 fd341abba6
			
		
	
	
	fd341abba6
	
	
	
		
			
			Use the generic ptrace_resume code for PTRACE_SYSCALL, PTRACE_CONT, PTRACE_KILL and PTRACE_SINGLESTEP. This implies defining arch_has_single_step in <asm/ptrace.h> and implementing the user_enable_single_step and user_disable_single_step functions, which also causes the breakpoint information to be cleared on fork, which could be considered a bug fix. Also the TIF_SYSCALL_TRACE thread flag is now cleared on PTRACE_KILL which it previously wasn't, which is consistent with all architectures using the modern ptrace code. Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Acked-by: Matt Turner <mattst88@gmail.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Richard Henderson <rth@twiddle.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			337 lines
		
	
	
	
		
			9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			337 lines
		
	
	
	
		
			9 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ptrace.c */
 | |
| /* By Ross Biro 1/23/92 */
 | |
| /* edited by Linus Torvalds */
 | |
| /* mangled further by Bob Manson (manson@santafe.edu) */
 | |
| /* more mutilation by David Mosberger (davidm@azstarnet.com) */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/signal.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/fpu.h>
 | |
| 
 | |
| #include "proto.h"
 | |
| 
 | |
| #define DEBUG	DBG_MEM
 | |
| #undef DEBUG
 | |
| 
 | |
| #ifdef DEBUG
 | |
| enum {
 | |
| 	DBG_MEM		= (1<<0),
 | |
| 	DBG_BPT		= (1<<1),
 | |
| 	DBG_MEM_ALL	= (1<<2)
 | |
| };
 | |
| #define DBG(fac,args)	{if ((fac) & DEBUG) printk args;}
 | |
| #else
 | |
| #define DBG(fac,args)
 | |
| #endif
 | |
| 
 | |
| #define BREAKINST	0x00000080	/* call_pal bpt */
 | |
| 
 | |
| /*
 | |
|  * does not yet catch signals sent when the child dies.
 | |
|  * in exit.c or in signal.c.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Processes always block with the following stack-layout:
 | |
|  *
 | |
|  *  +================================+ <---- task + 2*PAGE_SIZE
 | |
|  *  | PALcode saved frame (ps, pc,   | ^
 | |
|  *  | gp, a0, a1, a2)		     | |
 | |
|  *  +================================+ | struct pt_regs
 | |
|  *  |	        		     | |
 | |
|  *  | frame generated by SAVE_ALL    | |
 | |
|  *  |	        		     | v
 | |
|  *  +================================+
 | |
|  *  |	        		     | ^
 | |
|  *  | frame saved by do_switch_stack | | struct switch_stack
 | |
|  *  |	        		     | v
 | |
|  *  +================================+
 | |
|  */
 | |
| 
 | |
| /* 
 | |
|  * The following table maps a register index into the stack offset at
 | |
|  * which the register is saved.  Register indices are 0-31 for integer
 | |
|  * regs, 32-63 for fp regs, and 64 for the pc.  Notice that sp and
 | |
|  * zero have no stack-slot and need to be treated specially (see
 | |
|  * get_reg/put_reg below).
 | |
|  */
 | |
| enum {
 | |
| 	REG_R0 = 0, REG_F0 = 32, REG_FPCR = 63, REG_PC = 64
 | |
| };
 | |
| 
 | |
| #define PT_REG(reg) \
 | |
|   (PAGE_SIZE*2 - sizeof(struct pt_regs) + offsetof(struct pt_regs, reg))
