 f45e518361
			
		
	
	
	f45e518361
	
	
	
		
			
			Along the lines of d6c585a434, add IRQF_TIMER
flag for all timer interrupts  This ensures that timer interrupts won't be
disabled on suspend and not threaded for PREEMPT_RT.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
	
			
		
			
				
	
	
		
			189 lines
		
	
	
	
		
			4.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
	
		
			4.8 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/types.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/clockchips.h>
 | |
| 
 | |
| #include <asm/i8253.h>
 | |
| #include <asm/sni.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm-generic/rtc.h>
 | |
| 
 | |
| #define SNI_CLOCK_TICK_RATE     3686400
 | |
| #define SNI_COUNTER2_DIV        64
 | |
| #define SNI_COUNTER0_DIV        ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
 | |
| 
 | |
| static void a20r_set_mode(enum clock_event_mode mode,
 | |
|                           struct clock_event_device *evt)
 | |
| {
 | |
| 	switch (mode) {
 | |
| 	case CLOCK_EVT_MODE_PERIODIC:
 | |
| 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
 | |
| 		wmb();
 | |
| 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV;
 | |
| 		wmb();
 | |
| 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  0) = SNI_COUNTER0_DIV >> 8;
 | |
| 		wmb();
 | |
| 
 | |
| 		*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
 | |
| 		wmb();
 | |
| 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV;
 | |
| 		wmb();
 | |
| 		*(volatile u8 *)(A20R_PT_CLOCK_BASE +  8) = SNI_COUNTER2_DIV >> 8;
 | |
| 		wmb();
 | |
| 
 | |
|                 break;
 | |
|         case CLOCK_EVT_MODE_ONESHOT:
 | |
|         case CLOCK_EVT_MODE_UNUSED:
 | |
|         case CLOCK_EVT_MODE_SHUTDOWN:
 | |
|                 break;
 | |
|         case CLOCK_EVT_MODE_RESUME:
 | |
|                 break;
 | |
|         }
 | |
| }
 | |
| 
 | |
| static struct clock_event_device a20r_clockevent_device = {
 | |
| 	.name		= "a20r-timer",
 | |
| 	.features	= CLOCK_EVT_FEAT_PERIODIC,
 | |
| 
 | |
| 	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
 | |
| 
 | |
| 	.rating		= 300,
 | |
| 	.irq		= SNI_A20R_IRQ_TIMER,
 | |
| 	.set_mode	= a20r_set_mode,
 | |
| };
 | |
| 
 | |
| static irqreturn_t a20r_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct clock_event_device *cd = dev_id;
 | |
| 
 | |
| 	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
 | |
| 	wmb();
 | |
| 
 | |
| 	cd->event_handler(cd);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static struct irqaction a20r_irqaction = {
 | |
| 	.handler	= a20r_interrupt,
 | |
| 	.flags		= IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
 | |
| 	.name		= "a20r-timer",
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * a20r platform uses 2 counters to divide the input frequency.
 | |
|  * Counter 2 output is connected to Counter 0 & 1 input.
 | |
|  */
 | |
| static void __init sni_a20r_timer_setup(void)
 | |
| {
 | |
| 	struct clock_event_device *cd = &a20r_clockevent_device;
 | |
| 	struct irqaction *action = &a20r_irqaction;
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 
 | |
| 	cd->cpumask             = cpumask_of(cpu);
 | |
| 	clockevents_register_device(cd);
 | |
| 	action->dev_id = cd;
 | |
| 	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
 | |
| }
 | |
| 
 | |
