 c06a018fa5
			
		
	
	
	c06a018fa5
	
	
	
		
			
			This is not a new problem in 2.6.23-git17.  2.6.22/2.6.23 is buggy in the
same way.
Reiserfs could accumulate dirty sub-page-size files until umount time.
They cannot be synced to disk by pdflush routines or explicit `sync'
commands.  Only `umount' can do the trick.
The direct cause is: the dirty page's PG_dirty is wrongly _cleared_.
Call trace:
	 [<ffffffff8027e920>] cancel_dirty_page+0xd0/0xf0
	 [<ffffffff8816d470>] :reiserfs:reiserfs_cut_from_item+0x660/0x710
	 [<ffffffff8816d791>] :reiserfs:reiserfs_do_truncate+0x271/0x530
	 [<ffffffff8815872d>] :reiserfs:reiserfs_truncate_file+0xfd/0x3b0
	 [<ffffffff8815d3d0>] :reiserfs:reiserfs_file_release+0x1e0/0x340
	 [<ffffffff802a187c>] __fput+0xcc/0x1b0
	 [<ffffffff802a1ba6>] fput+0x16/0x20
	 [<ffffffff8029e676>] filp_close+0x56/0x90
	 [<ffffffff8029fe0d>] sys_close+0xad/0x110
	 [<ffffffff8020c41e>] system_call+0x7e/0x83
Fix the bug by removing the cancel_dirty_page() call. Tests show that
it causes no bad behaviors on various write sizes.
=== for the patient ===
Here are more detailed demonstrations of the problem.
1) the page has both PG_dirty(D)/PAGECACHE_TAG_DIRTY(d) after being written to;
   and then only PAGECACHE_TAG_DIRTY(d) remains after the file is closed.
------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# cat > /test/tiny
[T1] hi
[T2] root /home/wfg#
------------------------------ screen 1 ------------------------------
[T1] root /home/wfg# echo /test/tiny > /proc/filecache
[T1] root /home/wfg# cat /proc/filecache
     # file /test/tiny
     # flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
     # idx   len     state   refcnt
     0       1       ___UD__Bd_      2
[T2] root /home/wfg# cat /proc/filecache
     # file /test/tiny
     # flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
     # idx   len     state   refcnt
     0       1       ___U___Bd_      2
2) note the non-zero 'cancelled_write_bytes' after /tmp/hi is copied.
------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# echo hi > /tmp/hi
[T1] root /home/wfg# cp /tmp/hi /dev/stdin /test
[T2] hi
[T3] root /home/wfg#
------------------------------ screen 1 ------------------------------
[T1] root /proc/4397# cd /proc/`pidof cp`
[T1] root /proc/4713# cat io
     rchar: 8396
     wchar: 3
     syscr: 20
     syscw: 1
     read_bytes: 0
     write_bytes: 20480
     cancelled_write_bytes: 4096
[T2] root /proc/4713# cat io
     rchar: 8399
     wchar: 6
     syscr: 21
     syscw: 2
     read_bytes: 0
     write_bytes: 24576
     cancelled_write_bytes: 4096
//Question: the 'write_bytes' is a bit more than expected ;-)
Tested-by: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Reviewed-by: Chris Mason <chris.mason@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			2118 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2118 lines
		
	
	
	
		
			66 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
 | |
|  *  Programm System Institute
 | |
|  *  Pereslavl-Zalessky Russia
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  This file contains functions dealing with S+tree
 | |
|  *
 | |
|  * B_IS_IN_TREE
 | |
|  * copy_item_head
 | |
|  * comp_short_keys
 | |
|  * comp_keys
 | |
|  * comp_short_le_keys
 | |
|  * le_key2cpu_key
 | |
|  * comp_le_keys
 | |
|  * bin_search
 | |
|  * get_lkey
 | |
|  * get_rkey
 | |
|  * key_in_buffer
 | |
|  * decrement_bcount
 | |
|  * decrement_counters_in_path
 | |
|  * reiserfs_check_path
 | |
|  * pathrelse_and_restore
 | |
|  * pathrelse
 | |
|  * search_by_key_reada
 | |
|  * search_by_key
 | |
|  * search_for_position_by_key
 | |
|  * comp_items
 | |
|  * prepare_for_direct_item
 | |
|  * prepare_for_direntry_item
 | |
|  * prepare_for_delete_or_cut
 | |
|  * calc_deleted_bytes_number
 | |
|  * init_tb_struct
 | |
|  * padd_item
 | |
|  * reiserfs_delete_item
 | |
|  * reiserfs_delete_solid_item
 | |
|  * reiserfs_delete_object
 | |
|  * maybe_indirect_to_direct
 | |
|  * indirect_to_direct_roll_back
 | |
|  * reiserfs_cut_from_item
 | |
|  * truncate_directory
 | |
|  * reiserfs_do_truncate
 | |
|  * reiserfs_paste_into_item
 | |
|  * reiserfs_insert_item
 | |
|  */
 | |
| 
 | |
| #include <linux/time.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/reiserfs_fs.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/quotaops.h>
 | |
| 
 | |
| /* Does the buffer contain a disk block which is in the tree. */
 | |
| inline int B_IS_IN_TREE(const struct buffer_head *p_s_bh)
 | |
| {
 | |
| 
 | |
| 	RFALSE(B_LEVEL(p_s_bh) > MAX_HEIGHT,
 | |
| 	       "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh);
 | |
| 
 | |
| 	return (B_LEVEL(p_s_bh) != FREE_LEVEL);
 | |
| }
 | |
| 
 | |
| //
 | |
| // to gets item head in le form
 | |
| //
 | |
| inline void copy_item_head(struct item_head *p_v_to,
 | |
| 			   const struct item_head *p_v_from)
 | |
| {
 | |
| 	memcpy(p_v_to, p_v_from, IH_SIZE);
 | |
| }
 | |
| 
 | |
| /* k1 is pointer to on-disk structure which is stored in little-endian
 | |
|    form. k2 is pointer to cpu variable. For key of items of the same
 | |
|    object this returns 0.
 | |
|    Returns: -1 if key1 < key2 
 | |
|    0 if key1 == key2
 | |
|    1 if key1 > key2 */
 | |
| inline int comp_short_keys(const struct reiserfs_key *le_key,
 | |
| 			   const struct cpu_key *cpu_key)
 | |
| {
 | |
| 	__u32 n;
 | |
| 	n = le32_to_cpu(le_key->k_dir_id);
 | |
| 	if (n < cpu_key->on_disk_key.k_dir_id)
 | |
| 		return -1;
 | |
| 	if (n > cpu_key->on_disk_key.k_dir_id)
 | |
| 		return 1;
 | |
| 	n = le32_to_cpu(le_key->k_objectid);
 | |
| 	if (n < cpu_key->on_disk_key.k_objectid)
 | |
| 		return -1;
 | |
| 	if (n > cpu_key->on_disk_key.k_objectid)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* k1 is pointer to on-disk structure which is stored in little-endian
 | |
|    form. k2 is pointer to cpu variable.
 | |
|    Compare keys using all 4 key fields.
 | |
|    Returns: -1 if key1 < key2 0
 | |
|    if key1 = key2 1 if key1 > key2 */
 | |
| static inline int comp_keys(const struct reiserfs_key *le_key,
 | |
| 			    const struct cpu_key *cpu_key)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = comp_short_keys(le_key, cpu_key);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 	if (le_key_k_offset(le_key_version(le_key), le_key) <
 | |
| 	    cpu_key_k_offset(cpu_key))
 | |
| 		return -1;
 | |
| 	if (le_key_k_offset(le_key_version(le_key), le_key) >
 | |
| 	    cpu_key_k_offset(cpu_key))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (cpu_key->key_length == 3)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* this part is needed only when tail conversion is in progress */
 | |
| 	if (le_key_k_type(le_key_version(le_key), le_key) <
 | |
| 	    cpu_key_k_type(cpu_key))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (le_key_k_type(le_key_version(le_key), le_key) >
 | |
| 	    cpu_key_k_type(cpu_key))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| inline int comp_short_le_keys(const struct reiserfs_key *key1,
 | |
| 			      const struct reiserfs_key *key2)
 | |
| {
 | |
| 	__u32 *p_s_1_u32, *p_s_2_u32;
 | |
| 	int n_key_length = REISERFS_SHORT_KEY_LEN;
 | |
| 
 | |
| 	p_s_1_u32 = (__u32 *) key1;
 | |
| 	p_s_2_u32 = (__u32 *) key2;
 | |
| 	for (; n_key_length--; ++p_s_1_u32, ++p_s_2_u32) {
 | |
| 		if (le32_to_cpu(*p_s_1_u32) < le32_to_cpu(*p_s_2_u32))
 | |
| 			return -1;
 | |
| 		if (le32_to_cpu(*p_s_1_u32) > le32_to_cpu(*p_s_2_u32))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
 | |
| {
 | |
| 	int version;
 | |
| 	to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
 | |
| 	to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
 | |
| 
 | |
| 	// find out version of the key
 | |
| 	version = le_key_version(from);
 | |
| 	to->version = version;
 | |
| 	to->on_disk_key.k_offset = le_key_k_offset(version, from);
 | |
| 	to->on_disk_key.k_type = le_key_k_type(version, from);
 | |
| }
 | |
| 
 | |
| // this does not say which one is bigger, it only returns 1 if keys
 | |
| // are not equal, 0 otherwise
 | |
| inline int comp_le_keys(const struct reiserfs_key *k1,
 | |
| 			const struct reiserfs_key *k2)
 | |
| {
 | |
| 	return memcmp(k1, k2, sizeof(struct reiserfs_key));
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *  Binary search toolkit function                                        *
 | |
|  *  Search for an item in the array by the item key                       *
 | |
|  *  Returns:    1 if found,  0 if not found;                              *
 | |
|  *        *p_n_pos = number of the searched element if found, else the    *
 | |
|  *        number of the first element that is larger than p_v_key.        *
 | |
|  **************************************************************************/
 | |
| /* For those not familiar with binary search: n_lbound is the leftmost item that it
 | |
|  could be, n_rbound the rightmost item that it could be.  We examine the item
 | |
|  halfway between n_lbound and n_rbound, and that tells us either that we can increase
 | |
|  n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that
 | |
|  there are no possible items, and we have not found it. With each examination we
 | |
|  cut the number of possible items it could be by one more than half rounded down,
 | |
|  or we find it. */
 | |
| static inline int bin_search(const void *p_v_key,	/* Key to search for.                   */
 | |
| 			     const void *p_v_base,	/* First item in the array.             */
 | |
| 			     int p_n_num,	/* Number of items in the array.        */
 | |
| 			     int p_n_width,	/* Item size in the array.
