
| 	 * if a user has given mem=XXXX, then we need to make sure 
 | |
| 	 * that the node _starts_ before that, too, not just ends
 | |
| 	 */
 | |
| 	if (node_start_pfn[nid] > max_pfn)
 | |
| 		node_start_pfn[nid] = max_pfn;
 | |
| 	BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
 | |
|  * method.  For node zero take this from the bottom of memory, for
 | |
|  * subsequent nodes place them at node_remap_start_vaddr which contains
 | |
|  * node local data in physically node local memory.  See setup_memory()
 | |
|  * for details.
 | |
|  */
 | |
| static void __init allocate_pgdat(int nid)
 | |
| {
 | |
| 	char buf[16];
 | |
| 
 | |
| 	if (node_has_online_mem(nid) && node_remap_start_vaddr[nid])
 | |
| 		NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
 | |
| 	else {
 | |
| 		unsigned long pgdat_phys;
 | |
| 		pgdat_phys = find_e820_area(min_low_pfn<<PAGE_SHIFT,
 | |
| 				 max_pfn_mapped<<PAGE_SHIFT,
 | |
| 				 sizeof(pg_data_t),
 | |
| 				 PAGE_SIZE);
 | |
| 		NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
 | |
| 		memset(buf, 0, sizeof(buf));
 | |
| 		sprintf(buf, "NODE_DATA %d",  nid);
 | |
| 		reserve_early(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
 | |
| 	}
 | |
| 	printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
 | |
| 		nid, (unsigned long)NODE_DATA(nid));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
 | |
|  * virtual address space (KVA) is reserved and portions of nodes are mapped
 | |
|  * using it. This is to allow node-local memory to be allocated for
 | |
|  * structures that would normally require ZONE_NORMAL. The memory is
 | |
|  * allocated with alloc_remap() and callers should be prepared to allocate
 | |
|  * from the bootmem allocator instead.
 | |
|  */
 | |
| static unsigned long node_remap_start_pfn[MAX_NUMNODES];
 | |
| static void *node_remap_end_vaddr[MAX_NUMNODES];
 | |
| static void *node_remap_alloc_vaddr[MAX_NUMNODES];
 | |
| static unsigned long node_remap_offset[MAX_NUMNODES];
 | |
| 
 | |
| void *alloc_remap(int nid, unsigned long size)
 | |
| {
 | |
| 	void *allocation = node_remap_alloc_vaddr[nid];
 | |
| 
 | |
| 	size = ALIGN(size, L1_CACHE_BYTES);
 | |
| 
 | |
| 	if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
 | |
| 		return NULL;
 | |
| 
 | |
| 	node_remap_alloc_vaddr[nid] += size;
 | |
| 	memset(allocation, 0, size);
 | |
| 
 | |
| 	return allocation;
 | |
| }
 | |
| 
 | |
| static void __init remap_numa_kva(void)
 | |
| {
 | |
| 	void *vaddr;
 | |
| 	unsigned long pfn;
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
 | |
| 		for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
 | |
| 			vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
 | |
| 			printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
 | |
| 				(unsigned long)vaddr,
 | |
| 				node_remap_start_pfn[node] + pfn);
 | |
| 			set_pmd_pfn((ulong) vaddr, 
 | |
| 				node_remap_start_pfn[node] + pfn, 
 | |
| 				PAGE_KERNEL_LARGE);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| /**
 | |
|  * resume_map_numa_kva - add KVA mapping to the temporary page tables created
 | |
|  *                       during resume from hibernation
 | |
|  * @pgd_base - temporary resume page directory
 | |
|  */
 | |
| void resume_map_numa_kva(pgd_t *pgd_base)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		unsigned long start_va, start_pfn, size, pfn;
 | |
| 
 | |
| 		start_va = (unsigned long)node_remap_start_vaddr[node];
 | |
| 		start_pfn = node_remap_start_pfn[node];
 | |
| 		size = node_remap_size[node];
 | |
| 
 | |
| 		printk(KERN_DEBUG "%s: node %d\n", __func__, node);
 | |
| 
 | |
| 		for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) {
 | |
| 			unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
 | |
| 			pgd_t *pgd = pgd_base + pgd_index(vaddr);
 | |
| 			pud_t *pud = pud_offset(pgd, vaddr);
 | |
| 			pmd_t *pmd = pmd_offset(pud, vaddr);
 | |
| 
 | |
| 			set_pmd(pmd, pfn_pmd(start_pfn + pfn,
 | |
| 						PAGE_KERNEL_LARGE_EXEC));
 | |
| 
 | |
| 			printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
 | |
| 				__func__, vaddr, start_pfn + pfn);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static __init unsigned long calculate_numa_remap_pages(void)
 | |
| {
 | |
| 	int nid;
 | |
| 	unsigned long size, reserve_pages = 0;
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		u64 node_kva_target;
 | |
| 		u64 node_kva_final;
 | |
| 
 | |
| 		/*
 | |
| 		 * The acpi/srat node info can show hot-add memroy zones
 | |
| 		 * where memory could be added but not currently present.
