 b995929515
			
		
	
	
	b995929515
	
	
	
		
			
			We didn't check error of btrfs_update_inode(), but that error looks easy to bubble back up. Reviewed-by: David Sterba <dsterba@suse.cz> Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
		
			
				
	
	
		
			3395 lines
		
	
	
	
		
			87 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3395 lines
		
	
	
	
		
			87 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2008 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include "ctree.h"
 | |
| #include "transaction.h"
 | |
| #include "disk-io.h"
 | |
| #include "locking.h"
 | |
| #include "print-tree.h"
 | |
| #include "compat.h"
 | |
| #include "tree-log.h"
 | |
| 
 | |
| /* magic values for the inode_only field in btrfs_log_inode:
 | |
|  *
 | |
|  * LOG_INODE_ALL means to log everything
 | |
|  * LOG_INODE_EXISTS means to log just enough to recreate the inode
 | |
|  * during log replay
 | |
|  */
 | |
| #define LOG_INODE_ALL 0
 | |
| #define LOG_INODE_EXISTS 1
 | |
| 
 | |
| /*
 | |
|  * directory trouble cases
 | |
|  *
 | |
|  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
 | |
|  * log, we must force a full commit before doing an fsync of the directory
 | |
|  * where the unlink was done.
 | |
|  * ---> record transid of last unlink/rename per directory
 | |
|  *
 | |
|  * mkdir foo/some_dir
 | |
|  * normal commit
 | |
|  * rename foo/some_dir foo2/some_dir
 | |
|  * mkdir foo/some_dir
 | |
|  * fsync foo/some_dir/some_file
 | |
|  *
 | |
|  * The fsync above will unlink the original some_dir without recording
 | |
|  * it in its new location (foo2).  After a crash, some_dir will be gone
 | |
|  * unless the fsync of some_file forces a full commit
 | |
|  *
 | |
|  * 2) we must log any new names for any file or dir that is in the fsync
 | |
|  * log. ---> check inode while renaming/linking.
 | |
|  *
 | |
|  * 2a) we must log any new names for any file or dir during rename
 | |
|  * when the directory they are being removed from was logged.
 | |
|  * ---> check inode and old parent dir during rename
 | |
|  *
 | |
|  *  2a is actually the more important variant.  With the extra logging
 | |
|  *  a crash might unlink the old name without recreating the new one
 | |
|  *
 | |
|  * 3) after a crash, we must go through any directories with a link count
 | |
|  * of zero and redo the rm -rf
 | |
|  *
 | |
|  * mkdir f1/foo
 | |
|  * normal commit
 | |
|  * rm -rf f1/foo
 | |
|  * fsync(f1)
 | |
|  *
 | |
|  * The directory f1 was fully removed from the FS, but fsync was never
 | |
|  * called on f1, only its parent dir.  After a crash the rm -rf must
 | |
|  * be replayed.  This must be able to recurse down the entire
 | |
|  * directory tree.  The inode link count fixup code takes care of the
 | |
|  * ugly details.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * stages for the tree walking.  The first
 | |
|  * stage (0) is to only pin down the blocks we find
 | |
|  * the second stage (1) is to make sure that all the inodes
 | |
|  * we find in the log are created in the subvolume.
 | |
|  *
 | |
|  * The last stage is to deal with directories and links and extents
 | |
|  * and all the other fun semantics
 | |
|  */
 | |
| #define LOG_WALK_PIN_ONLY 0
 | |
| #define LOG_WALK_REPLAY_INODES 1
 | |
| #define LOG_WALK_REPLAY_ALL 2
 | |
| 
 | |
| static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root, struct inode *inode,
 | |
| 			     int inode_only);
 | |
| static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root,
 | |
| 			     struct btrfs_path *path, u64 objectid);
 | |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root,
 | |
| 				       struct btrfs_root *log,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       u64 dirid, int del_all);
 | |
| 
 | |
| /*
 | |
|  * tree logging is a special write ahead log used to make sure that
 | |
|  * fsyncs and O_SYNCs can happen without doing full tree commits.
 | |
|  *
 | |
|  * Full tree commits are expensive because they require commonly
 | |
|  * modified blocks to be recowed, creating many dirty pages in the
 | |
|  * extent tree an 4x-6x higher write load than ext3.
 | |
|  *
 | |
|  * Instead of doing a tree commit on every fsync, we use the
 | |
|  * key ranges and transaction ids to find items for a given file or directory
 | |
|  * that have changed in this transaction.  Those items are copied into
 | |
|  * a special tree (one per subvolume root), that tree is written to disk
 | |
|  * and then the fsync is considered complete.
 | |
|  *
 | |
|  * After a crash, items are copied out of the log-tree back into the
 | |
|  * subvolume tree.  Any file data extents found are recorded in the extent
 | |
|  * allocation tree, and the log-tree freed.
 | |
|  *
 | |
|  * The log tree is read three times, once to pin down all the extents it is
 | |
|  * using in ram and once, once to create all the inodes logged in the tree
 | |
|  * and once to do all the other items.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * start a sub transaction and setup the log tree
 | |
|  * this increments the log tree writer count to make the people
 | |
|  * syncing the tree wait for us to finish
 | |
|  */
 | |
| static int start_log_trans(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root)
 | |
| {
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	if (root->log_root) {
 | |
| 		if (!root->log_start_pid) {
 | |
| 			root->log_start_pid = current->pid;
 | |
| 			root->log_multiple_pids = false;
 | |
| 		} else if (root->log_start_pid != current->pid) {
 | |
| 			root->log_multiple_pids = true;
 | |
| 		}
 | |
| 
 | |
| 		root->log_batch++;
 | |
| 		atomic_inc(&root->log_writers);
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	root->log_multiple_pids = false;
 | |
| 	root->log_start_pid = current->pid;
 | |
| 	mutex_lock(&root->fs_info->tree_log_mutex);
 | |
| 	if (!root->fs_info->log_root_tree) {
 | |
| 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
 | |
| 		if (ret)
 | |
| 			err = ret;
 | |
| 	}
 | |
| 	if (err == 0 && !root->log_root) {
 | |
| 		ret = btrfs_add_log_tree(trans, root);
 | |
| 		if (ret)
 | |
| 			err = ret;
 | |
| 	}
 | |
| 	mutex_unlock(&root->fs_info->tree_log_mutex);
 | |
| 	root->log_batch++;
 | |
| 	atomic_inc(&root->log_writers);
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * returns 0 if there was a log transaction running and we were able
 | |
|  * to join, or returns -ENOENT if there were not transactions
 | |
|  * in progress
 | |
|  */
 | |
| static int join_running_log_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	int ret = -ENOENT;
 | |
| 
 | |
| 	smp_mb();
 | |
| 	if (!root->log_root)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	if (root->log_root) {
 | |
| 		ret = 0;
 | |
| 		atomic_inc(&root->log_writers);
 | |
| 	}
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This either makes the current running log transaction wait
 | |
|  * until you call btrfs_end_log_trans() or it makes any future
 | |
|  * log transactions wait until you call btrfs_end_log_trans()
 | |
|  */
 | |
| int btrfs_pin_log_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	int ret = -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	atomic_inc(&root->log_writers);
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * indicate we're done making changes to the log tree
 | |
|  * and wake up anyone waiting to do a sync
 | |
|  */
 | |
| void btrfs_end_log_trans(struct btrfs_root *root)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&root->log_writers)) {
 | |
| 		smp_mb();
 | |
| 		if (waitqueue_active(&root->log_writer_wait))
 | |
| 			wake_up(&root->log_writer_wait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * the walk control struct is used to pass state down the chain when
 | |
|  * processing the log tree.  The stage field tells us which part
 | |
|  * of the log tree processing we are currently doing.  The others
 | |
|  * are state fields used for that specific part
 | |
|  */
 | |
| struct walk_control {
 | |
| 	/* should we free the extent on disk when done?  This is used
 | |
| 	 * at transaction commit time while freeing a log tree
 | |
| 	 */
 | |
| 	int free;
 | |
| 
 | |
| 	/* should we write out the extent buffer?  This is used
 | |
| 	 * while flushing the log tree to disk during a sync
 | |
| 	 */
 | |
| 	int write;
 | |
| 
 | |
| 	/* should we wait for the extent buffer io to finish?  Also used
 | |
| 	 * while flushing the log tree to disk for a sync
 | |
| 	 */
 | |
| 	int wait;
 | |
| 
 | |
| 	/* pin only walk, we record which extents on disk belong to the
 | |
| 	 * log trees
 | |
| 	 */
 | |
| 	int pin;
 | |
| 
 | |
| 	/* what stage of the replay code we're currently in */
 | |
| 	int stage;
 | |
| 
 | |
| 	/* the root we are currently replaying */
 | |
| 	struct btrfs_root *replay_dest;
 | |
| 
 | |
| 	/* the trans handle for the current replay */
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	/* the function that gets used to process blocks we find in the
 | |
| 	 * tree.  Note the extent_buffer might not be up to date when it is
 | |
| 	 * passed in, and it must be checked or read if you need the data
 | |
| 	 * inside it
 | |
| 	 */
 | |
| 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 | |
| 			    struct walk_control *wc, u64 gen);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * process_func used to pin down extents, write them or wait on them
 | |
|  */
 | |
| static int process_one_buffer(struct btrfs_root *log,
 | |
| 			      struct extent_buffer *eb,
 | |
| 			      struct walk_control *wc, u64 gen)
 | |
| {
 | |
| 	if (wc->pin)
 | |
| 		btrfs_pin_extent_for_log_replay(wc->trans,
 | |
| 						log->fs_info->extent_root,
 | |
| 						eb->start, eb->len);
 | |
| 
 | |
| 	if (btrfs_buffer_uptodate(eb, gen, 0)) {
 | |
| 		if (wc->write)
 | |
| 			btrfs_write_tree_block(eb);
 | |
| 		if (wc->wait)
 | |
| 			btrfs_wait_tree_block_writeback(eb);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 | |
|  * to the src data we are copying out.
 | |
|  *
 | |
|  * root is the tree we are copying into, and path is a scratch
 | |
|  * path for use in this function (it should be released on entry and
 | |
|  * will be released on exit).
 | |
|  *
 | |
|  * If the key is already in the destination tree the existing item is
 | |
|  * overwritten.  If the existing item isn't big enough, it is extended.
 | |
|  * If it is too large, it is truncated.
 | |
|  *
 | |
|  * If the key isn't in the destination yet, a new item is inserted.
 | |
|  */
 | |
| static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   struct extent_buffer *eb, int slot,
 | |
| 				   struct btrfs_key *key)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 item_size;
 | |
| 	u64 saved_i_size = 0;
 | |
| 	int save_old_i_size = 0;
 | |
| 	unsigned long src_ptr;
 | |
| 	unsigned long dst_ptr;
 | |
| 	int overwrite_root = 0;
 | |
| 
 | |
| 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 | |
| 		overwrite_root = 1;
 | |
| 
 | |
| 	item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	src_ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 
 | |
| 	/* look for the key in the destination tree */
 | |
| 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | |
| 	if (ret == 0) {
 | |
| 		char *src_copy;
 | |
| 		char *dst_copy;
 | |
| 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 | |
| 						  path->slots[0]);
 | |
| 		if (dst_size != item_size)
 | |
| 			goto insert;
 | |
| 
 | |
| 		if (item_size == 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		dst_copy = kmalloc(item_size, GFP_NOFS);
 | |
| 		src_copy = kmalloc(item_size, GFP_NOFS);
 | |
| 		if (!dst_copy || !src_copy) {
 | |
| 			btrfs_release_path(path);
 | |
| 			kfree(dst_copy);
 | |
| 			kfree(src_copy);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 | |
| 
 | |
| 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 | |
| 				   item_size);
 | |
| 		ret = memcmp(dst_copy, src_copy, item_size);
 | |
| 
 | |
| 		kfree(dst_copy);
 | |
| 		kfree(src_copy);
 | |
| 		/*
 | |
| 		 * they have the same contents, just return, this saves
 | |
| 		 * us from cowing blocks in the destination tree and doing
 | |
| 		 * extra writes that may not have been done by a previous
 | |
| 		 * sync
 | |
| 		 */
 | |
| 		if (ret == 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| insert:
 | |
| 	btrfs_release_path(path);
 | |
| 	/* try to insert the key into the destination tree */
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path,
 | |
| 				      key, item_size);
 | |
| 
 | |
| 	/* make sure any existing item is the correct size */
 | |
| 	if (ret == -EEXIST) {
 | |
| 		u32 found_size;
 | |
| 		found_size = btrfs_item_size_nr(path->nodes[0],
 | |
| 						path->slots[0]);
 | |
| 		if (found_size > item_size)
 | |
| 			btrfs_truncate_item(trans, root, path, item_size, 1);
 | |
| 		else if (found_size < item_size)
 | |
| 			btrfs_extend_item(trans, root, path,
 | |
| 					  item_size - found_size);
 | |
| 	} else if (ret) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 | |
| 					path->slots[0]);
 | |
| 
 | |
| 	/* don't overwrite an existing inode if the generation number
 | |
| 	 * was logged as zero.  This is done when the tree logging code
 | |
| 	 * is just logging an inode to make sure it exists after recovery.
