 659e45d8a0
			
		
	
	
	659e45d8a0
	
	
	
		
			
			Pull the minimal btrfs branch from Chris Mason: "We have a use-after-free in there, along with errors when mount -o discard is enabled, and a BUG_ON(we should compile with UP more often)." * 'for-linus-min' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: Btrfs: use commit root when loading free space cache Btrfs: fix use-after-free in __btrfs_end_transaction Btrfs: check return value of bio_alloc() properly Btrfs: remove lock assert from get_restripe_target() Btrfs: fix eof while discarding extents Btrfs: fix uninit variable in repair_eb_io_failure Revert "Btrfs: increase the global block reserve estimates"
		
			
				
	
	
		
			1038 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1038 lines
		
	
	
	
		
			27 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2008 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License v2 as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/slab.h>
 | |
| #include "compat.h"
 | |
| #include "ctree.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "btrfs_inode.h"
 | |
| #include "volumes.h"
 | |
| #include "ordered-data.h"
 | |
| #include "compression.h"
 | |
| #include "extent_io.h"
 | |
| #include "extent_map.h"
 | |
| 
 | |
| struct compressed_bio {
 | |
| 	/* number of bios pending for this compressed extent */
 | |
| 	atomic_t pending_bios;
 | |
| 
 | |
| 	/* the pages with the compressed data on them */
 | |
| 	struct page **compressed_pages;
 | |
| 
 | |
| 	/* inode that owns this data */
 | |
| 	struct inode *inode;
 | |
| 
 | |
| 	/* starting offset in the inode for our pages */
 | |
| 	u64 start;
 | |
| 
 | |
| 	/* number of bytes in the inode we're working on */
 | |
| 	unsigned long len;
 | |
| 
 | |
| 	/* number of bytes on disk */
 | |
| 	unsigned long compressed_len;
 | |
| 
 | |
| 	/* the compression algorithm for this bio */
 | |
| 	int compress_type;
 | |
| 
 | |
| 	/* number of compressed pages in the array */
 | |
| 	unsigned long nr_pages;
 | |
| 
 | |
| 	/* IO errors */
 | |
| 	int errors;
 | |
| 	int mirror_num;
 | |
| 
 | |
| 	/* for reads, this is the bio we are copying the data into */
 | |
| 	struct bio *orig_bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * the start of a variable length array of checksums only
 | |
| 	 * used by reads
 | |
| 	 */
 | |
| 	u32 sums;
 | |
| };
 | |
| 
 | |
| static inline int compressed_bio_size(struct btrfs_root *root,
 | |
| 				      unsigned long disk_size)
 | |
| {
 | |
| 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 | |
| 
 | |
| 	return sizeof(struct compressed_bio) +
 | |
| 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
 | |
| 		csum_size;
 | |
| }
 | |
| 
 | |
| static struct bio *compressed_bio_alloc(struct block_device *bdev,
 | |
| 					u64 first_byte, gfp_t gfp_flags)
 | |
| {
 | |
| 	int nr_vecs;
 | |
| 
 | |
| 	nr_vecs = bio_get_nr_vecs(bdev);
 | |
| 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 | |
| }
 | |
| 
 | |
| static int check_compressed_csum(struct inode *inode,
 | |
| 				 struct compressed_bio *cb,
 | |
| 				 u64 disk_start)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct page *page;
 | |
| 	unsigned long i;
 | |
| 	char *kaddr;
 | |
| 	u32 csum;
 | |
| 	u32 *cb_sum = &cb->sums;
 | |
| 
 | |
| 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < cb->nr_pages; i++) {
 | |
| 		page = cb->compressed_pages[i];
 | |
| 		csum = ~(u32)0;
 | |
| 
 | |
| 		kaddr = kmap_atomic(page);
 | |
| 		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
 | |
| 		btrfs_csum_final(csum, (char *)&csum);
 | |
| 		kunmap_atomic(kaddr);
 | |
| 
 | |
| 		if (csum != *cb_sum) {
 | |
| 			printk(KERN_INFO "btrfs csum failed ino %llu "
 | |
| 			       "extent %llu csum %u "
 | |
| 			       "wanted %u mirror %d\n",
 | |
| 			       (unsigned long long)btrfs_ino(inode),
 | |
| 			       (unsigned long long)disk_start,
 | |
| 			       csum, *cb_sum, cb->mirror_num);
 | |
| 			ret = -EIO;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		cb_sum++;
 | |
| 
 | |
| 	}
 | |
| 	ret = 0;
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* when we finish reading compressed pages from the disk, we
 | |
|  * decompress them and then run the bio end_io routines on the
 | |
|  * decompressed pages (in the inode address space).
