 2fe0626080
			
		
	
	
	2fe0626080
	
	
	
		
			
			Signed-off-by: Roel Kluin <roel.kluin@gmail.com> To: linux-mips@linux-mips.org To: Andrew Morton <akpm@linux-foundation.org> To: LKML <linux-kernel@vger.kernel.org> Patchwork: http://patchwork.linux-mips.org/patch/860/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
		
			
				
	
	
		
			244 lines
		
	
	
	
		
			5.2 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			244 lines
		
	
	
	
		
			5.2 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* IEEE754 floating point arithmetic
 | |
|  * single precision
 | |
|  */
 | |
| /*
 | |
|  * MIPS floating point support
 | |
|  * Copyright (C) 1994-2000 Algorithmics Ltd.
 | |
|  * http://www.algor.co.uk
 | |
|  *
 | |
|  * ########################################################################
 | |
|  *
 | |
|  *  This program is free software; you can distribute it and/or modify it
 | |
|  *  under the terms of the GNU General Public License (Version 2) as
 | |
|  *  published by the Free Software Foundation.
 | |
|  *
 | |
|  *  This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  *  for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 | |
|  *
 | |
|  * ########################################################################
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "ieee754sp.h"
 | |
| 
 | |
| int ieee754sp_class(ieee754sp x)
 | |
| {
 | |
| 	COMPXSP;
 | |
| 	EXPLODEXSP;
 | |
| 	return xc;
 | |
| }
 | |
| 
 | |
| int ieee754sp_isnan(ieee754sp x)
 | |
| {
 | |
| 	return ieee754sp_class(x) >= IEEE754_CLASS_SNAN;
 | |
| }
 | |
| 
 | |
| int ieee754sp_issnan(ieee754sp x)
 | |
| {
 | |
| 	assert(ieee754sp_isnan(x));
 | |
| 	return (SPMANT(x) & SP_MBIT(SP_MBITS-1));
 | |
| }
 | |
| 
 | |
| 
 | |
| ieee754sp ieee754sp_xcpt(ieee754sp r, const char *op, ...)
 | |
| {
 | |
| 	struct ieee754xctx ax;
 | |
| 
 | |
| 	if (!TSTX())
 | |
| 		return r;
 | |
| 
 | |
| 	ax.op = op;
 | |
| 	ax.rt = IEEE754_RT_SP;
 | |
| 	ax.rv.sp = r;
 | |
| 	va_start(ax.ap, op);
 | |
| 	ieee754_xcpt(&ax);
 | |
| 	va_end(ax.ap);
 | |
| 	return ax.rv.sp;
 | |
| }
 | |
| 
 | |
| ieee754sp ieee754sp_nanxcpt(ieee754sp r, const char *op, ...)
 | |
| {
 | |
| 	struct ieee754xctx ax;
 | |
| 
 | |
| 	assert(ieee754sp_isnan(r));
 | |
| 
 | |
| 	if (!ieee754sp_issnan(r))	/* QNAN does not cause invalid op !! */
 | |
| 		return r;
 | |
| 
 | |
| 	if (!SETANDTESTCX(IEEE754_INVALID_OPERATION)) {
 | |
| 		/* not enabled convert to a quiet NaN */
 | |
| 		SPMANT(r) &= (~SP_MBIT(SP_MBITS-1));
 | |
| 		if (ieee754sp_isnan(r))
 | |
| 			return r;
 | |
| 		else
 | |
| 			return ieee754sp_indef();
 | |
| 	}
 | |
| 
 | |
| 	ax.op = op;
 | |
| 	ax.rt = 0;
 | |
| 	ax.rv.sp = r;
 | |
| 	va_start(ax.ap, op);
 | |
| 	ieee754_xcpt(&ax);
 | |
| 	va_end(ax.ap);
 | |
| 	return ax.rv.sp;
 | |
| }
 | |
| 
 | |
| ieee754sp ieee754sp_bestnan(ieee754sp x, ieee754sp y)
 | |
| {
 | |
| 	assert(ieee754sp_isnan(x));
 | |
| 	assert(ieee754sp_isnan(y));
 | |
| 
 | |
| 	if (SPMANT(x) > SPMANT(y))
 | |
| 		return x;
 | |
| 	else
 | |
| 		return y;
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned get_rounding(int sn, unsigned xm)
 | |
| {
 | |
| 	/* inexact must round of 3 bits
 | |
| 	 */
 | |
| 	if (xm & (SP_MBIT(3) - 1)) {
 | |
| 		switch (ieee754_csr.rm) {
 | |
| 		case IEEE754_RZ:
 | |
| 			break;
 | |
| 		case IEEE754_RN:
 | |
| 			xm += 0x3 + ((xm >> 3) & 1);
 | |
| 			/* xm += (xm&0x8)?0x4:0x3 */
 | |
| 			break;
 | |
| 		case IEEE754_RU:	/* toward +Infinity */
 | |
| 			if (!sn)	/* ?? */
 | |
| 				xm += 0x8;
 | |
| 			break;
 | |
| 		case IEEE754_RD:	/* toward -Infinity */
 | |
| 			if (sn)	/* ?? */
 | |