 | |
| 	 *
 | |
| 	 * Also, don't overwrite i_size on directories during replay.
 | |
| 	 * log replay inserts and removes directory items based on the
 | |
| 	 * state of the tree found in the subvolume, and i_size is modified
 | |
| 	 * as it goes
 | |
| 	 */
 | |
| 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 | |
| 		struct btrfs_inode_item *src_item;
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 
 | |
| 		src_item = (struct btrfs_inode_item *)src_ptr;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 
 | |
| 		if (btrfs_inode_generation(eb, src_item) == 0)
 | |
| 			goto no_copy;
 | |
| 
 | |
| 		if (overwrite_root &&
 | |
| 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 | |
| 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 | |
| 			save_old_i_size = 1;
 | |
| 			saved_i_size = btrfs_inode_size(path->nodes[0],
 | |
| 							dst_item);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 | |
| 			   src_ptr, item_size);
 | |
| 
 | |
| 	if (save_old_i_size) {
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 | |
| 	}
 | |
| 
 | |
| 	/* make sure the generation is filled in */
 | |
| 	if (key->type == BTRFS_INODE_ITEM_KEY) {
 | |
| 		struct btrfs_inode_item *dst_item;
 | |
| 		dst_item = (struct btrfs_inode_item *)dst_ptr;
 | |
| 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 | |
| 			btrfs_set_inode_generation(path->nodes[0], dst_item,
 | |
| 						   trans->transid);
 | |
| 		}
 | |
| 	}
 | |
| no_copy:
 | |
| 	btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 	btrfs_release_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * simple helper to read an inode off the disk from a given root
 | |
|  * This can only be called for subvolume roots and not for the log
 | |
|  */
 | |
| static noinline struct inode *read_one_inode(struct btrfs_root *root,
 | |
| 					     u64 objectid)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		inode = NULL;
 | |
| 	} else if (is_bad_inode(inode)) {
 | |
| 		iput(inode);
 | |
| 		inode = NULL;
 | |
| 	}
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| /* replays a single extent in 'eb' at 'slot' with 'key' into the
 | |
|  * subvolume 'root'.  path is released on entry and should be released
 | |
|  * on exit.
 | |
|  *
 | |
|  * extents in the log tree have not been allocated out of the extent
 | |
|  * tree yet.  So, this completes the allocation, taking a reference
 | |
|  * as required if the extent already exists or creating a new extent
 | |
|  * if it isn't in the extent allocation tree yet.
 | |
|  *
 | |
|  * The extent is inserted into the file, dropping any existing extents
 | |
|  * from the file that overlap the new one.
 | |
|  */
 | |
| static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct extent_buffer *eb, int slot,
 | |
| 				      struct btrfs_key *key)
 | |
| {
 | |
| 	int found_type;
 | |
| 	u64 mask = root->sectorsize - 1;
 | |
| 	u64 extent_end;
 | |
| 	u64 alloc_hint;
 | |
| 	u64 start = key->offset;
 | |
| 	u64 saved_nbytes;
 | |
| 	struct btrfs_file_extent_item *item;
 | |
| 	struct inode *inode = NULL;
 | |
| 	unsigned long size;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 | |
| 	found_type = btrfs_file_extent_type(eb, item);
 | |
| 
 | |
| 	if (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
 | |
| 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 | |
| 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 		size = btrfs_file_extent_inline_len(eb, item);
 | |
| 		extent_end = (start + size + mask) & ~mask;
 | |
| 	} else {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inode = read_one_inode(root, key->objectid);
 | |
| 	if (!inode) {
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * first check to see if we already have this extent in the
 | |
| 	 * file.  This must be done before the btrfs_drop_extents run
 | |
| 	 * so we don't try to drop this extent.
 | |
| 	 */
 | |
| 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
 | |
| 				       start, 0);
 | |
| 
 | |
| 	if (ret == 0 &&
 | |
| 	    (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 | |
| 		struct btrfs_file_extent_item cmp1;
 | |
| 		struct btrfs_file_extent_item cmp2;
 | |
| 		struct btrfs_file_extent_item *existing;
 | |
| 		struct extent_buffer *leaf;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		existing = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					  struct btrfs_file_extent_item);
 | |
| 
 | |
| 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 | |
| 				   sizeof(cmp1));
 | |
| 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 | |
| 				   sizeof(cmp2));
 | |
| 
 | |
| 		/*
 | |
| 		 * we already have a pointer to this exact extent,
 | |
| 		 * we don't have to do anything
 | |
| 		 */
 | |
| 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	saved_nbytes = inode_get_bytes(inode);
 | |
| 	/* drop any overlapping extents */
 | |
| 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
 | |
| 				 &alloc_hint, 1);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	if (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 		u64 offset;
 | |
| 		unsigned long dest_offset;
 | |
| 		struct btrfs_key ins;
 | |
| 
 | |
| 		ret = btrfs_insert_empty_item(trans, root, path, key,
 | |
| 					      sizeof(*item));
 | |
| 		BUG_ON(ret);
 | |
| 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 | |
| 						    path->slots[0]);
 | |
| 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 | |
| 				(unsigned long)item,  sizeof(*item));
 | |
| 
 | |
| 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 | |
| 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 | |
| 		ins.type = BTRFS_EXTENT_ITEM_KEY;
 | |
| 		offset = key->offset - btrfs_file_extent_offset(eb, item);
 | |
| 
 | |
| 		if (ins.objectid > 0) {
 | |
| 			u64 csum_start;
 | |
| 			u64 csum_end;
 | |
| 			LIST_HEAD(ordered_sums);
 | |
| 			/*
 | |
| 			 * is this extent already allocated in the extent
 | |
| 			 * allocation tree?  If so, just add a reference
 | |
| 			 */
 | |
| 			ret = btrfs_lookup_extent(root, ins.objectid,
 | |
| 						ins.offset);
 | |
| 			if (ret == 0) {
 | |
| 				ret = btrfs_inc_extent_ref(trans, root,
 | |
| 						ins.objectid, ins.offset,
 | |
| 						0, root->root_key.objectid,
 | |
| 						key->objectid, offset, 0);
 | |
| 				BUG_ON(ret);
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * insert the extent pointer in the extent
 | |
| 				 * allocation tree
 | |
| 				 */
 | |
| 				ret = btrfs_alloc_logged_file_extent(trans,
 | |
| 						root, root->root_key.objectid,
 | |
| 						key->objectid, offset, &ins);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 			btrfs_release_path(path);
 | |
| 
 | |
| 			if (btrfs_file_extent_compression(eb, item)) {
 | |
| 				csum_start = ins.objectid;
 | |
| 				csum_end = csum_start + ins.offset;
 | |
| 			} else {
 | |
| 				csum_start = ins.objectid +
 | |
| 					btrfs_file_extent_offset(eb, item);
 | |
| 				csum_end = csum_start +
 | |
| 					btrfs_file_extent_num_bytes(eb, item);
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_lookup_csums_range(root->log_root,
 | |
| 						csum_start, csum_end - 1,
 | |
| 						&ordered_sums, 0);
 | |
| 			BUG_ON(ret);
 | |
| 			while (!list_empty(&ordered_sums)) {
 | |
| 				struct btrfs_ordered_sum *sums;
 | |
| 				sums = list_entry(ordered_sums.next,
 | |
| 						struct btrfs_ordered_sum,
 | |
| 						list);
 | |
| 				ret = btrfs_csum_file_blocks(trans,
 | |
| 						root->fs_info->csum_root,
 | |
| 						sums);
 | |
| 				BUG_ON(ret);
 | |
| 				list_del(&sums->list);
 | |
| 				kfree(sums);
 | |
| 			}
 | |
| 		} else {
 | |
| 			btrfs_release_path(path);
 | |
| 		}
 | |
| 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 | |
| 		/* inline extents are easy, we just overwrite them */
 | |
| 		ret = overwrite_item(trans, root, path, eb, slot, key);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	inode_set_bytes(inode, saved_nbytes);
 | |
| 	ret = btrfs_update_inode(trans, root, inode);
 | |
| out:
 | |
| 	if (inode)
 | |
| 		iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when cleaning up conflicts between the directory names in the
 | |
|  * subvolume, directory names in the log and directory names in the
 | |
|  * inode back references, we may have to unlink inodes from directories.
 | |
|  *
 | |
|  * This is a helper function to do the unlink of a specific directory
 | |
|  * item
 | |
|  */
 | |
| static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct inode *dir,
 | |
| 				      struct btrfs_dir_item *di)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	char *name;
 | |
| 	int name_len;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key location;
 | |
| 	int ret;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 | |
| 	name_len = btrfs_dir_name_len(leaf, di);
 | |
| 	name = kmalloc(name_len, GFP_NOFS);
 | |
| 	if (!name)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	inode = read_one_inode(root, location.objectid);
 | |
| 	if (!inode) {
 | |
| 		kfree(name);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 | |
| 	BUG_ON(ret);
 | |
| 	kfree(name);
 | |
| 
 | |
| 	iput(inode);
 | |
| 
 | |
| 	btrfs_run_delayed_items(trans, root);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to see if a given name and sequence number found
 | |
|  * in an inode back reference are already in a directory and correctly
 | |
|  * point to this inode
 | |
|  */
 | |
| static noinline int inode_in_dir(struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path,
 | |
| 				 u64 dirid, u64 objectid, u64 index,
 | |
| 				 const char *name, int name_len)
 | |
| {
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_key location;
 | |
| 	int match = 0;
 | |
| 
 | |
| 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 | |
| 					 index, name, name_len, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 | |
| 		if (location.objectid != objectid)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		goto out;
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 | |
| 		if (location.objectid != objectid)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		goto out;
 | |
| 	match = 1;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to check a log tree for a named back reference in
 | |
|  * an inode.  This is used to decide if a back reference that is
 | |
|  * found in the subvolume conflicts with what we find in the log.
 | |
|  *
 | |
|  * inode backreferences may have multiple refs in a single item,
 | |
|  * during replay we process one reference at a time, and we don't
 | |
|  * want to delete valid links to a file from the subvolume if that
 | |
|  * link is also in the log.
 | |
|  */
 | |
| static noinline int backref_in_log(struct btrfs_root *log,
 | |
| 				   struct btrfs_key *key,
 | |
| 				   char *name, int namelen)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_inode_ref *ref;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	unsigned long name_ptr;
 | |
| 	int found_name_len;
 | |
| 	int item_size;
 | |
| 	int ret;
 | |
| 	int match = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 | |
| 	if (ret != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 | |
| 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while (ptr < ptr_end) {
 | |
| 		ref = (struct btrfs_inode_ref *)ptr;
 | |
| 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 | |
| 		if (found_name_len == namelen) {
 | |
| 			name_ptr = (unsigned long)(ref + 1);
 | |
| 			ret = memcmp_extent_buffer(path->nodes[0], name,
 | |
| 						   name_ptr, namelen);
 | |
| 			if (ret == 0) {
 | |
| 				match = 1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		ptr = (unsigned long)(ref + 1) + found_name_len;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * replay one inode back reference item found in the log tree.
 | |
|  * eb, slot and key refer to the buffer and key found in the log tree.
 | |
|  * root is the destination we are replaying into, and path is for temp
 | |
|  * use by this function.  (it should be released on return).
 | |
|  */
 | |
| static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *root,
 | |
| 				  struct btrfs_root *log,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  struct extent_buffer *eb, int slot,
 | |
| 				  struct btrfs_key *key)
 | |
| {
 | |
| 	struct btrfs_inode_ref *ref;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct inode *dir;
 | |
| 	struct inode *inode;
 | |
| 	unsigned long ref_ptr;
 | |
| 	unsigned long ref_end;
 | |
| 	char *name;
 | |
| 	int namelen;
 | |
| 	int ret;
 | |
| 	int search_done = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * it is possible that we didn't log all the parent directories
 | |
| 	 * for a given inode.  If we don't find the dir, just don't
 | |
| 	 * copy the back ref in.  The link count fixup code will take
 | |
| 	 * care of the rest
 | |
| 	 */
 | |
| 	dir = read_one_inode(root, key->offset);
 | |
| 	if (!dir)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	inode = read_one_inode(root, key->objectid);
 | |
| 	if (!inode) {
 | |
| 		iput(dir);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 | |
| 
 | |
| again:
 | |
| 	ref = (struct btrfs_inode_ref *)ref_ptr;
 | |
| 
 | |
| 	namelen = btrfs_inode_ref_name_len(eb, ref);
 | |
| 	name = kmalloc(namelen, GFP_NOFS);
 | |
| 	BUG_ON(!name);
 | |
| 
 | |
| 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 | |
| 
 | |
| 	/* if we already have a perfect match, we're done */
 | |
| 	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
 | |
| 			 btrfs_inode_ref_index(eb, ref),
 | |
| 			 name, namelen)) {
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * look for a conflicting back reference in the metadata.
