"gadget", "through", "command", "maintain", "maintain", "controller", "address", "between", "initiali[zs]e", "instead", "function", "select", "already", "equal", "access", "management", "hierarchy", "registration", "interest", "relative", "memory", "offset", "already", Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
		
			
				
	
	
		
			167 lines
		
	
	
	
		
			5.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			167 lines
		
	
	
	
		
			5.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *	This program is free software; you can redistribute it and/or
 | 
						|
 *	modify it under the terms of the GNU General Public License
 | 
						|
 *	as published by the Free Software Foundation; either version
 | 
						|
 *	2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * Portions Copyright (C)  Cisco Systems, Inc.
 | 
						|
 */
 | 
						|
#ifndef __ASM_MACH_POWERTV_IOREMAP_H
 | 
						|
#define __ASM_MACH_POWERTV_IOREMAP_H
 | 
						|
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/log2.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
 | 
						|
#include <asm/pgtable-bits.h>
 | 
						|
#include <asm/addrspace.h>
 | 
						|
 | 
						|
/* We're going to mess with bits, so get sizes */
 | 
						|
#define IOR_BPC			8			/* Bits per char */
 | 
						|
#define IOR_PHYS_BITS		(IOR_BPC * sizeof(phys_addr_t))
 | 
						|
#define IOR_DMA_BITS		(IOR_BPC * sizeof(dma_addr_t))
 | 
						|
 | 
						|
/*
 | 
						|
 * Define the granularity of physical/DMA mapping in terms of the number
 | 
						|
 * of bits that defines the offset within a grain. These will be the
 | 
						|
 * least significant bits of the address. The rest of a physical or DMA
 | 
						|
 * address will be used to index into an appropriate table to find the
 | 
						|
 * offset to add to the address to yield the corresponding DMA or physical
 | 
						|
 * address, respectively.
 | 
						|
 */
 | 
						|
#define IOR_LSBITS		22			/* Bits in a grain */
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the number of most significant address bits after removing those
 | 
						|
 * used for the offset within a grain and then compute the number of table
 | 
						|
 * entries for the conversion.
 | 
						|
 */
 | 
						|
#define IOR_PHYS_MSBITS		(IOR_PHYS_BITS - IOR_LSBITS)
 | 
						|
#define IOR_NUM_PHYS_TO_DMA	((phys_addr_t) 1 << IOR_PHYS_MSBITS)
 | 
						|
 | 
						|
#define IOR_DMA_MSBITS		(IOR_DMA_BITS - IOR_LSBITS)
 | 
						|
#define IOR_NUM_DMA_TO_PHYS	((dma_addr_t) 1 << IOR_DMA_MSBITS)
 | 
						|
 | 
						|
/*
 | 
						|
 * Define data structures used as elements in the arrays for the conversion
 | 
						|
 * between physical and DMA addresses. We do some slightly fancy math to
 | 
						|
 * compute the width of the offset element of the conversion tables so
 | 
						|
 * that we can have the smallest conversion tables. Next, round up the
 | 
						|
 * sizes to the next higher power of two, i.e. the offset element will have
 | 
						|
 * 8, 16, 32, 64, etc. bits. This eliminates the need to mask off any
 | 
						|
 * bits.  Finally, we compute a shift value that puts the most significant
 | 
						|
 * bits of the offset into the most significant bits of the offset element.
 | 
						|
 * This makes it more efficient on processors without barrel shifters and
 | 
						|
 * easier to see the values if the conversion table is dumped in binary.
 | 
						|
 */
 | 
						|
#define _IOR_OFFSET_WIDTH(n)	(1 << order_base_2(n))
 | 
						|
#define IOR_OFFSET_WIDTH(n) \
 | 
						|
	(_IOR_OFFSET_WIDTH(n) < 8 ? 8 : _IOR_OFFSET_WIDTH(n))
 | 
						|
 | 
						|
#define IOR_PHYS_OFFSET_BITS	IOR_OFFSET_WIDTH(IOR_PHYS_MSBITS)
 | 
						|
#define IOR_PHYS_SHIFT		(IOR_PHYS_BITS - IOR_PHYS_OFFSET_BITS)
 | 
						|
 | 
						|
#define IOR_DMA_OFFSET_BITS	IOR_OFFSET_WIDTH(IOR_DMA_MSBITS)
 | 
						|
#define IOR_DMA_SHIFT		(IOR_DMA_BITS - IOR_DMA_OFFSET_BITS)
 | 
						|
 | 
						|
struct ior_phys_to_dma {
 | 
						|