 | |
|  *
 | |
|  * This allows the checksumming and other IO error handling routines
 | |
|  * to work normally
 | |
|  *
 | |
|  * The compressed pages are freed here, and it must be run
 | |
|  * in process context
 | |
|  */
 | |
| static void end_compressed_bio_read(struct bio *bio, int err)
 | |
| {
 | |
| 	struct compressed_bio *cb = bio->bi_private;
 | |
| 	struct inode *inode;
 | |
| 	struct page *page;
 | |
| 	unsigned long index;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (err)
 | |
| 		cb->errors = 1;
 | |
| 
 | |
| 	/* if there are more bios still pending for this compressed
 | |
| 	 * extent, just exit
 | |
| 	 */
 | |
| 	if (!atomic_dec_and_test(&cb->pending_bios))
 | |
| 		goto out;
 | |
| 
 | |
| 	inode = cb->inode;
 | |
| 	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
 | |
| 	if (ret)
 | |
| 		goto csum_failed;
 | |
| 
 | |
| 	/* ok, we're the last bio for this extent, lets start
 | |
| 	 * the decompression.
 | |
| 	 */
 | |
| 	ret = btrfs_decompress_biovec(cb->compress_type,
 | |
| 				      cb->compressed_pages,
 | |
| 				      cb->start,
 | |
| 				      cb->orig_bio->bi_io_vec,
 | |
| 				      cb->orig_bio->bi_vcnt,
 | |
| 				      cb->compressed_len);
 | |
| csum_failed:
 | |
| 	if (ret)
 | |
| 		cb->errors = 1;
 | |
| 
 | |
| 	/* release the compressed pages */
 | |
| 	index = 0;
 | |
| 	for (index = 0; index < cb->nr_pages; index++) {
 | |
| 		page = cb->compressed_pages[index];
 | |
| 		page->mapping = NULL;
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 
 | |
| 	/* do io completion on the original bio */
 | |
| 	if (cb->errors) {
 | |
| 		bio_io_error(cb->orig_bio);
 | |
| 	} else {
 | |
| 		int bio_index = 0;
 | |
| 		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
 | |
| 
 | |
| 		/*
 | |
| 		 * we have verified the checksum already, set page
 | |
| 		 * checked so the end_io handlers know about it
 | |
| 		 */
 | |
| 		while (bio_index < cb->orig_bio->bi_vcnt) {
 | |
| 			SetPageChecked(bvec->bv_page);
 | |
| 			bvec++;
 | |
| 			bio_index++;
 | |
| 		}
 | |
| 		bio_endio(cb->orig_bio, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* finally free the cb struct */
 | |
| 	kfree(cb->compressed_pages);
 | |
| 	kfree(cb);
 | |
| out:
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the writeback bits on all of the file
 | |
|  * pages for a compressed write
 | |
|  */
 | |
| static noinline void end_compressed_writeback(struct inode *inode, u64 start,
 | |
| 					      unsigned long ram_size)
 | |
| {
 | |
| 	unsigned long index = start >> PAGE_CACHE_SHIFT;
 | |
| 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	struct page *pages[16];
 | |
| 	unsigned long nr_pages = end_index - index + 1;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	while (nr_pages > 0) {
 | |
| 		ret = find_get_pages_contig(inode->i_mapping, index,
 | |
| 				     min_t(unsigned long,
 | |
| 				     nr_pages, ARRAY_SIZE(pages)), pages);
 | |
| 		if (ret == 0) {
 | |
| 			nr_pages -= 1;
 | |
| 			index += 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		for (i = 0; i < ret; i++) {
 | |
| 			end_page_writeback(pages[i]);
 | |
| 			page_cache_release(pages[i]);
 | |
| 		}
 | |
| 		nr_pages -= ret;
 | |
| 		index += ret;
 | |
| 	}
 | |
| 	/* the inode may be gone now */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * do the cleanup once all the compressed pages hit the disk.
 | |
|  * This will clear writeback on the file pages and free the compressed
 | |
|  * pages.
 | |
|  *
 | |
|  * This also calls the writeback end hooks for the file pages so that
 | |
|  * metadata and checksums can be updated in the file.
