 88f3aec7af
			
		
	
	
	88f3aec7af
	
	
	
		
			
			recently the 64-bit allyesconfig bzImage kernel started spontaneously
rebooting during early bootup.
after a few fun hours spent with early init debugging, it turns out
that we've got this rather annoying limit on the size of the kernel
image:
      #define KERNEL_TEXT_SIZE  (40*1024*1024)
which limit my vmlinux just happened to pass:
       text           data       bss        dec       hex   filename
   29703744        4222751   8646224   42572719   2899baf   vmlinux
40 MB is 42572719 bytes, so my vmlinux was just 1.5% above this limit :-/
So it happily crashed right in head_64.S, which - as we all know - is
the most debuggable code in the whole architecture ;-)
So increase the limit to allow an up to 128MB kernel image to be mapped.
(should anyone be that crazy or lazy)
We have a full 4K of pagetable (level2_kernel_pgt) allocated for these
mappings already, so there's no RAM overhead and the limit was rather
pointless and arbitrary.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
	
			
		
			
				
	
	
		
			809 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			809 lines
		
	
	
	
		
			19 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/x86_64/mm/init.c
 | |
|  *
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
 | |
|  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
 | |
|  */
 | |
| 
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/nmi.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/e820.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/kdebug.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/cacheflush.h>
 | |
| 
 | |
| const struct dma_mapping_ops *dma_ops;
 | |
| EXPORT_SYMBOL(dma_ops);
 | |
| 
 | |
| static unsigned long dma_reserve __initdata;
 | |
| 
 | |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
 | |
| 
 | |
| /*
 | |
|  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 | |
|  * physical space so we can cache the place of the first one and move
 | |
|  * around without checking the pgd every time.
 | |
|  */
 | |
| 
 | |
| void show_mem(void)
 | |
| {
 | |
| 	long i, total = 0, reserved = 0;
 | |
| 	long shared = 0, cached = 0;
 | |
| 	struct page *page;
 | |
| 	pg_data_t *pgdat;
 | |
| 
 | |
| 	printk(KERN_INFO "Mem-info:\n");
 | |
| 	show_free_areas();
 | |
| 	printk(KERN_INFO "Free swap:       %6ldkB\n",
 | |
| 		nr_swap_pages << (PAGE_SHIFT-10));
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		for (i = 0; i < pgdat->node_spanned_pages; ++i) {
 | |
| 			/*
 | |
| 			 * This loop can take a while with 256 GB and
 | |
| 			 * 4k pages so defer the NMI watchdog:
 | |
| 			 */
 | |
| 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
 | |
| 				touch_nmi_watchdog();
 | |
| 
 | |
| 			if (!pfn_valid(pgdat->node_start_pfn + i))
 | |
| 				continue;
 | |
| 
 | |
| 			page = pfn_to_page(pgdat->node_start_pfn + i);
 | |
| 			total++;
 | |
| 			if (PageReserved(page))
 | |
| 				reserved++;
 | |
| 			else if (PageSwapCache(page))
 | |
| 				cached++;
 | |
| 			else if (page_count(page))
 | |
| 				shared += page_count(page) - 1;
 | |
| 		}
 | |
| 	}
 | |
| 	printk(KERN_INFO "%lu pages of RAM\n",		total);
 | |
| 	printk(KERN_INFO "%lu reserved pages\n",	reserved);
 | |
| 	printk(KERN_INFO "%lu pages shared\n",		shared);
 | |
| 	printk(KERN_INFO "%lu pages swap cached\n",	cached);
 | |
| }
 | |
| 
 | |
| int after_bootmem;
 | |
| 
 | |
| static __init void *spp_getpage(void)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (after_bootmem)
 | |
| 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
 | |
| 	else
 | |
| 		ptr = alloc_bootmem_pages(PAGE_SIZE);
 | |
| 
 | |
| 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 | |
| 		panic("set_pte_phys: cannot allocate page data %s\n",
 | |
| 			after_bootmem ? "after bootmem" : "");
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("spp_getpage %p\n", ptr);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static __init void
 | |
| set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte, new_pte;
 | |
| 
 | |
| 	pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
 | |
| 
 | |
| 	pgd = pgd_offset_k(vaddr);
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		printk(KERN_ERR
 | |
| 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	pud = pud_offset(pgd, vaddr);
 | |
| 	if (pud_none(*pud)) {
 | |
| 		pmd = (pmd_t *) spp_getpage();
 | |
| 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
 | |
| 		if (pmd != pmd_offset(pud, 0)) {
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 | |
| 				pmd, pmd_offset(pud, 0));
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	pmd = pmd_offset(pud, vaddr);
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		pte = (pte_t *) spp_getpage();
 | |
| 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
 | |
| 		if (pte != pte_offset_kernel(pmd, 0)) {
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, vaddr);
 | |
| 	if (!pte_none(*pte) &&
