 b257031408
			
		
	
	
	b257031408
	
	
	
		
			
			The pdflush thread is long gone, so this patch removes references to pdflush from btrfs comments. Cc: Chris Mason <chris.mason@fusionio.com> Cc: linux-btrfs@vger.kernel.org Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
			
				
	
	
		
			986 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			986 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include "ctree.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "extent_io.h"
 | |
| 
 | |
| static u64 entry_end(struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	if (entry->file_offset + entry->len < entry->file_offset)
 | |
| 		return (u64)-1;
 | |
| 	return entry->file_offset + entry->len;
 | |
| }
 | |
| 
 | |
| /* returns NULL if the insertion worked, or it returns the node it did find
 | |
|  * in the tree
 | |
|  */
 | |
| static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 | |
| 				   struct rb_node *node)
 | |
| {
 | |
| 	struct rb_node **p = &root->rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 | |
| 
 | |
| 		if (file_offset < entry->file_offset)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (file_offset >= entry_end(entry))
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			return parent;
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(node, parent, p);
 | |
| 	rb_insert_color(node, root);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void ordered_data_tree_panic(struct inode *inode, int errno,
 | |
| 					       u64 offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 | |
| 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
 | |
| 		    "%llu\n", (unsigned long long)offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look for a given offset in the tree, and if it can't be found return the
 | |
|  * first lesser offset
 | |
|  */
 | |
| static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 | |
| 				     struct rb_node **prev_ret)
 | |
| {
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *test;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 	struct btrfs_ordered_extent *prev_entry = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 | |
| 		prev = n;
 | |
| 		prev_entry = entry;
 | |
| 
 | |
| 		if (file_offset < entry->file_offset)
 | |
| 			n = n->rb_left;
 | |
| 		else if (file_offset >= entry_end(entry))
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return n;
 | |
| 	}
 | |
| 	if (!prev_ret)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (prev && file_offset >= entry_end(prev_entry)) {
 | |
| 		test = rb_next(prev);
 | |
| 		if (!test)
 | |
| 			break;
 | |
| 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 		if (file_offset < entry_end(prev_entry))
 | |
| 			break;
 | |
| 
 | |
| 		prev = test;
 | |
| 	}
 | |
| 	if (prev)
 | |
| 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 	while (prev && file_offset < entry_end(prev_entry)) {
 | |
| 		test = rb_prev(prev);
 | |
| 		if (!test)
 | |
| 			break;
 | |
| 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 | |
| 				      rb_node);
 | |
| 		prev = test;
 | |
| 	}
 | |
| 	*prev_ret = prev;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * helper to check if a given offset is inside a given entry
 | |
|  */
 | |
| static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 | |
| {
 | |
| 	if (file_offset < entry->file_offset ||
 | |
| 	    entry->file_offset + entry->len <= file_offset)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 | |
| 			  u64 len)
 | |
| {
 | |
| 	if (file_offset + len <= entry->file_offset ||
 | |
| 	    entry->file_offset + entry->len <= file_offset)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * look find the first ordered struct that has this offset, otherwise
 | |
|  * the first one less than this offset
 | |
|  */
 | |
| static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 | |
| 					  u64 file_offset)
 | |
| {
 | |
| 	struct rb_root *root = &tree->tree;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct rb_node *ret;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	if (tree->last) {
 | |
| 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 | |
| 				 rb_node);
 | |
| 		if (offset_in_entry(entry, file_offset))
 | |
| 			return tree->last;
 | |
| 	}
 | |
| 	ret = __tree_search(root, file_offset, &prev);
 | |
| 	if (!ret)
 | |
| 		ret = prev;
 | |
| 	if (ret)
 | |
| 		tree->last = ret;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* allocate and add a new ordered_extent into the per-inode tree.
 | |
|  * file_offset is the logical offset in the file
 | |
|  *
 | |
|  * start is the disk block number of an extent already reserved in the
 | |
|  * extent allocation tree
 | |
|  *
 | |
|  * len is the length of the extent
 | |
|  *
 | |
|  * The tree is given a single reference on the ordered extent that was
 | |
|  * inserted.