 | |
| 	 * if we find one we have to unlink that name of the file
 | |
| 	 * before we add our new link.  Later on, we overwrite any
 | |
| 	 * existing back reference, and we don't want to create
 | |
| 	 * dangling pointers in the directory.
 | |
| 	 */
 | |
| 
 | |
| 	if (search_done)
 | |
| 		goto insert;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 | |
| 	if (ret == 0) {
 | |
| 		char *victim_name;
 | |
| 		int victim_name_len;
 | |
| 		struct btrfs_inode_ref *victim_ref;
 | |
| 		unsigned long ptr;
 | |
| 		unsigned long ptr_end;
 | |
| 		struct extent_buffer *leaf = path->nodes[0];
 | |
| 
 | |
| 		/* are we trying to overwrite a back ref for the root directory
 | |
| 		 * if so, just jump out, we're done
 | |
| 		 */
 | |
| 		if (key->objectid == key->offset)
 | |
| 			goto out_nowrite;
 | |
| 
 | |
| 		/* check all the names in this back reference to see
 | |
| 		 * if they are in the log.  if so, we allow them to stay
 | |
| 		 * otherwise they must be unlinked as a conflict
 | |
| 		 */
 | |
| 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 | |
| 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 | |
| 		while (ptr < ptr_end) {
 | |
| 			victim_ref = (struct btrfs_inode_ref *)ptr;
 | |
| 			victim_name_len = btrfs_inode_ref_name_len(leaf,
 | |
| 								   victim_ref);
 | |
| 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
 | |
| 			BUG_ON(!victim_name);
 | |
| 
 | |
| 			read_extent_buffer(leaf, victim_name,
 | |
| 					   (unsigned long)(victim_ref + 1),
 | |
| 					   victim_name_len);
 | |
| 
 | |
| 			if (!backref_in_log(log, key, victim_name,
 | |
| 					    victim_name_len)) {
 | |
| 				btrfs_inc_nlink(inode);
 | |
| 				btrfs_release_path(path);
 | |
| 
 | |
| 				ret = btrfs_unlink_inode(trans, root, dir,
 | |
| 							 inode, victim_name,
 | |
| 							 victim_name_len);
 | |
| 				btrfs_run_delayed_items(trans, root);
 | |
| 			}
 | |
| 			kfree(victim_name);
 | |
| 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 | |
| 		}
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		/*
 | |
| 		 * NOTE: we have searched root tree and checked the
 | |
| 		 * coresponding ref, it does not need to check again.
 | |
| 		 */
 | |
| 		search_done = 1;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* look for a conflicting sequence number */
 | |
| 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
 | |
| 					 btrfs_inode_ref_index(eb, ref),
 | |
| 					 name, namelen, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		ret = drop_one_dir_item(trans, root, path, dir, di);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* look for a conflicing name */
 | |
| 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
 | |
| 				   name, namelen, 0);
 | |
| 	if (di && !IS_ERR(di)) {
 | |
| 		ret = drop_one_dir_item(trans, root, path, dir, di);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| insert:
 | |
| 	/* insert our name */
 | |
| 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 | |
| 			     btrfs_inode_ref_index(eb, ref));
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	btrfs_update_inode(trans, root, inode);
 | |
| 
 | |
| out:
 | |
| 	ref_ptr = (unsigned long)(ref + 1) + namelen;
 | |
| 	kfree(name);
 | |
| 	if (ref_ptr < ref_end)
 | |
| 		goto again;
 | |
| 
 | |
| 	/* finally write the back reference in the inode */
 | |
| 	ret = overwrite_item(trans, root, path, eb, slot, key);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| out_nowrite:
 | |
| 	btrfs_release_path(path);
 | |
| 	iput(dir);
 | |
| 	iput(inode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int insert_orphan_item(struct btrfs_trans_handle *trans,
 | |
| 			      struct btrfs_root *root, u64 offset)
 | |
| {
 | |
| 	int ret;
 | |
| 	ret = btrfs_find_orphan_item(root, offset);
 | |
| 	if (ret > 0)
 | |
| 		ret = btrfs_insert_orphan_item(trans, root, offset);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * There are a few corners where the link count of the file can't
 | |
|  * be properly maintained during replay.  So, instead of adding
 | |
|  * lots of complexity to the log code, we just scan the backrefs
 | |
|  * for any file that has been through replay.
 | |
|  *
 | |
|  * The scan will update the link count on the inode to reflect the
 | |
|  * number of back refs found.  If it goes down to zero, the iput
 | |
|  * will free the inode.
 | |
|  */
 | |
| static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 | |
| 					   struct btrfs_root *root,
 | |
| 					   struct inode *inode)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 nlink = 0;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	int name_len;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 
 | |
| 	key.objectid = ino;
 | |
| 	key.type = BTRFS_INODE_REF_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key,
 | |
| 				      path->slots[0]);
 | |
| 		if (key.objectid != ino ||
 | |
| 		    key.type != BTRFS_INODE_REF_KEY)
 | |
| 			break;
 | |
| 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 | |
| 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
 | |
| 						   path->slots[0]);
 | |
| 		while (ptr < ptr_end) {
 | |
| 			struct btrfs_inode_ref *ref;
 | |
| 
 | |
| 			ref = (struct btrfs_inode_ref *)ptr;
 | |
| 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
 | |
| 							    ref);
 | |
| 			ptr = (unsigned long)(ref + 1) + name_len;
 | |
| 			nlink++;
 | |
| 		}
 | |
| 
 | |
| 		if (key.offset == 0)
 | |
| 			break;
 | |
| 		key.offset--;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	if (nlink != inode->i_nlink) {
 | |
| 		set_nlink(inode, nlink);
 | |
| 		btrfs_update_inode(trans, root, inode);
 | |
| 	}
 | |
| 	BTRFS_I(inode)->index_cnt = (u64)-1;
 | |
| 
 | |
| 	if (inode->i_nlink == 0) {
 | |
| 		if (S_ISDIR(inode->i_mode)) {
 | |
| 			ret = replay_dir_deletes(trans, root, NULL, path,
 | |
| 						 ino, 1);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 		ret = insert_orphan_item(trans, root, ino);
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
 | |
| 					    struct btrfs_root *root,
 | |
| 					    struct btrfs_path *path)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
 | |
| 	key.type = BTRFS_ORPHAN_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret == 1) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
 | |
| 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		ret = btrfs_del_item(trans, root, path);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 		inode = read_one_inode(root, key.offset);
 | |
| 		if (!inode)
 | |
| 			return -EIO;
 | |
| 
 | |
| 		ret = fixup_inode_link_count(trans, root, inode);
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		iput(inode);
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup on a directory may create new entries,
 | |
| 		 * make sure we always look for the highset possible
 | |
| 		 * offset
 | |
| 		 */
 | |
| 		key.offset = (u64)-1;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * record a given inode in the fixup dir so we can check its link
 | |
|  * count when replay is done.  The link count is incremented here
 | |
|  * so the inode won't go away until we check it
 | |
|  */
 | |
| static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      u64 objectid)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	int ret = 0;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	inode = read_one_inode(root, objectid);
 | |
| 	if (!inode)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
 | |
| 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
 | |
| 	key.offset = objectid;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 	if (ret == 0) {
 | |
| 		btrfs_inc_nlink(inode);
 | |
| 		ret = btrfs_update_inode(trans, root, inode);
 | |
| 	} else if (ret == -EEXIST) {
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	iput(inode);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when replaying the log for a directory, we only insert names
 | |
|  * for inodes that actually exist.  This means an fsync on a directory
 | |
|  * does not implicitly fsync all the new files in it
 | |
|  */
 | |
| static noinline int insert_one_name(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_root *root,
 | |
| 				    struct btrfs_path *path,
 | |
| 				    u64 dirid, u64 index,
 | |
| 				    char *name, int name_len, u8 type,
 | |
| 				    struct btrfs_key *location)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	struct inode *dir;
 | |
| 	int ret;
 | |
| 
 | |
| 	inode = read_one_inode(root, location->objectid);
 | |
| 	if (!inode)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	dir = read_one_inode(root, dirid);
 | |
| 	if (!dir) {
 | |
| 		iput(inode);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
 | |
| 
 | |
| 	/* FIXME, put inode into FIXUP list */
 | |
| 
 | |
| 	iput(inode);
 | |
| 	iput(dir);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * take a single entry in a log directory item and replay it into
 | |
|  * the subvolume.
 | |
|  *
 | |
|  * if a conflicting item exists in the subdirectory already,
 | |
|  * the inode it points to is unlinked and put into the link count
 | |
|  * fix up tree.
 | |
|  *
 | |
|  * If a name from the log points to a file or directory that does
 | |
|  * not exist in the FS, it is skipped.  fsyncs on directories
 | |
|  * do not force down inodes inside that directory, just changes to the
 | |
|  * names or unlinks in a directory.
 | |
|  */
 | |
| static noinline int replay_one_name(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_root *root,
 | |
| 				    struct btrfs_path *path,
 | |
| 				    struct extent_buffer *eb,
 | |
| 				    struct btrfs_dir_item *di,
 | |
| 				    struct btrfs_key *key)
 | |
| {
 | |
| 	char *name;
 | |
| 	int name_len;
 | |
| 	struct btrfs_dir_item *dst_di;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_key log_key;
 | |
| 	struct inode *dir;
 | |
| 	u8 log_type;
 | |
| 	int exists;
 | |
| 	int ret;
 | |
| 
 | |
| 	dir = read_one_inode(root, key->objectid);
 | |
| 	if (!dir)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	name_len = btrfs_dir_name_len(eb, di);
 | |
| 	name = kmalloc(name_len, GFP_NOFS);
 | |
| 	if (!name)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	log_type = btrfs_dir_type(eb, di);
 | |
| 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
 | |
| 		   name_len);
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
 | |
| 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 | |
| 	if (exists == 0)
 | |
| 		exists = 1;
 | |
| 	else
 | |
| 		exists = 0;
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (key->type == BTRFS_DIR_ITEM_KEY) {
 | |
| 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
 | |
| 				       name, name_len, 1);
 | |
| 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
 | |
| 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
 | |
| 						     key->objectid,
 | |
| 						     key->offset, name,
 | |
| 						     name_len, 1);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (IS_ERR_OR_NULL(dst_di)) {
 | |
| 		/* we need a sequence number to insert, so we only
 | |
| 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
 | |
| 		 */
 | |
| 		if (key->type != BTRFS_DIR_INDEX_KEY)
 | |
| 			goto out;
 | |
| 		goto insert;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
 | |
| 	/* the existing item matches the logged item */
 | |
| 	if (found_key.objectid == log_key.objectid &&
 | |
| 	    found_key.type == log_key.type &&
 | |
| 	    found_key.offset == log_key.offset &&
 | |
| 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * don't drop the conflicting directory entry if the inode
 | |
| 	 * for the new entry doesn't exist
 | |
| 	 */
 | |
| 	if (!exists)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	if (key->type == BTRFS_DIR_INDEX_KEY)
 | |
| 		goto insert;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	kfree(name);
 | |
| 	iput(dir);
 | |
| 	return 0;
 | |
| 
 | |
| insert:
 | |
| 	btrfs_release_path(path);
 | |
| 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
 | |
| 			      name, name_len, log_type, &log_key);
 | |
| 
 | |
| 	BUG_ON(ret && ret != -ENOENT);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find all the names in a directory item and reconcile them into
 | |
|  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
 | |
|  * one name in a directory item, but the same code gets used for
 | |
|  * both directory index types
 | |
|  */
 | |
| static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
 | |
| 					struct btrfs_root *root,
 | |
| 					struct btrfs_path *path,
 | |
| 					struct extent_buffer *eb, int slot,
 | |
| 					struct btrfs_key *key)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	int name_len;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 
 | |
| 	ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while (ptr < ptr_end) {
 | |
| 		di = (struct btrfs_dir_item *)ptr;
 | |
| 		if (verify_dir_item(root, eb, di))
 | |
| 			return -EIO;
 | |
| 		name_len = btrfs_dir_name_len(eb, di);
 | |
| 		ret = replay_one_name(trans, root, path, eb, di, key);
 | |
| 		BUG_ON(ret);
 | |
| 		ptr = (unsigned long)(di + 1);
 | |
| 		ptr += name_len;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * directory replay has two parts.  There are the standard directory
 | |
|  * items in the log copied from the subvolume, and range items
 | |
|  * created in the log while the subvolume was logged.