 | |
|  */
 | |
| static void end_compressed_bio_write(struct bio *bio, int err)
 | |
| {
 | |
| 	struct extent_io_tree *tree;
 | |
| 	struct compressed_bio *cb = bio->bi_private;
 | |
| 	struct inode *inode;
 | |
| 	struct page *page;
 | |
| 	unsigned long index;
 | |
| 
 | |
| 	if (err)
 | |
| 		cb->errors = 1;
 | |
| 
 | |
| 	/* if there are more bios still pending for this compressed
 | |
| 	 * extent, just exit
 | |
| 	 */
 | |
| 	if (!atomic_dec_and_test(&cb->pending_bios))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* ok, we're the last bio for this extent, step one is to
 | |
| 	 * call back into the FS and do all the end_io operations
 | |
| 	 */
 | |
| 	inode = cb->inode;
 | |
| 	tree = &BTRFS_I(inode)->io_tree;
 | |
| 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 | |
| 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 | |
| 					 cb->start,
 | |
| 					 cb->start + cb->len - 1,
 | |
| 					 NULL, 1);
 | |
| 	cb->compressed_pages[0]->mapping = NULL;
 | |
| 
 | |
| 	end_compressed_writeback(inode, cb->start, cb->len);
 | |
| 	/* note, our inode could be gone now */
 | |
| 
 | |
| 	/*
 | |
| 	 * release the compressed pages, these came from alloc_page and
 | |
| 	 * are not attached to the inode at all
 | |
| 	 */
 | |
| 	index = 0;
 | |
| 	for (index = 0; index < cb->nr_pages; index++) {
 | |
| 		page = cb->compressed_pages[index];
 | |
| 		page->mapping = NULL;
 | |
| 		page_cache_release(page);
 | |
| 	}
 | |
| 
 | |
| 	/* finally free the cb struct */
 | |
| 	kfree(cb->compressed_pages);
 | |
| 	kfree(cb);
 | |
| out:
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * worker function to build and submit bios for previously compressed pages.
 | |
|  * The corresponding pages in the inode should be marked for writeback
 | |
|  * and the compressed pages should have a reference on them for dropping
 | |
|  * when the IO is complete.
 | |
|  *
 | |
|  * This also checksums the file bytes and gets things ready for
 | |
|  * the end io hooks.
 | |
|  */
 | |
| int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 | |
| 				 unsigned long len, u64 disk_start,
 | |
| 				 unsigned long compressed_len,
 | |
| 				 struct page **compressed_pages,
 | |
| 				 unsigned long nr_pages)
 | |
| {
 | |
| 	struct bio *bio = NULL;
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	struct compressed_bio *cb;
 | |
| 	unsigned long bytes_left;
 | |
| 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | |
| 	int pg_index = 0;
 | |
| 	struct page *page;
 | |
| 	u64 first_byte = disk_start;
 | |
| 	struct block_device *bdev;
 | |
| 	int ret;
 | |
| 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 | |
| 
 | |
| 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 | |
| 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 | |
| 	if (!cb)
 | |
| 		return -ENOMEM;
 | |
| 	atomic_set(&cb->pending_bios, 0);
 | |
| 	cb->errors = 0;
 | |
| 	cb->inode = inode;
 | |
| 	cb->start = start;
 | |
| 	cb->len = len;
 | |
| 	cb->mirror_num = 0;
 | |
| 	cb->compressed_pages = compressed_pages;
 | |
| 	cb->compressed_len = compressed_len;
 | |
| 	cb->orig_bio = NULL;
 | |
| 	cb->nr_pages = nr_pages;
 | |
| 
 | |
| 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 | |
| 
 | |
| 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 | |
| 	if(!bio) {
 | |
| 		kfree(cb);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	bio->bi_private = cb;
 | |
| 	bio->bi_end_io = end_compressed_bio_write;
 | |
| 	atomic_inc(&cb->pending_bios);
 | |
| 
 | |
| 	/* create and submit bios for the compressed pages */
 | |
| 	bytes_left = compressed_len;
 | |
| 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 | |
| 		page = compressed_pages[pg_index];
 | |
| 		page->mapping = inode->i_mapping;
 | |
| 		if (bio->bi_size)
 | |
| 			ret = io_tree->ops->merge_bio_hook(page, 0,
 | |
| 							   PAGE_CACHE_SIZE,
 | |
| 							   bio, 0);
 | |
| 		else
 | |
| 			ret = 0;
 | |
| 
 | |
| 		page->mapping = NULL;
 | |
| 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 | |
| 		    PAGE_CACHE_SIZE) {
 | |
| 			bio_get(bio);
 | |
| 
 | |
| 			/*
 | |
| 			 * inc the count before we submit the bio so
 | |
| 			 * we know the end IO handler won't happen before
 | |
| 			 * we inc the count.  Otherwise, the cb might get
 | |
| 			 * freed before we're done setting it up
 | |
| 			 */
 | |
| 			atomic_inc(&cb->pending_bios);
 | |
| 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 | |
| 			BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 			if (!skip_sum) {