 | |
| 						   searched. Lest the reader be
 | |
| 						   confused, note that this is crafted
 | |
| 						   as a general function, and when it
 | |
| 						   is applied specifically to the array
 | |
| 						   of item headers in a node, p_n_width
 | |
| 						   is actually the item header size not
 | |
| 						   the item size.                      */
 | |
| 			     int *p_n_pos	/* Number of the searched for element. */
 | |
|     )
 | |
| {
 | |
| 	int n_rbound, n_lbound, n_j;
 | |
| 
 | |
| 	for (n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0)) / 2;
 | |
| 	     n_lbound <= n_rbound; n_j = (n_rbound + n_lbound) / 2)
 | |
| 		switch (comp_keys
 | |
| 			((struct reiserfs_key *)((char *)p_v_base +
 | |
| 						 n_j * p_n_width),
 | |
| 			 (struct cpu_key *)p_v_key)) {
 | |
| 		case -1:
 | |
| 			n_lbound = n_j + 1;
 | |
| 			continue;
 | |
| 		case 1:
 | |
| 			n_rbound = n_j - 1;
 | |
| 			continue;
 | |
| 		case 0:
 | |
| 			*p_n_pos = n_j;
 | |
| 			return ITEM_FOUND;	/* Key found in the array.  */
 | |
| 		}
 | |
| 
 | |
| 	/* bin_search did not find given key, it returns position of key,
 | |
| 	   that is minimal and greater than the given one. */
 | |
| 	*p_n_pos = n_lbound;
 | |
| 	return ITEM_NOT_FOUND;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| extern struct tree_balance *cur_tb;
 | |
| #endif
 | |
| 
 | |
| /* Minimal possible key. It is never in the tree. */
 | |
| const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
 | |
| 
 | |
| /* Maximal possible key. It is never in the tree. */
 | |
| static const struct reiserfs_key MAX_KEY = {
 | |
| 	__constant_cpu_to_le32(0xffffffff),
 | |
| 	__constant_cpu_to_le32(0xffffffff),
 | |
| 	{{__constant_cpu_to_le32(0xffffffff),
 | |
| 	  __constant_cpu_to_le32(0xffffffff)},}
 | |
| };
 | |
| 
 | |
| /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
 | |
|    of the path, and going upwards.  We must check the path's validity at each step.  If the key is not in
 | |
|    the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
 | |
|    case we return a special key, either MIN_KEY or MAX_KEY. */
 | |
| static inline const struct reiserfs_key *get_lkey(const struct treepath
 | |
| 						  *p_s_chk_path,
 | |
| 						  const struct super_block
 | |
| 						  *p_s_sb)
 | |
| {
 | |
| 	int n_position, n_path_offset = p_s_chk_path->path_length;
 | |
| 	struct buffer_head *p_s_parent;
 | |
| 
 | |
| 	RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
 | |
| 	       "PAP-5010: invalid offset in the path");
 | |
| 
 | |
| 	/* While not higher in path than first element. */
 | |
| 	while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 | |
| 
 | |
| 		RFALSE(!buffer_uptodate
 | |
| 		       (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
 | |
| 		       "PAP-5020: parent is not uptodate");
 | |
| 
 | |
| 		/* Parent at the path is not in the tree now. */
 | |
| 		if (!B_IS_IN_TREE
 | |
| 		    (p_s_parent =
 | |
| 		     PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)))
 | |
| 			return &MAX_KEY;
 | |
| 		/* Check whether position in the parent is correct. */
 | |
| 		if ((n_position =
 | |
| 		     PATH_OFFSET_POSITION(p_s_chk_path,
 | |
| 					  n_path_offset)) >
 | |
| 		    B_NR_ITEMS(p_s_parent))
 | |
| 			return &MAX_KEY;
 | |
| 		/* Check whether parent at the path really points to the child. */
 | |
| 		if (B_N_CHILD_NUM(p_s_parent, n_position) !=
 | |
| 		    PATH_OFFSET_PBUFFER(p_s_chk_path,
 | |
| 					n_path_offset + 1)->b_blocknr)
 | |
| 			return &MAX_KEY;
 | |
| 		/* Return delimiting key if position in the parent is not equal to zero. */
 | |
| 		if (n_position)
 | |
| 			return B_N_PDELIM_KEY(p_s_parent, n_position - 1);
 | |
| 	}
 | |
| 	/* Return MIN_KEY if we are in the root of the buffer tree. */
 | |
| 	if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 | |
| 	    b_blocknr == SB_ROOT_BLOCK(p_s_sb))
 | |
| 		return &MIN_KEY;
 | |
| 	return &MAX_KEY;
 | |
| }
 | |
| 
 | |
| /* Get delimiting key of the buffer at the path and its right neighbor. */
 | |
| inline const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
 | |
| 					   const struct super_block *p_s_sb)
 | |
| {
 | |
| 	int n_position, n_path_offset = p_s_chk_path->path_length;
 | |
| 	struct buffer_head *p_s_parent;
 | |
| 
 | |
| 	RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
 | |
| 	       "PAP-5030: invalid offset in the path");
 | |
| 
 | |
| 	while (n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 | |
| 
 | |
| 		RFALSE(!buffer_uptodate
 | |
| 		       (PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
 | |
| 		       "PAP-5040: parent is not uptodate");
 | |
| 
 | |
| 		/* Parent at the path is not in the tree now. */
 | |
| 		if (!B_IS_IN_TREE
 | |
| 		    (p_s_parent =
 | |
| 		     PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)))
 | |
| 			return &MIN_KEY;
 | |
| 		/* Check whether position in the parent is correct. */
 | |
| 		if ((n_position =
 | |
| 		     PATH_OFFSET_POSITION(p_s_chk_path,
 | |
| 					  n_path_offset)) >
 | |
| 		    B_NR_ITEMS(p_s_parent))
 | |
| 			return &MIN_KEY;
 | |
| 		/* Check whether parent at the path really points to the child. */
 | |
| 		if (B_N_CHILD_NUM(p_s_parent, n_position) !=
 | |
| 		    PATH_OFFSET_PBUFFER(p_s_chk_path,
 | |
| 					n_path_offset + 1)->b_blocknr)
 | |
| 			return &MIN_KEY;
 | |
| 		/* Return delimiting key if position in the parent is not the last one. */
 | |
| 		if (n_position != B_NR_ITEMS(p_s_parent))
 | |
| 			return B_N_PDELIM_KEY(p_s_parent, n_position);
 | |
| 	}
 | |
| 	/* Return MAX_KEY if we are in the root of the buffer tree. */
 | |
| 	if (PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 | |
| 	    b_blocknr == SB_ROOT_BLOCK(p_s_sb))
 | |
| 		return &MAX_KEY;
 | |
| 	return &MIN_KEY;
 | |
| }
 | |
| 
 | |
| /* Check whether a key is contained in the tree rooted from a buffer at a path. */
 | |
| /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
 | |
|    the path.  These delimiting keys are stored at least one level above that buffer in the tree. If the
 | |
|    buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
 | |
|    this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
 | |
| static inline int key_in_buffer(struct treepath *p_s_chk_path,	/* Path which should be checked.  */
 | |
| 				const struct cpu_key *p_s_key,	/* Key which should be checked.   */
 | |
| 				struct super_block *p_s_sb	/* Super block pointer.           */
 | |
|     )
 | |
| {
 | |
| 
 | |
| 	RFALSE(!p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
 | |
| 	       || p_s_chk_path->path_length > MAX_HEIGHT,
 | |
| 	       "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
 | |
| 	       p_s_key, p_s_chk_path->path_length);
 | |
| 	RFALSE(!PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev,
 | |
| 	       "PAP-5060: device must not be NODEV");
 | |
| 
 | |
| 	if (comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1)
 | |
| 		/* left delimiting key is bigger, that the key we look for */
 | |
| 		return 0;
 | |
| 	//  if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 )
 | |
| 	if (comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1)
 | |
| 		/* p_s_key must be less than right delimitiing key */
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| inline void decrement_bcount(struct buffer_head *p_s_bh)
 | |
| {
 | |
| 	if (p_s_bh) {
 | |
| 		if (atomic_read(&(p_s_bh->b_count))) {
 | |
| 			put_bh(p_s_bh);
 | |
| 			return;
 | |
| 		}
 | |
| 		reiserfs_panic(NULL,
 | |
| 			       "PAP-5070: decrement_bcount: trying to free free buffer %b",
 | |
| 			       p_s_bh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Decrement b_count field of the all buffers in the path. */
 | |
| void decrement_counters_in_path(struct treepath *p_s_search_path)
 | |
| {
 | |
| 	int n_path_offset = p_s_search_path->path_length;
 | |
| 
 | |
| 	RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET ||
 | |
| 	       n_path_offset > EXTENDED_MAX_HEIGHT - 1,
 | |
| 	       "PAP-5080: invalid path offset of %d", n_path_offset);
 | |
| 
 | |
| 	while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
 | |
| 		struct buffer_head *bh;
 | |
| 
 | |
| 		bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
 | |
| 		decrement_bcount(bh);
 | |
| 	}
 | |
| 	p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 | |
| }
 | |
| 
 | |
| int reiserfs_check_path(struct treepath *p)
 | |
| {
 | |
| 	RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
 | |
| 	       "path not properly relsed");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Release all buffers in the path. Restore dirty bits clean
 | |
| ** when preparing the buffer for the log
 | |
| **
 | |
| ** only called from fix_nodes()
 | |
| */
 | |
| void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path)
 | |
| {
 | |
| 	int n_path_offset = p_s_search_path->path_length;
 | |
| 
 | |
| 	RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 | |
| 	       "clm-4000: invalid path offset");
 | |
| 
 | |
| 	while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
 | |
| 		reiserfs_restore_prepared_buffer(s,
 | |
| 						 PATH_OFFSET_PBUFFER
 | |
| 						 (p_s_search_path,
 | |
| 						  n_path_offset));
 | |
| 		brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
 | |
| 	}
 | |
| 	p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 | |
| }
 | |
| 
 | |
| /* Release all buffers in the path. */
 | |
| void pathrelse(struct treepath *p_s_search_path)
 | |
| {
 | |
| 	int n_path_offset = p_s_search_path->path_length;
 | |
| 
 | |
| 	RFALSE(n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 | |
| 	       "PAP-5090: invalid path offset");
 | |
| 
 | |
| 	while (n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
 | |
| 		brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
 | |
| 
 | |
| 	p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 | |
| }
 | |
| 
 | |
| static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
 | |
| {
 | |
| 	struct block_head *blkh;
 | |
| 	struct item_head *ih;
 | |
| 	int used_space;
 | |
| 	int prev_location;
 | |
| 	int i;
 | |
| 	int nr;
 | |
| 
 | |
| 	blkh = (struct block_head *)buf;
 | |
| 	if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
 | |
| 		reiserfs_warning(NULL,
 | |
| 				 "is_leaf: this should be caught earlier");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	nr = blkh_nr_item(blkh);
 | |
| 	if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
 | |
| 		/* item number is too big or too small */
 | |
| 		reiserfs_warning(NULL, "is_leaf: nr_item seems wrong: %z", bh);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
 | |
| 	used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
 | |
| 	if (used_space != blocksize - blkh_free_space(blkh)) {
 | |
| 		/* free space does not match to calculated amount of use space */
 | |
| 		reiserfs_warning(NULL, "is_leaf: free space seems wrong: %z",
 | |
| 				 bh);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	// FIXME: it is_leaf will hit performance too much - we may have
 | |
| 	// return 1 here
 | |
| 
 | |
| 	/* check tables of item heads */
 | |
| 	ih = (struct item_head *)(buf + BLKH_SIZE);
 | |
| 	prev_location = blocksize;
 | |
| 	for (i = 0; i < nr; i++, ih++) {
 | |
| 		if (le_ih_k_type(ih) == TYPE_ANY) {
 | |
| 			reiserfs_warning(NULL,
 | |
| 					 "is_leaf: wrong item type for item %h",
 | |
| 					 ih);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (ih_location(ih) >= blocksize
 | |
| 		    || ih_location(ih) < IH_SIZE * nr) {
 | |
| 			reiserfs_warning(NULL,
 | |
| 					 "is_leaf: item location seems wrong: %h",
 | |
| 					 ih);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (ih_item_len(ih) < 1
 | |
| 		    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
 | |
| 			reiserfs_warning(NULL,
 | |
| 					 "is_leaf: item length seems wrong: %h",
 | |
| 					 ih);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (prev_location - ih_location(ih) != ih_item_len(ih)) {
 | |
| 			reiserfs_warning(NULL,
 | |
| 					 "is_leaf: item location seems wrong (second one): %h",
 | |
| 					 ih);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		prev_location = ih_location(ih);