 | |
|  *
 | |
|  * The range items tell us which parts of the key space the log
 | |
|  * is authoritative for.  During replay, if a key in the subvolume
 | |
|  * directory is in a logged range item, but not actually in the log
 | |
|  * that means it was deleted from the directory before the fsync
 | |
|  * and should be removed.
 | |
|  */
 | |
| static noinline int find_dir_range(struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path,
 | |
| 				   u64 dirid, int key_type,
 | |
| 				   u64 *start_ret, u64 *end_ret)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	u64 found_end;
 | |
| 	struct btrfs_dir_log_item *item;
 | |
| 	int ret;
 | |
| 	int nritems;
 | |
| 
 | |
| 	if (*start_ret == (u64)-1)
 | |
| 		return 1;
 | |
| 
 | |
| 	key.objectid = dirid;
 | |
| 	key.type = key_type;
 | |
| 	key.offset = *start_ret;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) {
 | |
| 		if (path->slots[0] == 0)
 | |
| 			goto out;
 | |
| 		path->slots[0]--;
 | |
| 	}
 | |
| 	if (ret != 0)
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.type != key_type || key.objectid != dirid) {
 | |
| 		ret = 1;
 | |
| 		goto next;
 | |
| 	}
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	found_end = btrfs_dir_log_end(path->nodes[0], item);
 | |
| 
 | |
| 	if (*start_ret >= key.offset && *start_ret <= found_end) {
 | |
| 		ret = 0;
 | |
| 		*start_ret = key.offset;
 | |
| 		*end_ret = found_end;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = 1;
 | |
| next:
 | |
| 	/* check the next slot in the tree to see if it is a valid item */
 | |
| 	nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 	if (path->slots[0] >= nritems) {
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 | |
| 
 | |
| 	if (key.type != key_type || key.objectid != dirid) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	found_end = btrfs_dir_log_end(path->nodes[0], item);
 | |
| 	*start_ret = key.offset;
 | |
| 	*end_ret = found_end;
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this looks for a given directory item in the log.  If the directory
 | |
|  * item is not in the log, the item is removed and the inode it points
 | |
|  * to is unlinked
 | |
|  */
 | |
| static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
 | |
| 				      struct btrfs_root *root,
 | |
| 				      struct btrfs_root *log,
 | |
| 				      struct btrfs_path *path,
 | |
| 				      struct btrfs_path *log_path,
 | |
| 				      struct inode *dir,
 | |
| 				      struct btrfs_key *dir_key)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int slot;
 | |
| 	u32 item_size;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_dir_item *log_di;
 | |
| 	int name_len;
 | |
| 	unsigned long ptr;
 | |
| 	unsigned long ptr_end;
 | |
| 	char *name;
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_key location;
 | |
| 
 | |
| again:
 | |
| 	eb = path->nodes[0];
 | |
| 	slot = path->slots[0];
 | |
| 	item_size = btrfs_item_size_nr(eb, slot);
 | |
| 	ptr = btrfs_item_ptr_offset(eb, slot);
 | |
| 	ptr_end = ptr + item_size;
 | |
| 	while (ptr < ptr_end) {
 | |
| 		di = (struct btrfs_dir_item *)ptr;
 | |
| 		if (verify_dir_item(root, eb, di)) {
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		name_len = btrfs_dir_name_len(eb, di);
 | |
| 		name = kmalloc(name_len, GFP_NOFS);
 | |
| 		if (!name) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
 | |
| 				  name_len);
 | |
| 		log_di = NULL;
 | |
| 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
 | |
| 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
 | |
| 						       dir_key->objectid,
 | |
| 						       name, name_len, 0);
 | |
| 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
 | |
| 			log_di = btrfs_lookup_dir_index_item(trans, log,
 | |
| 						     log_path,
 | |
| 						     dir_key->objectid,
 | |
| 						     dir_key->offset,
 | |
| 						     name, name_len, 0);
 | |
| 		}
 | |
| 		if (IS_ERR_OR_NULL(log_di)) {
 | |
| 			btrfs_dir_item_key_to_cpu(eb, di, &location);
 | |
| 			btrfs_release_path(path);
 | |
| 			btrfs_release_path(log_path);
 | |
| 			inode = read_one_inode(root, location.objectid);
 | |
| 			if (!inode) {
 | |
| 				kfree(name);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 
 | |
| 			ret = link_to_fixup_dir(trans, root,
 | |
| 						path, location.objectid);
 | |
| 			BUG_ON(ret);
 | |
| 			btrfs_inc_nlink(inode);
 | |
| 			ret = btrfs_unlink_inode(trans, root, dir, inode,
 | |
| 						 name, name_len);
 | |
| 			BUG_ON(ret);
 | |
| 
 | |
| 			btrfs_run_delayed_items(trans, root);
 | |
| 
 | |
| 			kfree(name);
 | |
| 			iput(inode);
 | |
| 
 | |
| 			/* there might still be more names under this key
 | |
| 			 * check and repeat if required
 | |
| 			 */
 | |
| 			ret = btrfs_search_slot(NULL, root, dir_key, path,
 | |
| 						0, 0);
 | |
| 			if (ret == 0)
 | |
| 				goto again;
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		btrfs_release_path(log_path);
 | |
| 		kfree(name);
 | |
| 
 | |
| 		ptr = (unsigned long)(di + 1);
 | |
| 		ptr += name_len;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_release_path(log_path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * deletion replay happens before we copy any new directory items
 | |
|  * out of the log or out of backreferences from inodes.  It
 | |
|  * scans the log to find ranges of keys that log is authoritative for,
 | |
|  * and then scans the directory to find items in those ranges that are
 | |
|  * not present in the log.
 | |
|  *
 | |
|  * Anything we don't find in the log is unlinked and removed from the
 | |
|  * directory.
 | |
|  */
 | |
| static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *root,
 | |
| 				       struct btrfs_root *log,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       u64 dirid, int del_all)
 | |
| {
 | |
| 	u64 range_start;
 | |
| 	u64 range_end;
 | |
| 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_key dir_key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_path *log_path;
 | |
| 	struct inode *dir;
 | |
| 
 | |
| 	dir_key.objectid = dirid;
 | |
| 	dir_key.type = BTRFS_DIR_ITEM_KEY;
 | |
| 	log_path = btrfs_alloc_path();
 | |
| 	if (!log_path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dir = read_one_inode(root, dirid);
 | |
| 	/* it isn't an error if the inode isn't there, that can happen
 | |
| 	 * because we replay the deletes before we copy in the inode item
 | |
| 	 * from the log
 | |
| 	 */
 | |
| 	if (!dir) {
 | |
| 		btrfs_free_path(log_path);
 | |
| 		return 0;
 | |
| 	}
 | |
| again:
 | |
| 	range_start = 0;
 | |
| 	range_end = 0;
 | |
| 	while (1) {
 | |
| 		if (del_all)
 | |
| 			range_end = (u64)-1;
 | |
| 		else {
 | |
| 			ret = find_dir_range(log, path, dirid, key_type,
 | |
| 					     &range_start, &range_end);
 | |
| 			if (ret != 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		dir_key.offset = range_start;
 | |
| 		while (1) {
 | |
| 			int nritems;
 | |
| 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
 | |
| 						0, 0);
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 			if (path->slots[0] >= nritems) {
 | |
| 				ret = btrfs_next_leaf(root, path);
 | |
| 				if (ret)
 | |
| 					break;
 | |
| 			}
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 					      path->slots[0]);
 | |
| 			if (found_key.objectid != dirid ||
 | |
| 			    found_key.type != dir_key.type)
 | |
| 				goto next_type;
 | |
| 
 | |
| 			if (found_key.offset > range_end)
 | |
| 				break;
 | |
| 
 | |
| 			ret = check_item_in_log(trans, root, log, path,
 | |
| 						log_path, dir,
 | |
| 						&found_key);
 | |
| 			BUG_ON(ret);
 | |
| 			if (found_key.offset == (u64)-1)
 | |
| 				break;
 | |
| 			dir_key.offset = found_key.offset + 1;
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| 		if (range_end == (u64)-1)
 | |
| 			break;
 | |
| 		range_start = range_end + 1;
 | |
| 	}
 | |
| 
 | |
| next_type:
 | |
| 	ret = 0;
 | |
| 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
 | |
| 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 		dir_key.type = BTRFS_DIR_INDEX_KEY;
 | |
| 		btrfs_release_path(path);
 | |
| 		goto again;
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_free_path(log_path);
 | |
| 	iput(dir);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the process_func used to replay items from the log tree.  This
 | |
|  * gets called in two different stages.  The first stage just looks
 | |
|  * for inodes and makes sure they are all copied into the subvolume.
 | |
|  *
 | |
|  * The second stage copies all the other item types from the log into
 | |
|  * the subvolume.  The two stage approach is slower, but gets rid of
 | |
|  * lots of complexity around inodes referencing other inodes that exist
 | |
|  * only in the log (references come from either directory items or inode
 | |
|  * back refs).
 | |
|  */
 | |
| static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
 | |
| 			     struct walk_control *wc, u64 gen)
 | |
| {
 | |
| 	int nritems;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root = wc->replay_dest;
 | |
| 	struct btrfs_key key;
 | |
| 	int level;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_read_buffer(eb, gen);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	level = btrfs_header_level(eb);
 | |
| 
 | |
| 	if (level != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	nritems = btrfs_header_nritems(eb);
 | |
| 	for (i = 0; i < nritems; i++) {
 | |
| 		btrfs_item_key_to_cpu(eb, &key, i);
 | |
| 
 | |
| 		/* inode keys are done during the first stage */
 | |
| 		if (key.type == BTRFS_INODE_ITEM_KEY &&
 | |
| 		    wc->stage == LOG_WALK_REPLAY_INODES) {
 | |
| 			struct btrfs_inode_item *inode_item;
 | |
| 			u32 mode;
 | |
| 
 | |
| 			inode_item = btrfs_item_ptr(eb, i,
 | |
| 					    struct btrfs_inode_item);
 | |
| 			mode = btrfs_inode_mode(eb, inode_item);
 | |
| 			if (S_ISDIR(mode)) {
 | |
| 				ret = replay_dir_deletes(wc->trans,
 | |
| 					 root, log, path, key.objectid, 0);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 			ret = overwrite_item(wc->trans, root, path,
 | |
| 					     eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 
 | |
| 			/* for regular files, make sure corresponding
 | |
| 			 * orhpan item exist. extents past the new EOF
 | |
| 			 * will be truncated later by orphan cleanup.
