Merge list_for_each* and list_entry to list_for_each_entry* Signed-off-by: Qinghuang Feng <qhfeng.kernel@gmail.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
		
			
				
	
	
		
			728 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			728 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2007 Oracle.  All rights reserved.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public
 | 
						|
 * License v2 as published by the Free Software Foundation.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public
 | 
						|
 * License along with this program; if not, write to the
 | 
						|
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | 
						|
 * Boston, MA 021110-1307, USA.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include "ctree.h"
 | 
						|
#include "transaction.h"
 | 
						|
#include "btrfs_inode.h"
 | 
						|
#include "extent_io.h"
 | 
						|
 | 
						|
static u64 entry_end(struct btrfs_ordered_extent *entry)
 | 
						|
{
 | 
						|
	if (entry->file_offset + entry->len < entry->file_offset)
 | 
						|
		return (u64)-1;
 | 
						|
	return entry->file_offset + entry->len;
 | 
						|
}
 | 
						|
 | 
						|
/* returns NULL if the insertion worked, or it returns the node it did find
 | 
						|
 * in the tree
 | 
						|
 */
 | 
						|
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 | 
						|
				   struct rb_node *node)
 | 
						|
{
 | 
						|
	struct rb_node **p = &root->rb_node;
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
	struct btrfs_ordered_extent *entry;
 | 
						|
 | 
						|
	while (*p) {
 | 
						|
		parent = *p;
 | 
						|
		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 | 
						|
 | 
						|
		if (file_offset < entry->file_offset)
 | 
						|
			p = &(*p)->rb_left;
 | 
						|
		else if (file_offset >= entry_end(entry))
 | 
						|
			p = &(*p)->rb_right;
 | 
						|
		else
 | 
						|
			return parent;
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(node, parent, p);
 | 
						|
	rb_insert_color(node, root);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * look for a given offset in the tree, and if it can't be found return the
 | 
						|
 * first lesser offset
 | 
						|
 */
 | 
						|
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 | 
						|
				     struct rb_node **prev_ret)
 | 
						|
{
 | 
						|
	struct rb_node *n = root->rb_node;
 | 
						|
	struct rb_node *prev = NULL;
 | 
						|
	struct rb_node *test;
 | 
						|
	struct btrfs_ordered_extent *entry;
 | 
						|
	struct btrfs_ordered_extent *prev_entry = NULL;
 | 
						|
 | 
						|
	while (n) {
 | 
						|
		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 | 
						|
		prev = n;
 | 
						|
		prev_entry = entry;
 | 
						|
 | 
						|
		if (file_offset < entry->file_offset)
 | 
						|
			n = n->rb_left;
 | 
						|
		else if (file_offset >= entry_end(entry))
 | 
						|
			n = n->rb_right;
 | 
						|
		else
 | 
						|
			return n;
 | 
						|
	}
 | 
						|
	if (!prev_ret)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	while (prev && file_offset >= entry_end(prev_entry)) {
 | 
						|
		test = rb_next(prev);
 | 
						|
		if (!test)
 | 
						|
			break;
 | 
						|
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 | 
						|
				      rb_node);
 | 
						|
		if (file_offset < entry_end(prev_entry))
 | 
						|
			break;
 | 
						|
 | 
						|
		prev = test;
 | 
						|
	}
 | 
						|
	if (prev)
 | 
						|
		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 | 
						|
				      rb_node);
 | 
						|
	while (prev && file_offset < entry_end(prev_entry)) {
 | 
						|
		test = rb_prev(prev);
 | 
						|
		if (!test)
 | 
						|
			break;
 | 
						|
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 | 
						|
				      rb_node);
 | 
						|
		prev = test;
 | 
						|
	}
 | 
						|
	*prev_ret = prev;
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * helper to check if a given offset is inside a given entry
 | 
						|
 */
 | 
						|
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 | 
						|
{
 | 
						|
	if (file_offset < entry->file_offset ||
 | 
						|
	    entry->file_offset + entry->len <= file_offset)
 | 
						|
		return 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * look find the first ordered struct that has this offset, otherwise
 | 
						|
 * the first one less than this offset
 | 
						|
 */
 | 
						|
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 | 
						|
					  u64 file_offset)
 | 
						|
{
 | 
						|
	struct rb_root *root = &tree->tree;
 | 
						|
	struct rb_node *prev;
 | 
						|
	struct rb_node *ret;
 | 
						|
	struct btrfs_ordered_extent *entry;
 | 
						|
 | 
						|
	if (tree->last) {
 | 
						|
		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 | 
						|
				 rb_node);
 | 
						|
		if (offset_in_entry(entry, file_offset))
 | 
						|
			return tree->last;
 | 
						|
	}
 | 
						|
	ret = __tree_search(root, file_offset, &prev);
 | 
						|
	if (!ret)
 | 
						|
		ret = prev;
 | 
						|
	if (ret)
 | 
						|
		tree->last = ret;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* allocate and add a new ordered_extent into the per-inode tree.