 | |
|  */
 | |
| static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 | |
| 				      u64 start, u64 len, u64 disk_len,
 | |
| 				      int type, int dio, int compress_type)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
 | |
| 	if (!entry)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	entry->file_offset = file_offset;
 | |
| 	entry->start = start;
 | |
| 	entry->len = len;
 | |
| 	entry->disk_len = disk_len;
 | |
| 	entry->bytes_left = len;
 | |
| 	entry->inode = igrab(inode);
 | |
| 	entry->compress_type = compress_type;
 | |
| 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 | |
| 		set_bit(type, &entry->flags);
 | |
| 
 | |
| 	if (dio)
 | |
| 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 | |
| 
 | |
| 	/* one ref for the tree */
 | |
| 	atomic_set(&entry->refs, 1);
 | |
| 	init_waitqueue_head(&entry->wait);
 | |
| 	INIT_LIST_HEAD(&entry->list);
 | |
| 	INIT_LIST_HEAD(&entry->root_extent_list);
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_add(inode, entry);
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_insert(&tree->tree, file_offset,
 | |
| 			   &entry->rb_node);
 | |
| 	if (node)
 | |
| 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 
 | |
| 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
 | |
| 	list_add_tail(&entry->root_extent_list,
 | |
| 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
 | |
| 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 | |
| 			     u64 start, u64 len, u64 disk_len, int type)
 | |
| {
 | |
| 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 | |
| 					  disk_len, type, 0,
 | |
| 					  BTRFS_COMPRESS_NONE);
 | |
| }
 | |
| 
 | |
| int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 | |
| 				 u64 start, u64 len, u64 disk_len, int type)
 | |
| {
 | |
| 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 | |
| 					  disk_len, type, 1,
 | |
| 					  BTRFS_COMPRESS_NONE);
 | |
| }
 | |
| 
 | |
| int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 | |
| 				      u64 start, u64 len, u64 disk_len,
 | |
| 				      int type, int compress_type)
 | |
| {
 | |
| 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 | |
| 					  disk_len, type, 0,
 | |
| 					  compress_type);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 | |
|  * when an ordered extent is finished.  If the list covers more than one
 | |
|  * ordered extent, it is split across multiples.
 | |
|  */
 | |
| void btrfs_add_ordered_sum(struct inode *inode,
 | |
| 			   struct btrfs_ordered_extent *entry,
 | |
| 			   struct btrfs_ordered_sum *sum)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	list_add_tail(&sum->list, &entry->list);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used to account for finished IO across a given range
 | |
|  * of the file.  The IO may span ordered extents.  If
 | |
|  * a given ordered_extent is completely done, 1 is returned, otherwise
 | |
|  * 0.
 | |
|  *
 | |
|  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 | |
|  * to make sure this function only returns 1 once for a given ordered extent.
 | |
|  *
 | |
|  * file_offset is updated to one byte past the range that is recorded as
 | |
|  * complete.  This allows you to walk forward in the file.
 | |
|  */
 | |
| int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 | |
| 				   struct btrfs_ordered_extent **cached,
 | |
| 				   u64 *file_offset, u64 io_size, int uptodate)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 	int ret;
 | |
| 	unsigned long flags;
 | |
| 	u64 dec_end;
 | |
| 	u64 dec_start;
 | |
| 	u64 to_dec;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irqsave(&tree->lock, flags);
 | |
| 	node = tree_search(tree, *file_offset);
 | |
| 	if (!node) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 	if (!offset_in_entry(entry, *file_offset)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dec_start = max(*file_offset, entry->file_offset);
 | |
| 	dec_end = min(*file_offset + io_size, entry->file_offset +
 | |
| 		      entry->len);
 | |
| 	*file_offset = dec_end;
 | |
| 	if (dec_start > dec_end) {
 | |
| 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
 | |
| 		       (unsigned long long)dec_start,
 | |
| 		       (unsigned long long)dec_end);
 | |
| 	}
 | |
| 	to_dec = dec_end - dec_start;
 | |
| 	if (to_dec > entry->bytes_left) {
 | |
| 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
 | |
| 		       (unsigned long long)entry->bytes_left,
 | |
| 		       (unsigned long long)to_dec);
 | |
| 	}
 | |
| 	entry->bytes_left -= to_dec;
 | |
| 	if (!uptodate)
 | |
| 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 | |
| 
 | |
| 	if (entry->bytes_left == 0)
 | |
| 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 | |
| 	else
 | |
| 		ret = 1;
 | |
| out:
 | |
| 	if (!ret && cached && entry) {
 | |
| 		*cached = entry;
 | |
| 		atomic_inc(&entry->refs);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tree->lock, flags);
 | |
| 	return ret == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used to account for finished IO across a given range
 | |
|  * of the file.  The IO should not span ordered extents.  If
 | |
|  * a given ordered_extent is completely done, 1 is returned, otherwise
 | |
|  * 0.