 | |
| 	}
 | |
| 
 | |
| 	// one may imagine much more checks
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* returns 1 if buf looks like an internal node, 0 otherwise */
 | |
| static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
 | |
| {
 | |
| 	struct block_head *blkh;
 | |
| 	int nr;
 | |
| 	int used_space;
 | |
| 
 | |
| 	blkh = (struct block_head *)buf;
 | |
| 	nr = blkh_level(blkh);
 | |
| 	if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
 | |
| 		/* this level is not possible for internal nodes */
 | |
| 		reiserfs_warning(NULL,
 | |
| 				 "is_internal: this should be caught earlier");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	nr = blkh_nr_item(blkh);
 | |
| 	if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
 | |
| 		/* for internal which is not root we might check min number of keys */
 | |
| 		reiserfs_warning(NULL,
 | |
| 				 "is_internal: number of key seems wrong: %z",
 | |
| 				 bh);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
 | |
| 	if (used_space != blocksize - blkh_free_space(blkh)) {
 | |
| 		reiserfs_warning(NULL,
 | |
| 				 "is_internal: free space seems wrong: %z", bh);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	// one may imagine much more checks
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| // make sure that bh contains formatted node of reiserfs tree of
 | |
| // 'level'-th level
 | |
| static int is_tree_node(struct buffer_head *bh, int level)
 | |
| {
 | |
| 	if (B_LEVEL(bh) != level) {
 | |
| 		reiserfs_warning(NULL,
 | |
| 				 "is_tree_node: node level %d does not match to the expected one %d",
 | |
| 				 B_LEVEL(bh), level);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (level == DISK_LEAF_NODE_LEVEL)
 | |
| 		return is_leaf(bh->b_data, bh->b_size, bh);
 | |
| 
 | |
| 	return is_internal(bh->b_data, bh->b_size, bh);
 | |
| }
 | |
| 
 | |
| #define SEARCH_BY_KEY_READA 16
 | |
| 
 | |
| /* The function is NOT SCHEDULE-SAFE! */
 | |
| static void search_by_key_reada(struct super_block *s,
 | |
| 				struct buffer_head **bh,
 | |
| 				b_blocknr_t *b, int num)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		bh[i] = sb_getblk(s, b[i]);
 | |
| 	}
 | |
| 	for (j = 0; j < i; j++) {
 | |
| 		/*
 | |
| 		 * note, this needs attention if we are getting rid of the BKL
 | |
| 		 * you have to make sure the prepared bit isn't set on this buffer
 | |
| 		 */
 | |
| 		if (!buffer_uptodate(bh[j]))
 | |
| 			ll_rw_block(READA, 1, bh + j);
 | |
| 		brelse(bh[j]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  * Algorithm   SearchByKey                                                *
 | |
|  *             look for item in the Disk S+Tree by its key                *
 | |
|  * Input:  p_s_sb   -  super block                                        *
 | |
|  *         p_s_key  - pointer to the key to search                        *
 | |
|  * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR                         *
 | |
|  *         p_s_search_path - path from the root to the needed leaf        *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* This function fills up the path from the root to the leaf as it
 | |
|    descends the tree looking for the key.  It uses reiserfs_bread to
 | |
|    try to find buffers in the cache given their block number.  If it
 | |
|    does not find them in the cache it reads them from disk.  For each
 | |
|    node search_by_key finds using reiserfs_bread it then uses
 | |
|    bin_search to look through that node.  bin_search will find the
 | |
|    position of the block_number of the next node if it is looking
 | |
|    through an internal node.  If it is looking through a leaf node
 | |
|    bin_search will find the position of the item which has key either
 | |
|    equal to given key, or which is the maximal key less than the given
 | |
|    key.  search_by_key returns a path that must be checked for the
 | |
|    correctness of the top of the path but need not be checked for the
 | |
|    correctness of the bottom of the path */
 | |
| /* The function is NOT SCHEDULE-SAFE! */
 | |
| int search_by_key(struct super_block *p_s_sb, const struct cpu_key *p_s_key,	/* Key to search. */
 | |
| 		  struct treepath *p_s_search_path,/* This structure was
 | |
| 						   allocated and initialized
 | |
| 						   by the calling
 | |
| 						   function. It is filled up
 | |
| 						   by this function.  */
 | |
| 		  int n_stop_level	/* How far down the tree to search. To
 | |
| 					   stop at leaf level - set to
 | |
| 					   DISK_LEAF_NODE_LEVEL */
 | |
|     )
 | |
| {
 | |
| 	b_blocknr_t n_block_number;
 | |
| 	int expected_level;
 | |
| 	struct buffer_head *p_s_bh;
 | |
| 	struct path_element *p_s_last_element;
 | |
| 	int n_node_level, n_retval;
 | |
| 	int right_neighbor_of_leaf_node;
 | |
| 	int fs_gen;
 | |
| 	struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
 | |
| 	b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
 | |
| 	int reada_count = 0;
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 	int n_repeat_counter = 0;
 | |
| #endif
 | |
| 
 | |
| 	PROC_INFO_INC(p_s_sb, search_by_key);
 | |
| 
 | |
| 	/* As we add each node to a path we increase its count.  This means that
 | |
| 	   we must be careful to release all nodes in a path before we either
 | |
| 	   discard the path struct or re-use the path struct, as we do here. */
 | |
| 
 | |
| 	decrement_counters_in_path(p_s_search_path);
 | |
| 
 | |
| 	right_neighbor_of_leaf_node = 0;
 | |
| 
 | |
| 	/* With each iteration of this loop we search through the items in the
 | |
| 	   current node, and calculate the next current node(next path element)
 | |
| 	   for the next iteration of this loop.. */
 | |
| 	n_block_number = SB_ROOT_BLOCK(p_s_sb);
 | |
| 	expected_level = -1;
 | |
| 	while (1) {
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 		if (!(++n_repeat_counter % 50000))
 | |
| 			reiserfs_warning(p_s_sb, "PAP-5100: search_by_key: %s:"
 | |
| 					 "there were %d iterations of while loop "
 | |
| 					 "looking for key %K",
 | |
| 					 current->comm, n_repeat_counter,
 | |
| 					 p_s_key);
 | |
| #endif
 | |
| 
 | |
| 		/* prep path to have another element added to it. */
 | |
| 		p_s_last_element =
 | |
| 		    PATH_OFFSET_PELEMENT(p_s_search_path,
 | |
| 					 ++p_s_search_path->path_length);
 | |
| 		fs_gen = get_generation(p_s_sb);
 | |
| 
 | |
| 		/* Read the next tree node, and set the last element in the path to
 | |
| 		   have a pointer to it. */
 | |
| 		if ((p_s_bh = p_s_last_element->pe_buffer =
 | |
| 		     sb_getblk(p_s_sb, n_block_number))) {
 | |
| 			if (!buffer_uptodate(p_s_bh) && reada_count > 1) {
 | |
| 				search_by_key_reada(p_s_sb, reada_bh,
 | |
| 						    reada_blocks, reada_count);
 | |
| 			}
 | |
| 			ll_rw_block(READ, 1, &p_s_bh);
 | |
| 			wait_on_buffer(p_s_bh);
 | |
| 			if (!buffer_uptodate(p_s_bh))
 | |
| 				goto io_error;
 | |
| 		} else {
 | |
| 		      io_error:
 | |
| 			p_s_search_path->path_length--;
 | |
| 			pathrelse(p_s_search_path);
 | |
| 			return IO_ERROR;
 | |
| 		}
 | |
| 		reada_count = 0;
 | |
| 		if (expected_level == -1)
 | |
| 			expected_level = SB_TREE_HEIGHT(p_s_sb);
 | |
| 		expected_level--;
 | |
| 
 | |
| 		/* It is possible that schedule occurred. We must check whether the key
 | |
| 		   to search is still in the tree rooted from the current buffer. If
 | |
| 		   not then repeat search from the root. */
 | |
| 		if (fs_changed(fs_gen, p_s_sb) &&
 | |
| 		    (!B_IS_IN_TREE(p_s_bh) ||
 | |
| 		     B_LEVEL(p_s_bh) != expected_level ||
 | |
| 		     !key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) {
 | |
| 			PROC_INFO_INC(p_s_sb, search_by_key_fs_changed);
 | |
| 			PROC_INFO_INC(p_s_sb, search_by_key_restarted);
 | |
| 			PROC_INFO_INC(p_s_sb,
 | |
| 				      sbk_restarted[expected_level - 1]);
 | |
| 			decrement_counters_in_path(p_s_search_path);
 | |
| 
 | |
| 			/* Get the root block number so that we can repeat the search
 | |
| 			   starting from the root. */
 | |
| 			n_block_number = SB_ROOT_BLOCK(p_s_sb);
 | |
| 			expected_level = -1;
 | |
| 			right_neighbor_of_leaf_node = 0;
 | |
| 
 | |
| 			/* repeat search from the root */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* only check that the key is in the buffer if p_s_key is not
 | |
| 		   equal to the MAX_KEY. Latter case is only possible in
 | |
| 		   "finish_unfinished()" processing during mount. */
 | |
| 		RFALSE(comp_keys(&MAX_KEY, p_s_key) &&
 | |
| 		       !key_in_buffer(p_s_search_path, p_s_key, p_s_sb),
 | |
| 		       "PAP-5130: key is not in the buffer");
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 		if (cur_tb) {
 | |
| 			print_cur_tb("5140");
 | |
| 			reiserfs_panic(p_s_sb,
 | |
| 				       "PAP-5140: search_by_key: schedule occurred in do_balance!");
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		// make sure, that the node contents look like a node of
 | |
| 		// certain level
 | |
| 		if (!is_tree_node(p_s_bh, expected_level)) {
 | |
| 			reiserfs_warning(p_s_sb, "vs-5150: search_by_key: "
 | |
| 					 "invalid format found in block %ld. Fsck?",
 | |
| 					 p_s_bh->b_blocknr);
 | |
| 			pathrelse(p_s_search_path);
 | |
| 			return IO_ERROR;
 | |
| 		}
 | |
| 
 | |
| 		/* ok, we have acquired next formatted node in the tree */
 | |
| 		n_node_level = B_LEVEL(p_s_bh);
 | |
| 
 | |
| 		PROC_INFO_BH_STAT(p_s_sb, p_s_bh, n_node_level - 1);
 | |
| 
 | |
| 		RFALSE(n_node_level < n_stop_level,
 | |
| 		       "vs-5152: tree level (%d) is less than stop level (%d)",
 | |
| 		       n_node_level, n_stop_level);
 | |
| 
 | |
| 		n_retval = bin_search(p_s_key, B_N_PITEM_HEAD(p_s_bh, 0),
 | |
| 				      B_NR_ITEMS(p_s_bh),
 | |
| 				      (n_node_level ==
 | |
| 				       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
 | |
| 				      KEY_SIZE,
 | |
| 				      &(p_s_last_element->pe_position));
 | |
| 		if (n_node_level == n_stop_level) {
 | |
| 			return n_retval;
 | |
| 		}
 | |
| 
 | |
| 		/* we are not in the stop level */
 | |
| 		if (n_retval == ITEM_FOUND)
 | |
| 			/* item has been found, so we choose the pointer which is to the right of the found one */
 | |
| 			p_s_last_element->pe_position++;
 | |
| 
 | |
| 		/* if item was not found we choose the position which is to
 | |
| 		   the left of the found item. This requires no code,
 | |
| 		   bin_search did it already. */
 | |
| 
 | |
| 		/* So we have chosen a position in the current node which is
 | |
| 		   an internal node.  Now we calculate child block number by
 | |
| 		   position in the node. */
 | |
| 		n_block_number =
 | |
| 		    B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position);
 | |
| 
 | |
| 		/* if we are going to read leaf nodes, try for read ahead as well */
 | |
| 		if ((p_s_search_path->reada & PATH_READA) &&
 | |
| 		    n_node_level == DISK_LEAF_NODE_LEVEL + 1) {
 | |
| 			int pos = p_s_last_element->pe_position;
 | |
| 			int limit = B_NR_ITEMS(p_s_bh);
 | |
| 			struct reiserfs_key *le_key;
 | |
| 
 | |
| 			if (p_s_search_path->reada & PATH_READA_BACK)
 | |
| 				limit = 0;
 | |
| 			while (reada_count < SEARCH_BY_KEY_READA) {
 | |
| 				if (pos == limit)
 | |
| 					break;
 | |
| 				reada_blocks[reada_count++] =
 | |
| 				    B_N_CHILD_NUM(p_s_bh, pos);
 | |
| 				if (p_s_search_path->reada & PATH_READA_BACK)
 | |
| 					pos--;
 | |
| 				else
 | |
| 					pos++;
 | |
| 
 | |
| 				/*
 | |
| 				 * check to make sure we're in the same object
 | |
| 				 */
 | |
| 				le_key = B_N_PDELIM_KEY(p_s_bh, pos);
 | |
| 				if (le32_to_cpu(le_key->k_objectid) !=
 | |
| 				    p_s_key->on_disk_key.k_objectid) {
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Form the path to an item and position in this item which contains
 | |
|    file byte defined by p_s_key. If there is no such item
 | |
|    corresponding to the key, we point the path to the item with
 | |
|    maximal key less than p_s_key, and *p_n_pos_in_item is set to one
 | |
|    past the last entry/byte in the item.  If searching for entry in a
 | |
|    directory item, and it is not found, *p_n_pos_in_item is set to one
 | |
|    entry more than the entry with maximal key which is less than the
 | |
|    sought key.