 | |
| 
 | |
| #define SW_REG(reg) \
 | |
|  (PAGE_SIZE*2 - sizeof(struct pt_regs) - sizeof(struct switch_stack) \
 | |
|   + offsetof(struct switch_stack, reg))
 | |
| 
 | |
| static int regoff[] = {
 | |
| 	PT_REG(	   r0), PT_REG(	   r1), PT_REG(	   r2), PT_REG(	  r3),
 | |
| 	PT_REG(	   r4), PT_REG(	   r5), PT_REG(	   r6), PT_REG(	  r7),
 | |
| 	PT_REG(	   r8), SW_REG(	   r9), SW_REG(	  r10), SW_REG(	 r11),
 | |
| 	SW_REG(	  r12), SW_REG(	  r13), SW_REG(	  r14), SW_REG(	 r15),
 | |
| 	PT_REG(	  r16), PT_REG(	  r17), PT_REG(	  r18), PT_REG(	 r19),
 | |
| 	PT_REG(	  r20), PT_REG(	  r21), PT_REG(	  r22), PT_REG(	 r23),
 | |
| 	PT_REG(	  r24), PT_REG(	  r25), PT_REG(	  r26), PT_REG(	 r27),
 | |
| 	PT_REG(	  r28), PT_REG(	   gp),		   -1,		   -1,
 | |
| 	SW_REG(fp[ 0]), SW_REG(fp[ 1]), SW_REG(fp[ 2]), SW_REG(fp[ 3]),
 | |
| 	SW_REG(fp[ 4]), SW_REG(fp[ 5]), SW_REG(fp[ 6]), SW_REG(fp[ 7]),
 | |
| 	SW_REG(fp[ 8]), SW_REG(fp[ 9]), SW_REG(fp[10]), SW_REG(fp[11]),
 | |
| 	SW_REG(fp[12]), SW_REG(fp[13]), SW_REG(fp[14]), SW_REG(fp[15]),
 | |
| 	SW_REG(fp[16]), SW_REG(fp[17]), SW_REG(fp[18]), SW_REG(fp[19]),
 | |
| 	SW_REG(fp[20]), SW_REG(fp[21]), SW_REG(fp[22]), SW_REG(fp[23]),
 | |
| 	SW_REG(fp[24]), SW_REG(fp[25]), SW_REG(fp[26]), SW_REG(fp[27]),
 | |
| 	SW_REG(fp[28]), SW_REG(fp[29]), SW_REG(fp[30]), SW_REG(fp[31]),
 | |
| 	PT_REG(	   pc)
 | |
| };
 | |
| 
 | |
| static unsigned long zero;
 | |
| 
 | |
| /*
 | |
|  * Get address of register REGNO in task TASK.
 | |
|  */
 | |
| static unsigned long *
 | |
| get_reg_addr(struct task_struct * task, unsigned long regno)
 | |
| {
 | |
| 	unsigned long *addr;
 | |
| 
 | |
| 	if (regno == 30) {
 | |
| 		addr = &task_thread_info(task)->pcb.usp;
 | |
| 	} else if (regno == 65) {
 | |
| 		addr = &task_thread_info(task)->pcb.unique;
 | |
| 	} else if (regno == 31 || regno > 65) {
 | |
| 		zero = 0;
 | |
| 		addr = &zero;
 | |
| 	} else {
 | |
| 		addr = task_stack_page(task) + regoff[regno];
 | |
| 	}
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get contents of register REGNO in task TASK.
 | |
|  */
 | |
| static unsigned long
 | |
| get_reg(struct task_struct * task, unsigned long regno)
 | |
| {
 | |
| 	/* Special hack for fpcr -- combine hardware and software bits.  */
 | |
| 	if (regno == 63) {
 | |
| 		unsigned long fpcr = *get_reg_addr(task, regno);
 | |
| 		unsigned long swcr
 | |
| 		  = task_thread_info(task)->ieee_state & IEEE_SW_MASK;
 | |
| 		swcr = swcr_update_status(swcr, fpcr);
 | |
| 		return fpcr | swcr;
 | |
| 	}
 | |
| 	return *get_reg_addr(task, regno);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write contents of register REGNO in task TASK.
 | |
|  */
 | |
| static int
 | |
| put_reg(struct task_struct *task, unsigned long regno, unsigned long data)
 | |
| {
 | |
| 	if (regno == 63) {
 | |
| 		task_thread_info(task)->ieee_state
 | |
| 		  = ((task_thread_info(task)->ieee_state & ~IEEE_SW_MASK)
 | |
| 		     | (data & IEEE_SW_MASK));
 | |
| 		data = (data & FPCR_DYN_MASK) | ieee_swcr_to_fpcr(data);
 | |