 | |
|  *
 | |
|  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 | |
|  * to make sure this function only returns 1 once for a given ordered extent.
 | |
|  */
 | |
| int btrfs_dec_test_ordered_pending(struct inode *inode,
 | |
| 				   struct btrfs_ordered_extent **cached,
 | |
| 				   u64 file_offset, u64 io_size, int uptodate)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irqsave(&tree->lock, flags);
 | |
| 	if (cached && *cached) {
 | |
| 		entry = *cached;
 | |
| 		goto have_entry;
 | |
| 	}
 | |
| 
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| have_entry:
 | |
| 	if (!offset_in_entry(entry, file_offset)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (io_size > entry->bytes_left) {
 | |
| 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
 | |
| 		       (unsigned long long)entry->bytes_left,
 | |
| 		       (unsigned long long)io_size);
 | |
| 	}
 | |
| 	entry->bytes_left -= io_size;
 | |
| 	if (!uptodate)
 | |
| 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 | |
| 
 | |
| 	if (entry->bytes_left == 0)
 | |
| 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 | |
| 	else
 | |
| 		ret = 1;
 | |
| out:
 | |
| 	if (!ret && cached && entry) {
 | |
| 		*cached = entry;
 | |
| 		atomic_inc(&entry->refs);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tree->lock, flags);
 | |
| 	return ret == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * used to drop a reference on an ordered extent.  This will free
 | |
|  * the extent if the last reference is dropped
 | |
|  */
 | |
| void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	struct list_head *cur;
 | |
| 	struct btrfs_ordered_sum *sum;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_put(entry->inode, entry);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&entry->refs)) {
 | |
| 		if (entry->inode)
 | |
| 			btrfs_add_delayed_iput(entry->inode);
 | |
| 		while (!list_empty(&entry->list)) {
 | |
| 			cur = entry->list.next;
 | |
| 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 | |
| 			list_del(&sum->list);
 | |
| 			kfree(sum);
 | |
| 		}
 | |
| 		kfree(entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove an ordered extent from the tree.  No references are dropped
 | |
|  * and waiters are woken up.
 | |
|  */
 | |
| void btrfs_remove_ordered_extent(struct inode *inode,
 | |
| 				 struct btrfs_ordered_extent *entry)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = &entry->rb_node;
 | |
| 	rb_erase(node, &tree->tree);
 | |
| 	tree->last = NULL;
 | |
| 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 
 | |
| 	spin_lock(&root->fs_info->ordered_extent_lock);
 | |
| 	list_del_init(&entry->root_extent_list);
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_remove(inode, entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * we have no more ordered extents for this inode and
 | |
| 	 * no dirty pages.  We can safely remove it from the
 | |
| 	 * list of ordered extents
 | |
| 	 */
 | |
| 	if (RB_EMPTY_ROOT(&tree->tree) &&
 | |
| 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
 | |
| 		list_del_init(&BTRFS_I(inode)->ordered_operations);
 | |
| 	}
 | |
| 	spin_unlock(&root->fs_info->ordered_extent_lock);
 | |
| 	wake_up(&entry->wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait for all the ordered extents in a root.  This is done when balancing
 | |
|  * space between drives.
