 9b5cf48b06
			
		
	
	
	9b5cf48b06
	
	
	
		
			
			Revert:
  commit 8be8f54bae
  Author: Thomas Gleixner <tglx@linutronix.de>
  Date:   Sat Feb 23 20:43:21 2008 +0100
      x86: CPA: avoid split of alias mappings
because it clearly mishandles the case when __change_page_attr(), called
from __change_page_attr_set_clr(), changes cpa->processed to 1 and
cpa_process_alias(cpa) is executed right after that.
This crashes my x86-64 test box early in the boot process
(ref. http://bugzilla.kernel.org/show_bug.cgi?id=10140#c4).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
	
			
		
			
				
	
	
		
			945 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			945 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2002 Andi Kleen, SuSE Labs.
 | |
|  * Thanks to Ben LaHaise for precious feedback.
 | |
|  */
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| 
 | |
| #include <asm/e820.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/proto.h>
 | |
| 
 | |
| /*
 | |
|  * The current flushing context - we pass it instead of 5 arguments:
 | |
|  */
 | |
| struct cpa_data {
 | |
| 	unsigned long	vaddr;
 | |
| 	pgprot_t	mask_set;
 | |
| 	pgprot_t	mask_clr;
 | |
| 	int		numpages;
 | |
| 	int		flushtlb;
 | |
| 	unsigned long	pfn;
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static inline unsigned long highmap_start_pfn(void)
 | |
| {
 | |
| 	return __pa(_text) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long highmap_end_pfn(void)
 | |
| {
 | |
| 	return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| # define debug_pagealloc 1
 | |
| #else
 | |
| # define debug_pagealloc 0
 | |
| #endif
 | |
| 
 | |
| static inline int
 | |
| within(unsigned long addr, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return addr >= start && addr < end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flushing functions
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * clflush_cache_range - flush a cache range with clflush
 | |
|  * @addr:	virtual start address
 | |
|  * @size:	number of bytes to flush
 | |
|  *
 | |
|  * clflush is an unordered instruction which needs fencing with mfence
 | |
|  * to avoid ordering issues.
 | |
|  */
 | |
| void clflush_cache_range(void *vaddr, unsigned int size)
 | |
| {
 | |
| 	void *vend = vaddr + size - 1;
 | |
| 
 | |
| 	mb();
 | |
| 
 | |
| 	for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
 | |
| 		clflush(vaddr);
 | |
| 	/*
 | |
| 	 * Flush any possible final partial cacheline:
 | |
| 	 */
 | |
| 	clflush(vend);
 | |
| 
 | |
| 	mb();
 | |
| }
 | |
| 
 | |
| static void __cpa_flush_all(void *arg)
 | |
| {
 | |
| 	unsigned long cache = (unsigned long)arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all to work around Errata in early athlons regarding
 | |
| 	 * large page flushing.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	if (cache && boot_cpu_data.x86_model >= 4)
 | |
| 		wbinvd();
 | |
| }
 | |
| 
 | |
| static void cpa_flush_all(unsigned long cache)
 | |
| {
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
 | |
| }
 | |
| 
 | |
| static void __cpa_flush_range(void *arg)
 | |
| {
 | |
| 	/*
 | |
| 	 * We could optimize that further and do individual per page
 | |
| 	 * tlb invalidates for a low number of pages. Caveat: we must
 | |
| 	 * flush the high aliases on 64bit as well.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| }
 | |
| 
 | |
| static void cpa_flush_range(unsigned long start, int numpages, int cache)
 | |
| {
 | |
| 	unsigned int i, level;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	BUG_ON(irqs_disabled());
 | |
| 	WARN_ON(PAGE_ALIGN(start) != start);
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_range, NULL, 1, 1);
 | |
| 
 | |
| 	if (!cache)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only need to flush on one CPU,
 | |
| 	 * clflush is a MESI-coherent instruction that
 | |
| 	 * will cause all other CPUs to flush the same
 | |
| 	 * cachelines:
 | |
| 	 */
 | |
| 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
 | |
| 		pte_t *pte = lookup_address(addr, &level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Only flush present addresses:
 | |
| 		 */
 | |
| 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 | |
| 			clflush_cache_range((void *) addr, PAGE_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Certain areas of memory on x86 require very specific protection flags,
 | |
|  * for example the BIOS area or kernel text. Callers don't always get this
 | |
|  * right (again, ioremap() on BIOS memory is not uncommon) so this function
 | |
|  * checks and fixes these known static required protection bits.