 | 
						|
 * file_offset is the logical offset in the file
 | 
						|
 *
 | 
						|
 * start is the disk block number of an extent already reserved in the
 | 
						|
 * extent allocation tree
 | 
						|
 *
 | 
						|
 * len is the length of the extent
 | 
						|
 *
 | 
						|
 * This also sets the EXTENT_ORDERED bit on the range in the inode.
 | 
						|
 *
 | 
						|
 * The tree is given a single reference on the ordered extent that was
 | 
						|
 * inserted.
 | 
						|
 */
 | 
						|
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 | 
						|
			     u64 start, u64 len, u64 disk_len, int type)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_inode_tree *tree;
 | 
						|
	struct rb_node *node;
 | 
						|
	struct btrfs_ordered_extent *entry;
 | 
						|
 | 
						|
	tree = &BTRFS_I(inode)->ordered_tree;
 | 
						|
	entry = kzalloc(sizeof(*entry), GFP_NOFS);
 | 
						|
	if (!entry)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	mutex_lock(&tree->mutex);
 | 
						|
	entry->file_offset = file_offset;
 | 
						|
	entry->start = start;
 | 
						|
	entry->len = len;
 | 
						|
	entry->disk_len = disk_len;
 | 
						|
	entry->inode = inode;
 | 
						|
	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 | 
						|
		set_bit(type, &entry->flags);
 | 
						|
 | 
						|
	/* one ref for the tree */
 | 
						|
	atomic_set(&entry->refs, 1);
 | 
						|
	init_waitqueue_head(&entry->wait);
 | 
						|
	INIT_LIST_HEAD(&entry->list);
 | 
						|
	INIT_LIST_HEAD(&entry->root_extent_list);
 | 
						|
 | 
						|
	node = tree_insert(&tree->tree, file_offset,
 | 
						|
			   &entry->rb_node);
 | 
						|
	BUG_ON(node);
 | 
						|
 | 
						|
	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
 | 
						|
			   entry_end(entry) - 1, GFP_NOFS);
 | 
						|
 | 
						|
	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
 | 
						|
	list_add_tail(&entry->root_extent_list,
 | 
						|
		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
 | 
						|
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
 | 
						|
 | 
						|
	mutex_unlock(&tree->mutex);
 | 
						|
	BUG_ON(node);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 | 
						|
 * when an ordered extent is finished.  If the list covers more than one
 | 
						|
 * ordered extent, it is split across multiples.
 | 
						|
 */
 | 
						|
int btrfs_add_ordered_sum(struct inode *inode,
 | 
						|
			  struct btrfs_ordered_extent *entry,
 | 
						|
			  struct btrfs_ordered_sum *sum)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_inode_tree *tree;
 | 
						|
 | 
						|
	tree = &BTRFS_I(inode)->ordered_tree;
 | 
						|
	mutex_lock(&tree->mutex);
 | 
						|
	list_add_tail(&sum->list, &entry->list);
 | 
						|
	mutex_unlock(&tree->mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this is used to account for finished IO across a given range
 | 
						|
 * of the file.  The IO should not span ordered extents.  If
 | 
						|
 * a given ordered_extent is completely done, 1 is returned, otherwise
 | 
						|
 * 0.
 | 
						|
 *
 | 
						|
 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 | 
						|
 * to make sure this function only returns 1 once for a given ordered extent.