 | |
|  */
 | |
| void btrfs_wait_ordered_extents(struct btrfs_root *root,
 | |
| 				int nocow_only, int delay_iput)
 | |
| {
 | |
| 	struct list_head splice;
 | |
| 	struct list_head *cur;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 
 | |
| 	spin_lock(&root->fs_info->ordered_extent_lock);
 | |
| 	list_splice_init(&root->fs_info->ordered_extents, &splice);
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		cur = splice.next;
 | |
| 		ordered = list_entry(cur, struct btrfs_ordered_extent,
 | |
| 				     root_extent_list);
 | |
| 		if (nocow_only &&
 | |
| 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
 | |
| 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
 | |
| 			list_move(&ordered->root_extent_list,
 | |
| 				  &root->fs_info->ordered_extents);
 | |
| 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		list_del_init(&ordered->root_extent_list);
 | |
| 		atomic_inc(&ordered->refs);
 | |
| 
 | |
| 		/*
 | |
| 		 * the inode may be getting freed (in sys_unlink path).
 | |
| 		 */
 | |
| 		inode = igrab(ordered->inode);
 | |
| 
 | |
| 		spin_unlock(&root->fs_info->ordered_extent_lock);
 | |
| 
 | |
| 		if (inode) {
 | |
| 			btrfs_start_ordered_extent(inode, ordered, 1);
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			if (delay_iput)
 | |
| 				btrfs_add_delayed_iput(inode);
 | |
| 			else
 | |
| 				iput(inode);
 | |
| 		} else {
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&root->fs_info->ordered_extent_lock);
 | |
| 	}
 | |
| 	spin_unlock(&root->fs_info->ordered_extent_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this is used during transaction commit to write all the inodes
 | |
|  * added to the ordered operation list.  These files must be fully on
 | |
|  * disk before the transaction commits.
 | |
|  *
 | |
|  * we have two modes here, one is to just start the IO via filemap_flush
 | |
|  * and the other is to wait for all the io.  When we wait, we have an
 | |
|  * extra check to make sure the ordered operation list really is empty
 | |
|  * before we return
 | |
|  */
 | |
| void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
 | |
| {
 | |
| 	struct btrfs_inode *btrfs_inode;
 | |
| 	struct inode *inode;
 | |
| 	struct list_head splice;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&splice);
 | |
| 
 | |
| 	mutex_lock(&root->fs_info->ordered_operations_mutex);
 | |
| 	spin_lock(&root->fs_info->ordered_extent_lock);
 | |
| again:
 | |
| 	list_splice_init(&root->fs_info->ordered_operations, &splice);
 | |
| 
 | |
| 	while (!list_empty(&splice)) {
 | |
| 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
 | |
| 				   ordered_operations);
 | |
| 
 | |
| 		inode = &btrfs_inode->vfs_inode;
 | |
| 
 | |
| 		list_del_init(&btrfs_inode->ordered_operations);
 | |
| 
 | |
| 		/*
 | |
| 		 * the inode may be getting freed (in sys_unlink path).
 | |
| 		 */
 | |
| 		inode = igrab(inode);
 | |
| 
 | |
| 		if (!wait && inode) {
 | |
| 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
 | |
| 			      &root->fs_info->ordered_operations);
 | |
| 		}
 | |
| 		spin_unlock(&root->fs_info->ordered_extent_lock);
 | |
| 
 | |
| 		if (inode) {
 | |
| 			if (wait)
 | |
| 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
 | |
| 			else
 | |
| 				filemap_flush(inode->i_mapping);
 | |
| 			btrfs_add_delayed_iput(inode);
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 		spin_lock(&root->fs_info->ordered_extent_lock);
 | |
| 	}
 | |
| 	if (wait && !list_empty(&root->fs_info->ordered_operations))
 | |
| 		goto again;
 | |
| 
 | |
| 	spin_unlock(&root->fs_info->ordered_extent_lock);
 | |
| 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to start IO or wait for a given ordered extent to finish.