 | |
|  */
 | |
| static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
 | |
| 				   unsigned long pfn)
 | |
| {
 | |
| 	pgprot_t forbidden = __pgprot(0);
 | |
| 
 | |
| 	/*
 | |
| 	 * The BIOS area between 640k and 1Mb needs to be executable for
 | |
| 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
 | |
| 	 */
 | |
| 	if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
 | |
| 		pgprot_val(forbidden) |= _PAGE_NX;
 | |
| 
 | |
| 	/*
 | |
| 	 * The kernel text needs to be executable for obvious reasons
 | |
| 	 * Does not cover __inittext since that is gone later on. On
 | |
| 	 * 64bit we do not enforce !NX on the low mapping
 | |
| 	 */
 | |
| 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
 | |
| 		pgprot_val(forbidden) |= _PAGE_NX;
 | |
| 
 | |
| 	/*
 | |
| 	 * The .rodata section needs to be read-only. Using the pfn
 | |
| 	 * catches all aliases.
 | |
| 	 */
 | |
| 	if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
 | |
| 		   __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
 | |
| 		pgprot_val(forbidden) |= _PAGE_RW;
 | |
| 
 | |
| 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
 | |
| 
 | |
| 	return prot;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the page table entry for a virtual address. Return a pointer
 | |
|  * to the entry and the level of the mapping.
 | |
|  *
 | |
|  * Note: We return pud and pmd either when the entry is marked large
 | |
|  * or when the present bit is not set. Otherwise we would return a
 | |
|  * pointer to a nonexisting mapping.
 | |
|  */
 | |
| pte_t *lookup_address(unsigned long address, unsigned int *level)
 | |
| {
 | |
| 	pgd_t *pgd = pgd_offset_k(address);
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	*level = PG_LEVEL_NONE;
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (pud_none(*pud))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_1G;
 | |
| 	if (pud_large(*pud) || !pud_present(*pud))
 | |
| 		return (pte_t *)pud;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_2M;
 | |
| 	if (pmd_large(*pmd) || !pmd_present(*pmd))
 | |
| 		return (pte_t *)pmd;
 | |
| 
 | |
| 	*level = PG_LEVEL_4K;
 | |
| 
 | |
| 	return pte_offset_kernel(pmd, address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the new pmd in all the pgds we know about:
 | |
|  */
 | |
| static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 | |
| {
 | |
| 	/* change init_mm */
 | |
| 	set_pte_atomic(kpte, pte);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (!SHARED_KERNEL_PMD) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			pgd_t *pgd;
 | |
| 			pud_t *pud;
 | |
| 			pmd_t *pmd;
 | |
| 
 | |
| 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 | |
| 			pud = pud_offset(pgd, address);
 | |
| 			pmd = pmd_offset(pud, address);
 | |
| 			set_pte_atomic((pte_t *)pmd, pte);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| try_preserve_large_page(pte_t *kpte, unsigned long address,
 | |
| 			struct cpa_data *cpa)
 | |
| {
 | |
| 	unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
 | |
| 	pte_t new_pte, old_pte, *tmp;
 | |
| 	pgprot_t old_prot, new_prot;
 | |
| 	int i, do_split = 1;
 | |
| 	unsigned int level;
 | |
| 
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 	/*
 | |
| 	 * Check for races, another CPU might have split this page
 | |
| 	 * up already:
 | |
| 	 */
 | |
| 	tmp = lookup_address(address, &level);
 | |
| 	if (tmp != kpte)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_2M:
 | |
| 		psize = PMD_PAGE_SIZE;
 | |
| 		pmask = PMD_PAGE_MASK;
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case PG_LEVEL_1G:
 | |
| 		psize = PUD_PAGE_SIZE;
 | |
| 		pmask = PUD_PAGE_MASK;
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		do_split = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the number of pages, which fit into this large
 | |
| 	 * page starting at address:
 | |
| 	 */
 | |
| 	nextpage_addr = (address + psize) & pmask;
 | |
| 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
 | |
| 	if (numpages < cpa->numpages)
 | |
| 		cpa->numpages = numpages;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are safe now. Check whether the new pgprot is the same:
 | |
| 	 */
 | |
| 	old_pte = *kpte;
 | |
| 	old_prot = new_prot = pte_pgprot(old_pte);
 | |
| 
 | |
| 	pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 	pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * old_pte points to the large page base address. So we need
 | |
| 	 * to add the offset of the virtual address:
 | |
| 	 */
 | |
| 	pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
 | |
| 	cpa->pfn = pfn;
 | |
| 
 | |
| 	new_prot = static_protections(new_prot, address, pfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to check the full range, whether
 | |
| 	 * static_protection() requires a different pgprot for one of
 | |
| 	 * the pages in the range we try to preserve:
 | |
| 	 */
 | |
| 	addr = address + PAGE_SIZE;
 | |
| 	pfn++;
 | |
| 	for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
 | |
| 		pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
 | |
| 
 | |
| 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no changes, return. maxpages has been updated
 | |
| 	 * above:
 | |
| 	 */
 | |
| 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
 | |
| 		do_split = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to change the attributes. Check, whether we can
 | |
| 	 * change the large page in one go. We request a split, when
 | |
| 	 * the address is not aligned and the number of pages is
 | |
| 	 * smaller than the number of pages in the large page. Note
 | |
| 	 * that we limited the number of possible pages already to
 | |
| 	 * the number of pages in the large page.
 | |
| 	 */
 | |
| 	if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
 | |
| 		/*
 | |
| 		 * The address is aligned and the number of pages
 | |
| 		 * covers the full page.
 | |
| 		 */
 | |
| 		new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
 | |
| 		__set_pmd_pte(kpte, address, new_pte);
 | |
| 		cpa->flushtlb = 1;
 | |
| 		do_split = 0;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| 
 | |
| 	return do_split;
 | |
| }
 | |
| 
 | |
| static LIST_HEAD(page_pool);
 | |
| static unsigned long pool_size, pool_pages, pool_low;
 | |
| static unsigned long pool_used, pool_failed;
 | |
| 
 | |
| static void cpa_fill_pool(struct page **ret)
 | |
| {
 | |
| 	gfp_t gfp = GFP_KERNEL;
 | |
| 	unsigned long flags;
 | |
| 	struct page *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid recursion (on debug-pagealloc) and also signal
 | |
| 	 * our priority to get to these pagetables:
 | |
| 	 */
 | |
| 	if (current->flags & PF_MEMALLOC)
 | |
| 		return;
 | |
| 	current->flags |= PF_MEMALLOC;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate atomically from atomic contexts:
 | |
| 	 */
 | |
| 	if (in_atomic() || irqs_disabled() || debug_pagealloc)
 | |
| 		gfp =  GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
 | |
| 
 | |
| 	while (pool_pages < pool_size || (ret && !*ret)) {
 | |
| 		p = alloc_pages(gfp, 0);
 | |
| 		if (!p) {
 | |
| 			pool_failed++;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If the call site needs a page right now, provide it:
 | |
| 		 */
 | |
| 		if (ret && !*ret) {
 | |
| 			*ret = p;
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_lock_irqsave(&pgd_lock, flags);
 | |
| 		list_add(&p->lru, &page_pool);
 | |
| 		pool_pages++;
 | |
| 		spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	current->flags &= ~PF_MEMALLOC;
 | |
| }
 | |
| 
 | |
| #define SHIFT_MB		(20 - PAGE_SHIFT)
 | |
| #define ROUND_MB_GB		((1 << 10) - 1)
 | |
| #define SHIFT_MB_GB		10
 | |
| #define POOL_PAGES_PER_GB	16
 | |
| 
 | |
| void __init cpa_init(void)
 | |
| {
 | |
| 	struct sysinfo si;
 | |
| 	unsigned long gb;
 | |
| 
 | |
| 	si_meminfo(&si);
 | |
| 	/*
 | |
| 	 * Calculate the number of pool pages:
 | |
| 	 *
 | |
| 	 * Convert totalram (nr of pages) to MiB and round to the next
 | |
| 	 * GiB. Shift MiB to Gib and multiply the result by
 | |
| 	 * POOL_PAGES_PER_GB:
 | |
| 	 */
 | |
| 	if (debug_pagealloc) {
 | |
| 		gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
 | |
| 		pool_size = POOL_PAGES_PER_GB * gb;
 | |
| 	} else {
 | |
| 		pool_size = 1;
 | |
| 	}
 | |
| 	pool_low = pool_size;
 | |
| 
 | |
| 	cpa_fill_pool(NULL);
 | |
| 	printk(KERN_DEBUG
 | |
| 	       "CPA: page pool initialized %lu of %lu pages preallocated\n",
 | |
| 	       pool_pages, pool_size);
 | |
| }
 | |
| 
 | |
| static int split_large_page(pte_t *kpte, unsigned long address)
 | |
| {
 | |
| 	unsigned long flags, pfn, pfninc = 1;
 | |
| 	unsigned int i, level;
 | |
| 	pte_t *pbase, *tmp;
 | |
| 	pgprot_t ref_prot;
 | |
| 	struct page *base;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get a page from the pool. The pool list is protected by the
 | |
| 	 * pgd_lock, which we have to take anyway for the split
 | |
| 	 * operation:
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&pgd_lock, flags);
 | |
| 	if (list_empty(&page_pool)) {
 | |
| 		spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| 		base = NULL;
 | |
| 		cpa_fill_pool(&base);
 | |
| 		if (!base)
 | |
| 			return -ENOMEM;
 | |
| 		spin_lock_irqsave(&pgd_lock, flags);
 | |
| 	} else {
 | |
| 		base = list_first_entry(&page_pool, struct page, lru);
 | |
| 		list_del(&base->lru);
 | |
| 		pool_pages--;
 | |
| 
 | |
| 		if (pool_pages < pool_low)
 | |
| 			pool_low = pool_pages;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for races, another CPU might have split this page
 | |
| 	 * up for us already:
 | |
| 	 */
 | |
| 	tmp = lookup_address(address, &level);
 | |
| 	if (tmp != kpte)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	pbase = (pte_t *)page_address(base);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	paravirt_alloc_pt(&init_mm, page_to_pfn(base));
 | |
| #endif
 | |
| 	ref_prot = pte_pgprot(pte_clrhuge(*kpte));
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (level == PG_LEVEL_1G) {
 | |
| 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 | |
| 		pgprot_val(ref_prot) |= _PAGE_PSE;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target pfn from the original entry:
 | |
| 	 */
 | |
| 	pfn = pte_pfn(*kpte);
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
 | |
| 		set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new, split up pagetable. Important details here:
 | |
| 	 *
 | |
| 	 * On Intel the NX bit of all levels must be cleared to make a
 | |
| 	 * page executable. See section 4.13.2 of Intel 64 and IA-32
 | |
| 	 * Architectures Software Developer's Manual).
 | |
| 	 *
 | |
| 	 * Mark the entry present. The current mapping might be
 | |
| 	 * set to not present, which we preserved above.