 | |
| 
 | |
|    Note that if there is no entry in this same node which is one more,
 | |
|    then we point to an imaginary entry.  for direct items, the
 | |
|    position is in units of bytes, for indirect items the position is
 | |
|    in units of blocknr entries, for directory items the position is in
 | |
|    units of directory entries.  */
 | |
| 
 | |
| /* The function is NOT SCHEDULE-SAFE! */
 | |
| int search_for_position_by_key(struct super_block *p_s_sb,	/* Pointer to the super block.          */
 | |
| 			       const struct cpu_key *p_cpu_key,	/* Key to search (cpu variable)         */
 | |
| 			       struct treepath *p_s_search_path	/* Filled up by this function.          */
 | |
|     )
 | |
| {
 | |
| 	struct item_head *p_le_ih;	/* pointer to on-disk structure */
 | |
| 	int n_blk_size;
 | |
| 	loff_t item_offset, offset;
 | |
| 	struct reiserfs_dir_entry de;
 | |
| 	int retval;
 | |
| 
 | |
| 	/* If searching for directory entry. */
 | |
| 	if (is_direntry_cpu_key(p_cpu_key))
 | |
| 		return search_by_entry_key(p_s_sb, p_cpu_key, p_s_search_path,
 | |
| 					   &de);
 | |
| 
 | |
| 	/* If not searching for directory entry. */
 | |
| 
 | |
| 	/* If item is found. */
 | |
| 	retval = search_item(p_s_sb, p_cpu_key, p_s_search_path);
 | |
| 	if (retval == IO_ERROR)
 | |
| 		return retval;
 | |
| 	if (retval == ITEM_FOUND) {
 | |
| 
 | |
| 		RFALSE(!ih_item_len
 | |
| 		       (B_N_PITEM_HEAD
 | |
| 			(PATH_PLAST_BUFFER(p_s_search_path),
 | |
| 			 PATH_LAST_POSITION(p_s_search_path))),
 | |
| 		       "PAP-5165: item length equals zero");
 | |
| 
 | |
| 		pos_in_item(p_s_search_path) = 0;
 | |
| 		return POSITION_FOUND;
 | |
| 	}
 | |
| 
 | |
| 	RFALSE(!PATH_LAST_POSITION(p_s_search_path),
 | |
| 	       "PAP-5170: position equals zero");
 | |
| 
 | |
| 	/* Item is not found. Set path to the previous item. */
 | |
| 	p_le_ih =
 | |
| 	    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path),
 | |
| 			   --PATH_LAST_POSITION(p_s_search_path));
 | |
| 	n_blk_size = p_s_sb->s_blocksize;
 | |
| 
 | |
| 	if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
 | |
| 		return FILE_NOT_FOUND;
 | |
| 	}
 | |
| 	// FIXME: quite ugly this far
 | |
| 
 | |
| 	item_offset = le_ih_k_offset(p_le_ih);
 | |
| 	offset = cpu_key_k_offset(p_cpu_key);
 | |
| 
 | |
| 	/* Needed byte is contained in the item pointed to by the path. */
 | |
| 	if (item_offset <= offset &&
 | |
| 	    item_offset + op_bytes_number(p_le_ih, n_blk_size) > offset) {
 | |
| 		pos_in_item(p_s_search_path) = offset - item_offset;
 | |
| 		if (is_indirect_le_ih(p_le_ih)) {
 | |
| 			pos_in_item(p_s_search_path) /= n_blk_size;
 | |
| 		}
 | |
| 		return POSITION_FOUND;
 | |
| 	}
 | |
| 
 | |
| 	/* Needed byte is not contained in the item pointed to by the
 | |
| 	   path. Set pos_in_item out of the item. */
 | |
| 	if (is_indirect_le_ih(p_le_ih))
 | |
| 		pos_in_item(p_s_search_path) =
 | |
| 		    ih_item_len(p_le_ih) / UNFM_P_SIZE;
 | |
| 	else
 | |
| 		pos_in_item(p_s_search_path) = ih_item_len(p_le_ih);
 | |
| 
 | |
| 	return POSITION_NOT_FOUND;
 | |
| }
 | |
| 
 | |
| /* Compare given item and item pointed to by the path. */
 | |
| int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path)
 | |
| {
 | |
| 	struct buffer_head *p_s_bh;
 | |
| 	struct item_head *ih;
 | |
| 
 | |
| 	/* Last buffer at the path is not in the tree. */
 | |
| 	if (!B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path)))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Last path position is invalid. */
 | |
| 	if (PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* we need only to know, whether it is the same item */
 | |
| 	ih = get_ih(p_s_path);
 | |
| 	return memcmp(stored_ih, ih, IH_SIZE);
 | |
| }
 | |
| 
 | |
| /* unformatted nodes are not logged anymore, ever.  This is safe
 | |
| ** now
 | |
| */
 | |
| #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
 | |
| 
 | |
| // block can not be forgotten as it is in I/O or held by someone
 | |
| #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
 | |
| 
 | |
| // prepare for delete or cut of direct item
 | |
| static inline int prepare_for_direct_item(struct treepath *path,
 | |
| 					  struct item_head *le_ih,
 | |
| 					  struct inode *inode,
 | |
| 					  loff_t new_file_length, int *cut_size)
 | |
| {
 | |
| 	loff_t round_len;
 | |
| 
 | |
| 	if (new_file_length == max_reiserfs_offset(inode)) {
 | |
| 		/* item has to be deleted */
 | |
| 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 | |
| 		return M_DELETE;
 | |
| 	}
 | |
| 	// new file gets truncated
 | |
| 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
 | |
| 		// 
 | |
| 		round_len = ROUND_UP(new_file_length);
 | |
| 		/* this was n_new_file_length < le_ih ... */
 | |
| 		if (round_len < le_ih_k_offset(le_ih)) {
 | |
| 			*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 | |
| 			return M_DELETE;	/* Delete this item. */
 | |
| 		}
 | |
| 		/* Calculate first position and size for cutting from item. */
 | |
| 		pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
 | |
| 		*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
 | |
| 
 | |
| 		return M_CUT;	/* Cut from this item. */
 | |
| 	}
 | |
| 
 | |
| 	// old file: items may have any length
 | |
| 
 | |
| 	if (new_file_length < le_ih_k_offset(le_ih)) {
 | |
| 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 | |
| 		return M_DELETE;	/* Delete this item. */
 | |
| 	}
 | |
| 	/* Calculate first position and size for cutting from item. */
 | |
| 	*cut_size = -(ih_item_len(le_ih) -
 | |
| 		      (pos_in_item(path) =
 | |
| 		       new_file_length + 1 - le_ih_k_offset(le_ih)));
 | |
| 	return M_CUT;		/* Cut from this item. */
 | |
| }
 | |
| 
 | |
| static inline int prepare_for_direntry_item(struct treepath *path,
 | |
| 					    struct item_head *le_ih,
 | |
| 					    struct inode *inode,
 | |
| 					    loff_t new_file_length,
 | |
| 					    int *cut_size)
 | |
| {
 | |
| 	if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
 | |
| 	    new_file_length == max_reiserfs_offset(inode)) {
 | |
| 		RFALSE(ih_entry_count(le_ih) != 2,
 | |
| 		       "PAP-5220: incorrect empty directory item (%h)", le_ih);
 | |
| 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 | |
| 		return M_DELETE;	/* Delete the directory item containing "." and ".." entry. */
 | |
| 	}
 | |
| 
 | |
| 	if (ih_entry_count(le_ih) == 1) {
 | |
| 		/* Delete the directory item such as there is one record only
 | |
| 		   in this item */
 | |
| 		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 | |
| 		return M_DELETE;
 | |
| 	}
 | |
| 
 | |
| 	/* Cut one record from the directory item. */
 | |
| 	*cut_size =
 | |
| 	    -(DEH_SIZE +
 | |
| 	      entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
 | |
| 	return M_CUT;
 | |
| }
 | |
| 
 | |
| #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
 | |
| 
 | |
| /*  If the path points to a directory or direct item, calculate mode and the size cut, for balance.
 | |
|     If the path points to an indirect item, remove some number of its unformatted nodes.
 | |
|     In case of file truncate calculate whether this item must be deleted/truncated or last
 | |
|     unformatted node of this item will be converted to a direct item.