 | |
| 			 */
 | |
| 			if (S_ISREG(mode)) {
 | |
| 				ret = insert_orphan_item(wc->trans, root,
 | |
| 							 key.objectid);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 
 | |
| 			ret = link_to_fixup_dir(wc->trans, root,
 | |
| 						path, key.objectid);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 		if (wc->stage < LOG_WALK_REPLAY_ALL)
 | |
| 			continue;
 | |
| 
 | |
| 		/* these keys are simply copied */
 | |
| 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
 | |
| 			ret = overwrite_item(wc->trans, root, path,
 | |
| 					     eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 		} else if (key.type == BTRFS_INODE_REF_KEY) {
 | |
| 			ret = add_inode_ref(wc->trans, root, log, path,
 | |
| 					    eb, i, &key);
 | |
| 			BUG_ON(ret && ret != -ENOENT);
 | |
| 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
 | |
| 			ret = replay_one_extent(wc->trans, root, path,
 | |
| 						eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
 | |
| 			   key.type == BTRFS_DIR_INDEX_KEY) {
 | |
| 			ret = replay_one_dir_item(wc->trans, root, path,
 | |
| 						  eb, i, &key);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
 | |
| 				   struct btrfs_root *root,
 | |
| 				   struct btrfs_path *path, int *level,
 | |
| 				   struct walk_control *wc)
 | |
| {
 | |
| 	u64 root_owner;
 | |
| 	u64 bytenr;
 | |
| 	u64 ptr_gen;
 | |
| 	struct extent_buffer *next;
 | |
| 	struct extent_buffer *cur;
 | |
| 	struct extent_buffer *parent;
 | |
| 	u32 blocksize;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	WARN_ON(*level < 0);
 | |
| 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 
 | |
| 	while (*level > 0) {
 | |
| 		WARN_ON(*level < 0);
 | |
| 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 		cur = path->nodes[*level];
 | |
| 
 | |
| 		if (btrfs_header_level(cur) != *level)
 | |
| 			WARN_ON(1);
 | |
| 
 | |
| 		if (path->slots[*level] >=
 | |
| 		    btrfs_header_nritems(cur))
 | |
| 			break;
 | |
| 
 | |
| 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
 | |
| 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
 | |
| 		blocksize = btrfs_level_size(root, *level - 1);
 | |
| 
 | |
| 		parent = path->nodes[*level];
 | |
| 		root_owner = btrfs_header_owner(parent);
 | |
| 
 | |
| 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
 | |
| 		if (!next)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		if (*level == 1) {
 | |
| 			ret = wc->process_func(root, next, wc, ptr_gen);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			path->slots[*level]++;
 | |
| 			if (wc->free) {
 | |
| 				ret = btrfs_read_buffer(next, ptr_gen);
 | |
| 				if (ret) {
 | |
| 					free_extent_buffer(next);
 | |
| 					return ret;
 | |
| 				}
 | |
| 
 | |
| 				btrfs_tree_lock(next);
 | |
| 				btrfs_set_lock_blocking(next);
 | |
| 				clean_tree_block(trans, root, next);
 | |
| 				btrfs_wait_tree_block_writeback(next);
 | |
| 				btrfs_tree_unlock(next);
 | |
| 
 | |
| 				WARN_ON(root_owner !=
 | |
| 					BTRFS_TREE_LOG_OBJECTID);
 | |
| 				ret = btrfs_free_and_pin_reserved_extent(root,
 | |
| 							 bytenr, blocksize);
 | |
| 				BUG_ON(ret); /* -ENOMEM or logic errors */
 | |
| 			}
 | |
| 			free_extent_buffer(next);
 | |
| 			continue;
 | |
| 		}
 | |
| 		ret = btrfs_read_buffer(next, ptr_gen);
 | |
| 		if (ret) {
 | |
| 			free_extent_buffer(next);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON(*level <= 0);
 | |
| 		if (path->nodes[*level-1])
 | |
| 			free_extent_buffer(path->nodes[*level-1]);
 | |
| 		path->nodes[*level-1] = next;
 | |
| 		*level = btrfs_header_level(next);
 | |
| 		path->slots[*level] = 0;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	WARN_ON(*level < 0);
 | |
| 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
 | |
| 
 | |
| 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
 | |
| 
 | |
| 	cond_resched();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 struct btrfs_path *path, int *level,
 | |
| 				 struct walk_control *wc)
 | |
| {
 | |
| 	u64 root_owner;
 | |
| 	int i;
 | |
| 	int slot;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
 | |
| 		slot = path->slots[i];
 | |
| 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
 | |
| 			path->slots[i]++;
 | |
| 			*level = i;
 | |
| 			WARN_ON(*level == 0);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			struct extent_buffer *parent;
 | |
| 			if (path->nodes[*level] == root->node)
 | |
| 				parent = path->nodes[*level];
 | |
| 			else
 | |
| 				parent = path->nodes[*level + 1];
 | |
| 
 | |
| 			root_owner = btrfs_header_owner(parent);
 | |
| 			ret = wc->process_func(root, path->nodes[*level], wc,
 | |
| 				 btrfs_header_generation(path->nodes[*level]));
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			if (wc->free) {
 | |
| 				struct extent_buffer *next;
 | |
| 
 | |
| 				next = path->nodes[*level];
 | |
| 
 | |
| 				btrfs_tree_lock(next);
 | |
| 				btrfs_set_lock_blocking(next);
 | |
| 				clean_tree_block(trans, root, next);
 | |
| 				btrfs_wait_tree_block_writeback(next);
 | |
| 				btrfs_tree_unlock(next);
 | |
| 
 | |
| 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
 | |
| 				ret = btrfs_free_and_pin_reserved_extent(root,
 | |
| 						path->nodes[*level]->start,
 | |
| 						path->nodes[*level]->len);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 			free_extent_buffer(path->nodes[*level]);
 | |
| 			path->nodes[*level] = NULL;
 | |
| 			*level = i + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drop the reference count on the tree rooted at 'snap'.  This traverses
 | |
|  * the tree freeing any blocks that have a ref count of zero after being
 | |
|  * decremented.
 | |
|  */
 | |
| static int walk_log_tree(struct btrfs_trans_handle *trans,
 | |
| 			 struct btrfs_root *log, struct walk_control *wc)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int wret;
 | |
| 	int level;
 | |
| 	struct btrfs_path *path;
 | |
| 	int i;
 | |
| 	int orig_level;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	level = btrfs_header_level(log->node);
 | |
| 	orig_level = level;
 | |
| 	path->nodes[level] = log->node;
 | |
| 	extent_buffer_get(log->node);
 | |
| 	path->slots[level] = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		wret = walk_down_log_tree(trans, log, path, &level, wc);
 | |
| 		if (wret > 0)
 | |
| 			break;
 | |
| 		if (wret < 0) {
 | |
| 			ret = wret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		wret = walk_up_log_tree(trans, log, path, &level, wc);
 | |
| 		if (wret > 0)
 | |
| 			break;
 | |
| 		if (wret < 0) {
 | |
| 			ret = wret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* was the root node processed? if not, catch it here */
 | |
| 	if (path->nodes[orig_level]) {
 | |
| 		ret = wc->process_func(log, path->nodes[orig_level], wc,
 | |
| 			 btrfs_header_generation(path->nodes[orig_level]));
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		if (wc->free) {
 | |
| 			struct extent_buffer *next;
 | |
| 
 | |
| 			next = path->nodes[orig_level];
 | |
| 
 | |
| 			btrfs_tree_lock(next);
 | |
| 			btrfs_set_lock_blocking(next);
 | |
| 			clean_tree_block(trans, log, next);
 | |
| 			btrfs_wait_tree_block_writeback(next);
 | |
| 			btrfs_tree_unlock(next);
 | |
| 
 | |
| 			WARN_ON(log->root_key.objectid !=
 | |
| 				BTRFS_TREE_LOG_OBJECTID);
 | |
| 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
 | |
| 							 next->len);
 | |
| 			BUG_ON(ret); /* -ENOMEM or logic errors */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	for (i = 0; i <= orig_level; i++) {
 | |
| 		if (path->nodes[i]) {
 | |
| 			free_extent_buffer(path->nodes[i]);
 | |
| 			path->nodes[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function to update the item for a given subvolumes log root
 | |
|  * in the tree of log roots
 | |
|  */
 | |
| static int update_log_root(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *log)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (log->log_transid == 1) {
 | |
| 		/* insert root item on the first sync */
 | |
| 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
 | |
| 				&log->root_key, &log->root_item);
 | |
| 	} else {
 | |
| 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
 | |
| 				&log->root_key, &log->root_item);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int wait_log_commit(struct btrfs_trans_handle *trans,
 | |
| 			   struct btrfs_root *root, unsigned long transid)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	int index = transid % 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * we only allow two pending log transactions at a time,
 | |
| 	 * so we know that if ours is more than 2 older than the
 | |
| 	 * current transaction, we're done
 | |
| 	 */
 | |
| 	do {
 | |
| 		prepare_to_wait(&root->log_commit_wait[index],
 | |
| 				&wait, TASK_UNINTERRUPTIBLE);
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 
 | |
| 		if (root->fs_info->last_trans_log_full_commit !=
 | |
| 		    trans->transid && root->log_transid < transid + 2 &&
 | |
| 		    atomic_read(&root->log_commit[index]))
 | |
| 			schedule();
 | |
| 
 | |
| 		finish_wait(&root->log_commit_wait[index], &wait);
 | |
| 		mutex_lock(&root->log_mutex);
 | |
| 	} while (root->fs_info->last_trans_log_full_commit !=
 | |
| 		 trans->transid && root->log_transid < transid + 2 &&
 | |
| 		 atomic_read(&root->log_commit[index]));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void wait_for_writer(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_root *root)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	while (root->fs_info->last_trans_log_full_commit !=
 | |
| 	       trans->transid && atomic_read(&root->log_writers)) {
 | |
| 		prepare_to_wait(&root->log_writer_wait,
 | |
| 				&wait, TASK_UNINTERRUPTIBLE);
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		if (root->fs_info->last_trans_log_full_commit !=
 | |
| 		    trans->transid && atomic_read(&root->log_writers))
 | |
| 			schedule();
 | |
| 		mutex_lock(&root->log_mutex);
 | |
| 		finish_wait(&root->log_writer_wait, &wait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_sync_log does sends a given tree log down to the disk and
 | |
|  * updates the super blocks to record it.  When this call is done,
 | |
|  * you know that any inodes previously logged are safely on disk only
 | |
|  * if it returns 0.
 | |
|  *
 | |
|  * Any other return value means you need to call btrfs_commit_transaction.
 | |
|  * Some of the edge cases for fsyncing directories that have had unlinks
 | |
|  * or renames done in the past mean that sometimes the only safe
 | |
|  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
 | |
|  * that has happened.
 | |
|  */
 | |
| int btrfs_sync_log(struct btrfs_trans_handle *trans,
 | |
| 		   struct btrfs_root *root)
 | |
| {
 | |
| 	int index1;
 | |
| 	int index2;
 | |
| 	int mark;
 | |
| 	int ret;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
 | |
| 	unsigned long log_transid = 0;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	index1 = root->log_transid % 2;
 | |
| 	if (atomic_read(&root->log_commit[index1])) {
 | |
| 		wait_log_commit(trans, root, root->log_transid);
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	atomic_set(&root->log_commit[index1], 1);
 | |
| 
 | |
| 	/* wait for previous tree log sync to complete */
 | |
| 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
 | |
| 		wait_log_commit(trans, root, root->log_transid - 1);
 | |
| 	while (1) {
 | |
| 		unsigned long batch = root->log_batch;
 | |
| 		/* when we're on an ssd, just kick the log commit out */
 | |
| 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
 | |
| 			mutex_unlock(&root->log_mutex);
 | |
| 			schedule_timeout_uninterruptible(1);
 | |
| 			mutex_lock(&root->log_mutex);
 | |
| 		}
 | |
| 		wait_for_writer(trans, root);
 | |
| 		if (batch == root->log_batch)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* bail out if we need to do a full commit */
 | |
| 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
 | |
| 		ret = -EAGAIN;
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	log_transid = root->log_transid;
 | |
| 	if (log_transid % 2 == 0)
 | |
| 		mark = EXTENT_DIRTY;
 | |
| 	else
 | |
| 		mark = EXTENT_NEW;
 | |
| 
 | |
| 	/* we start IO on  all the marked extents here, but we don't actually
 | |
| 	 * wait for them until later.
 | |
| 	 */
 | |
| 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		mutex_unlock(&root->log_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_root_node(&log->root_item, log->node);
 | |
| 
 | |
| 	root->log_batch = 0;
 | |
| 	root->log_transid++;
 | |
| 	log->log_transid = root->log_transid;
 | |
| 	root->log_start_pid = 0;
 | |
| 	smp_mb();
 | |
| 	/*
 | |
| 	 * IO has been started, blocks of the log tree have WRITTEN flag set
 | |
| 	 * in their headers. new modifications of the log will be written to
 | |
| 	 * new positions. so it's safe to allow log writers to go in.
 | |
| 	 */
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 
 | |
| 	mutex_lock(&log_root_tree->log_mutex);
 | |
| 	log_root_tree->log_batch++;
 | |
| 	atomic_inc(&log_root_tree->log_writers);
 | |
| 	mutex_unlock(&log_root_tree->log_mutex);
 | |
| 
 | |
| 	ret = update_log_root(trans, log);
 | |
| 
 | |
| 	mutex_lock(&log_root_tree->log_mutex);
 | |
| 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
 | |
| 		smp_mb();
 | |
| 		if (waitqueue_active(&log_root_tree->log_writer_wait))
 | |
| 			wake_up(&log_root_tree->log_writer_wait);
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		if (ret != -ENOSPC) {
 | |
| 			btrfs_abort_transaction(trans, root, ret);
 | |
| 			mutex_unlock(&log_root_tree->log_mutex);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		root->fs_info->last_trans_log_full_commit = trans->transid;
 | |
| 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	index2 = log_root_tree->log_transid % 2;
 | |
| 	if (atomic_read(&log_root_tree->log_commit[index2])) {
 | |
| 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 | |
| 		wait_log_commit(trans, log_root_tree,
 | |
| 				log_root_tree->log_transid);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	atomic_set(&log_root_tree->log_commit[index2], 1);
 | |
| 
 | |
| 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
 | |
| 		wait_log_commit(trans, log_root_tree,
 | |
| 				log_root_tree->log_transid - 1);
 | |
| 	}
 | |
| 
 | |
| 	wait_for_writer(trans, log_root_tree);
 | |
| 
 | |
| 	/*
 | |
| 	 * now that we've moved on to the tree of log tree roots,
 | |
| 	 * check the full commit flag again
 | |
| 	 */
 | |
| 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
 | |
| 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out_wake_log_root;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
 | |
| 				&log_root_tree->dirty_log_pages,
 | |
| 				EXTENT_DIRTY | EXTENT_NEW);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 		mutex_unlock(&log_root_tree->log_mutex);
 | |
| 		goto out_wake_log_root;
 | |
| 	}
 | |
| 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
 | |
| 
 | |
| 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
 | |
| 				log_root_tree->node->start);
 | |
| 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
 | |
| 				btrfs_header_level(log_root_tree->node));
 | |
| 
 | |
| 	log_root_tree->log_batch = 0;
 | |
| 	log_root_tree->log_transid++;
 | |
| 	smp_mb();
 | |
| 
 | |
| 	mutex_unlock(&log_root_tree->log_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * nobody else is going to jump in and write the the ctree
 | |
| 	 * super here because the log_commit atomic below is protecting
 | |
| 	 * us.  We must be called with a transaction handle pinning
 | |
| 	 * the running transaction open, so a full commit can't hop
 | |
| 	 * in and cause problems either.