 | |
| 	 */
 | |
| 	ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
 | |
| 	pgprot_val(ref_prot) |= _PAGE_PRESENT;
 | |
| 	__set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
 | |
| 	base = NULL;
 | |
| 
 | |
| out_unlock:
 | |
| 	/*
 | |
| 	 * If we dropped out via the lookup_address check under
 | |
| 	 * pgd_lock then stick the page back into the pool:
 | |
| 	 */
 | |
| 	if (base) {
 | |
| 		list_add(&base->lru, &page_pool);
 | |
| 		pool_pages++;
 | |
| 	} else
 | |
| 		pool_used++;
 | |
| 	spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr(struct cpa_data *cpa, int primary)
 | |
| {
 | |
| 	unsigned long address = cpa->vaddr;
 | |
| 	int do_split, err;
 | |
| 	unsigned int level;
 | |
| 	pte_t *kpte, old_pte;
 | |
| 
 | |
| repeat:
 | |
| 	kpte = lookup_address(address, &level);
 | |
| 	if (!kpte)
 | |
| 		return primary ? -EINVAL : 0;
 | |
| 
 | |
| 	old_pte = *kpte;
 | |
| 	if (!pte_val(old_pte)) {
 | |
| 		if (!primary)
 | |
| 			return 0;
 | |
| 		printk(KERN_WARNING "CPA: called for zero pte. "
 | |
| 		       "vaddr = %lx cpa->vaddr = %lx\n", address,
 | |
| 		       cpa->vaddr);
 | |
| 		WARN_ON(1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (level == PG_LEVEL_4K) {
 | |
| 		pte_t new_pte;
 | |
| 		pgprot_t new_prot = pte_pgprot(old_pte);
 | |
| 		unsigned long pfn = pte_pfn(old_pte);
 | |
| 
 | |
| 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 		new_prot = static_protections(new_prot, address, pfn);
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to keep the pfn from the existing PTE,
 | |
| 		 * after all we're only going to change it's attributes
 | |
| 		 * not the memory it points to
 | |
| 		 */
 | |
| 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
 | |
| 		cpa->pfn = pfn;
 | |
| 		/*
 | |
| 		 * Do we really change anything ?
 | |
| 		 */
 | |
| 		if (pte_val(old_pte) != pte_val(new_pte)) {
 | |
| 			set_pte_atomic(kpte, new_pte);
 | |
| 			cpa->flushtlb = 1;
 | |
| 		}
 | |
| 		cpa->numpages = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, whether we can keep the large page intact
 | |
| 	 * and just change the pte:
 | |
| 	 */
 | |
| 	do_split = try_preserve_large_page(kpte, address, cpa);
 | |
| 	/*
 | |
| 	 * When the range fits into the existing large page,
 | |
| 	 * return. cp->numpages and cpa->tlbflush have been updated in
 | |
| 	 * try_large_page:
 | |
| 	 */
 | |
| 	if (do_split <= 0)
 | |
| 		return do_split;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to split the large page:
 | |
| 	 */
 | |
| 	err = split_large_page(kpte, address);
 | |
| 	if (!err) {
 | |
| 		cpa->flushtlb = 1;
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
 | |
| 
 | |
| static int cpa_process_alias(struct cpa_data *cpa)
 | |
| {
 | |
| 	struct cpa_data alias_cpa;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (cpa->pfn > max_pfn_mapped)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to redo, when the primary call touched the direct
 | |
| 	 * mapping already:
 | |
| 	 */
 | |
| 	if (!within(cpa->vaddr, PAGE_OFFSET,
 | |
| 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
 | |
| 
 | |
| 		alias_cpa = *cpa;
 | |
| 		alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
 | |
| 
 | |
| 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	/*
 | |
| 	 * No need to redo, when the primary call touched the high
 | |
| 	 * mapping already:
 | |
| 	 */
 | |
| 	if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the physical address is inside the kernel map, we need
 | |
| 	 * to touch the high mapped kernel as well:
 | |
| 	 */
 | |
| 	if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
 | |
| 		return 0;
 | |
| 
 | |
| 	alias_cpa = *cpa;
 | |
| 	alias_cpa.vaddr =
 | |
| 		(cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
 | |
| 
 | |
| 	/*
 | |
| 	 * The high mapping range is imprecise, so ignore the return value.