 | |
|  *
 | |
|  * If wait is one, this effectively waits on page writeback for all the pages
 | |
|  * in the extent, and it waits on the io completion code to insert
 | |
|  * metadata into the btree corresponding to the extent
 | |
|  */
 | |
| void btrfs_start_ordered_extent(struct inode *inode,
 | |
| 				       struct btrfs_ordered_extent *entry,
 | |
| 				       int wait)
 | |
| {
 | |
| 	u64 start = entry->file_offset;
 | |
| 	u64 end = start + entry->len - 1;
 | |
| 
 | |
| 	trace_btrfs_ordered_extent_start(inode, entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * pages in the range can be dirty, clean or writeback.  We
 | |
| 	 * start IO on any dirty ones so the wait doesn't stall waiting
 | |
| 	 * for the flusher thread to find them
 | |
| 	 */
 | |
| 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 | |
| 		filemap_fdatawrite_range(inode->i_mapping, start, end);
 | |
| 	if (wait) {
 | |
| 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 | |
| 						 &entry->flags));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to wait on ordered extents across a large range of bytes.
 | |
|  */
 | |
| void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 | |
| {
 | |
| 	u64 end;
 | |
| 	u64 orig_end;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	int found;
 | |
| 
 | |
| 	if (start + len < start) {
 | |
| 		orig_end = INT_LIMIT(loff_t);
 | |
| 	} else {
 | |
| 		orig_end = start + len - 1;
 | |
| 		if (orig_end > INT_LIMIT(loff_t))
 | |
| 			orig_end = INT_LIMIT(loff_t);
 | |
| 	}
 | |
| 
 | |
| 	/* start IO across the range first to instantiate any delalloc
 | |
| 	 * extents
 | |
| 	 */
 | |
| 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * So with compression we will find and lock a dirty page and clear the
 | |
| 	 * first one as dirty, setup an async extent, and immediately return
 | |
| 	 * with the entire range locked but with nobody actually marked with
 | |
| 	 * writeback.  So we can't just filemap_write_and_wait_range() and
 | |
| 	 * expect it to work since it will just kick off a thread to do the
 | |
| 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
 | |
| 	 * since it will wait on the page lock, which won't be unlocked until
 | |
| 	 * after the pages have been marked as writeback and so we're good to go
 | |
| 	 * from there.  We have to do this otherwise we'll miss the ordered
 | |
| 	 * extents and that results in badness.  Please Josef, do not think you
 | |
| 	 * know better and pull this out at some point in the future, it is
 | |
| 	 * right and you are wrong.
 | |
| 	 */
 | |
| 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
 | |
| 		     &BTRFS_I(inode)->runtime_flags))
 | |
| 		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 | |
| 
 | |
| 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 | |
| 
 | |
| 	end = orig_end;
 | |
| 	found = 0;
 | |
| 	while (1) {
 | |
| 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 | |
| 		if (!ordered)
 | |
| 			break;
 | |
| 		if (ordered->file_offset > orig_end) {
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ordered->file_offset + ordered->len < start) {
 | |
| 			btrfs_put_ordered_extent(ordered);
 | |
| 			break;
 | |
| 		}
 | |
| 		found++;
 | |
| 		btrfs_start_ordered_extent(inode, ordered, 1);
 | |
| 		end = ordered->file_offset;
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 		if (end == 0 || end == start)
 | |
| 			break;
 | |
| 		end--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find an ordered extent corresponding to file_offset.  return NULL if
 | |
|  * nothing is found, otherwise take a reference on the extent and return it
 | |
|  */
 | |
| struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 | |
| 							 u64 file_offset)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 	if (!offset_in_entry(entry, file_offset))
 | |
| 		entry = NULL;
 | |
| 	if (entry)
 | |
| 		atomic_inc(&entry->refs);
 | |
| out:
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /* Since the DIO code tries to lock a wide area we need to look for any ordered
 | |
|  * extents that exist in the range, rather than just the start of the range.