 | |
| 				ret = btrfs_csum_one_bio(root, inode, bio,
 | |
| 							 start, 1);
 | |
| 				BUG_ON(ret); /* -ENOMEM */
 | |
| 			}
 | |
| 
 | |
| 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 | |
| 			BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 			bio_put(bio);
 | |
| 
 | |
| 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 | |
| 			BUG_ON(!bio);
 | |
| 			bio->bi_private = cb;
 | |
| 			bio->bi_end_io = end_compressed_bio_write;
 | |
| 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 | |
| 		}
 | |
| 		if (bytes_left < PAGE_CACHE_SIZE) {
 | |
| 			printk("bytes left %lu compress len %lu nr %lu\n",
 | |
| 			       bytes_left, cb->compressed_len, cb->nr_pages);
 | |
| 		}
 | |
| 		bytes_left -= PAGE_CACHE_SIZE;
 | |
| 		first_byte += PAGE_CACHE_SIZE;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	bio_get(bio);
 | |
| 
 | |
| 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 | |
| 	BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 	if (!skip_sum) {
 | |
| 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 | |
| 	BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int add_ra_bio_pages(struct inode *inode,
 | |
| 				     u64 compressed_end,
 | |
| 				     struct compressed_bio *cb)
 | |
| {
 | |
| 	unsigned long end_index;
 | |
| 	unsigned long pg_index;
 | |
| 	u64 last_offset;
 | |
| 	u64 isize = i_size_read(inode);
 | |
| 	int ret;
 | |
| 	struct page *page;
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	struct extent_map *em;
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct extent_io_tree *tree;
 | |
| 	u64 end;
 | |
| 	int misses = 0;
 | |
| 
 | |
| 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 | |
| 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 | |
| 	em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 	tree = &BTRFS_I(inode)->io_tree;
 | |
| 
 | |
| 	if (isize == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	while (last_offset < compressed_end) {
 | |
| 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		if (pg_index > end_index)
 | |
| 			break;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
 | |
| 		rcu_read_unlock();
 | |
| 		if (page) {
 | |
| 			misses++;
 | |
| 			if (misses > 4)
 | |
| 				break;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 | |
| 								~__GFP_FS);
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 
 | |
| 		if (add_to_page_cache_lru(page, mapping, pg_index,
 | |
| 								GFP_NOFS)) {
 | |
| 			page_cache_release(page);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		end = last_offset + PAGE_CACHE_SIZE - 1;
 | |
| 		/*
 | |
| 		 * at this point, we have a locked page in the page cache
 | |
| 		 * for these bytes in the file.  But, we have to make
 | |
| 		 * sure they map to this compressed extent on disk.
 | |
| 		 */
 | |
| 		set_page_extent_mapped(page);
 | |
| 		lock_extent(tree, last_offset, end);
 | |
| 		read_lock(&em_tree->lock);
 | |
| 		em = lookup_extent_mapping(em_tree, last_offset,
 | |
| 					   PAGE_CACHE_SIZE);
 | |
| 		read_unlock(&em_tree->lock);
 | |
| 
 | |
| 		if (!em || last_offset < em->start ||
 | |
| 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 | |
| 		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
 | |
| 			free_extent_map(em);
 | |
| 			unlock_extent(tree, last_offset, end);
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			break;
 | |
| 		}
 | |
| 		free_extent_map(em);
 | |
| 
 | |
| 		if (page->index == end_index) {
 | |
| 			char *userpage;
 | |
| 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 | |
| 
 | |
| 			if (zero_offset) {
 | |
| 				int zeros;
 | |
| 				zeros = PAGE_CACHE_SIZE - zero_offset;
 | |
| 				userpage = kmap_atomic(page);
 | |
| 				memset(userpage + zero_offset, 0, zeros);
 | |
| 				flush_dcache_page(page);
 | |
| 				kunmap_atomic(userpage);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = bio_add_page(cb->orig_bio, page,
 | |
| 				   PAGE_CACHE_SIZE, 0);
 | |
| 
 | |
| 		if (ret == PAGE_CACHE_SIZE) {
 | |
| 			nr_pages++;
 | |
| 			page_cache_release(page);
 | |
| 		} else {
 | |
| 			unlock_extent(tree, last_offset, end);
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			break;
 | |
| 		}
 | |
| next:
 | |
| 		last_offset += PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for a compressed read, the bio we get passed has all the inode pages
 | |
|  * in it.  We don't actually do IO on those pages but allocate new ones
 | |
|  * to hold the compressed pages on disk.