 | |
| 		 */
 | |
| 		printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
 | |
| 			nid, node_start_pfn[nid], node_end_pfn[nid]);
 | |
| 		if (node_start_pfn[nid] > max_pfn)
 | |
| 			continue;
 | |
| 		if (!node_end_pfn[nid])
 | |
| 			continue;
 | |
| 		if (node_end_pfn[nid] > max_pfn)
 | |
| 			node_end_pfn[nid] = max_pfn;
 | |
| 
 | |
| 		/* ensure the remap includes space for the pgdat. */
 | |
| 		size = node_remap_size[nid] + sizeof(pg_data_t);
 | |
| 
 | |
| 		/* convert size to large (pmd size) pages, rounding up */
 | |
| 		size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
 | |
| 		/* now the roundup is correct, convert to PAGE_SIZE pages */
 | |
| 		size = size * PTRS_PER_PTE;
 | |
| 
 | |
| 		node_kva_target = round_down(node_end_pfn[nid] - size,
 | |
| 						 PTRS_PER_PTE);
 | |
| 		node_kva_target <<= PAGE_SHIFT;
 | |
| 		do {
 | |
| 			node_kva_final = find_e820_area(node_kva_target,
 | |
| 					((u64)node_end_pfn[nid])<<PAGE_SHIFT,
 | |
| 						((u64)size)<<PAGE_SHIFT,
 | |
| 						LARGE_PAGE_BYTES);
 | |
| 			node_kva_target -= LARGE_PAGE_BYTES;
 | |
| 		} while (node_kva_final == -1ULL &&
 | |
| 			 (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid]));
 | |
| 
 | |
| 		if (node_kva_final == -1ULL)
 | |
| 			panic("Can not get kva ram\n");
 | |
| 
 | |
| 		node_remap_size[nid] = size;
 | |
| 		node_remap_offset[nid] = reserve_pages;
 | |
| 		reserve_pages += size;
 | |
| 		printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of"
 | |
| 				  " node %d at %llx\n",
 | |
| 				size, nid, node_kva_final>>PAGE_SHIFT);
 | |
| 
 | |
| 		/*
 | |
| 		 *  prevent kva address below max_low_pfn want it on system
 | |
| 		 *  with less memory later.
 | |
| 		 *  layout will be: KVA address , KVA RAM
 | |
| 		 *
 | |
| 		 *  we are supposed to only record the one less then max_low_pfn
 | |
| 		 *  but we could have some hole in high memory, and it will only
 | |
| 		 *  check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide
 | |
| 		 *  to use it as free.
 | |
| 		 *  So reserve_early here, hope we don't run out of that array
 | |
| 		 */
 | |
| 		reserve_early(node_kva_final,
 | |
| 			      node_kva_final+(((u64)size)<<PAGE_SHIFT),
 | |
| 			      "KVA RAM");
 | |
| 
 | |
| 		node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT;
 | |
| 		remove_active_range(nid, node_remap_start_pfn[nid],
 | |
| 					 node_remap_start_pfn[nid] + size);
 | |
| 	}
 | |
| 	printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
 | |
| 			reserve_pages);
 | |
| 	return reserve_pages;
 | |
| }
 | |
| 
 | |
| static void init_remap_allocator(int nid)
 | |
| {
 | |
| 	node_remap_start_vaddr[nid] = pfn_to_kaddr(
 | |
| 			kva_start_pfn + node_remap_offset[nid]);
 | |
| 	node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
 | |
| 		(node_remap_size[nid] * PAGE_SIZE);
 | |
| 	node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
 | |
| 		ALIGN(sizeof(pg_data_t), PAGE_SIZE);
 | |
| 
 | |
| 	printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
 | |
| 		(ulong) node_remap_start_vaddr[nid],
 | |
| 		(ulong) node_remap_end_vaddr[nid]);
 | |
| }
 | |
| 
 | |
| void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
 | |
| 				int acpi, int k8)
 | |
| {
 | |
| 	int nid;
 | |
| 	long kva_target_pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * When mapping a NUMA machine we allocate the node_mem_map arrays
 | |
| 	 * from node local memory.  They are then mapped directly into KVA
 | |
| 	 * between zone normal and vmalloc space.  Calculate the size of
 | |
| 	 * this space and use it to adjust the boundary between ZONE_NORMAL
 | |
| 	 * and ZONE_HIGHMEM.