 | |
|  */
 | |
| struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 | |
| 							u64 file_offset,
 | |
| 							u64 len)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node) {
 | |
| 		node = tree_search(tree, file_offset + len);
 | |
| 		if (!node)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 		if (range_overlaps(entry, file_offset, len))
 | |
| 			break;
 | |
| 
 | |
| 		if (entry->file_offset >= file_offset + len) {
 | |
| 			entry = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 		entry = NULL;
 | |
| 		node = rb_next(node);
 | |
| 		if (!node)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	if (entry)
 | |
| 		atomic_inc(&entry->refs);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lookup and return any extent before 'file_offset'.  NULL is returned
 | |
|  * if none is found
 | |
|  */
 | |
| struct btrfs_ordered_extent *
 | |
| btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct btrfs_ordered_extent *entry = NULL;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	node = tree_search(tree, file_offset);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 	atomic_inc(&entry->refs);
 | |
| out:
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After an extent is done, call this to conditionally update the on disk
 | |
|  * i_size.  i_size is updated to cover any fully written part of the file.
 | |
|  */
 | |
| int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 | |
| 				struct btrfs_ordered_extent *ordered)
 | |
| {
 | |
| 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	u64 disk_i_size;
 | |
| 	u64 new_i_size;
 | |
| 	u64 i_size_test;
 | |
| 	u64 i_size = i_size_read(inode);
 | |
| 	struct rb_node *node;
 | |
| 	struct rb_node *prev = NULL;
 | |
| 	struct btrfs_ordered_extent *test;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	if (ordered)
 | |
| 		offset = entry_end(ordered);
 | |
| 	else
 | |
| 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	disk_i_size = BTRFS_I(inode)->disk_i_size;
 | |
| 
 | |
| 	/* truncate file */
 | |
| 	if (disk_i_size > i_size) {
 | |
| 		BTRFS_I(inode)->disk_i_size = i_size;
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if the disk i_size is already at the inode->i_size, or
 | |
| 	 * this ordered extent is inside the disk i_size, we're done
 | |
| 	 */
 | |
| 	if (disk_i_size == i_size || offset <= disk_i_size) {
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * walk backward from this ordered extent to disk_i_size.
 | |
| 	 * if we find an ordered extent then we can't update disk i_size
 | |
| 	 * yet
 | |
| 	 */
 | |
| 	if (ordered) {
 | |
| 		node = rb_prev(&ordered->rb_node);
 | |
| 	} else {
 | |
| 		prev = tree_search(tree, offset);
 | |
| 		/*
 | |
| 		 * we insert file extents without involving ordered struct,
 | |
| 		 * so there should be no ordered struct cover this offset
 | |
| 		 */
 | |
| 		if (prev) {
 | |
| 			test = rb_entry(prev, struct btrfs_ordered_extent,
 | |
| 					rb_node);
 | |
| 			BUG_ON(offset_in_entry(test, offset));
 | |
| 		}
 | |
| 		node = prev;
 | |
| 	}
 | |
| 	for (; node; node = rb_prev(node)) {
 | |
| 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 
 | |
| 		/* We treat this entry as if it doesnt exist */
 | |
| 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 | |
| 			continue;
 | |
| 		if (test->file_offset + test->len <= disk_i_size)
 | |
| 			break;
 | |
| 		if (test->file_offset >= i_size)
 | |
| 			break;
 | |
| 		if (test->file_offset >= disk_i_size)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	new_i_size = min_t(u64, offset, i_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * at this point, we know we can safely update i_size to at least
 | |
| 	 * the offset from this ordered extent.  But, we need to
 | |
| 	 * walk forward and see if ios from higher up in the file have
 | |
| 	 * finished.
 | |
| 	 */
 | |
| 	if (ordered) {
 | |
| 		node = rb_next(&ordered->rb_node);
 | |
| 	} else {
 | |
| 		if (prev)
 | |
| 			node = rb_next(prev);
 | |
| 		else
 | |
| 			node = rb_first(&tree->tree);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are looking for an area between our current extent and the next
 | |
| 	 * ordered extent to update the i_size to.  There are 3 cases here
 | |
| 	 *
 | |
| 	 * 1) We don't actually have anything and we can update to i_size.
 | |
| 	 * 2) We have stuff but they already did their i_size update so again we
 | |
| 	 * can just update to i_size.
 | |
| 	 * 3) We have an outstanding ordered extent so the most we can update
 | |
| 	 * our disk_i_size to is the start of the next offset.