 | |
|  *
 | |
|  * bio->bi_sector points to the compressed extent on disk
 | |
|  * bio->bi_io_vec points to all of the inode pages
 | |
|  * bio->bi_vcnt is a count of pages
 | |
|  *
 | |
|  * After the compressed pages are read, we copy the bytes into the
 | |
|  * bio we were passed and then call the bio end_io calls
 | |
|  */
 | |
| int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 | |
| 				 int mirror_num, unsigned long bio_flags)
 | |
| {
 | |
| 	struct extent_io_tree *tree;
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct compressed_bio *cb;
 | |
| 	struct btrfs_root *root = BTRFS_I(inode)->root;
 | |
| 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 | |
| 	unsigned long compressed_len;
 | |
| 	unsigned long nr_pages;
 | |
| 	unsigned long pg_index;
 | |
| 	struct page *page;
 | |
| 	struct block_device *bdev;
 | |
| 	struct bio *comp_bio;
 | |
| 	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
 | |
| 	u64 em_len;
 | |
| 	u64 em_start;
 | |
| 	struct extent_map *em;
 | |
| 	int ret = -ENOMEM;
 | |
| 	u32 *sums;
 | |
| 
 | |
| 	tree = &BTRFS_I(inode)->io_tree;
 | |
| 	em_tree = &BTRFS_I(inode)->extent_tree;
 | |
| 
 | |
| 	/* we need the actual starting offset of this extent in the file */
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree,
 | |
| 				   page_offset(bio->bi_io_vec->bv_page),
 | |
| 				   PAGE_CACHE_SIZE);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 	if (!em)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	compressed_len = em->block_len;
 | |
| 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 | |
| 	if (!cb)
 | |
| 		goto out;
 | |
| 
 | |
| 	atomic_set(&cb->pending_bios, 0);
 | |
| 	cb->errors = 0;
 | |
| 	cb->inode = inode;
 | |
| 	cb->mirror_num = mirror_num;
 | |
| 	sums = &cb->sums;
 | |
| 
 | |
| 	cb->start = em->orig_start;
 | |
| 	em_len = em->len;
 | |
| 	em_start = em->start;
 | |
| 
 | |
| 	free_extent_map(em);
 | |
| 	em = NULL;
 | |
| 
 | |
| 	cb->len = uncompressed_len;
 | |
| 	cb->compressed_len = compressed_len;
 | |
| 	cb->compress_type = extent_compress_type(bio_flags);
 | |
| 	cb->orig_bio = bio;
 | |
| 
 | |
| 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
 | |
| 				 PAGE_CACHE_SIZE;
 | |
| 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 | |
| 				       GFP_NOFS);
 | |
| 	if (!cb->compressed_pages)
 | |
| 		goto fail1;
 | |
| 
 | |
| 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 | |
| 
 | |
| 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 | |
| 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 | |
| 							      __GFP_HIGHMEM);
 | |
| 		if (!cb->compressed_pages[pg_index])
 | |
| 			goto fail2;
 | |
| 	}
 | |
| 	cb->nr_pages = nr_pages;
 | |
| 
 | |
| 	add_ra_bio_pages(inode, em_start + em_len, cb);
 | |
| 
 | |
| 	/* include any pages we added in add_ra-bio_pages */
 | |
| 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 | |
| 	cb->len = uncompressed_len;
 | |
| 
 | |
| 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 | |
| 	if (!comp_bio)
 | |
| 		goto fail2;
 | |
| 	comp_bio->bi_private = cb;
 | |
| 	comp_bio->bi_end_io = end_compressed_bio_read;
 | |
| 	atomic_inc(&cb->pending_bios);
 | |
| 
 | |
| 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 | |
| 		page = cb->compressed_pages[pg_index];