 | 
						|
 */
 | 
						|
int btrfs_dec_test_ordered_pending(struct inode *inode,
 | 
						|
				   u64 file_offset, u64 io_size)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_inode_tree *tree;
 | 
						|
	struct rb_node *node;
 | 
						|
	struct btrfs_ordered_extent *entry;
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	tree = &BTRFS_I(inode)->ordered_tree;
 | 
						|
	mutex_lock(&tree->mutex);
 | 
						|
	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
 | 
						|
			     GFP_NOFS);
 | 
						|
	node = tree_search(tree, file_offset);
 | 
						|
	if (!node) {
 | 
						|
		ret = 1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | 
						|
	if (!offset_in_entry(entry, file_offset)) {
 | 
						|
		ret = 1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = test_range_bit(io_tree, entry->file_offset,
 | 
						|
			     entry->file_offset + entry->len - 1,
 | 
						|
			     EXTENT_ORDERED, 0);
 | 
						|
	if (ret == 0)
 | 
						|
		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 | 
						|
out:
 | 
						|
	mutex_unlock(&tree->mutex);
 | 
						|
	return ret == 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * used to drop a reference on an ordered extent.  This will free
 | 
						|
 * the extent if the last reference is dropped
 | 
						|
 */
 | 
						|
int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 | 
						|
{
 | 
						|
	struct list_head *cur;
 | 
						|
	struct btrfs_ordered_sum *sum;
 | 
						|
 | 
						|
	if (atomic_dec_and_test(&entry->refs)) {
 | 
						|
		while (!list_empty(&entry->list)) {
 | 
						|
			cur = entry->list.next;
 | 
						|
			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 | 
						|
			list_del(&sum->list);
 | 
						|
			kfree(sum);
 | 
						|
		}
 | 
						|
		kfree(entry);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * remove an ordered extent from the tree.  No references are dropped
 | 
						|
 * but, anyone waiting on this extent is woken up.
 | 
						|
 */
 | 
						|
int btrfs_remove_ordered_extent(struct inode *inode,
 | 
						|
				struct btrfs_ordered_extent *entry)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_inode_tree *tree;
 | 
						|
	struct rb_node *node;
 | 
						|
 | 
						|
	tree = &BTRFS_I(inode)->ordered_tree;
 | 
						|
	mutex_lock(&tree->mutex);
 | 
						|
	node = &entry->rb_node;
 | 
						|
	rb_erase(node, &tree->tree);
 | 
						|
	tree->last = NULL;
 | 
						|
	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 | 
						|
 | 
						|
	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
 | 
						|
	list_del_init(&entry->root_extent_list);
 | 
						|
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
 | 
						|
 | 
						|
	mutex_unlock(&tree->mutex);
 | 
						|
	wake_up(&entry->wait);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * wait for all the ordered extents in a root.  This is done when balancing
 | 
						|
 * space between drives.
 | 
						|
 */
 | 
						|
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
 | 
						|
{
 | 
						|
	struct list_head splice;
 | 
						|
	struct list_head *cur;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	struct inode *inode;
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&splice);
 | 
						|
 | 
						|
	spin_lock(&root->fs_info->ordered_extent_lock);
 | 
						|
	list_splice_init(&root->fs_info->ordered_extents, &splice);
 | 
						|
	while (!list_empty(&splice)) {
 | 
						|
		cur = splice.next;
 | 
						|
		ordered = list_entry(cur, struct btrfs_ordered_extent,
 | 
						|
				     root_extent_list);
 | 
						|
		if (nocow_only &&
 | 
						|
		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
 | 
						|
		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
 | 
						|
			list_move(&ordered->root_extent_list,
 | 
						|
				  &root->fs_info->ordered_extents);
 | 
						|
			cond_resched_lock(&root->fs_info->ordered_extent_lock);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		list_del_init(&ordered->root_extent_list);
 | 
						|
		atomic_inc(&ordered->refs);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * the inode may be getting freed (in sys_unlink path).
 | 
						|
		 */
 | 
						|
		inode = igrab(ordered->inode);
 | 
						|
 | 
						|
		spin_unlock(&root->fs_info->ordered_extent_lock);
 | 
						|
 | 
						|
		if (inode) {
 | 
						|
			btrfs_start_ordered_extent(inode, ordered, 1);
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
			iput(inode);
 | 
						|
		} else {
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
		}
 | 
						|
 | 
						|
		spin_lock(&root->fs_info->ordered_extent_lock);
 | 
						|
	}
 | 
						|
	spin_unlock(&root->fs_info->ordered_extent_lock);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to start IO or wait for a given ordered extent to finish.