 | |
|     This function returns a determination of what balance mode the calling function should employ. */
 | |
| static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *p_s_path, const struct cpu_key *p_s_item_key, int *p_n_removed,	/* Number of unformatted nodes which were removed
 | |
| 																						   from end of the file. */
 | |
| 				      int *p_n_cut_size, unsigned long long n_new_file_length	/* MAX_KEY_OFFSET in case of delete. */
 | |
|     )
 | |
| {
 | |
| 	struct super_block *p_s_sb = inode->i_sb;
 | |
| 	struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_path);
 | |
| 	struct buffer_head *p_s_bh = PATH_PLAST_BUFFER(p_s_path);
 | |
| 
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	/* Stat_data item. */
 | |
| 	if (is_statdata_le_ih(p_le_ih)) {
 | |
| 
 | |
| 		RFALSE(n_new_file_length != max_reiserfs_offset(inode),
 | |
| 		       "PAP-5210: mode must be M_DELETE");
 | |
| 
 | |
| 		*p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
 | |
| 		return M_DELETE;
 | |
| 	}
 | |
| 
 | |
| 	/* Directory item. */
 | |
| 	if (is_direntry_le_ih(p_le_ih))
 | |
| 		return prepare_for_direntry_item(p_s_path, p_le_ih, inode,
 | |
| 						 n_new_file_length,
 | |
| 						 p_n_cut_size);
 | |
| 
 | |
| 	/* Direct item. */
 | |
| 	if (is_direct_le_ih(p_le_ih))
 | |
| 		return prepare_for_direct_item(p_s_path, p_le_ih, inode,
 | |
| 					       n_new_file_length, p_n_cut_size);
 | |
| 
 | |
| 	/* Case of an indirect item. */
 | |
| 	{
 | |
| 	    int blk_size = p_s_sb->s_blocksize;
 | |
| 	    struct item_head s_ih;
 | |
| 	    int need_re_search;
 | |
| 	    int delete = 0;
 | |
| 	    int result = M_CUT;
 | |
| 	    int pos = 0;
 | |
| 
 | |
| 	    if ( n_new_file_length == max_reiserfs_offset (inode) ) {
 | |
| 		/* prepare_for_delete_or_cut() is called by
 | |
| 		 * reiserfs_delete_item() */
 | |
| 		n_new_file_length = 0;
 | |
| 		delete = 1;
 | |
| 	    }
 | |
| 
 | |
| 	    do {
 | |
| 		need_re_search = 0;
 | |
| 		*p_n_cut_size = 0;
 | |
| 		p_s_bh = PATH_PLAST_BUFFER(p_s_path);
 | |
| 		copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
 | |
| 		pos = I_UNFM_NUM(&s_ih);
 | |
| 
 | |
| 		while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > n_new_file_length) {
 | |
| 		    __le32 *unfm;
 | |
| 		    __u32 block;
 | |
| 
 | |
| 		    /* Each unformatted block deletion may involve one additional
 | |
| 		     * bitmap block into the transaction, thereby the initial
 | |
| 		     * journal space reservation might not be enough. */
 | |
| 		    if (!delete && (*p_n_cut_size) != 0 &&
 | |
| 			reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
 | |
| 			break;
 | |
| 		    }
 | |
| 
 | |
| 		    unfm = (__le32 *)B_I_PITEM(p_s_bh, &s_ih) + pos - 1;
 | |
| 		    block = get_block_num(unfm, 0);
 | |
| 
 | |
| 		    if (block != 0) {
 | |
| 			reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1);
 | |
| 			put_block_num(unfm, 0, 0);
 | |
| 			journal_mark_dirty (th, p_s_sb, p_s_bh);
 | |
| 			reiserfs_free_block(th, inode, block, 1);
 | |
| 		    }
 | |
| 
 | |
| 		    cond_resched();
 | |
| 
 | |
| 		    if (item_moved (&s_ih, p_s_path))  {
 | |
| 			need_re_search = 1;
 | |
| 			break;
 | |
| 		    }
 | |
| 
 | |
| 		    pos --;
 | |
| 		    (*p_n_removed) ++;
 | |
| 		    (*p_n_cut_size) -= UNFM_P_SIZE;
 | |
| 
 | |
| 		    if (pos == 0) {
 | |
| 			(*p_n_cut_size) -= IH_SIZE;
 | |
| 			result = M_DELETE;
 | |
| 			break;
 | |
| 		    }
 | |
| 		}
 | |
| 		/* a trick.  If the buffer has been logged, this will do nothing.  If
 | |
| 		** we've broken the loop without logging it, it will restore the
 | |
| 		** buffer */
 | |
| 		reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh);
 | |
| 	    } while (need_re_search &&
 | |
| 		     search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND);
 | |
| 	    pos_in_item(p_s_path) = pos * UNFM_P_SIZE;
 | |
| 
 | |
| 	    if (*p_n_cut_size == 0) {
 | |
| 		/* Nothing were cut. maybe convert last unformatted node to the
 | |
| 		 * direct item? */
 | |
| 		result = M_CONVERT;
 | |
| 	    }
 | |
| 	    return result;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Calculate number of bytes which will be deleted or cut during balance */
 | |
| static int calc_deleted_bytes_number(struct tree_balance *p_s_tb, char c_mode)
 | |
| {
 | |
| 	int n_del_size;
 | |
| 	struct item_head *p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path);
 | |
| 
 | |
| 	if (is_statdata_le_ih(p_le_ih))
 | |
| 		return 0;
 | |
| 
 | |
| 	n_del_size =
 | |
| 	    (c_mode ==
 | |
| 	     M_DELETE) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0];
 | |
| 	if (is_direntry_le_ih(p_le_ih)) {
 | |
| 		// return EMPTY_DIR_SIZE; /* We delete emty directoris only. */
 | |
| 		// we can't use EMPTY_DIR_SIZE, as old format dirs have a different
 | |
| 		// empty size.  ick. FIXME, is this right?
 | |
| 		//
 | |
| 		return n_del_size;
 | |
| 	}
 | |
| 
 | |
| 	if (is_indirect_le_ih(p_le_ih))
 | |
| 		n_del_size = (n_del_size / UNFM_P_SIZE) * (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size);	// - get_ih_free_space (p_le_ih);
 | |
| 	return n_del_size;
 | |
| }
 | |
| 
 | |
| static void init_tb_struct(struct reiserfs_transaction_handle *th,
 | |
| 			   struct tree_balance *p_s_tb,
 | |
| 			   struct super_block *p_s_sb,
 | |
| 			   struct treepath *p_s_path, int n_size)
 | |
| {
 | |
| 
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	memset(p_s_tb, '\0', sizeof(struct tree_balance));
 | |
| 	p_s_tb->transaction_handle = th;
 | |
| 	p_s_tb->tb_sb = p_s_sb;
 | |
| 	p_s_tb->tb_path = p_s_path;
 | |
| 	PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
 | |
| 	PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
 | |
| 	p_s_tb->insert_size[0] = n_size;
 | |
| }
 | |
| 
 | |
| void padd_item(char *item, int total_length, int length)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = total_length; i > length;)
 | |
| 		item[--i] = 0;
 | |
| }
 | |
| 
 | |
| #ifdef REISERQUOTA_DEBUG
 | |
| char key2type(struct reiserfs_key *ih)
 | |
| {
 | |
| 	if (is_direntry_le_key(2, ih))
 | |
| 		return 'd';
 | |
| 	if (is_direct_le_key(2, ih))
 | |
| 		return 'D';
 | |
| 	if (is_indirect_le_key(2, ih))
 | |
| 		return 'i';
 | |
| 	if (is_statdata_le_key(2, ih))
 | |
| 		return 's';
 | |
| 	return 'u';
 | |
| }
 | |
| 
 | |
| char head2type(struct item_head *ih)
 | |
| {
 | |
| 	if (is_direntry_le_ih(ih))
 | |
| 		return 'd';
 | |
| 	if (is_direct_le_ih(ih))
 | |
| 		return 'D';
 | |
| 	if (is_indirect_le_ih(ih))
 | |
| 		return 'i';
 | |
| 	if (is_statdata_le_ih(ih))
 | |
| 		return 's';
 | |
| 	return 'u';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Delete object item. */
 | |
| int reiserfs_delete_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_path,	/* Path to the deleted item. */
 | |
| 			 const struct cpu_key *p_s_item_key,	/* Key to search for the deleted item.  */
 | |
| 			 struct inode *p_s_inode,	/* inode is here just to update i_blocks and quotas */
 | |
| 			 struct buffer_head *p_s_un_bh)
 | |
| {				/* NULL or unformatted node pointer.    */
 | |
| 	struct super_block *p_s_sb = p_s_inode->i_sb;
 | |
| 	struct tree_balance s_del_balance;
 | |
| 	struct item_head s_ih;
 | |
| 	struct item_head *q_ih;
 | |
| 	int quota_cut_bytes;
 | |
| 	int n_ret_value, n_del_size, n_removed;
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 	char c_mode;
 | |
| 	int n_iter = 0;
 | |
| #endif
 | |
| 
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path,
 | |
| 		       0 /*size is unknown */ );
 | |
| 
 | |
| 	while (1) {
 | |
| 		n_removed = 0;
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 		n_iter++;
 | |
| 		c_mode =
 | |
| #endif
 | |
| 		    prepare_for_delete_or_cut(th, p_s_inode, p_s_path,
 | |
| 					      p_s_item_key, &n_removed,
 | |
| 					      &n_del_size,
 | |
| 					      max_reiserfs_offset(p_s_inode));
 | |
| 
 | |
| 		RFALSE(c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
 | |
| 
 | |
| 		copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
 | |
| 		s_del_balance.insert_size[0] = n_del_size;
 | |
| 
 | |
| 		n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
 | |
| 		if (n_ret_value != REPEAT_SEARCH)
 | |
| 			break;
 | |
| 
 | |
| 		PROC_INFO_INC(p_s_sb, delete_item_restarted);
 | |
| 
 | |
| 		// file system changed, repeat search
 | |
| 		n_ret_value =
 | |
| 		    search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
 | |
| 		if (n_ret_value == IO_ERROR)
 | |
| 			break;
 | |
| 		if (n_ret_value == FILE_NOT_FOUND) {
 | |
| 			reiserfs_warning(p_s_sb,
 | |
| 					 "vs-5340: reiserfs_delete_item: "
 | |
| 					 "no items of the file %K found",
 | |
| 					 p_s_item_key);
 | |
| 			break;
 | |
| 		}
 | |
| 	}			/* while (1) */
 | |
| 
 | |
| 	if (n_ret_value != CARRY_ON) {
 | |
| 		unfix_nodes(&s_del_balance);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	// reiserfs_delete_item returns item length when success
 | |
| 	n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
 | |
| 	q_ih = get_ih(p_s_path);
 | |
| 	quota_cut_bytes = ih_item_len(q_ih);
 | |
| 
 | |
| 	/* hack so the quota code doesn't have to guess if the file
 | |
| 	 ** has a tail.  On tail insert, we allocate quota for 1 unformatted node.
 | |
| 	 ** We test the offset because the tail might have been
 | |
| 	 ** split into multiple items, and we only want to decrement for
 | |
| 	 ** the unfm node once
 | |
| 	 */
 | |
| 	if (!S_ISLNK(p_s_inode->i_mode) && is_direct_le_ih(q_ih)) {
 | |
| 		if ((le_ih_k_offset(q_ih) & (p_s_sb->s_blocksize - 1)) == 1) {
 | |
| 			quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE;
 | |
| 		} else {
 | |
| 			quota_cut_bytes = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (p_s_un_bh) {
 | |
| 		int off;
 | |
| 		char *data;
 | |
| 
 | |
| 		/* We are in direct2indirect conversion, so move tail contents
 | |
| 		   to the unformatted node */
 | |
| 		/* note, we do the copy before preparing the buffer because we
 | |
| 		 ** don't care about the contents of the unformatted node yet.
 | |
| 		 ** the only thing we really care about is the direct item's data
 | |
| 		 ** is in the unformatted node.
 | |
| 		 **
 | |
| 		 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
 | |
| 		 ** the unformatted node, which might schedule, meaning we'd have to
 | |
| 		 ** loop all the way back up to the start of the while loop.
 | |
| 		 **
 | |
| 		 ** The unformatted node must be dirtied later on.  We can't be
 | |
| 		 ** sure here if the entire tail has been deleted yet.
 | |
| 		 **
 | |
| 		 ** p_s_un_bh is from the page cache (all unformatted nodes are
 | |
| 		 ** from the page cache) and might be a highmem page.  So, we
 | |
| 		 ** can't use p_s_un_bh->b_data.
 | |
| 		 ** -clm
 | |
| 		 */
 | |
| 
 | |
| 		data = kmap_atomic(p_s_un_bh->b_page, KM_USER0);
 | |
| 		off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
 | |
| 		memcpy(data + off,
 | |
| 		       B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih),
 | |
| 		       n_ret_value);
 | |
| 		kunmap_atomic(data, KM_USER0);
 | |
| 	}
 | |
| 	/* Perform balancing after all resources have been collected at once. */
 | |
| 	do_balance(&s_del_balance, NULL, NULL, M_DELETE);
 | |
| 
 | |
| #ifdef REISERQUOTA_DEBUG
 | |
| 	reiserfs_debug(p_s_sb, REISERFS_DEBUG_CODE,
 | |
| 		       "reiserquota delete_item(): freeing %u, id=%u type=%c",
 | |
| 		       quota_cut_bytes, p_s_inode->i_uid, head2type(&s_ih));
 | |
| #endif
 | |
| 	DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes);
 | |
| 
 | |
| 	/* Return deleted body length */
 | |
| 	return n_ret_value;
 | |
| }
 | |
| 
 | |
| /* Summary Of Mechanisms For Handling Collisions Between Processes:
 | |
| 
 | |
|  deletion of the body of the object is performed by iput(), with the
 | |
|  result that if multiple processes are operating on a file, the
 | |
|  deletion of the body of the file is deferred until the last process
 | |
|  that has an open inode performs its iput().