| 	}
 | |
| 	*get_reg_addr(task, regno) = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| read_int(struct task_struct *task, unsigned long addr, int * data)
 | |
| {
 | |
| 	int copied = access_process_vm(task, addr, data, sizeof(int), 0);
 | |
| 	return (copied == sizeof(int)) ? 0 : -EIO;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| write_int(struct task_struct *task, unsigned long addr, int data)
 | |
| {
 | |
| 	int copied = access_process_vm(task, addr, &data, sizeof(int), 1);
 | |
| 	return (copied == sizeof(int)) ? 0 : -EIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set breakpoint.
 | |
|  */
 | |
| int
 | |
| ptrace_set_bpt(struct task_struct * child)
 | |
| {
 | |
| 	int displ, i, res, reg_b, nsaved = 0;
 | |
| 	unsigned int insn, op_code;
 | |
| 	unsigned long pc;
 | |
| 
 | |
| 	pc  = get_reg(child, REG_PC);
 | |
| 	res = read_int(child, pc, (int *) &insn);
 | |
| 	if (res < 0)
 | |
| 		return res;
 | |
| 
 | |
| 	op_code = insn >> 26;
 | |
| 	if (op_code >= 0x30) {
 | |
| 		/*
 | |
| 		 * It's a branch: instead of trying to figure out
 | |
| 		 * whether the branch will be taken or not, we'll put
 | |
| 		 * a breakpoint at either location.  This is simpler,
 | |
| 		 * more reliable, and probably not a whole lot slower
 | |
| 		 * than the alternative approach of emulating the
 | |
| 		 * branch (emulation can be tricky for fp branches).
 | |
| 		 */
 | |
| 		displ = ((s32)(insn << 11)) >> 9;
 | |
| 		task_thread_info(child)->bpt_addr[nsaved++] = pc + 4;
 | |
| 		if (displ)		/* guard against unoptimized code */
 | |
| 			task_thread_info(child)->bpt_addr[nsaved++]
 | |
| 			  = pc + 4 + displ;
 | |
| 		DBG(DBG_BPT, ("execing branch\n"));
 | |
| 	} else if (op_code == 0x1a) {
 | |
| 		reg_b = (insn >> 16) & 0x1f;
 | |
| 		task_thread_info(child)->bpt_addr[nsaved++] = get_reg(child, reg_b);
 | |
| 		DBG(DBG_BPT, ("execing jump\n"));
 | |
| 	} else {
 | |
| 		task_thread_info(child)->bpt_addr[nsaved++] = pc + 4;
 | |
| 		DBG(DBG_BPT, ("execing normal insn\n"));
 | |
| 	}
 | |
| 
 | |
| 	/* install breakpoints: */
 | |
| 	for (i = 0; i < nsaved; ++i) {
 | |
| 		res = read_int(child, task_thread_info(child)->bpt_addr[i],
 | |
| 			       (int *) &insn);
 | |
| 		if (res < 0)
 | |
| 			return res;
 | |
| 		task_thread_info(child)->bpt_insn[i] = insn;
 | |
| 		DBG(DBG_BPT, ("    -> next_pc=%lx\n",
 | |
| 			      task_thread_info(child)->bpt_addr[i]));
 | |
| 		res = write_int(child, task_thread_info(child)->bpt_addr[i],
 | |
| 				BREAKINST);
 | |
| 		if (res < 0)
 | |
| 			return res;
 | |
| 	}
 | |
| 	task_thread_info(child)->bpt_nsaved = nsaved;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure no single-step breakpoint is pending.  Returns non-zero
 | |
|  * value if child was being single-stepped.
 | |
|  */
 | |
| int
 | |
| ptrace_cancel_bpt(struct task_struct * child)
 | |
| {
 | |
| 	int i, nsaved = task_thread_info(child)->bpt_nsaved;
 | |
| 
 | |
| 	task_thread_info(child)->bpt_nsaved = 0;
 | |
| 
 | |
| 	if (nsaved > 2) {
 | |