 | 
						|
 *
 | 
						|
 * If wait is one, this effectively waits on page writeback for all the pages
 | 
						|
 * in the extent, and it waits on the io completion code to insert
 | 
						|
 * metadata into the btree corresponding to the extent
 | 
						|
 */
 | 
						|
void btrfs_start_ordered_extent(struct inode *inode,
 | 
						|
				       struct btrfs_ordered_extent *entry,
 | 
						|
				       int wait)
 | 
						|
{
 | 
						|
	u64 start = entry->file_offset;
 | 
						|
	u64 end = start + entry->len - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * pages in the range can be dirty, clean or writeback.  We
 | 
						|
	 * start IO on any dirty ones so the wait doesn't stall waiting
 | 
						|
	 * for pdflush to find them
 | 
						|
	 */
 | 
						|
	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL);
 | 
						|
	if (wait) {
 | 
						|
		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 | 
						|
						 &entry->flags));
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to wait on ordered extents across a large range of bytes.
 | 
						|
 */
 | 
						|
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 | 
						|
{
 | 
						|
	u64 end;
 | 
						|
	u64 orig_end;
 | 
						|
	u64 wait_end;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
 | 
						|
	if (start + len < start) {
 | 
						|
		orig_end = INT_LIMIT(loff_t);
 | 
						|
	} else {
 | 
						|
		orig_end = start + len - 1;
 | 
						|
		if (orig_end > INT_LIMIT(loff_t))
 | 
						|
			orig_end = INT_LIMIT(loff_t);
 | 
						|
	}
 | 
						|
	wait_end = orig_end;
 | 
						|
again:
 | 
						|
	/* start IO across the range first to instantiate any delalloc
 | 
						|
	 * extents
 | 
						|
	 */
 | 
						|
	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
 | 
						|
 | 
						|
	/* The compression code will leave pages locked but return from
 | 
						|
	 * writepage without setting the page writeback.  Starting again
 | 
						|
	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
 | 
						|
	 */
 | 
						|
	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);
 | 
						|
 | 
						|
	btrfs_wait_on_page_writeback_range(inode->i_mapping,
 | 
						|
					   start >> PAGE_CACHE_SHIFT,
 | 
						|
					   orig_end >> PAGE_CACHE_SHIFT);
 | 
						|
 | 
						|
	end = orig_end;
 | 
						|
	while (1) {
 | 
						|
		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 | 
						|
		if (!ordered)
 | 
						|
			break;
 | 
						|
		if (ordered->file_offset > orig_end) {
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (ordered->file_offset + ordered->len < start) {
 | 
						|
			btrfs_put_ordered_extent(ordered);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		btrfs_start_ordered_extent(inode, ordered, 1);
 | 
						|
		end = ordered->file_offset;
 | 
						|
		btrfs_put_ordered_extent(ordered);
 | 
						|
		if (end == 0 || end == start)
 | 
						|
			break;
 | 
						|
		end--;
 | 
						|
	}
 | 
						|
	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
 | 
						|
			   EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
 | 
						|
		schedule_timeout(1);
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * find an ordered extent corresponding to file_offset.  return NULL if
 | 
						|
 * nothing is found, otherwise take a reference on the extent and return it
 | 
						|
 */
 | 
						|
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 | 
						|
							 u64 file_offset)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_inode_tree *tree;
 | 
						|
	struct rb_node *node;
 | 
						|
	struct btrfs_ordered_extent *entry = NULL;
 | 
						|
 | 
						|
	tree = &BTRFS_I(inode)->ordered_tree;
 | 
						|
	mutex_lock(&tree->mutex);
 | 
						|
	node = tree_search(tree, file_offset);
 | 
						|
	if (!node)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | 
						|
	if (!offset_in_entry(entry, file_offset))
 | 
						|
		entry = NULL;
 | 
						|
	if (entry)
 | 
						|
		atomic_inc(&entry->refs);
 | 
						|
out:
 | 
						|
	mutex_unlock(&tree->mutex);
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * lookup and return any extent before 'file_offset'.  NULL is returned
 | 
						|
 * if none is found
 | 
						|
 */
 | 
						|
struct btrfs_ordered_extent *
 | 
						|
btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_inode_tree *tree;
 | 
						|
	struct rb_node *node;
 | 
						|
	struct btrfs_ordered_extent *entry = NULL;
 | 
						|
 | 
						|
	tree = &BTRFS_I(inode)->ordered_tree;
 | 
						|
	mutex_lock(&tree->mutex);
 | 
						|
	node = tree_search(tree, file_offset);
 | 
						|
	if (!node)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | 
						|
	atomic_inc(&entry->refs);
 | 
						|
out:
 | 
						|
	mutex_unlock(&tree->mutex);
 | 
						|
	return entry;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * After an extent is done, call this to conditionally update the on disk
 | 
						|
 * i_size.  i_size is updated to cover any fully written part of the file.