 | |
| 
 | |
|  writes and truncates are protected from collisions by use of
 | |
|  semaphores.
 | |
| 
 | |
|  creates, linking, and mknod are protected from collisions with other
 | |
|  processes by making the reiserfs_add_entry() the last step in the
 | |
|  creation, and then rolling back all changes if there was a collision.
 | |
|  - Hans
 | |
| */
 | |
| 
 | |
| /* this deletes item which never gets split */
 | |
| void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
 | |
| 				struct inode *inode, struct reiserfs_key *key)
 | |
| {
 | |
| 	struct tree_balance tb;
 | |
| 	INITIALIZE_PATH(path);
 | |
| 	int item_len = 0;
 | |
| 	int tb_init = 0;
 | |
| 	struct cpu_key cpu_key;
 | |
| 	int retval;
 | |
| 	int quota_cut_bytes = 0;
 | |
| 
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	le_key2cpu_key(&cpu_key, key);
 | |
| 
 | |
| 	while (1) {
 | |
| 		retval = search_item(th->t_super, &cpu_key, &path);
 | |
| 		if (retval == IO_ERROR) {
 | |
| 			reiserfs_warning(th->t_super,
 | |
| 					 "vs-5350: reiserfs_delete_solid_item: "
 | |
| 					 "i/o failure occurred trying to delete %K",
 | |
| 					 &cpu_key);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (retval != ITEM_FOUND) {
 | |
| 			pathrelse(&path);
 | |
| 			// No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
 | |
| 			if (!
 | |
| 			    ((unsigned long long)
 | |
| 			     GET_HASH_VALUE(le_key_k_offset
 | |
| 					    (le_key_version(key), key)) == 0
 | |
| 			     && (unsigned long long)
 | |
| 			     GET_GENERATION_NUMBER(le_key_k_offset
 | |
| 						   (le_key_version(key),
 | |
| 						    key)) == 1))
 | |
| 				reiserfs_warning(th->t_super,
 | |
| 						 "vs-5355: reiserfs_delete_solid_item: %k not found",
 | |
| 						 key);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!tb_init) {
 | |
| 			tb_init = 1;
 | |
| 			item_len = ih_item_len(PATH_PITEM_HEAD(&path));
 | |
| 			init_tb_struct(th, &tb, th->t_super, &path,
 | |
| 				       -(IH_SIZE + item_len));
 | |
| 		}
 | |
| 		quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
 | |
| 
 | |
| 		retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
 | |
| 		if (retval == REPEAT_SEARCH) {
 | |
| 			PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (retval == CARRY_ON) {
 | |
| 			do_balance(&tb, NULL, NULL, M_DELETE);
 | |
| 			if (inode) {	/* Should we count quota for item? (we don't count quotas for save-links) */
 | |
| #ifdef REISERQUOTA_DEBUG
 | |
| 				reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
 | |
| 					       "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
 | |
| 					       quota_cut_bytes, inode->i_uid,
 | |
| 					       key2type(key));
 | |
| #endif
 | |
| 				DQUOT_FREE_SPACE_NODIRTY(inode,
 | |
| 							 quota_cut_bytes);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		// IO_ERROR, NO_DISK_SPACE, etc
 | |
| 		reiserfs_warning(th->t_super,
 | |
| 				 "vs-5360: reiserfs_delete_solid_item: "
 | |
| 				 "could not delete %K due to fix_nodes failure",
 | |
| 				 &cpu_key);
 | |
| 		unfix_nodes(&tb);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	reiserfs_check_path(&path);
 | |
| }
 | |
| 
 | |
| int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
 | |
| 			   struct inode *inode)
 | |
| {
 | |
| 	int err;
 | |
| 	inode->i_size = 0;
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	/* for directory this deletes item containing "." and ".." */
 | |
| 	err =
 | |
| 	    reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| #if defined( USE_INODE_GENERATION_COUNTER )
 | |
| 	if (!old_format_only(th->t_super)) {
 | |
| 		__le32 *inode_generation;
 | |
| 
 | |
| 		inode_generation =
 | |
| 		    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
 | |
| 		*inode_generation =
 | |
| 		    cpu_to_le32(le32_to_cpu(*inode_generation) + 1);
 | |
| 	}
 | |
| /* USE_INODE_GENERATION_COUNTER */
 | |
| #endif
 | |
| 	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void unmap_buffers(struct page *page, loff_t pos)
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 	struct buffer_head *head;
 | |
| 	struct buffer_head *next;
 | |
| 	unsigned long tail_index;
 | |
| 	unsigned long cur_index;
 | |
| 
 | |
| 	if (page) {
 | |
| 		if (page_has_buffers(page)) {
 | |
| 			tail_index = pos & (PAGE_CACHE_SIZE - 1);
 | |
| 			cur_index = 0;
 | |
| 			head = page_buffers(page);
 | |
| 			bh = head;
 | |
| 			do {
 | |
| 				next = bh->b_this_page;
 | |
| 
 | |
| 				/* we want to unmap the buffers that contain the tail, and
 | |
| 				 ** all the buffers after it (since the tail must be at the
 | |
| 				 ** end of the file).  We don't want to unmap file data
 | |
| 				 ** before the tail, since it might be dirty and waiting to
 | |
| 				 ** reach disk
 | |
| 				 */
 | |
| 				cur_index += bh->b_size;
 | |
| 				if (cur_index > tail_index) {
 | |
| 					reiserfs_unmap_buffer(bh);
 | |
| 				}
 | |
| 				bh = next;
 | |
| 			} while (bh != head);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
 | |
| 				    struct inode *p_s_inode,
 | |
| 				    struct page *page,
 | |
| 				    struct treepath *p_s_path,
 | |
| 				    const struct cpu_key *p_s_item_key,
 | |
| 				    loff_t n_new_file_size, char *p_c_mode)
 | |
| {
 | |
| 	struct super_block *p_s_sb = p_s_inode->i_sb;
 | |
| 	int n_block_size = p_s_sb->s_blocksize;
 | |
| 	int cut_bytes;
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 	BUG_ON(n_new_file_size != p_s_inode->i_size);
 | |
| 
 | |
| 	/* the page being sent in could be NULL if there was an i/o error
 | |
| 	 ** reading in the last block.  The user will hit problems trying to
 | |
| 	 ** read the file, but for now we just skip the indirect2direct
 | |
| 	 */
 | |
| 	if (atomic_read(&p_s_inode->i_count) > 1 ||
 | |
| 	    !tail_has_to_be_packed(p_s_inode) ||
 | |
| 	    !page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) {
 | |
| 		// leave tail in an unformatted node    
 | |
| 		*p_c_mode = M_SKIP_BALANCING;
 | |
| 		cut_bytes =
 | |
| 		    n_block_size - (n_new_file_size & (n_block_size - 1));
 | |
| 		pathrelse(p_s_path);
 | |
| 		return cut_bytes;
 | |
| 	}
 | |
| 	/* Permorm the conversion to a direct_item. */
 | |
| 	/*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode); */
 | |
| 	return indirect2direct(th, p_s_inode, page, p_s_path, p_s_item_key,
 | |
| 			       n_new_file_size, p_c_mode);
 | |
| }
 | |
| 
 | |
| /* we did indirect_to_direct conversion. And we have inserted direct
 | |
|    item successesfully, but there were no disk space to cut unfm
 | |
|    pointer being converted. Therefore we have to delete inserted
 | |
|    direct item(s) */
 | |
| static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
 | |
| 					 struct inode *inode, struct treepath *path)
 | |
| {
 | |
| 	struct cpu_key tail_key;
 | |
| 	int tail_len;
 | |
| 	int removed;
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);	// !!!!
 | |
| 	tail_key.key_length = 4;
 | |
| 
 | |
| 	tail_len =
 | |
| 	    (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
 | |
| 	while (tail_len) {
 | |
| 		/* look for the last byte of the tail */
 | |
| 		if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
 | |
| 		    POSITION_NOT_FOUND)
 | |
| 			reiserfs_panic(inode->i_sb,
 | |
| 				       "vs-5615: indirect_to_direct_roll_back: found invalid item");
 | |
| 		RFALSE(path->pos_in_item !=
 | |
| 		       ih_item_len(PATH_PITEM_HEAD(path)) - 1,
 | |
| 		       "vs-5616: appended bytes found");
 | |
| 		PATH_LAST_POSITION(path)--;
 | |
| 
 | |
| 		removed =
 | |
| 		    reiserfs_delete_item(th, path, &tail_key, inode,
 | |
| 					 NULL /*unbh not needed */ );
 | |
| 		RFALSE(removed <= 0
 | |
| 		       || removed > tail_len,
 | |
| 		       "vs-5617: there was tail %d bytes, removed item length %d bytes",
 | |
| 		       tail_len, removed);
 | |
| 		tail_len -= removed;
 | |
| 		set_cpu_key_k_offset(&tail_key,
 | |
| 				     cpu_key_k_offset(&tail_key) - removed);
 | |
| 	}
 | |
| 	reiserfs_warning(inode->i_sb,
 | |
| 			 "indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space");
 | |
| 	//mark_file_without_tail (inode);
 | |
| 	mark_inode_dirty(inode);
 | |
| }
 | |
| 
 | |
| /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
 | |
| int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
 | |
| 			   struct treepath *p_s_path,
 | |
| 			   struct cpu_key *p_s_item_key,
 | |
| 			   struct inode *p_s_inode,
 | |
| 			   struct page *page, loff_t n_new_file_size)
 | |
| {
 | |
| 	struct super_block *p_s_sb = p_s_inode->i_sb;
 | |
| 	/* Every function which is going to call do_balance must first
 | |
| 	   create a tree_balance structure.  Then it must fill up this
 | |
| 	   structure by using the init_tb_struct and fix_nodes functions.