 | |
| 		page->mapping = inode->i_mapping;
 | |
| 		page->index = em_start >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 		if (comp_bio->bi_size)
 | |
| 			ret = tree->ops->merge_bio_hook(page, 0,
 | |
| 							PAGE_CACHE_SIZE,
 | |
| 							comp_bio, 0);
 | |
| 		else
 | |
| 			ret = 0;
 | |
| 
 | |
| 		page->mapping = NULL;
 | |
| 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 | |
| 		    PAGE_CACHE_SIZE) {
 | |
| 			bio_get(comp_bio);
 | |
| 
 | |
| 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 | |
| 			BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 			/*
 | |
| 			 * inc the count before we submit the bio so
 | |
| 			 * we know the end IO handler won't happen before
 | |
| 			 * we inc the count.  Otherwise, the cb might get
 | |
| 			 * freed before we're done setting it up
 | |
| 			 */
 | |
| 			atomic_inc(&cb->pending_bios);
 | |
| 
 | |
| 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 | |
| 				ret = btrfs_lookup_bio_sums(root, inode,
 | |
| 							comp_bio, sums);
 | |
| 				BUG_ON(ret); /* -ENOMEM */
 | |
| 			}
 | |
| 			sums += (comp_bio->bi_size + root->sectorsize - 1) /
 | |
| 				root->sectorsize;
 | |
| 
 | |
| 			ret = btrfs_map_bio(root, READ, comp_bio,
 | |
| 					    mirror_num, 0);
 | |
| 			BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 			bio_put(comp_bio);
 | |
| 
 | |
| 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 | |
| 							GFP_NOFS);
 | |
| 			BUG_ON(!comp_bio);
 | |
| 			comp_bio->bi_private = cb;
 | |
| 			comp_bio->bi_end_io = end_compressed_bio_read;
 | |
| 
 | |
| 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 | |
| 		}
 | |
| 		cur_disk_byte += PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| 	bio_get(comp_bio);
 | |
| 
 | |
| 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 | |
| 	BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 | |
| 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 | |
| 		BUG_ON(ret); /* -ENOMEM */
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 | |
| 	BUG_ON(ret); /* -ENOMEM */
 | |
| 
 | |
| 	bio_put(comp_bio);
 | |
| 	return 0;
 | |
| 
 | |
| fail2:
 | |
| 	for (pg_index = 0; pg_index < nr_pages; pg_index++)
 | |
| 		free_page((unsigned long)cb->compressed_pages[pg_index]);
 | |
| 
 | |
| 	kfree(cb->compressed_pages);
 | |
| fail1:
 | |
| 	kfree(cb);
 | |
| out:
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 | |
| static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 | |
| static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 | |
| static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 | |
| static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 | |
| 
 | |
| struct btrfs_compress_op *btrfs_compress_op[] = {
 | |
| 	&btrfs_zlib_compress,
 | |
| 	&btrfs_lzo_compress,
 | |
| };
 | |
| 
 | |
| void __init btrfs_init_compress(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 | |
| 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
 | |
| 		spin_lock_init(&comp_workspace_lock[i]);
 | |
| 		atomic_set(&comp_alloc_workspace[i], 0);
 | |
| 		init_waitqueue_head(&comp_workspace_wait[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this finds an available workspace or allocates a new one
 | |
|  * ERR_PTR is returned if things go bad.