 | |
| 	 */
 | |
| 	__change_page_attr_set_clr(&alias_cpa, 0);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 | |
| {
 | |
| 	int ret, numpages = cpa->numpages;
 | |
| 
 | |
| 	while (numpages) {
 | |
| 		/*
 | |
| 		 * Store the remaining nr of pages for the large page
 | |
| 		 * preservation check.
 | |
| 		 */
 | |
| 		cpa->numpages = numpages;
 | |
| 
 | |
| 		ret = __change_page_attr(cpa, checkalias);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (checkalias) {
 | |
| 			ret = cpa_process_alias(cpa);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust the number of pages with the result of the
 | |
| 		 * CPA operation. Either a large page has been
 | |
| 		 * preserved or a single page update happened.
 | |
| 		 */
 | |
| 		BUG_ON(cpa->numpages > numpages);
 | |
| 		numpages -= cpa->numpages;
 | |
| 		cpa->vaddr += cpa->numpages * PAGE_SIZE;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int cache_attr(pgprot_t attr)
 | |
| {
 | |
| 	return pgprot_val(attr) &
 | |
| 		(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
 | |
| }
 | |
| 
 | |
| static int change_page_attr_set_clr(unsigned long addr, int numpages,
 | |
| 				    pgprot_t mask_set, pgprot_t mask_clr)
 | |
| {
 | |
| 	struct cpa_data cpa;
 | |
| 	int ret, cache, checkalias;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, if we are requested to change a not supported
 | |
| 	 * feature:
 | |
| 	 */
 | |
| 	mask_set = canon_pgprot(mask_set);
 | |
| 	mask_clr = canon_pgprot(mask_clr);
 | |
| 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Ensure we are PAGE_SIZE aligned */
 | |
| 	if (addr & ~PAGE_MASK) {
 | |
| 		addr &= PAGE_MASK;
 | |
| 		/*
 | |
| 		 * People should not be passing in unaligned addresses:
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(1);
 | |
| 	}
 | |
| 
 | |
| 	cpa.vaddr = addr;
 | |
| 	cpa.numpages = numpages;
 | |
| 	cpa.mask_set = mask_set;
 | |
| 	cpa.mask_clr = mask_clr;
 | |
| 	cpa.flushtlb = 0;
 | |
| 
 | |
| 	/* No alias checking for _NX bit modifications */
 | |
| 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
 | |
| 
 | |
| 	ret = __change_page_attr_set_clr(&cpa, checkalias);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we really changed something:
 | |
| 	 */
 | |
| 	if (!cpa.flushtlb)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to flush, when we did not set any of the caching
 | |
| 	 * attributes:
 | |
| 	 */
 | |
| 	cache = cache_attr(mask_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * On success we use clflush, when the CPU supports it to
 | |
| 	 * avoid the wbindv. If the CPU does not support it and in the
 | |
| 	 * error case we fall back to cpa_flush_all (which uses
 | |
| 	 * wbindv):
 | |
| 	 */
 | |
| 	if (!ret && cpu_has_clflush)
 | |
| 		cpa_flush_range(addr, numpages, cache);
 | |
| 	else
 | |
| 		cpa_flush_all(cache);
 | |
| 
 | |
| out:
 | |
| 	cpa_fill_pool(NULL);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int change_page_attr_set(unsigned long addr, int numpages,
 | |
| 				       pgprot_t mask)
 | |
| {
 | |
| 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
 | |
| }
 | |
| 
 | |
| static inline int change_page_attr_clear(unsigned long addr, int numpages,
 | |
| 					 pgprot_t mask)
 | |
| {
 | |
| 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
 | |
| }
 | |
| 
 | |
| int set_memory_uc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set(addr, numpages,
 | |
| 				    __pgprot(_PAGE_PCD | _PAGE_PWT));
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_uc);
 | |
| 
 | |
| int set_memory_wb(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(addr, numpages,
 | |
| 				      __pgprot(_PAGE_PCD | _PAGE_PWT));
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_wb);
 | |
| 
 | |
| int set_memory_x(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_x);
 | |
| 
 | |