 | |
| 	 */
 | |
| 	i_size_test = i_size;
 | |
| 	for (; node; node = rb_next(node)) {
 | |
| 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | |
| 
 | |
| 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
 | |
| 			continue;
 | |
| 		if (test->file_offset > offset) {
 | |
| 			i_size_test = test->file_offset;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * i_size_test is the end of a region after this ordered
 | |
| 	 * extent where there are no ordered extents, we can safely set
 | |
| 	 * disk_i_size to this.
 | |
| 	 */
 | |
| 	if (i_size_test > offset)
 | |
| 		new_i_size = min_t(u64, i_size_test, i_size);
 | |
| 	BTRFS_I(inode)->disk_i_size = new_i_size;
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	/*
 | |
| 	 * We need to do this because we can't remove ordered extents until
 | |
| 	 * after the i_disk_size has been updated and then the inode has been
 | |
| 	 * updated to reflect the change, so we need to tell anybody who finds
 | |
| 	 * this ordered extent that we've already done all the real work, we
 | |
| 	 * just haven't completed all the other work.
 | |
| 	 */
 | |
| 	if (ordered)
 | |
| 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search the ordered extents for one corresponding to 'offset' and
 | |
|  * try to find a checksum.  This is used because we allow pages to
 | |
|  * be reclaimed before their checksum is actually put into the btree
 | |
|  */
 | |
| int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
 | |
| 			   u32 *sum)
 | |
| {
 | |
| 	struct btrfs_ordered_sum *ordered_sum;
 | |
| 	struct btrfs_sector_sum *sector_sums;
 | |
| 	struct btrfs_ordered_extent *ordered;
 | |
| 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 | |
| 	unsigned long num_sectors;
 | |
| 	unsigned long i;
 | |
| 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	ordered = btrfs_lookup_ordered_extent(inode, offset);
 | |
| 	if (!ordered)
 | |
| 		return 1;
 | |
| 
 | |
| 	spin_lock_irq(&tree->lock);
 | |
| 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
 | |
| 		if (disk_bytenr >= ordered_sum->bytenr) {
 | |
| 			num_sectors = ordered_sum->len / sectorsize;
 | |
| 			sector_sums = ordered_sum->sums;
 | |
| 			for (i = 0; i < num_sectors; i++) {
 | |
| 				if (sector_sums[i].bytenr == disk_bytenr) {
 | |
| 					*sum = sector_sums[i].sum;
 | |
| 					ret = 0;
 | |
| 					goto out;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irq(&tree->lock);
 | |
| 	btrfs_put_ordered_extent(ordered);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * add a given inode to the list of inodes that must be fully on
 | |
|  * disk before a transaction commit finishes.
 | |
|  *
 | |
|  * This basically gives us the ext3 style data=ordered mode, and it is mostly
 | |
|  * used to make sure renamed files are fully on disk.
 | |
|  *
 | |
|  * It is a noop if the inode is already fully on disk.
 | |
|  *
 | |
|  * If trans is not null, we'll do a friendly check for a transaction that
 | |
|  * is already flushing things and force the IO down ourselves.
 | |
|  */
 | |
| void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_root *root, struct inode *inode)
 | |
| {
 | |
| 	u64 last_mod;
 | |
| 
 | |
| 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
 | |
| 
 | |
| 	/*
 | |
| 	 * if this file hasn't been changed since the last transaction
 | |
| 	 * commit, we can safely return without doing anything
 | |
| 	 */
 | |
| 	if (last_mod < root->fs_info->last_trans_committed)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * the transaction is already committing.  Just start the IO and
 | |
| 	 * don't bother with all of this list nonsense
 | |
| 	 */
 | |
| 	if (trans && root->fs_info->running_transaction->blocked) {
 | |
| 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&root->fs_info->ordered_extent_lock);
 | |
| 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
 | |
| 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
 | |
| 			      &root->fs_info->ordered_operations);
 | |
| 	}
 | |
| 	spin_unlock(&root->fs_info->ordered_extent_lock);
 | |
| }
 |