 | |
| 	 */
 | |
| 	btrfs_scrub_pause_super(root);
 | |
| 	write_ctree_super(trans, root->fs_info->tree_root, 1);
 | |
| 	btrfs_scrub_continue_super(root);
 | |
| 	ret = 0;
 | |
| 
 | |
| 	mutex_lock(&root->log_mutex);
 | |
| 	if (root->last_log_commit < log_transid)
 | |
| 		root->last_log_commit = log_transid;
 | |
| 	mutex_unlock(&root->log_mutex);
 | |
| 
 | |
| out_wake_log_root:
 | |
| 	atomic_set(&log_root_tree->log_commit[index2], 0);
 | |
| 	smp_mb();
 | |
| 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
 | |
| 		wake_up(&log_root_tree->log_commit_wait[index2]);
 | |
| out:
 | |
| 	atomic_set(&root->log_commit[index1], 0);
 | |
| 	smp_mb();
 | |
| 	if (waitqueue_active(&root->log_commit_wait[index1]))
 | |
| 		wake_up(&root->log_commit_wait[index1]);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void free_log_tree(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *log)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 start;
 | |
| 	u64 end;
 | |
| 	struct walk_control wc = {
 | |
| 		.free = 1,
 | |
| 		.process_func = process_one_buffer
 | |
| 	};
 | |
| 
 | |
| 	ret = walk_log_tree(trans, log, &wc);
 | |
| 	BUG_ON(ret);
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = find_first_extent_bit(&log->dirty_log_pages,
 | |
| 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		clear_extent_bits(&log->dirty_log_pages, start, end,
 | |
| 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
 | |
| 	}
 | |
| 
 | |
| 	free_extent_buffer(log->node);
 | |
| 	kfree(log);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free all the extents used by the tree log.  This should be called
 | |
|  * at commit time of the full transaction
 | |
|  */
 | |
| int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
 | |
| {
 | |
| 	if (root->log_root) {
 | |
| 		free_log_tree(trans, root->log_root);
 | |
| 		root->log_root = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (fs_info->log_root_tree) {
 | |
| 		free_log_tree(trans, fs_info->log_root_tree);
 | |
| 		fs_info->log_root_tree = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If both a file and directory are logged, and unlinks or renames are
 | |
|  * mixed in, we have a few interesting corners:
 | |
|  *
 | |
|  * create file X in dir Y
 | |
|  * link file X to X.link in dir Y
 | |
|  * fsync file X
 | |
|  * unlink file X but leave X.link
 | |
|  * fsync dir Y
 | |
|  *
 | |
|  * After a crash we would expect only X.link to exist.  But file X
 | |
|  * didn't get fsync'd again so the log has back refs for X and X.link.
 | |
|  *
 | |
|  * We solve this by removing directory entries and inode backrefs from the
 | |
|  * log when a file that was logged in the current transaction is
 | |
|  * unlinked.  Any later fsync will include the updated log entries, and
 | |
|  * we'll be able to reconstruct the proper directory items from backrefs.
 | |
|  *
 | |
|  * This optimizations allows us to avoid relogging the entire inode
 | |
|  * or the entire directory.
 | |
|  */
 | |
| int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root,
 | |
| 				 const char *name, int name_len,
 | |
| 				 struct inode *dir, u64 index)
 | |
| {
 | |
| 	struct btrfs_root *log;
 | |
| 	struct btrfs_dir_item *di;
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret;
 | |
| 	int err = 0;
 | |
| 	int bytes_del = 0;
 | |
| 	u64 dir_ino = btrfs_ino(dir);
 | |
| 
 | |
| 	if (BTRFS_I(dir)->logged_trans < trans->transid)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = join_running_log_trans(root);
 | |
| 	if (ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&BTRFS_I(dir)->log_mutex);
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
 | |
| 				   name, name_len, -1);
 | |
| 	if (IS_ERR(di)) {
 | |
| 		err = PTR_ERR(di);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	if (di) {
 | |
| 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 | |
| 		bytes_del += name_len;
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
 | |
| 					 index, name, name_len, -1);
 | |
| 	if (IS_ERR(di)) {
 | |
| 		err = PTR_ERR(di);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	if (di) {
 | |
| 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
 | |
| 		bytes_del += name_len;
 | |
| 		BUG_ON(ret);
 | |
| 	}
 | |
| 
 | |
| 	/* update the directory size in the log to reflect the names
 | |
| 	 * we have removed
 | |
| 	 */
 | |
| 	if (bytes_del) {
 | |
| 		struct btrfs_key key;
 | |
| 
 | |
| 		key.objectid = dir_ino;
 | |
| 		key.offset = 0;
 | |
| 		key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
 | |
| 		if (ret < 0) {
 | |
| 			err = ret;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		if (ret == 0) {
 | |
| 			struct btrfs_inode_item *item;
 | |
| 			u64 i_size;
 | |
| 
 | |
| 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 					      struct btrfs_inode_item);
 | |
| 			i_size = btrfs_inode_size(path->nodes[0], item);
 | |
| 			if (i_size > bytes_del)
 | |
| 				i_size -= bytes_del;
 | |
| 			else
 | |
| 				i_size = 0;
 | |
| 			btrfs_set_inode_size(path->nodes[0], item, i_size);
 | |
| 			btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 		} else
 | |
| 			ret = 0;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| fail:
 | |
| 	btrfs_free_path(path);
 | |
| out_unlock:
 | |
| 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
 | |
| 	if (ret == -ENOSPC) {
 | |
| 		root->fs_info->last_trans_log_full_commit = trans->transid;
 | |
| 		ret = 0;
 | |
| 	} else if (ret < 0)
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 
 | |
| 	btrfs_end_log_trans(root);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* see comments for btrfs_del_dir_entries_in_log */
 | |
| int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *root,
 | |
| 			       const char *name, int name_len,
 | |
| 			       struct inode *inode, u64 dirid)
 | |
| {
 | |
| 	struct btrfs_root *log;
 | |
| 	u64 index;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (BTRFS_I(inode)->logged_trans < trans->transid)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = join_running_log_trans(root);
 | |
| 	if (ret)
 | |
| 		return 0;
 | |
| 	log = root->log_root;
 | |
| 	mutex_lock(&BTRFS_I(inode)->log_mutex);
 | |
| 
 | |
| 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
 | |
| 				  dirid, &index);
 | |
| 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
 | |
| 	if (ret == -ENOSPC) {
 | |
| 		root->fs_info->last_trans_log_full_commit = trans->transid;
 | |
| 		ret = 0;
 | |
| 	} else if (ret < 0 && ret != -ENOENT)
 | |
| 		btrfs_abort_transaction(trans, root, ret);
 | |
| 	btrfs_end_log_trans(root);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * creates a range item in the log for 'dirid'.  first_offset and
 | |
|  * last_offset tell us which parts of the key space the log should
 | |
|  * be considered authoritative for.
 | |
|  */
 | |
| static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
 | |
| 				       struct btrfs_root *log,
 | |
| 				       struct btrfs_path *path,
 | |
| 				       int key_type, u64 dirid,
 | |
| 				       u64 first_offset, u64 last_offset)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_dir_log_item *item;
 | |
| 
 | |
| 	key.objectid = dirid;
 | |
| 	key.offset = first_offset;
 | |
| 	if (key_type == BTRFS_DIR_ITEM_KEY)
 | |
| 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
 | |
| 	else
 | |
| 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 | |
| 			      struct btrfs_dir_log_item);
 | |
| 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
 | |
| 	btrfs_mark_buffer_dirty(path->nodes[0]);
 | |
| 	btrfs_release_path(path);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * log all the items included in the current transaction for a given
 | |
|  * directory.  This also creates the range items in the log tree required
 | |
|  * to replay anything deleted before the fsync
 | |
|  */
 | |
| static noinline int log_dir_items(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, struct inode *inode,
 | |
| 			  struct btrfs_path *path,
 | |
| 			  struct btrfs_path *dst_path, int key_type,
 | |
| 			  u64 min_offset, u64 *last_offset_ret)
 | |
| {
 | |
| 	struct btrfs_key min_key;
 | |
| 	struct btrfs_key max_key;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct extent_buffer *src;
 | |
| 	int err = 0;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	int nritems;
 | |
| 	u64 first_offset = min_offset;
 | |
| 	u64 last_offset = (u64)-1;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 	max_key.objectid = ino;
 | |
| 	max_key.offset = (u64)-1;
 | |
| 	max_key.type = key_type;
 | |
| 
 | |
| 	min_key.objectid = ino;
 | |
| 	min_key.type = key_type;
 | |
| 	min_key.offset = min_offset;
 | |
| 
 | |
| 	path->keep_locks = 1;
 | |
| 
 | |
| 	ret = btrfs_search_forward(root, &min_key, &max_key,
 | |
| 				   path, 0, trans->transid);
 | |
| 
 | |
| 	/*
 | |
| 	 * we didn't find anything from this transaction, see if there
 | |
| 	 * is anything at all
 | |
| 	 */
 | |
| 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
 | |
| 		min_key.objectid = ino;
 | |
| 		min_key.type = key_type;
 | |
| 		min_key.offset = (u64)-1;
 | |
| 		btrfs_release_path(path);
 | |
| 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_release_path(path);
 | |
| 			return ret;
 | |
| 		}
 | |
| 		ret = btrfs_previous_item(root, path, ino, key_type);
 | |
| 
 | |
| 		/* if ret == 0 there are items for this type,
 | |
| 		 * create a range to tell us the last key of this type.
 | |
| 		 * otherwise, there are no items in this directory after
 | |
| 		 * *min_offset, and we create a range to indicate that.
 | |
| 		 */
 | |
| 		if (ret == 0) {
 | |
| 			struct btrfs_key tmp;
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
 | |
| 					      path->slots[0]);
 | |
| 			if (key_type == tmp.type)
 | |
| 				first_offset = max(min_offset, tmp.offset) + 1;
 | |
| 		}
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* go backward to find any previous key */
 | |
| 	ret = btrfs_previous_item(root, path, ino, key_type);
 | |
| 	if (ret == 0) {
 | |
| 		struct btrfs_key tmp;
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
 | |
| 		if (key_type == tmp.type) {
 | |
| 			first_offset = tmp.offset;
 | |
| 			ret = overwrite_item(trans, log, dst_path,
 | |
| 					     path->nodes[0], path->slots[0],
 | |
| 					     &tmp);
 | |
| 			if (ret) {
 | |
| 				err = ret;
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* find the first key from this transaction again */
 | |
| 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
 | |
| 	if (ret != 0) {
 | |
| 		WARN_ON(1);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we have a block from this transaction, log every item in it
 | |
| 	 * from our directory
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		struct btrfs_key tmp;
 | |
| 		src = path->nodes[0];
 | |
| 		nritems = btrfs_header_nritems(src);
 | |
| 		for (i = path->slots[0]; i < nritems; i++) {
 | |
| 			btrfs_item_key_to_cpu(src, &min_key, i);
 | |
| 
 | |
| 			if (min_key.objectid != ino || min_key.type != key_type)
 | |
| 				goto done;
 | |
| 			ret = overwrite_item(trans, log, dst_path, src, i,
 | |
| 					     &min_key);
 | |
| 			if (ret) {
 | |
| 				err = ret;
 | |
| 				goto done;
 | |
| 			}
 | |
| 		}
 | |
| 		path->slots[0] = nritems;
 | |
| 
 | |
| 		/*
 | |
| 		 * look ahead to the next item and see if it is also
 | |
| 		 * from this directory and from this transaction
 | |
| 		 */
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret == 1) {
 | |
| 			last_offset = (u64)-1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
 | |
| 		if (tmp.objectid != ino || tmp.type != key_type) {
 | |
| 			last_offset = (u64)-1;
 | |
| 			goto done;
 | |
| 		}
 | |
| 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
 | |
| 			ret = overwrite_item(trans, log, dst_path,
 | |
| 					     path->nodes[0], path->slots[0],
 | |
| 					     &tmp);
 | |
| 			if (ret)
 | |
| 				err = ret;
 | |
| 			else
 | |
| 				last_offset = tmp.offset;
 | |
| 			goto done;
 | |
| 		}
 | |
| 	}
 | |
| done:
 | |
| 	btrfs_release_path(path);
 | |
| 	btrfs_release_path(dst_path);
 | |
| 
 | |
| 	if (err == 0) {
 | |
| 		*last_offset_ret = last_offset;
 | |
| 		/*
 | |
| 		 * insert the log range keys to indicate where the log
 | |
| 		 * is valid
 | |
| 		 */
 | |
| 		ret = insert_dir_log_key(trans, log, path, key_type,
 | |
| 					 ino, first_offset, last_offset);
 | |
| 		if (ret)
 | |
| 			err = ret;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * logging directories is very similar to logging inodes, We find all the items
 | |
|  * from the current transaction and write them to the log.