 | |
| 	   After that we can make tree balancing. */
 | |
| 	struct tree_balance s_cut_balance;
 | |
| 	struct item_head *p_le_ih;
 | |
| 	int n_cut_size = 0,	/* Amount to be cut. */
 | |
| 	    n_ret_value = CARRY_ON, n_removed = 0,	/* Number of the removed unformatted nodes. */
 | |
| 	    n_is_inode_locked = 0;
 | |
| 	char c_mode;		/* Mode of the balance. */
 | |
| 	int retval2 = -1;
 | |
| 	int quota_cut_bytes;
 | |
| 	loff_t tail_pos = 0;
 | |
| 
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path,
 | |
| 		       n_cut_size);
 | |
| 
 | |
| 	/* Repeat this loop until we either cut the item without needing
 | |
| 	   to balance, or we fix_nodes without schedule occurring */
 | |
| 	while (1) {
 | |
| 		/* Determine the balance mode, position of the first byte to
 | |
| 		   be cut, and size to be cut.  In case of the indirect item
 | |
| 		   free unformatted nodes which are pointed to by the cut
 | |
| 		   pointers. */
 | |
| 
 | |
| 		c_mode =
 | |
| 		    prepare_for_delete_or_cut(th, p_s_inode, p_s_path,
 | |
| 					      p_s_item_key, &n_removed,
 | |
| 					      &n_cut_size, n_new_file_size);
 | |
| 		if (c_mode == M_CONVERT) {
 | |
| 			/* convert last unformatted node to direct item or leave
 | |
| 			   tail in the unformatted node */
 | |
| 			RFALSE(n_ret_value != CARRY_ON,
 | |
| 			       "PAP-5570: can not convert twice");
 | |
| 
 | |
| 			n_ret_value =
 | |
| 			    maybe_indirect_to_direct(th, p_s_inode, page,
 | |
| 						     p_s_path, p_s_item_key,
 | |
| 						     n_new_file_size, &c_mode);
 | |
| 			if (c_mode == M_SKIP_BALANCING)
 | |
| 				/* tail has been left in the unformatted node */
 | |
| 				return n_ret_value;
 | |
| 
 | |
| 			n_is_inode_locked = 1;
 | |
| 
 | |
| 			/* removing of last unformatted node will change value we
 | |
| 			   have to return to truncate. Save it */
 | |
| 			retval2 = n_ret_value;
 | |
| 			/*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1)); */
 | |
| 
 | |
| 			/* So, we have performed the first part of the conversion:
 | |
| 			   inserting the new direct item.  Now we are removing the
 | |
| 			   last unformatted node pointer. Set key to search for
 | |
| 			   it. */
 | |
| 			set_cpu_key_k_type(p_s_item_key, TYPE_INDIRECT);
 | |
| 			p_s_item_key->key_length = 4;
 | |
| 			n_new_file_size -=
 | |
| 			    (n_new_file_size & (p_s_sb->s_blocksize - 1));
 | |
| 			tail_pos = n_new_file_size;
 | |
| 			set_cpu_key_k_offset(p_s_item_key, n_new_file_size + 1);
 | |
| 			if (search_for_position_by_key
 | |
| 			    (p_s_sb, p_s_item_key,
 | |
| 			     p_s_path) == POSITION_NOT_FOUND) {
 | |
| 				print_block(PATH_PLAST_BUFFER(p_s_path), 3,
 | |
| 					    PATH_LAST_POSITION(p_s_path) - 1,
 | |
| 					    PATH_LAST_POSITION(p_s_path) + 1);
 | |
| 				reiserfs_panic(p_s_sb,
 | |
| 					       "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)",
 | |
| 					       p_s_item_key);
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (n_cut_size == 0) {
 | |
| 			pathrelse(p_s_path);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		s_cut_balance.insert_size[0] = n_cut_size;
 | |
| 
 | |
| 		n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL);
 | |
| 		if (n_ret_value != REPEAT_SEARCH)
 | |
| 			break;
 | |
| 
 | |
| 		PROC_INFO_INC(p_s_sb, cut_from_item_restarted);
 | |
| 
 | |
| 		n_ret_value =
 | |
| 		    search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
 | |
| 		if (n_ret_value == POSITION_FOUND)
 | |
| 			continue;
 | |
| 
 | |
| 		reiserfs_warning(p_s_sb,
 | |
| 				 "PAP-5610: reiserfs_cut_from_item: item %K not found",
 | |
| 				 p_s_item_key);
 | |
| 		unfix_nodes(&s_cut_balance);
 | |
| 		return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT;
 | |
| 	}			/* while */
 | |
| 
 | |
| 	// check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
 | |
| 	if (n_ret_value != CARRY_ON) {
 | |
| 		if (n_is_inode_locked) {
 | |
| 			// FIXME: this seems to be not needed: we are always able
 | |
| 			// to cut item
 | |
| 			indirect_to_direct_roll_back(th, p_s_inode, p_s_path);
 | |
| 		}
 | |
| 		if (n_ret_value == NO_DISK_SPACE)
 | |
| 			reiserfs_warning(p_s_sb, "NO_DISK_SPACE");
 | |
| 		unfix_nodes(&s_cut_balance);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* go ahead and perform balancing */
 | |
| 
 | |
| 	RFALSE(c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode");
 | |
| 
 | |
| 	/* Calculate number of bytes that need to be cut from the item. */
 | |
| 	quota_cut_bytes =
 | |
| 	    (c_mode ==
 | |
| 	     M_DELETE) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance.
 | |
| 	    insert_size[0];
 | |
| 	if (retval2 == -1)
 | |
| 		n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode);
 | |
| 	else
 | |
| 		n_ret_value = retval2;
 | |
| 
 | |
| 	/* For direct items, we only change the quota when deleting the last
 | |
| 	 ** item.
 | |
| 	 */
 | |
| 	p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
 | |
| 	if (!S_ISLNK(p_s_inode->i_mode) && is_direct_le_ih(p_le_ih)) {
 | |
| 		if (c_mode == M_DELETE &&
 | |
| 		    (le_ih_k_offset(p_le_ih) & (p_s_sb->s_blocksize - 1)) ==
 | |
| 		    1) {
 | |
| 			// FIXME: this is to keep 3.5 happy
 | |
| 			REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX;
 | |
| 			quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE;
 | |
| 		} else {
 | |
| 			quota_cut_bytes = 0;
 | |
| 		}
 | |
| 	}
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 	if (n_is_inode_locked) {
 | |
| 		struct item_head *le_ih =
 | |
| 		    PATH_PITEM_HEAD(s_cut_balance.tb_path);
 | |
| 		/* we are going to complete indirect2direct conversion. Make
 | |
| 		   sure, that we exactly remove last unformatted node pointer
 | |
| 		   of the item */
 | |
| 		if (!is_indirect_le_ih(le_ih))
 | |
| 			reiserfs_panic(p_s_sb,
 | |
| 				       "vs-5652: reiserfs_cut_from_item: "
 | |
| 				       "item must be indirect %h", le_ih);
 | |
| 
 | |
| 		if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
 | |
| 			reiserfs_panic(p_s_sb,
 | |
| 				       "vs-5653: reiserfs_cut_from_item: "
 | |
| 				       "completing indirect2direct conversion indirect item %h "
 | |
| 				       "being deleted must be of 4 byte long",
 | |
| 				       le_ih);
 | |
| 
 | |
| 		if (c_mode == M_CUT
 | |
| 		    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
 | |
| 			reiserfs_panic(p_s_sb,
 | |
| 				       "vs-5654: reiserfs_cut_from_item: "
 | |
| 				       "can not complete indirect2direct conversion of %h (CUT, insert_size==%d)",
 | |
| 				       le_ih, s_cut_balance.insert_size[0]);
 | |
| 		}
 | |
| 		/* it would be useful to make sure, that right neighboring
 | |
| 		   item is direct item of this file */
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	do_balance(&s_cut_balance, NULL, NULL, c_mode);
 | |
| 	if (n_is_inode_locked) {
 | |
| 		/* we've done an indirect->direct conversion.  when the data block
 | |
| 		 ** was freed, it was removed from the list of blocks that must
 | |
| 		 ** be flushed before the transaction commits, make sure to
 | |
| 		 ** unmap and invalidate it
 | |
| 		 */
 | |
| 		unmap_buffers(page, tail_pos);
 | |
| 		REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask;
 | |
| 	}
 | |
| #ifdef REISERQUOTA_DEBUG
 | |
| 	reiserfs_debug(p_s_inode->i_sb, REISERFS_DEBUG_CODE,
 | |
| 		       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
 | |
| 		       quota_cut_bytes, p_s_inode->i_uid, '?');
 | |
| #endif
 | |
| 	DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes);
 | |
| 	return n_ret_value;
 | |
| }
 | |
| 
 | |
| static void truncate_directory(struct reiserfs_transaction_handle *th,
 | |
| 			       struct inode *inode)
 | |
| {
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 	if (inode->i_nlink)
 | |
| 		reiserfs_warning(inode->i_sb,
 | |
| 				 "vs-5655: truncate_directory: link count != 0");
 | |
| 
 | |
| 	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
 | |
| 	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
 | |
| 	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
 | |
| 	reiserfs_update_sd(th, inode);
 | |
| 	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
 | |
| 	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
 | |
| }
 | |
| 
 | |
| /* Truncate file to the new size. Note, this must be called with a transaction
 | |
|    already started */
 | |
| int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, struct inode *p_s_inode,	/* ->i_size contains new
 | |
| 												   size */
 | |
| 			 struct page *page,	/* up to date for last block */
 | |
| 			 int update_timestamps	/* when it is called by
 | |
| 						   file_release to convert
 | |
| 						   the tail - no timestamps
 | |
| 						   should be updated */
 | |
|     )
 | |
| {
 | |
| 	INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */
 | |
| 	struct item_head *p_le_ih;	/* Pointer to an item header. */
 | |
| 	struct cpu_key s_item_key;	/* Key to search for a previous file item. */
 | |
| 	loff_t n_file_size,	/* Old file size. */
 | |
| 	 n_new_file_size;	/* New file size. */
 | |
| 	int n_deleted;		/* Number of deleted or truncated bytes. */
 | |
| 	int retval;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 	if (!