| 		printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved);
 | |
| 		nsaved = 2;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nsaved; ++i) {
 | |
| 		write_int(child, task_thread_info(child)->bpt_addr[i],
 | |
| 			  task_thread_info(child)->bpt_insn[i]);
 | |
| 	}
 | |
| 	return (nsaved != 0);
 | |
| }
 | |
| 
 | |
| void user_enable_single_step(struct task_struct *child)
 | |
| {
 | |
| 	/* Mark single stepping.  */
 | |
| 	task_thread_info(child)->bpt_nsaved = -1;
 | |
| }
 | |
| 
 | |
| void user_disable_single_step(struct task_struct *child)
 | |
| {
 | |
| 	ptrace_cancel_bpt(child);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by kernel/ptrace.c when detaching..
 | |
|  *
 | |
|  * Make sure the single step bit is not set.
 | |
|  */
 | |
| void ptrace_disable(struct task_struct *child)
 | |
| { 
 | |
| 	user_disable_single_step(child);
 | |
| }
 | |
| 
 | |
| long arch_ptrace(struct task_struct *child, long request, long addr, long data)
 | |
| {
 | |
| 	unsigned long tmp;
 | |
| 	size_t copied;
 | |
| 	long ret;
 | |
| 
 | |
| 	switch (request) {
 | |
| 	/* When I and D space are separate, these will need to be fixed.  */
 | |
| 	case PTRACE_PEEKTEXT: /* read word at location addr. */
 | |
| 	case PTRACE_PEEKDATA:
 | |
| 		copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0);
 | |
| 		ret = -EIO;
 | |
| 		if (copied != sizeof(tmp))
 | |
| 			break;
 | |
| 		
 | |
| 		force_successful_syscall_return();
 | |
| 		ret = tmp;
 | |
| 		break;
 | |
| 
 | |
| 	/* Read register number ADDR. */
 | |
| 	case PTRACE_PEEKUSR:
 | |
| 		force_successful_syscall_return();
 | |
| 		ret = get_reg(child, addr);
 | |
| 		DBG(DBG_MEM, ("peek $%ld->%#lx\n", addr, ret));
 | |
| 		break;
 | |
| 
 | |
| 	/* When I and D space are separate, this will have to be fixed.  */
 | |
| 	case PTRACE_POKETEXT: /* write the word at location addr. */
 | |
| 	case PTRACE_POKEDATA:
 | |
| 		ret = generic_ptrace_pokedata(child, addr, data);
 | |
| 		break;
 | |
| 
 | |
| 	case PTRACE_POKEUSR: /* write the specified register */
 | |
| 		DBG(DBG_MEM, ("poke $%ld<-%#lx\n", addr, data));
 | |
| 		ret = put_reg(child, addr, data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = ptrace_request(child, request, addr, data);
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| asmlinkage void
 | |
| syscall_trace(void)
 | |
| {
 | |
| 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
 | |
| 		return;
 | |
| 	if (!(current->ptrace & PT_PTRACED))
 | |
| 		return;
 | |
| 	/* The 0x80 provides a way for the tracing parent to distinguish
 | |
| 	   between a syscall stop and SIGTRAP delivery */
 | |
| 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
 | |
| 				 ? 0x80 : 0));
 | |
| 
 | |
| 	/*
 | |
| 	 * This isn't the same as continuing with a signal, but it will do
 | |
| 	 * for normal use.  strace only continues with a signal if the
 | |
| 	 * stopping signal is not SIGTRAP.  -brl
 | |
| 	 */
 | |
| 	if (current->exit_code) {
 | |
| 		send_sig(current->exit_code, current, 1);
 | |
| 		current->exit_code = 0;
 | |
| 	}
 | |
| }
 |