 | |
|  */
 | |
| static struct list_head *find_workspace(int type)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int cpus = num_online_cpus();
 | |
| 	int idx = type - 1;
 | |
| 
 | |
| 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
 | |
| 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
 | |
| 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
 | |
| 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
 | |
| 	int *num_workspace			= &comp_num_workspace[idx];
 | |
| again:
 | |
| 	spin_lock(workspace_lock);
 | |
| 	if (!list_empty(idle_workspace)) {
 | |
| 		workspace = idle_workspace->next;
 | |
| 		list_del(workspace);
 | |
| 		(*num_workspace)--;
 | |
| 		spin_unlock(workspace_lock);
 | |
| 		return workspace;
 | |
| 
 | |
| 	}
 | |
| 	if (atomic_read(alloc_workspace) > cpus) {
 | |
| 		DEFINE_WAIT(wait);
 | |
| 
 | |
| 		spin_unlock(workspace_lock);
 | |
| 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 | |
| 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 | |
| 			schedule();
 | |
| 		finish_wait(workspace_wait, &wait);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	atomic_inc(alloc_workspace);
 | |
| 	spin_unlock(workspace_lock);
 | |
| 
 | |
| 	workspace = btrfs_compress_op[idx]->alloc_workspace();
 | |
| 	if (IS_ERR(workspace)) {
 | |
| 		atomic_dec(alloc_workspace);
 | |
| 		wake_up(workspace_wait);
 | |
| 	}
 | |
| 	return workspace;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * put a workspace struct back on the list or free it if we have enough
 | |
|  * idle ones sitting around
 | |
|  */
 | |
| static void free_workspace(int type, struct list_head *workspace)
 | |
| {
 | |
| 	int idx = type - 1;
 | |
| 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
 | |
| 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
 | |
| 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
 | |
| 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
 | |
| 	int *num_workspace			= &comp_num_workspace[idx];
 | |
| 
 | |
| 	spin_lock(workspace_lock);
 | |
| 	if (*num_workspace < num_online_cpus()) {
 | |
| 		list_add_tail(workspace, idle_workspace);
 | |
| 		(*num_workspace)++;
 | |
| 		spin_unlock(workspace_lock);
 | |
| 		goto wake;
 | |
| 	}
 | |
| 	spin_unlock(workspace_lock);
 | |
| 
 | |
| 	btrfs_compress_op[idx]->free_workspace(workspace);
 | |
| 	atomic_dec(alloc_workspace);
 | |
| wake:
 | |
| 	if (waitqueue_active(workspace_wait))
 | |
| 		wake_up(workspace_wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cleanup function for module exit
 | |
|  */
 | |
| static void free_workspaces(void)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 | |
| 		while (!list_empty(&comp_idle_workspace[i])) {
 | |
| 			workspace = comp_idle_workspace[i].next;
 | |
| 			list_del(workspace);
 | |
| 			btrfs_compress_op[i]->free_workspace(workspace);
 | |
| 			atomic_dec(&comp_alloc_workspace[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * given an address space and start/len, compress the bytes.
 | |
|  *
 | |
|  * pages are allocated to hold the compressed result and stored
 | |
|  * in 'pages'
 | |
|  *
 | |
|  * out_pages is used to return the number of pages allocated.  There
 | |
|  * may be pages allocated even if we return an error
 | |
|  *
 | |
|  * total_in is used to return the number of bytes actually read.  It
 | |
|  * may be smaller then len if we had to exit early because we
 | |
|  * ran out of room in the pages array or because we cross the
 | |
|  * max_out threshold.
 | |
|  *
 | |
|  * total_out is used to return the total number of compressed bytes
 | |
|  *
 | |
|  * max_out tells us the max number of bytes that we're allowed to
 | |
|  * stuff into pages
 | |
|  */
 | |
| int btrfs_compress_pages(int type, struct address_space *mapping,
 | |
| 			 u64 start, unsigned long len,
 | |
| 			 struct page **pages,
 | |
| 			 unsigned long nr_dest_pages,
 | |
| 			 unsigned long *out_pages,
 | |
| 			 unsigned long *total_in,
 | |
| 			 unsigned long *total_out,
 | |
| 			 unsigned long max_out)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int ret;
 | |
| 
 | |
| 	workspace = find_workspace(type);
 | |
| 	if (IS_ERR(workspace))
 | |
| 		return -1;
 | |
| 
 | |
| 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 | |
| 						      start, len, pages,
 | |
| 						      nr_dest_pages, out_pages,
 | |
| 						      total_in, total_out,
 | |
| 						      max_out);
 | |
| 	free_workspace(type, workspace);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pages_in is an array of pages with compressed data.
 | |
|  *
 | |
|  * disk_start is the starting logical offset of this array in the file
 | |
|  *
 | |
|  * bvec is a bio_vec of pages from the file that we want to decompress into
 | |
|  *
 | |
|  * vcnt is the count of pages in the biovec
 | |
|  *
 | |
|  * srclen is the number of bytes in pages_in
 | |
|  *
 | |
|  * The basic idea is that we have a bio that was created by readpages.
 | |
|  * The pages in the bio are for the uncompressed data, and they may not
 | |
|  * be contiguous.  They all correspond to the range of bytes covered by
 | |
|  * the compressed extent.
 | |
|  */
 | |
| int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
 | |
| 			    struct bio_vec *bvec, int vcnt, size_t srclen)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int ret;
 | |
| 
 | |
| 	workspace = find_workspace(type);
 | |
| 	if (IS_ERR(workspace))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 | |
| 							 disk_start,
 | |
| 							 bvec, vcnt, srclen);
 | |
| 	free_workspace(type, workspace);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * a less complex decompression routine.  Our compressed data fits in a
 | |
|  * single page, and we want to read a single page out of it.