 | |
| 	    (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode)
 | |
| 	     || S_ISLNK(p_s_inode->i_mode)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (S_ISDIR(p_s_inode->i_mode)) {
 | |
| 		// deletion of directory - no need to update timestamps
 | |
| 		truncate_directory(th, p_s_inode);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Get new file size. */
 | |
| 	n_new_file_size = p_s_inode->i_size;
 | |
| 
 | |
| 	// FIXME: note, that key type is unimportant here
 | |
| 	make_cpu_key(&s_item_key, p_s_inode, max_reiserfs_offset(p_s_inode),
 | |
| 		     TYPE_DIRECT, 3);
 | |
| 
 | |
| 	retval =
 | |
| 	    search_for_position_by_key(p_s_inode->i_sb, &s_item_key,
 | |
| 				       &s_search_path);
 | |
| 	if (retval == IO_ERROR) {
 | |
| 		reiserfs_warning(p_s_inode->i_sb,
 | |
| 				 "vs-5657: reiserfs_do_truncate: "
 | |
| 				 "i/o failure occurred trying to truncate %K",
 | |
| 				 &s_item_key);
 | |
| 		err = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
 | |
| 		reiserfs_warning(p_s_inode->i_sb,
 | |
| 				 "PAP-5660: reiserfs_do_truncate: "
 | |
| 				 "wrong result %d of search for %K", retval,
 | |
| 				 &s_item_key);
 | |
| 
 | |
| 		err = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	s_search_path.pos_in_item--;
 | |
| 
 | |
| 	/* Get real file size (total length of all file items) */
 | |
| 	p_le_ih = PATH_PITEM_HEAD(&s_search_path);
 | |
| 	if (is_statdata_le_ih(p_le_ih))
 | |
| 		n_file_size = 0;
 | |
| 	else {
 | |
| 		loff_t offset = le_ih_k_offset(p_le_ih);
 | |
| 		int bytes =
 | |
| 		    op_bytes_number(p_le_ih, p_s_inode->i_sb->s_blocksize);
 | |
| 
 | |
| 		/* this may mismatch with real file size: if last direct item
 | |
| 		   had no padding zeros and last unformatted node had no free
 | |
| 		   space, this file would have this file size */
 | |
| 		n_file_size = offset + bytes - 1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * are we doing a full truncate or delete, if so
 | |
| 	 * kick in the reada code
 | |
| 	 */
 | |
| 	if (n_new_file_size == 0)
 | |
| 		s_search_path.reada = PATH_READA | PATH_READA_BACK;
 | |
| 
 | |
| 	if (n_file_size == 0 || n_file_size < n_new_file_size) {
 | |
| 		goto update_and_out;
 | |
| 	}
 | |
| 
 | |
| 	/* Update key to search for the last file item. */
 | |
| 	set_cpu_key_k_offset(&s_item_key, n_file_size);
 | |
| 
 | |
| 	do {
 | |
| 		/* Cut or delete file item. */
 | |
| 		n_deleted =
 | |
| 		    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
 | |
| 					   p_s_inode, page, n_new_file_size);
 | |
| 		if (n_deleted < 0) {
 | |
| 			reiserfs_warning(p_s_inode->i_sb,
 | |
| 					 "vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed");
 | |
| 			reiserfs_check_path(&s_search_path);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		RFALSE(n_deleted > n_file_size,
 | |
| 		       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
 | |
| 		       n_deleted, n_file_size, &s_item_key);
 | |
| 
 | |
| 		/* Change key to search the last file item. */
 | |
| 		n_file_size -= n_deleted;
 | |
| 
 | |
| 		set_cpu_key_k_offset(&s_item_key, n_file_size);
 | |
| 
 | |
| 		/* While there are bytes to truncate and previous file item is presented in the tree. */
 | |
| 
 | |
| 		/*
 | |
| 		 ** This loop could take a really long time, and could log 
 | |
| 		 ** many more blocks than a transaction can hold.  So, we do a polite
 | |
| 		 ** journal end here, and if the transaction needs ending, we make
 | |
| 		 ** sure the file is consistent before ending the current trans
 | |
| 		 ** and starting a new one
 | |
| 		 */
 | |
| 		if (journal_transaction_should_end(th, 0) ||
 | |
| 		    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
 | |
| 			int orig_len_alloc = th->t_blocks_allocated;
 | |
| 			decrement_counters_in_path(&s_search_path);
 | |
| 
 | |
| 			if (update_timestamps) {
 | |
| 				p_s_inode->i_mtime = p_s_inode->i_ctime =
 | |
| 				    CURRENT_TIME_SEC;
 | |
| 			}
 | |
| 			reiserfs_update_sd(th, p_s_inode);
 | |
| 
 | |
| 			err = journal_end(th, p_s_inode->i_sb, orig_len_alloc);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			err = journal_begin(th, p_s_inode->i_sb,
 | |
| 					    JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			reiserfs_update_inode_transaction(p_s_inode);
 | |
| 		}
 | |
| 	} while (n_file_size > ROUND_UP(n_new_file_size) &&
 | |
| 		 search_for_position_by_key(p_s_inode->i_sb, &s_item_key,
 | |
| 					    &s_search_path) == POSITION_FOUND);
 | |
| 
 | |
| 	RFALSE(n_file_size > ROUND_UP(n_new_file_size),
 | |
| 	       "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
 | |
| 	       n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid);
 | |
| 
 | |
|       update_and_out:
 | |
| 	if (update_timestamps) {
 | |
| 		// this is truncate, not file closing
 | |
| 		p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC;
 | |
| 	}
 | |
| 	reiserfs_update_sd(th, p_s_inode);
 | |
| 
 | |
|       out:
 | |
| 	pathrelse(&s_search_path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| // this makes sure, that we __append__, not overwrite or add holes
 | |
| static void check_research_for_paste(struct treepath *path,
 | |
| 				     const struct cpu_key *p_s_key)
 | |
| {
 | |
| 	struct item_head *found_ih = get_ih(path);
 | |
| 
 | |
| 	if (is_direct_le_ih(found_ih)) {
 | |
| 		if (le_ih_k_offset(found_ih) +
 | |
| 		    op_bytes_number(found_ih,
 | |
| 				    get_last_bh(path)->b_size) !=
 | |
| 		    cpu_key_k_offset(p_s_key)
 | |
| 		    || op_bytes_number(found_ih,
 | |
| 				       get_last_bh(path)->b_size) !=
 | |
| 		    pos_in_item(path))
 | |
| 			reiserfs_panic(NULL,
 | |
| 				       "PAP-5720: check_research_for_paste: "
 | |
| 				       "found direct item %h or position (%d) does not match to key %K",
 | |
| 				       found_ih, pos_in_item(path), p_s_key);
 | |
| 	}
 | |
| 	if (is_indirect_le_ih(found_ih)) {
 | |
| 		if (le_ih_k_offset(found_ih) +
 | |
| 		    op_bytes_number(found_ih,
 | |
| 				    get_last_bh(path)->b_size) !=
 | |
| 		    cpu_key_k_offset(p_s_key)
 | |
| 		    || I_UNFM_NUM(found_ih) != pos_in_item(path)
 | |
| 		    || get_ih_free_space(found_ih) != 0)
 | |
| 			reiserfs_panic(NULL,
 | |
| 				       "PAP-5730: check_research_for_paste: "
 | |
| 				       "found indirect item (%h) or position (%d) does not match to key (%K)",
 | |
| 				       found_ih, pos_in_item(path), p_s_key);
 | |
| 	}
 | |
| }
 | |
| #endif				/* config reiserfs check */
 | |
| 
 | |
| /* Paste bytes to the existing item. Returns bytes number pasted into the item. */
 | |
| int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_search_path,	/* Path to the pasted item.          */
 | |
| 			     const struct cpu_key *p_s_key,	/* Key to search for the needed item. */
 | |
| 			     struct inode *inode,	/* Inode item belongs to */
 | |
| 			     const char *p_c_body,	/* Pointer to the bytes to paste.    */
 | |
| 			     int n_pasted_size)
 | |
| {				/* Size of pasted bytes.             */
 | |
| 	struct tree_balance s_paste_balance;
 | |
| 	int retval;
 | |
| 	int fs_gen;
 | |
| 
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	fs_gen = get_generation(inode->i_sb);
 | |
| 
 | |
| #ifdef REISERQUOTA_DEBUG
 | |
| 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
 | |
| 		       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
 | |
| 		       n_pasted_size, inode->i_uid,
 | |
| 		       key2type(&(p_s_key->on_disk_key)));
 | |
| #endif
 | |
| 
 | |
| 	if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) {
 | |
| 		pathrelse(p_s_search_path);
 | |
| 		return -EDQUOT;
 | |
| 	}
 | |
| 	init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path,
 | |
| 		       n_pasted_size);
 | |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES
 | |
| 	s_paste_balance.key = p_s_key->on_disk_key;
 | |
| #endif
 | |
| 
 | |
| 	/* DQUOT_* can schedule, must check before the fix_nodes */
 | |
| 	if (fs_changed(fs_gen, inode->i_sb)) {
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 
 | |
| 	while ((retval =
 | |
| 		fix_nodes(M_PASTE, &s_paste_balance, NULL,
 | |
| 			  p_c_body)) == REPEAT_SEARCH) {
 | |
| 	      search_again:
 | |
| 		/* file system changed while we were in the fix_nodes */
 | |
| 		PROC_INFO_INC(th->t_super, paste_into_item_restarted);
 | |
| 		retval =
 | |
| 		    search_for_position_by_key(th->t_super, p_s_key,
 | |
| 					       p_s_search_path);
 | |
| 		if (retval == IO_ERROR) {
 | |
| 			retval = -EIO;
 | |
| 			goto error_out;
 | |
| 		}
 | |
| 		if (retval == POSITION_FOUND) {
 | |
| 			reiserfs_warning(inode->i_sb,
 | |
| 					 "PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists",
 | |
| 					 p_s_key);
 | |
| 			retval = -EEXIST;
 | |
| 			goto error_out;
 | |
| 		}
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 		check_research_for_paste(p_s_search_path, p_s_key);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Perform balancing after all resources are collected by fix_nodes, and
 | |
| 	   accessing them will not risk triggering schedule. */
 | |
| 	if (retval == CARRY_ON) {
 | |
| 		do_balance(&s_paste_balance, NULL /*ih */ , p_c_body, M_PASTE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
 | |
|       error_out:
 | |
| 	/* this also releases the path */
 | |
| 	unfix_nodes(&s_paste_balance);
 | |
| #ifdef REISERQUOTA_DEBUG
 | |
| 	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
 | |
| 		       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
 | |
| 		       n_pasted_size, inode->i_uid,
 | |
| 		       key2type(&(p_s_key->on_disk_key)));
 | |
| #endif
 | |
| 	DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* Insert new item into the buffer at the path. */
 | |
| int reiserfs_insert_item(struct reiserfs_transaction_handle *th, struct treepath *p_s_path,	/* Path to the inserteded item.         */
 | |
| 			 const struct cpu_key *key, struct item_head *p_s_ih,	/* Pointer to the item header to insert. */
 | |
| 			 struct inode *inode, const char *p_c_body)
 | |
| {				/* Pointer to the bytes to insert.      */
 | |
| 	struct tree_balance s_ins_balance;
 | |
| 	int retval;
 | |
| 	int fs_gen = 0;
 | |
| 	int quota_bytes = 0;
 | |
| 
 | |
| 	BUG_ON(!th->t_trans_id);
 | |
| 
 | |
| 	if (inode) {		/* Do we count quotas for item? */
 | |
| 		fs_gen = get_generation(inode->i_sb);
 | |
| 		quota_bytes = ih_item_len(p_s_ih);
 | |
| 
 | |
| 		/* hack so the quota code doesn't have to guess if the file has
 | |
| 		 ** a tail, links are always tails, so there's no guessing needed
 | |
| 		 */
 | |
| 		if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_s_ih)) {
 | |
| 			quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
 | |
| 		}
 | |
| #ifdef REISERQUOTA_DEBUG
 | |
| 		reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
 | |
| 			       "reiserquota insert_item(): allocating %u id=%u type=%c",
 | |
| 			       quota_bytes, inode->i_uid, head2type(p_s_ih));
 | |
| #endif
 | |
| 		/* We can't dirty inode here. It would be immediately written but
 | |
| 		 * appropriate stat item isn't inserted yet... */
 | |
| 		if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) {
 | |
| 			pathrelse(p_s_path);
 | |
| 			return -EDQUOT;
 | |
| 		}
 | |
| 	}
 | |
| 	init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path,
 | |
| 		       IH_SIZE + ih_item_len(p_s_ih));
 | |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES
 | |
| 	s_ins_balance.key = key->on_disk_key;
 | |
| #endif
 | |
| 	/* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
 | |
| 	if (inode && fs_changed(fs_gen, inode->i_sb)) {
 | |
| 		goto search_again;
 | |
| 	}
 | |
| 
 | |
| 	while ((retval =
 | |
| 		fix_nodes(M_INSERT, &s_ins_balance, p_s_ih,
 | |
| 			  p_c_body)) == REPEAT_SEARCH) {
 | |
| 	      search_again:
 | |
| 		/* file system changed while we were in the fix_nodes */
 | |
| 		PROC_INFO_INC(th->t_super, insert_item_restarted);
 | |
| 		retval = search_item(th->t_super, key, p_s_path);
 | |
| 		if (retval == IO_ERROR) {
 | |
| 			retval = -EIO;
 | |
| 			goto error_out;
 | |
| 		}
 | |
| 		if (retval == ITEM_FOUND) {
 | |
| 			reiserfs_warning(th->t_super,
 | |
| 					 "PAP-5760: reiserfs_insert_item: "
 | |
| 					 "key %K already exists in the tree",
 | |
| 					 key);
 | |
| 			retval = -EEXIST;
 | |
| 			goto error_out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* make balancing after all resources will be collected at a time */
 | |
| 	if (retval == CARRY_ON) {
 | |
| 		do_balance(&s_ins_balance, p_s_ih, p_c_body, M_INSERT);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
 | |
|       error_out:
 | |
| 	/* also releases the path */
 | |
| 	unfix_nodes(&s_ins_balance);
 | |
| #ifdef REISERQUOTA_DEBUG
 | |
| 	reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
 | |
| 		       "reiserquota insert_item(): freeing %u id=%u type=%c",
 | |
| 		       quota_bytes, inode->i_uid, head2type(p_s_ih));
 | |
| #endif
 | |
| 	if (inode)
 | |
| 		DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes);
 | |
| 	return retval;
 | |
| }
 |