 | 
						|
 */
 | 
						|
int btrfs_ordered_update_i_size(struct inode *inode,
 | 
						|
				struct btrfs_ordered_extent *ordered)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 | 
						|
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 | 
						|
	u64 disk_i_size;
 | 
						|
	u64 new_i_size;
 | 
						|
	u64 i_size_test;
 | 
						|
	struct rb_node *node;
 | 
						|
	struct btrfs_ordered_extent *test;
 | 
						|
 | 
						|
	mutex_lock(&tree->mutex);
 | 
						|
	disk_i_size = BTRFS_I(inode)->disk_i_size;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if the disk i_size is already at the inode->i_size, or
 | 
						|
	 * this ordered extent is inside the disk i_size, we're done
 | 
						|
	 */
 | 
						|
	if (disk_i_size >= inode->i_size ||
 | 
						|
	    ordered->file_offset + ordered->len <= disk_i_size) {
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we can't update the disk_isize if there are delalloc bytes
 | 
						|
	 * between disk_i_size and  this ordered extent
 | 
						|
	 */
 | 
						|
	if (test_range_bit(io_tree, disk_i_size,
 | 
						|
			   ordered->file_offset + ordered->len - 1,
 | 
						|
			   EXTENT_DELALLOC, 0)) {
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * walk backward from this ordered extent to disk_i_size.
 | 
						|
	 * if we find an ordered extent then we can't update disk i_size
 | 
						|
	 * yet
 | 
						|
	 */
 | 
						|
	node = &ordered->rb_node;
 | 
						|
	while (1) {
 | 
						|
		node = rb_prev(node);
 | 
						|
		if (!node)
 | 
						|
			break;
 | 
						|
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | 
						|
		if (test->file_offset + test->len <= disk_i_size)
 | 
						|
			break;
 | 
						|
		if (test->file_offset >= inode->i_size)
 | 
						|
			break;
 | 
						|
		if (test->file_offset >= disk_i_size)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * at this point, we know we can safely update i_size to at least
 | 
						|
	 * the offset from this ordered extent.  But, we need to
 | 
						|
	 * walk forward and see if ios from higher up in the file have
 | 
						|
	 * finished.
 | 
						|
	 */
 | 
						|
	node = rb_next(&ordered->rb_node);
 | 
						|
	i_size_test = 0;
 | 
						|
	if (node) {
 | 
						|
		/*
 | 
						|
		 * do we have an area where IO might have finished
 | 
						|
		 * between our ordered extent and the next one.
 | 
						|
		 */
 | 
						|
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 | 
						|
		if (test->file_offset > entry_end(ordered))
 | 
						|
			i_size_test = test->file_offset;
 | 
						|
	} else {
 | 
						|
		i_size_test = i_size_read(inode);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * i_size_test is the end of a region after this ordered
 | 
						|
	 * extent where there are no ordered extents.  As long as there
 | 
						|
	 * are no delalloc bytes in this area, it is safe to update
 | 
						|
	 * disk_i_size to the end of the region.