 | |
|  * start_byte tells us the offset into the compressed data we're interested in
 | |
|  */
 | |
| int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 | |
| 		     unsigned long start_byte, size_t srclen, size_t destlen)
 | |
| {
 | |
| 	struct list_head *workspace;
 | |
| 	int ret;
 | |
| 
 | |
| 	workspace = find_workspace(type);
 | |
| 	if (IS_ERR(workspace))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 | |
| 						  dest_page, start_byte,
 | |
| 						  srclen, destlen);
 | |
| 
 | |
| 	free_workspace(type, workspace);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_exit_compress(void)
 | |
| {
 | |
| 	free_workspaces();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy uncompressed data from working buffer to pages.
 | |
|  *
 | |
|  * buf_start is the byte offset we're of the start of our workspace buffer.
 | |
|  *
 | |
|  * total_out is the last byte of the buffer
 | |
|  */
 | |
| int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 | |
| 			      unsigned long total_out, u64 disk_start,
 | |
| 			      struct bio_vec *bvec, int vcnt,
 | |
| 			      unsigned long *pg_index,
 | |
| 			      unsigned long *pg_offset)
 | |
| {
 | |
| 	unsigned long buf_offset;
 | |
| 	unsigned long current_buf_start;
 | |
| 	unsigned long start_byte;
 | |
| 	unsigned long working_bytes = total_out - buf_start;
 | |
| 	unsigned long bytes;
 | |
| 	char *kaddr;
 | |
| 	struct page *page_out = bvec[*pg_index].bv_page;
 | |
| 
 | |
| 	/*
 | |
| 	 * start byte is the first byte of the page we're currently
 | |
| 	 * copying into relative to the start of the compressed data.
 | |
| 	 */
 | |
| 	start_byte = page_offset(page_out) - disk_start;
 | |
| 
 | |
| 	/* we haven't yet hit data corresponding to this page */
 | |
| 	if (total_out <= start_byte)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * the start of the data we care about is offset into
 | |
| 	 * the middle of our working buffer
 | |
| 	 */
 | |
| 	if (total_out > start_byte && buf_start < start_byte) {
 | |
| 		buf_offset = start_byte - buf_start;
 | |
| 		working_bytes -= buf_offset;
 | |
| 	} else {
 | |
| 		buf_offset = 0;
 | |
| 	}
 | |
| 	current_buf_start = buf_start;
 | |
| 
 | |
| 	/* copy bytes from the working buffer into the pages */
 | |
| 	while (working_bytes > 0) {
 | |
| 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
 | |
| 			    PAGE_CACHE_SIZE - buf_offset);
 | |
| 		bytes = min(bytes, working_bytes);
 | |
| 		kaddr = kmap_atomic(page_out);
 | |
| 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
 | |
| 		kunmap_atomic(kaddr);
 | |
| 		flush_dcache_page(page_out);
 | |
| 
 | |
| 		*pg_offset += bytes;
 | |
| 		buf_offset += bytes;
 | |
| 		working_bytes -= bytes;
 | |
| 		current_buf_start += bytes;
 | |
| 
 | |
| 		/* check if we need to pick another page */
 | |
| 		if (*pg_offset == PAGE_CACHE_SIZE) {
 | |
| 			(*pg_index)++;
 | |
| 			if (*pg_index >= vcnt)
 | |
| 				return 0;
 | |
| 
 | |
| 			page_out = bvec[*pg_index].bv_page;
 | |
| 			*pg_offset = 0;
 | |
| 			start_byte = page_offset(page_out) - disk_start;
 | |
| 
 | |
| 			/*
 | |
| 			 * make sure our new page is covered by this
 | |
| 			 * working buffer
 | |
| 			 */
 | |
| 			if (total_out <= start_byte)
 | |
| 				return 1;
 | |
| 
 | |
| 			/*
 | |
| 			 * the next page in the biovec might not be adjacent
 | |
| 			 * to the last page, but it might still be found
 | |
| 			 * inside this working buffer. bump our offset pointer
 | |
| 			 */
 | |
| 			if (total_out > start_byte &&
 | |
| 			    current_buf_start < start_byte) {
 | |
| 				buf_offset = start_byte - buf_start;
 | |
| 				working_bytes = total_out - start_byte;
 | |
| 				current_buf_start = buf_start + buf_offset;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 |