 | |
|  *
 | |
|  * The recovery code scans the directory in the subvolume, and if it finds a
 | |
|  * key in the range logged that is not present in the log tree, then it means
 | |
|  * that dir entry was unlinked during the transaction.
 | |
|  *
 | |
|  * In order for that scan to work, we must include one key smaller than
 | |
|  * the smallest logged by this transaction and one key larger than the largest
 | |
|  * key logged by this transaction.
 | |
|  */
 | |
| static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, struct inode *inode,
 | |
| 			  struct btrfs_path *path,
 | |
| 			  struct btrfs_path *dst_path)
 | |
| {
 | |
| 	u64 min_key;
 | |
| 	u64 max_key;
 | |
| 	int ret;
 | |
| 	int key_type = BTRFS_DIR_ITEM_KEY;
 | |
| 
 | |
| again:
 | |
| 	min_key = 0;
 | |
| 	max_key = 0;
 | |
| 	while (1) {
 | |
| 		ret = log_dir_items(trans, root, inode, path,
 | |
| 				    dst_path, key_type, min_key,
 | |
| 				    &max_key);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		if (max_key == (u64)-1)
 | |
| 			break;
 | |
| 		min_key = max_key + 1;
 | |
| 	}
 | |
| 
 | |
| 	if (key_type == BTRFS_DIR_ITEM_KEY) {
 | |
| 		key_type = BTRFS_DIR_INDEX_KEY;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a helper function to drop items from the log before we relog an
 | |
|  * inode.  max_key_type indicates the highest item type to remove.
 | |
|  * This cannot be run for file data extents because it does not
 | |
|  * free the extents they point to.
 | |
|  */
 | |
| static int drop_objectid_items(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_root *log,
 | |
| 				  struct btrfs_path *path,
 | |
| 				  u64 objectid, int max_key_type)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 
 | |
| 	key.objectid = objectid;
 | |
| 	key.type = max_key_type;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
 | |
| 		BUG_ON(ret == 0);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (path->slots[0] == 0)
 | |
| 			break;
 | |
| 
 | |
| 		path->slots[0]--;
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 
 | |
| 		if (found_key.objectid != objectid)
 | |
| 			break;
 | |
| 
 | |
| 		ret = btrfs_del_item(trans, log, path);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		btrfs_release_path(path);
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 	if (ret > 0)
 | |
| 		ret = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int copy_items(struct btrfs_trans_handle *trans,
 | |
| 			       struct btrfs_root *log,
 | |
| 			       struct btrfs_path *dst_path,
 | |
| 			       struct extent_buffer *src,
 | |
| 			       int start_slot, int nr, int inode_only)
 | |
| {
 | |
| 	unsigned long src_offset;
 | |
| 	unsigned long dst_offset;
 | |
| 	struct btrfs_file_extent_item *extent;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	int ret;
 | |
| 	struct btrfs_key *ins_keys;
 | |
| 	u32 *ins_sizes;
 | |
| 	char *ins_data;
 | |
| 	int i;
 | |
| 	struct list_head ordered_sums;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ordered_sums);
 | |
| 
 | |
| 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
 | |
| 			   nr * sizeof(u32), GFP_NOFS);
 | |
| 	if (!ins_data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ins_sizes = (u32 *)ins_data;
 | |
| 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
 | |
| 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
 | |
| 	}
 | |
| 	ret = btrfs_insert_empty_items(trans, log, dst_path,
 | |
| 				       ins_keys, ins_sizes, nr);
 | |
| 	if (ret) {
 | |
| 		kfree(ins_data);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
 | |
| 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
 | |
| 						   dst_path->slots[0]);
 | |
| 
 | |
| 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
 | |
| 
 | |
| 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
 | |
| 				   src_offset, ins_sizes[i]);
 | |
| 
 | |
| 		if (inode_only == LOG_INODE_EXISTS &&
 | |
| 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
 | |
| 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
 | |
| 						    dst_path->slots[0],
 | |
| 						    struct btrfs_inode_item);
 | |
| 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
 | |
| 
 | |
| 			/* set the generation to zero so the recover code
 | |
| 			 * can tell the difference between an logging
 | |
| 			 * just to say 'this inode exists' and a logging
 | |
| 			 * to say 'update this inode with these values'
 | |
| 			 */
 | |
| 			btrfs_set_inode_generation(dst_path->nodes[0],
 | |
| 						   inode_item, 0);
 | |
| 		}
 | |
| 		/* take a reference on file data extents so that truncates
 | |
| 		 * or deletes of this inode don't have to relog the inode
 | |
| 		 * again
 | |
| 		 */
 | |
| 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
 | |
| 			int found_type;
 | |
| 			extent = btrfs_item_ptr(src, start_slot + i,
 | |
| 						struct btrfs_file_extent_item);
 | |
| 
 | |
| 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
 | |
| 				continue;
 | |
| 
 | |
| 			found_type = btrfs_file_extent_type(src, extent);
 | |
| 			if (found_type == BTRFS_FILE_EXTENT_REG ||
 | |
| 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 | |
| 				u64 ds, dl, cs, cl;
 | |
| 				ds = btrfs_file_extent_disk_bytenr(src,
 | |
| 								extent);
 | |
| 				/* ds == 0 is a hole */
 | |
| 				if (ds == 0)
 | |
| 					continue;
 | |
| 
 | |
| 				dl = btrfs_file_extent_disk_num_bytes(src,
 | |
| 								extent);
 | |
| 				cs = btrfs_file_extent_offset(src, extent);
 | |
| 				cl = btrfs_file_extent_num_bytes(src,
 | |
| 								extent);
 | |
| 				if (btrfs_file_extent_compression(src,
 | |
| 								  extent)) {
 | |
| 					cs = 0;
 | |
| 					cl = dl;
 | |
| 				}
 | |
| 
 | |
| 				ret = btrfs_lookup_csums_range(
 | |
| 						log->fs_info->csum_root,
 | |
| 						ds + cs, ds + cs + cl - 1,
 | |
| 						&ordered_sums, 0);
 | |
| 				BUG_ON(ret);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
 | |
| 	btrfs_release_path(dst_path);
 | |
| 	kfree(ins_data);
 | |
| 
 | |
| 	/*
 | |
| 	 * we have to do this after the loop above to avoid changing the
 | |
| 	 * log tree while trying to change the log tree.
 | |
| 	 */
 | |
| 	ret = 0;
 | |
| 	while (!list_empty(&ordered_sums)) {
 | |
| 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
 | |
| 						   struct btrfs_ordered_sum,
 | |
| 						   list);
 | |
| 		if (!ret)
 | |
| 			ret = btrfs_csum_file_blocks(trans, log, sums);
 | |
| 		list_del(&sums->list);
 | |
| 		kfree(sums);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* log a single inode in the tree log.
 | |
|  * At least one parent directory for this inode must exist in the tree
 | |
|  * or be logged already.
 | |
|  *
 | |
|  * Any items from this inode changed by the current transaction are copied
 | |
|  * to the log tree.  An extra reference is taken on any extents in this
 | |
|  * file, allowing us to avoid a whole pile of corner cases around logging
 | |
|  * blocks that have been removed from the tree.
 | |
|  *
 | |
|  * See LOG_INODE_ALL and related defines for a description of what inode_only
 | |
|  * does.
 | |
|  *
 | |
|  * This handles both files and directories.
 | |
|  */
 | |
| static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 | |
| 			     struct btrfs_root *root, struct inode *inode,
 | |
| 			     int inode_only)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_path *dst_path;
 | |
| 	struct btrfs_key min_key;
 | |
| 	struct btrfs_key max_key;
 | |
| 	struct btrfs_root *log = root->log_root;
 | |
| 	struct extent_buffer *src = NULL;
 | |
| 	int err = 0;
 | |
| 	int ret;
 | |
| 	int nritems;
 | |
| 	int ins_start_slot = 0;
 | |
| 	int ins_nr;
 | |
| 	u64 ino = btrfs_ino(inode);
 | |
| 
 | |
| 	log = root->log_root;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	dst_path = btrfs_alloc_path();
 | |
| 	if (!dst_path) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	min_key.objectid = ino;
 | |
| 	min_key.type = BTRFS_INODE_ITEM_KEY;
 | |
| 	min_key.offset = 0;
 | |
| 
 | |
| 	max_key.objectid = ino;
 | |
| 
 | |
| 	/* today the code can only do partial logging of directories */
 | |
| 	if (!S_ISDIR(inode->i_mode))
 | |
| 	    inode_only = LOG_INODE_ALL;
 | |
| 
 | |
| 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
 | |
| 		max_key.type = BTRFS_XATTR_ITEM_KEY;
 | |
| 	else
 | |
| 		max_key.type = (u8)-1;
 | |
| 	max_key.offset = (u64)-1;
 | |
| 
 | |
| 	ret = btrfs_commit_inode_delayed_items(trans, inode);
 | |
| 	if (ret) {
 | |
| 		btrfs_free_path(path);
 | |
| 		btrfs_free_path(dst_path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&BTRFS_I(inode)->log_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * a brute force approach to making sure we get the most uptodate
 | |
| 	 * copies of everything.
 | |
| 	 */
 | |
| 	if (S_ISDIR(inode->i_mode)) {
 | |
| 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
 | |
| 
 | |
| 		if (inode_only == LOG_INODE_EXISTS)
 | |
| 			max_key_type = BTRFS_XATTR_ITEM_KEY;
 | |
| 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
 | |
| 	} else {
 | |
| 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
 | |
| 	}
 | |
| 	if (ret) {
 | |
| 		err = ret;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	path->keep_locks = 1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ins_nr = 0;
 | |
| 		ret = btrfs_search_forward(root, &min_key, &max_key,
 | |
| 					   path, 0, trans->transid);
 | |
| 		if (ret != 0)
 | |
| 			break;
 | |
| again:
 | |
| 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
 | |
| 		if (min_key.objectid != ino)
 | |
| 			break;
 | |
| 		if (min_key.type > max_key.type)
 | |
| 			break;
 | |
| 
 | |
| 		src = path->nodes[0];
 | |
| 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
 | |
| 			ins_nr++;
 | |
| 			goto next_slot;
 | |
| 		} else if (!ins_nr) {
 | |
| 			ins_start_slot = path->slots[0];
 | |
| 			ins_nr = 1;
 | |
| 			goto next_slot;
 | |
| 		}
 | |
| 
 | |
| 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
 | |
| 				 ins_nr, inode_only);
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		ins_nr = 1;
 | |
| 		ins_start_slot = path->slots[0];
 | |
| next_slot:
 | |
| 
 | |
| 		nritems = btrfs_header_nritems(path->nodes[0]);
 | |
| 		path->slots[0]++;
 | |
| 		if (path->slots[0] < nritems) {
 | |
| 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
 | |
| 					      path->slots[0]);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		if (ins_nr) {
 | |
| 			ret = copy_items(trans, log, dst_path, src,
 | |
| 					 ins_start_slot,
 | |
| 					 ins_nr, inode_only);
 | |
| 			if (ret) {
 | |
| 				err = ret;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			ins_nr = 0;
 | |
| 		}
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		if (min_key.offset < (u64)-1)
 | |
| 			min_key.offset++;
 | |
| 		else if (min_key.type < (u8)-1)
 | |
| 			min_key.type++;
 | |
| 		else if (min_key.objectid < (u64)-1)
 | |
| 			min_key.objectid++;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	if (ins_nr) {
 | |
| 		ret = copy_items(trans, log, dst_path, src,
 | |
| 				 ins_start_slot,
 | |
| 				 ins_nr, inode_only);
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		ins_nr = 0;
 | |
| 	}
 | |
| 	WARN_ON(ins_nr);
 | |
| 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
 | |
| 		btrfs_release_path(path);
 | |
| 		btrfs_release_path(dst_path);
 | |
| 		ret = log_directory_changes(trans, root, inode, path, dst_path);
 | |
| 		if (ret) {
 | |
| 			err = ret;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 	BTRFS_I(inode)->logged_trans = trans->transid;
 | |
| out_unlock:
 | |
| 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	btrfs_free_path(dst_path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * follow the dentry parent pointers up the chain and see if any
 | |
|  * of the directories in it require a full commit before they can
 | |
|  * be logged.  Returns zero if nothing special needs to be done or 1 if
 | |
|  * a full commit is required.