	dma_addr_t offset:IOR_DMA_OFFSET_BITS __packed
 | 
						|
		__aligned((IOR_DMA_OFFSET_BITS / IOR_BPC));
 | 
						|
};
 | 
						|
 | 
						|
struct ior_dma_to_phys {
 | 
						|
	dma_addr_t offset:IOR_PHYS_OFFSET_BITS __packed
 | 
						|
		__aligned((IOR_PHYS_OFFSET_BITS / IOR_BPC));
 | 
						|
};
 | 
						|
 | 
						|
extern struct ior_phys_to_dma _ior_phys_to_dma[IOR_NUM_PHYS_TO_DMA];
 | 
						|
extern struct ior_dma_to_phys _ior_dma_to_phys[IOR_NUM_DMA_TO_PHYS];
 | 
						|
 | 
						|
static inline dma_addr_t _phys_to_dma_offset_raw(phys_addr_t phys)
 | 
						|
{
 | 
						|
	return (dma_addr_t)_ior_phys_to_dma[phys >> IOR_LSBITS].offset;
 | 
						|
}
 | 
						|
 | 
						|
static inline dma_addr_t _dma_to_phys_offset_raw(dma_addr_t dma)
 | 
						|
{
 | 
						|
	return (dma_addr_t)_ior_dma_to_phys[dma >> IOR_LSBITS].offset;
 | 
						|
}
 | 
						|
 | 
						|
/* These are not portable and should not be used in drivers. Drivers should
 | 
						|
 * be using ioremap() and friends to map physical addresses to virtual
 | 
						|
 * addresses and dma_map*() and friends to map virtual addresses into DMA
 | 
						|
 * addresses and back.
 | 
						|
 */
 | 
						|
static inline dma_addr_t phys_to_dma(phys_addr_t phys)
 | 
						|
{
 | 
						|
	return phys + (_phys_to_dma_offset_raw(phys) << IOR_PHYS_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static inline phys_addr_t dma_to_phys(dma_addr_t dma)
 | 
						|
{
 | 
						|
	return dma + (_dma_to_phys_offset_raw(dma) << IOR_DMA_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
extern void ioremap_add_map(dma_addr_t phys, phys_addr_t alias,
 | 
						|
	dma_addr_t size);
 | 
						|
 | 
						|
/*
 | 
						|
 * Allow physical addresses to be fixed up to help peripherals located
 | 
						|
 * outside the low 32-bit range -- generic pass-through version.
 | 
						|
 */
 | 
						|
static inline phys_t fixup_bigphys_addr(phys_t phys_addr, phys_t size)
 | 
						|
{
 | 
						|
	return phys_addr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Handle the special case of addresses the area aliased into the first
 | 
						|
 * 512 MiB of the processor's physical address space. These turn into either
 | 
						|
 * kseg0 or kseg1 addresses, depending on flags.
 | 
						|
 */
 | 
						|
static inline void __iomem *plat_ioremap(phys_t start, unsigned long size,
 | 
						|
	unsigned long flags)
 | 
						|
{
 | 
						|
	phys_addr_t start_offset;
 | 
						|
	void __iomem *result = NULL;
 | 
						|
 | 
						|
	/* Start by checking to see whether this is an aliased address */
 | 
						|
	start_offset = _dma_to_phys_offset_raw(start);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If:
 | 
						|
	 * o	the memory is aliased into the first 512 MiB, and
 | 
						|
	 * o	the start and end are in the same RAM bank, and
 | 
						|
	 * o	we don't have a zero size or wrap around, and
 | 
						|
	 * o	we are supposed to create an uncached mapping,
 | 
						|
	 *	handle this is a kseg0 or kseg1 address
 | 
						|
	 */
 | 
						|
	if (start_offset != 0) {
 | 
						|
		phys_addr_t last;
 | 
						|
		dma_addr_t dma_to_phys_offset;
 | 
						|
 | 
						|
		last = start + size - 1;
 | 
						|
		dma_to_phys_offset =
 | 
						|
			_dma_to_phys_offset_raw(last) << IOR_DMA_SHIFT;
 | 
						|
 | 
						|
		if (dma_to_phys_offset == start_offset &&
 | 
						|
			size != 0 && start <= last) {
 | 
						|
			phys_t adjusted_start;
 | 
						|
			adjusted_start = start + start_offset;
 | 
						|
			if (flags == _CACHE_UNCACHED)
 | 
						|
				result = (void __iomem *) (unsigned long)
 | 
						|
					CKSEG1ADDR(adjusted_start);
 | 
						|
			else
 | 
						|
				result = (void __iomem *) (unsigned long)
 | 
						|
					CKSEG0ADDR(adjusted_start);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static inline int plat_iounmap(const volatile void __iomem *addr)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* __ASM_MACH_POWERTV_IOREMAP_H */
 |