| #define SNI_8254_TICK_RATE        1193182UL
 | |
| 
 | |
| #define SNI_8254_TCSAMP_COUNTER   ((SNI_8254_TICK_RATE / HZ) + 255)
 | |
| 
 | |
| static __init unsigned long dosample(void)
 | |
| {
 | |
| 	u32 ct0, ct1;
 | |
| 	volatile u8 msb, lsb;
 | |
| 
 | |
| 	/* Start the counter. */
 | |
| 	outb_p(0x34, 0x43);
 | |
| 	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
 | |
| 	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
 | |
| 
 | |
| 	/* Get initial counter invariant */
 | |
| 	ct0 = read_c0_count();
 | |
| 
 | |
| 	/* Latch and spin until top byte of counter0 is zero */
 | |
| 	do {
 | |
| 		outb(0x00, 0x43);
 | |
| 		lsb = inb(0x40);
 | |
| 		msb = inb(0x40);
 | |
| 		ct1 = read_c0_count();
 | |
| 	} while (msb);
 | |
| 
 | |
| 	/* Stop the counter. */
 | |
| 	outb(0x38, 0x43);
 | |
| 	/*
 | |
| 	 * Return the difference, this is how far the r4k counter increments
 | |
| 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
 | |
| 	 * clock (= 1000000 / HZ / 2).
 | |
| 	 */
 | |
| 	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
 | |
| 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Here we need to calibrate the cycle counter to at least be close.
 | |
|  */
 | |
| void __init plat_time_init(void)
 | |
| {
 | |
| 	unsigned long r4k_ticks[3];
 | |
| 	unsigned long r4k_tick;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out the r4k offset, the algorithm is very simple and works in
 | |
| 	 * _all_ cases as long as the 8254 counter register itself works ok (as
 | |
| 	 * an interrupt driving timer it does not because of bug, this is why
 | |
| 	 * we are using the onchip r4k counter/compare register to serve this
 | |
| 	 * purpose, but for r4k_offset calculation it will work ok for us).
 | |
| 	 * There are other very complicated ways of performing this calculation
 | |
| 	 * but this one works just fine so I am not going to futz around. ;-)
 | |
| 	 */
 | |
| 	printk(KERN_INFO "Calibrating system timer... ");
 | |
| 	dosample();	/* Prime cache. */
 | |
| 	dosample();	/* Prime cache. */
 | |
| 	/* Zero is NOT an option. */
 | |
| 	do {
 | |
| 		r4k_ticks[0] = dosample();
 | |
| 	} while (!r4k_ticks[0]);
 | |
| 	do {
 | |
| 		r4k_ticks[1] = dosample();
 | |
| 	} while (!r4k_ticks[1]);
 | |
| 
 | |
| 	if (r4k_ticks[0] != r4k_ticks[1]) {
 | |
| 		printk("warning: timer counts differ, retrying... ");
 | |
| 		r4k_ticks[2] = dosample();
 | |
| 		if (r4k_ticks[2] == r4k_ticks[0]
 | |
| 		    || r4k_ticks[2] == r4k_ticks[1])
 | |
| 			r4k_tick = r4k_ticks[2];
 | |
| 		else {
 | |
| 			printk("disagreement, using average... ");
 | |
| 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
 | |
| 				   + r4k_ticks[2]) / 3;
 | |
| 		}
 | |
| 	} else
 | |
| 		r4k_tick = r4k_ticks[0];
 | |
| 
 | |
| 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
 | |
| 		(int) (r4k_tick / (500000 / HZ)),
 | |
| 		(int) (r4k_tick % (500000 / HZ)));
 | |
| 
 | |
| 	mips_hpt_frequency = r4k_tick * HZ;
 | |
| 
 | |
| 	switch (sni_brd_type) {
 | |
| 	case SNI_BRD_10:
 | |
| 	case SNI_BRD_10NEW:
 | |
| 	case SNI_BRD_TOWER_OASIC:
 | |
| 	case SNI_BRD_MINITOWER:
 | |
| 		sni_a20r_timer_setup();
 | |
| 		break;
 | |
| 	}
 | |
| 	setup_pit_timer();
 | |
| }
 | |
| 
 | |
| void read_persistent_clock(struct timespec *ts)
 | |
| {
 | |
| 	ts->tv_sec = -1;
 | |
| 	ts->tv_nsec = 0;
 | |
| }
 |