| 				xm += 0x8;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return xm;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* generate a normal/denormal number with over,under handling
 | |
|  * sn is sign
 | |
|  * xe is an unbiased exponent
 | |
|  * xm is 3bit extended precision value.
 | |
|  */
 | |
| ieee754sp ieee754sp_format(int sn, int xe, unsigned xm)
 | |
| {
 | |
| 	assert(xm);		/* we don't gen exact zeros (probably should) */
 | |
| 
 | |
| 	assert((xm >> (SP_MBITS + 1 + 3)) == 0);	/* no execess */
 | |
| 	assert(xm & (SP_HIDDEN_BIT << 3));
 | |
| 
 | |
| 	if (xe < SP_EMIN) {
 | |
| 		/* strip lower bits */
 | |
| 		int es = SP_EMIN - xe;
 | |
| 
 | |
| 		if (ieee754_csr.nod) {
 | |
| 			SETCX(IEEE754_UNDERFLOW);
 | |
| 			SETCX(IEEE754_INEXACT);
 | |
| 
 | |
| 			switch(ieee754_csr.rm) {
 | |
| 			case IEEE754_RN:
 | |
| 			case IEEE754_RZ:
 | |
| 				return ieee754sp_zero(sn);
 | |
| 			case IEEE754_RU:      /* toward +Infinity */
 | |
| 				if(sn == 0)
 | |
| 					return ieee754sp_min(0);
 | |
| 				else
 | |
| 					return ieee754sp_zero(1);
 | |
| 			case IEEE754_RD:      /* toward -Infinity */
 | |
| 				if(sn == 0)
 | |
| 					return ieee754sp_zero(0);
 | |
| 				else
 | |
| 					return ieee754sp_min(1);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (xe == SP_EMIN - 1
 | |
| 				&& get_rounding(sn, xm) >> (SP_MBITS + 1 + 3))
 | |
| 		{
 | |
| 			/* Not tiny after rounding */
 | |
| 			SETCX(IEEE754_INEXACT);
 | |
| 			xm = get_rounding(sn, xm);
 | |
| 			xm >>= 1;
 | |
| 			/* Clear grs bits */
 | |
| 			xm &= ~(SP_MBIT(3) - 1);
 | |
| 			xe++;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* sticky right shift es bits
 | |
| 			 */
 | |
| 			SPXSRSXn(es);
 | |
| 			assert((xm & (SP_HIDDEN_BIT << 3)) == 0);
 | |
| 			assert(xe == SP_EMIN);
 | |
| 		}
 | |
| 	}
 | |
| 	if (xm & (SP_MBIT(3) - 1)) {
 | |
| 		SETCX(IEEE754_INEXACT);
 | |
| 		if ((xm & (SP_HIDDEN_BIT << 3)) == 0) {
 | |
| 			SETCX(IEEE754_UNDERFLOW);
 | |
| 		}
 | |
| 
 | |
| 		/* inexact must round of 3 bits
 | |
| 		 */
 | |
| 		xm = get_rounding(sn, xm);
 | |
| 		/* adjust exponent for rounding add overflowing
 | |
| 		 */
 | |
| 		if (xm >> (SP_MBITS + 1 + 3)) {
 | |
| 			/* add causes mantissa overflow */
 | |
| 			xm >>= 1;
 | |
| 			xe++;
 | |
| 		}
 | |
| 	}
 | |
| 	/* strip grs bits */
 | |
| 	xm >>= 3;
 | |
| 
 | |
| 	assert((xm >> (SP_MBITS + 1)) == 0);	/* no execess */
 | |
| 	assert(xe >= SP_EMIN);
 | |
| 
 | |
| 	if (xe > SP_EMAX) {
 | |
| 		SETCX(IEEE754_OVERFLOW);
 | |
| 		SETCX(IEEE754_INEXACT);
 | |
| 		/* -O can be table indexed by (rm,sn) */
 | |
| 		switch (ieee754_csr.rm) {
 | |
| 		case IEEE754_RN:
 | |
| 			return ieee754sp_inf(sn);
 | |
| 		case IEEE754_RZ:
 | |
| 			return ieee754sp_max(sn);
 | |
| 		case IEEE754_RU:	/* toward +Infinity */
 | |
| 			if (sn == 0)
 | |
| 				return ieee754sp_inf(0);
 | |
| 			else
 | |
| 				return ieee754sp_max(1);
 | |
| 		case IEEE754_RD:	/* toward -Infinity */
 | |
| 			if (sn == 0)
 | |
| 				return ieee754sp_max(0);
 | |
| 			else
 | |
| 				return ieee754sp_inf(1);
 | |
| 		}
 | |
| 	}
 | |
| 	/* gen norm/denorm/zero */
 | |
| 
 | |
| 	if ((xm & SP_HIDDEN_BIT) == 0) {
 | |
| 		/* we underflow (tiny/zero) */
 | |
| 		assert(xe == SP_EMIN);
 | |
| 		if (ieee754_csr.mx & IEEE754_UNDERFLOW)
 | |
| 			SETCX(IEEE754_UNDERFLOW);
 | |
| 		return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm);
 | |
| 	} else {
 | |
| 		assert((xm >> (SP_MBITS + 1)) == 0);	/* no execess */
 | |
| 		assert(xm & SP_HIDDEN_BIT);
 | |
| 
 | |
| 		return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT);
 | |
| 	}
 | |
| }
 |