| int set_memory_nx(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_nx);
 | |
| 
 | |
| int set_memory_ro(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
 | |
| }
 | |
| 
 | |
| int set_memory_rw(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
 | |
| }
 | |
| 
 | |
| int set_memory_np(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
 | |
| }
 | |
| 
 | |
| int set_pages_uc(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_uc(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_uc);
 | |
| 
 | |
| int set_pages_wb(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_wb(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_wb);
 | |
| 
 | |
| int set_pages_x(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_x(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_x);
 | |
| 
 | |
| int set_pages_nx(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_nx(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_nx);
 | |
| 
 | |
| int set_pages_ro(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_ro(addr, numpages);
 | |
| }
 | |
| 
 | |
| int set_pages_rw(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_rw(addr, numpages);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 
 | |
| static int __set_pages_p(struct page *page, int numpages)
 | |
| {
 | |
| 	struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
 | |
| 				.numpages = numpages,
 | |
| 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
 | |
| 				.mask_clr = __pgprot(0)};
 | |
| 
 | |
| 	return __change_page_attr_set_clr(&cpa, 1);
 | |
| }
 | |
| 
 | |
| static int __set_pages_np(struct page *page, int numpages)
 | |
| {
 | |
| 	struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
 | |
| 				.numpages = numpages,
 | |
| 				.mask_set = __pgprot(0),
 | |
| 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
 | |
| 
 | |
| 	return __change_page_attr_set_clr(&cpa, 1);
 | |
| }
 | |
| 
 | |
| void kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	if (PageHighMem(page))
 | |
| 		return;
 | |
| 	if (!enable) {
 | |
| 		debug_check_no_locks_freed(page_address(page),
 | |
| 					   numpages * PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If page allocator is not up yet then do not call c_p_a():
 | |
| 	 */
 | |
| 	if (!debug_pagealloc_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The return value is ignored as the calls cannot fail.
 | |
| 	 * Large pages are kept enabled at boot time, and are
 | |
| 	 * split up quickly with DEBUG_PAGEALLOC. If a splitup
 | |
| 	 * fails here (due to temporary memory shortage) no damage
 | |
| 	 * is done because we just keep the largepage intact up
 | |
| 	 * to the next attempt when it will likely be split up:
 | |
| 	 */
 | |
| 	if (enable)
 | |
| 		__set_pages_p(page, numpages);
 | |
| 	else
 | |
| 		__set_pages_np(page, numpages);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should perform an IPI and flush all tlbs,
 | |
| 	 * but that can deadlock->flush only current cpu:
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to refill the page pool here. We can do this only after
 | |
| 	 * the tlb flush.
 | |
| 	 */
 | |
| 	cpa_fill_pool(NULL);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| 
 | |
| bool kernel_page_present(struct page *page)
 | |
| {
 | |
| 	unsigned int level;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (PageHighMem(page))
 | |
| 		return false;
 | |
| 
 | |
| 	pte = lookup_address((unsigned long)page_address(page), &level);
 | |
| 	return (pte_val(*pte) & _PAGE_PRESENT);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_HIBERNATION */
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| /*
 | |
|  * The testcases use internal knowledge of the implementation that shouldn't
 | |
|  * be exposed to the rest of the kernel. Include these directly here.
 | |
|  */
 | |
| #ifdef CONFIG_CPA_DEBUG
 | |
| #include "pageattr-test.c"
 | |
| #endif
 |