 | |
|  */
 | |
| static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
 | |
| 					       struct inode *inode,
 | |
| 					       struct dentry *parent,
 | |
| 					       struct super_block *sb,
 | |
| 					       u64 last_committed)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_root *root;
 | |
| 	struct dentry *old_parent = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * for regular files, if its inode is already on disk, we don't
 | |
| 	 * have to worry about the parents at all.  This is because
 | |
| 	 * we can use the last_unlink_trans field to record renames
 | |
| 	 * and other fun in this file.
 | |
| 	 */
 | |
| 	if (S_ISREG(inode->i_mode) &&
 | |
| 	    BTRFS_I(inode)->generation <= last_committed &&
 | |
| 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
 | |
| 			goto out;
 | |
| 
 | |
| 	if (!S_ISDIR(inode->i_mode)) {
 | |
| 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
 | |
| 			goto out;
 | |
| 		inode = parent->d_inode;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		BTRFS_I(inode)->logged_trans = trans->transid;
 | |
| 		smp_mb();
 | |
| 
 | |
| 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
 | |
| 			root = BTRFS_I(inode)->root;
 | |
| 
 | |
| 			/*
 | |
| 			 * make sure any commits to the log are forced
 | |
| 			 * to be full commits
 | |
| 			 */
 | |
| 			root->fs_info->last_trans_log_full_commit =
 | |
| 				trans->transid;
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
 | |
| 			break;
 | |
| 
 | |
| 		if (IS_ROOT(parent))
 | |
| 			break;
 | |
| 
 | |
| 		parent = dget_parent(parent);
 | |
| 		dput(old_parent);
 | |
| 		old_parent = parent;
 | |
| 		inode = parent->d_inode;
 | |
| 
 | |
| 	}
 | |
| 	dput(old_parent);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper function around btrfs_log_inode to make sure newly created
 | |
|  * parent directories also end up in the log.  A minimal inode and backref
 | |
|  * only logging is done of any parent directories that are older than
 | |
|  * the last committed transaction
 | |
|  */
 | |
| int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
 | |
| 		    struct btrfs_root *root, struct inode *inode,
 | |
| 		    struct dentry *parent, int exists_only)
 | |
| {
 | |
| 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
 | |
| 	struct super_block *sb;
 | |
| 	struct dentry *old_parent = NULL;
 | |
| 	int ret = 0;
 | |
| 	u64 last_committed = root->fs_info->last_trans_committed;
 | |
| 
 | |
| 	sb = inode->i_sb;
 | |
| 
 | |
| 	if (btrfs_test_opt(root, NOTREELOG)) {
 | |
| 		ret = 1;
 | |
| 		goto end_no_trans;
 | |
| 	}
 | |
| 
 | |
| 	if (root->fs_info->last_trans_log_full_commit >
 | |
| 	    root->fs_info->last_trans_committed) {
 | |
| 		ret = 1;
 | |
| 		goto end_no_trans;
 | |
| 	}
 | |
| 
 | |
| 	if (root != BTRFS_I(inode)->root ||
 | |
| 	    btrfs_root_refs(&root->root_item) == 0) {
 | |
| 		ret = 1;
 | |
| 		goto end_no_trans;
 | |
| 	}
 | |
| 
 | |
| 	ret = check_parent_dirs_for_sync(trans, inode, parent,
 | |
| 					 sb, last_committed);
 | |
| 	if (ret)
 | |
| 		goto end_no_trans;
 | |
| 
 | |
| 	if (btrfs_inode_in_log(inode, trans->transid)) {
 | |
| 		ret = BTRFS_NO_LOG_SYNC;
 | |
| 		goto end_no_trans;
 | |
| 	}
 | |
| 
 | |
| 	ret = start_log_trans(trans, root);
 | |
| 	if (ret)
 | |
| 		goto end_trans;
 | |
| 
 | |
| 	ret = btrfs_log_inode(trans, root, inode, inode_only);
 | |
| 	if (ret)
 | |
| 		goto end_trans;
 | |
| 
 | |
| 	/*
 | |
| 	 * for regular files, if its inode is already on disk, we don't
 | |
| 	 * have to worry about the parents at all.  This is because
 | |
| 	 * we can use the last_unlink_trans field to record renames
 | |
| 	 * and other fun in this file.
 | |
| 	 */
 | |
| 	if (S_ISREG(inode->i_mode) &&
 | |
| 	    BTRFS_I(inode)->generation <= last_committed &&
 | |
| 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
 | |
| 		ret = 0;
 | |
| 		goto end_trans;
 | |
| 	}
 | |
| 
 | |
| 	inode_only = LOG_INODE_EXISTS;
 | |
| 	while (1) {
 | |
| 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
 | |
| 			break;
 | |
| 
 | |
| 		inode = parent->d_inode;
 | |
| 		if (root != BTRFS_I(inode)->root)
 | |
| 			break;
 | |
| 
 | |
| 		if (BTRFS_I(inode)->generation >
 | |
| 		    root->fs_info->last_trans_committed) {
 | |
| 			ret = btrfs_log_inode(trans, root, inode, inode_only);
 | |
| 			if (ret)
 | |
| 				goto end_trans;
 | |
| 		}
 | |
| 		if (IS_ROOT(parent))
 | |
| 			break;
 | |
| 
 | |
| 		parent = dget_parent(parent);
 | |
| 		dput(old_parent);
 | |
| 		old_parent = parent;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| end_trans:
 | |
| 	dput(old_parent);
 | |
| 	if (ret < 0) {
 | |
| 		BUG_ON(ret != -ENOSPC);
 | |
| 		root->fs_info->last_trans_log_full_commit = trans->transid;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	btrfs_end_log_trans(root);
 | |
| end_no_trans:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * it is not safe to log dentry if the chunk root has added new
 | |
|  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
 | |
|  * If this returns 1, you must commit the transaction to safely get your
 | |
|  * data on disk.
 | |
|  */
 | |
| int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_root *root, struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *parent = dget_parent(dentry);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
 | |
| 	dput(parent);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * should be called during mount to recover any replay any log trees
 | |
|  * from the FS
 | |
|  */
 | |
| int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_key tmp_key;
 | |
| 	struct btrfs_root *log;
 | |
| 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
 | |
| 	struct walk_control wc = {
 | |
| 		.process_func = process_one_buffer,
 | |
| 		.stage = 0,
 | |
| 	};
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	fs_info->log_root_recovering = 1;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	wc.trans = trans;
 | |
| 	wc.pin = 1;
 | |
| 
 | |
| 	ret = walk_log_tree(trans, log_root_tree, &wc);
 | |
| 	if (ret) {
 | |
| 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
 | |
| 			    "recovering log root tree.");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
 | |
| 	key.offset = (u64)-1;
 | |
| 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
 | |
| 
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_error(fs_info, ret,
 | |
| 				    "Couldn't find tree log root.");
 | |
| 			goto error;
 | |
| 		}
 | |
| 		if (ret > 0) {
 | |
| 			if (path->slots[0] == 0)
 | |
| 				break;
 | |
| 			path->slots[0]--;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 		btrfs_release_path(path);
 | |
| 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 | |
| 			break;
 | |
| 
 | |
| 		log = btrfs_read_fs_root_no_radix(log_root_tree,
 | |
| 						  &found_key);
 | |
| 		if (IS_ERR(log)) {
 | |
| 			ret = PTR_ERR(log);
 | |
| 			btrfs_error(fs_info, ret,
 | |
| 				    "Couldn't read tree log root.");
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		tmp_key.objectid = found_key.offset;
 | |
| 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 		tmp_key.offset = (u64)-1;
 | |
| 
 | |
| 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
 | |
| 		if (IS_ERR(wc.replay_dest)) {
 | |
| 			ret = PTR_ERR(wc.replay_dest);
 | |
| 			btrfs_error(fs_info, ret, "Couldn't read target root "
 | |
| 				    "for tree log recovery.");
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		wc.replay_dest->log_root = log;
 | |
| 		btrfs_record_root_in_trans(trans, wc.replay_dest);
 | |
| 		ret = walk_log_tree(trans, log, &wc);
 | |
| 		BUG_ON(ret);
 | |
| 
 | |
| 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
 | |
| 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
 | |
| 						      path);
 | |
| 			BUG_ON(ret);
 | |
| 		}
 | |
| 
 | |
| 		key.offset = found_key.offset - 1;
 | |
| 		wc.replay_dest->log_root = NULL;
 | |
| 		free_extent_buffer(log->node);
 | |
| 		free_extent_buffer(log->commit_root);
 | |
| 		kfree(log);
 | |
| 
 | |
| 		if (found_key.offset == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/* step one is to pin it all, step two is to replay just inodes */
 | |
| 	if (wc.pin) {
 | |
| 		wc.pin = 0;
 | |
| 		wc.process_func = replay_one_buffer;
 | |
| 		wc.stage = LOG_WALK_REPLAY_INODES;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	/* step three is to replay everything */
 | |
| 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
 | |
| 		wc.stage++;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 
 | |
| 	free_extent_buffer(log_root_tree->node);
 | |
| 	log_root_tree->log_root = NULL;
 | |
| 	fs_info->log_root_recovering = 0;
 | |
| 
 | |
| 	/* step 4: commit the transaction, which also unpins the blocks */
 | |
| 	btrfs_commit_transaction(trans, fs_info->tree_root);
 | |
| 
 | |
| 	kfree(log_root_tree);
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * there are some corner cases where we want to force a full
 | |
|  * commit instead of allowing a directory to be logged.
 | |
|  *
 | |
|  * They revolve around files there were unlinked from the directory, and
 | |
|  * this function updates the parent directory so that a full commit is
 | |
|  * properly done if it is fsync'd later after the unlinks are done.
 | |
|  */
 | |
| void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
 | |
| 			     struct inode *dir, struct inode *inode,
 | |
| 			     int for_rename)
 | |
| {
 | |
| 	/*
 | |
| 	 * when we're logging a file, if it hasn't been renamed
 | |
| 	 * or unlinked, and its inode is fully committed on disk,
 | |
| 	 * we don't have to worry about walking up the directory chain
 | |
| 	 * to log its parents.
 | |
| 	 *
 | |
| 	 * So, we use the last_unlink_trans field to put this transid
 | |
| 	 * into the file.  When the file is logged we check it and
 | |
| 	 * don't log the parents if the file is fully on disk.
 | |
| 	 */
 | |
| 	if (S_ISREG(inode->i_mode))
 | |
| 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this directory was already logged any new
 | |
| 	 * names for this file/dir will get recorded
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (BTRFS_I(dir)->logged_trans == trans->transid)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * if the inode we're about to unlink was logged,
 | |
| 	 * the log will be properly updated for any new names
 | |
| 	 */
 | |
| 	if (BTRFS_I(inode)->logged_trans == trans->transid)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * when renaming files across directories, if the directory
 | |
| 	 * there we're unlinking from gets fsync'd later on, there's
 | |
| 	 * no way to find the destination directory later and fsync it
 | |
| 	 * properly.  So, we have to be conservative and force commits
 | |
| 	 * so the new name gets discovered.
 | |
| 	 */
 | |
| 	if (for_rename)
 | |
| 		goto record;
 | |
| 
 | |
| 	/* we can safely do the unlink without any special recording */
 | |
| 	return;
 | |
| 
 | |
| record:
 | |
| 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call this after adding a new name for a file and it will properly
 | |
|  * update the log to reflect the new name.
 | |
|  *
 | |
|  * It will return zero if all goes well, and it will return 1 if a
 | |
|  * full transaction commit is required.
 | |
|  */
 | |
| int btrfs_log_new_name(struct btrfs_trans_handle *trans,
 | |
| 			struct inode *inode, struct inode *old_dir,
 | |
| 			struct dentry *parent)
 | |
| {
 | |
| 	struct btrfs_root * root = BTRFS_I(inode)->root;
 | |
| 
 | |
| 	/*
 | |
| 	 * this will force the logging code to walk the dentry chain
 | |
| 	 * up for the file
 | |
| 	 */
 | |
| 	if (S_ISREG(inode->i_mode))
 | |
| 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this inode hasn't been logged and directory we're renaming it
 | |
| 	 * from hasn't been logged, we don't need to log it
 | |
| 	 */
 | |
| 	if (BTRFS_I(inode)->logged_trans <=
 | |
| 	    root->fs_info->last_trans_committed &&
 | |
| 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
 | |
| 		    root->fs_info->last_trans_committed))
 | |
| 		return 0;
 | |
| 
 | |
| 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
 | |
| }
 | |
| 
 |