 | |
| 	 */
 | |
| 
 | |
| 	get_memcfg_numa();
 | |
| 
 | |
| 	kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE);
 | |
| 
 | |
| 	kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE);
 | |
| 	do {
 | |
| 		kva_start_pfn = find_e820_area(kva_target_pfn<<PAGE_SHIFT,
 | |
| 					max_low_pfn<<PAGE_SHIFT,
 | |
| 					kva_pages<<PAGE_SHIFT,
 | |
| 					PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT;
 | |
| 		kva_target_pfn -= PTRS_PER_PTE;
 | |
| 	} while (kva_start_pfn == -1UL && kva_target_pfn > min_low_pfn);
 | |
| 
 | |
| 	if (kva_start_pfn == -1UL)
 | |
| 		panic("Can not get kva space\n");
 | |
| 
 | |
| 	printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
 | |
| 		kva_start_pfn, max_low_pfn);
 | |
| 	printk(KERN_INFO "max_pfn = %lx\n", max_pfn);
 | |
| 
 | |
| 	/* avoid clash with initrd */
 | |
| 	reserve_early(kva_start_pfn<<PAGE_SHIFT,
 | |
| 		      (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
 | |
| 		     "KVA PG");
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	highstart_pfn = highend_pfn = max_pfn;
 | |
| 	if (max_pfn > max_low_pfn)
 | |
| 		highstart_pfn = max_low_pfn;
 | |
| 	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
 | |
| 	       pages_to_mb(highend_pfn - highstart_pfn));
 | |
| 	num_physpages = highend_pfn;
 | |
| 	high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
 | |
| #else
 | |
| 	num_physpages = max_low_pfn;
 | |
| 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
 | |
| #endif
 | |
| 	printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
 | |
| 			pages_to_mb(max_low_pfn));
 | |
| 	printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
 | |
| 			max_low_pfn, highstart_pfn);
 | |
| 
 | |
| 	printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
 | |
| 			(ulong) pfn_to_kaddr(max_low_pfn));
 | |
| 	for_each_online_node(nid) {
 | |
| 		init_remap_allocator(nid);
 | |
| 
 | |
| 		allocate_pgdat(nid);
 | |
| 	}
 | |
| 	remap_numa_kva();
 | |
| 
 | |
| 	printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
 | |
| 			(ulong) pfn_to_kaddr(highstart_pfn));
 | |
| 	for_each_online_node(nid)
 | |
| 		propagate_e820_map_node(nid);
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 | |
| 		NODE_DATA(nid)->node_id = nid;
 | |
| #ifndef CONFIG_NO_BOOTMEM
 | |
| 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	setup_bootmem_allocator();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| static int paddr_to_nid(u64 addr)
 | |
| {
 | |
| 	int nid;
 | |
| 	unsigned long pfn = PFN_DOWN(addr);
 | |
| 
 | |
| 	for_each_node(nid)
 | |
| 		if (node_start_pfn[nid] <= pfn &&
 | |
| 		    pfn < node_end_pfn[nid])
 | |
| 			return nid;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is used to ask node id BEFORE memmap and mem_section's
 | |
|  * initialization (pfn_to_nid() can't be used yet).
 | |
|  * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
 | |
|  */
 | |
| int memory_add_physaddr_to_nid(u64 addr)
 | |
| {
 | |
| 	int nid = paddr_to_nid(addr);
 | |
| 	return (nid >= 0) ? nid : 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 | |
| #endif
 | |
| 
 |