 | 
						|
	 */
 | 
						|
	if (i_size_test > entry_end(ordered) &&
 | 
						|
	    !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
 | 
						|
			   EXTENT_DELALLOC, 0)) {
 | 
						|
		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
 | 
						|
	}
 | 
						|
	BTRFS_I(inode)->disk_i_size = new_i_size;
 | 
						|
out:
 | 
						|
	mutex_unlock(&tree->mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * search the ordered extents for one corresponding to 'offset' and
 | 
						|
 * try to find a checksum.  This is used because we allow pages to
 | 
						|
 * be reclaimed before their checksum is actually put into the btree
 | 
						|
 */
 | 
						|
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
 | 
						|
			   u32 *sum)
 | 
						|
{
 | 
						|
	struct btrfs_ordered_sum *ordered_sum;
 | 
						|
	struct btrfs_sector_sum *sector_sums;
 | 
						|
	struct btrfs_ordered_extent *ordered;
 | 
						|
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 | 
						|
	unsigned long num_sectors;
 | 
						|
	unsigned long i;
 | 
						|
	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
 | 
						|
	int ret = 1;
 | 
						|
 | 
						|
	ordered = btrfs_lookup_ordered_extent(inode, offset);
 | 
						|
	if (!ordered)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	mutex_lock(&tree->mutex);
 | 
						|
	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
 | 
						|
		if (disk_bytenr >= ordered_sum->bytenr) {
 | 
						|
			num_sectors = ordered_sum->len / sectorsize;
 | 
						|
			sector_sums = ordered_sum->sums;
 | 
						|
			for (i = 0; i < num_sectors; i++) {
 | 
						|
				if (sector_sums[i].bytenr == disk_bytenr) {
 | 
						|
					*sum = sector_sums[i].sum;
 | 
						|
					ret = 0;
 | 
						|
					goto out;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	mutex_unlock(&tree->mutex);
 | 
						|
	btrfs_put_ordered_extent(ordered);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * taken from mm/filemap.c because it isn't exported
 | 
						|
 *
 | 
						|
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 | 
						|
 * @mapping:	address space structure to write
 | 
						|
 * @start:	offset in bytes where the range starts
 | 
						|
 * @end:	offset in bytes where the range ends (inclusive)
 | 
						|
 * @sync_mode:	enable synchronous operation
 | 
						|
 *
 | 
						|
 * Start writeback against all of a mapping's dirty pages that lie
 | 
						|
 * within the byte offsets <start, end> inclusive.
 | 
						|
 *
 | 
						|
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 | 
						|
 * opposed to a regular memory cleansing writeback.  The difference between
 | 
						|
 * these two operations is that if a dirty page/buffer is encountered, it must
 | 
						|
 * be waited upon, and not just skipped over.
 | 
						|
 */
 | 
						|
int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
 | 
						|
			   loff_t end, int sync_mode)
 | 
						|
{
 | 
						|
	struct writeback_control wbc = {
 | 
						|
		.sync_mode = sync_mode,
 | 
						|
		.nr_to_write = mapping->nrpages * 2,
 | 
						|
		.range_start = start,
 | 
						|
		.range_end = end,
 | 
						|
		.for_writepages = 1,
 | 
						|
	};
 | 
						|
	return btrfs_writepages(mapping, &wbc);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * taken from mm/filemap.c because it isn't exported
 | 
						|
 *
 | 
						|
 * wait_on_page_writeback_range - wait for writeback to complete
 | 
						|
 * @mapping:	target address_space
 | 
						|
 * @start:	beginning page index
 | 
						|
 * @end:	ending page index
 | 
						|
 *
 | 
						|
 * Wait for writeback to complete against pages indexed by start->end
 | 
						|
 * inclusive
 | 
						|
 */
 | 
						|
int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
 | 
						|
				       pgoff_t start, pgoff_t end)
 | 
						|
{
 | 
						|
	struct pagevec pvec;
 | 
						|
	int nr_pages;
 | 
						|
	int ret = 0;
 | 
						|
	pgoff_t index;
 | 
						|
 | 
						|
	if (end < start)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pagevec_init(&pvec, 0);
 | 
						|
	index = start;
 | 
						|
	while ((index <= end) &&
 | 
						|
			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 | 
						|
			PAGECACHE_TAG_WRITEBACK,
 | 
						|
			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 | 
						|
		unsigned i;
 | 
						|
 | 
						|
		for (i = 0; i < nr_pages; i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
 | 
						|
			/* until radix tree lookup accepts end_index */
 | 
						|
			if (page->index > end)
 | 
						|
				continue;
 | 
						|
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			if (PageError(page))
 | 
						|
				ret = -EIO;
 | 
						|
		}
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check for outstanding write errors */
 | 
						|
	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 | 
						|
		ret = -ENOSPC;
 | 
						|
	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 | 
						|
		ret = -EIO;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 |