 | |
| 	    pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
 | |
| 		pte_ERROR(*pte);
 | |
| 	set_pte(pte, new_pte);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's enough to flush this one mapping.
 | |
| 	 * (PGE mappings get flushed as well)
 | |
| 	 */
 | |
| 	__flush_tlb_one(vaddr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The head.S code sets up the kernel high mapping:
 | |
|  *
 | |
|  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 | |
|  *
 | |
|  * phys_addr holds the negative offset to the kernel, which is added
 | |
|  * to the compile time generated pmds. This results in invalid pmds up
 | |
|  * to the point where we hit the physaddr 0 mapping.
 | |
|  *
 | |
|  * We limit the mappings to the region from _text to _end.  _end is
 | |
|  * rounded up to the 2MB boundary. This catches the invalid pmds as
 | |
|  * well, as they are located before _text:
 | |
|  */
 | |
| void __init cleanup_highmap(void)
 | |
| {
 | |
| 	unsigned long vaddr = __START_KERNEL_map;
 | |
| 	unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
 | |
| 	pmd_t *pmd = level2_kernel_pgt;
 | |
| 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
 | |
| 
 | |
| 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
 | |
| 		if (!pmd_present(*pmd))
 | |
| 			continue;
 | |
| 		if (vaddr < (unsigned long) _text || vaddr > end)
 | |
| 			set_pmd(pmd, __pmd(0));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* NOTE: this is meant to be run only at boot */
 | |
| void __init
 | |
| __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
 | |
| {
 | |
| 	unsigned long address = __fix_to_virt(idx);
 | |
| 
 | |
| 	if (idx >= __end_of_fixed_addresses) {
 | |
| 		printk(KERN_ERR "Invalid __set_fixmap\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	set_pte_phys(address, phys, prot);
 | |
| }
 | |
| 
 | |
| static unsigned long __initdata table_start;
 | |
| static unsigned long __meminitdata table_end;
 | |
| 
 | |
| static __meminit void *alloc_low_page(unsigned long *phys)
 | |
| {
 | |
| 	unsigned long pfn = table_end++;
 | |
| 	void *adr;
 | |
| 
 | |
| 	if (after_bootmem) {
 | |
| 		adr = (void *)get_zeroed_page(GFP_ATOMIC);
 | |
| 		*phys = __pa(adr);
 | |
| 
 | |
| 		return adr;
 | |
| 	}
 | |
| 
 | |
| 	if (pfn >= end_pfn)
 | |
| 		panic("alloc_low_page: ran out of memory");
 | |
| 
 | |
| 	adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
 | |
| 	memset(adr, 0, PAGE_SIZE);
 | |
| 	*phys  = pfn * PAGE_SIZE;
 | |
| 	return adr;
 | |
| }
 | |
| 
 | |
| static __meminit void unmap_low_page(void *adr)
 | |
| {
 | |
| 	if (after_bootmem)
 | |
| 		return;
 | |
| 
 | |
| 	early_iounmap(adr, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| /* Must run before zap_low_mappings */
 | |
| __meminit void *early_ioremap(unsigned long addr, unsigned long size)
 | |
| {
 | |
| 	pmd_t *pmd, *last_pmd;
 | |
| 	unsigned long vaddr;
 | |
| 	int i, pmds;
 | |
| 
 | |
| 	pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
 | |
| 	vaddr = __START_KERNEL_map;
 | |
| 	pmd = level2_kernel_pgt;
 | |
| 	last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
 | |
| 
 | |
| 	for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
 | |
| 		for (i = 0; i < pmds; i++) {
 | |
| 			if (pmd_present(pmd[i]))
 | |
| 				goto continue_outer_loop;
 | |
| 		}
 | |
| 		vaddr += addr & ~PMD_MASK;
 | |
| 		addr &= PMD_MASK;
 | |
| 
 | |
| 		for (i = 0; i < pmds; i++, addr += PMD_SIZE)
 | |
| 			set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
 | |
| 		__flush_tlb_all();
 | |
| 
 | |
| 		return (void *)vaddr;
 | |
| continue_outer_loop:
 | |
| 		;
 | |
| 	}
 | |
| 	printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To avoid virtual aliases later:
 | |
|  */
 | |
| __meminit void early_iounmap(void *addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long vaddr;
 | |
| 	pmd_t *pmd;
 | |
| 	int i, pmds;
 | |
| 
 | |
| 	vaddr = (unsigned long)addr;
 | |
| 	pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
 | |
| 	pmd = level2_kernel_pgt + pmd_index(vaddr);
 | |
| 
 | |
| 	for (i = 0; i < pmds; i++)
 | |
| 		pmd_clear(pmd + i);
 | |
| 
 | |
| 	__flush_tlb_all();
 | |
| }
 | |
| 
 | |
| static void __meminit
 | |
| phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
 | |
| {
 | |
| 	int i = pmd_index(address);
 | |
| 
 | |
| 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
 | |
| 		pmd_t *pmd = pmd_page + pmd_index(address);
 | |
| 
 | |
| 		if (address >= end) {
 | |
| 			if (!after_bootmem) {
 | |
| 				for (; i < PTRS_PER_PMD; i++, pmd++)
 | |
| 					set_pmd(pmd, __pmd(0));
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (pmd_val(*pmd))
 | |
| 			continue;
 | |
| 
 | |
| 		set_pte((pte_t *)pmd,
 | |
| 			pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __meminit
 | |
| phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_offset(pud, 0);
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	phys_pmd_init(pmd, address, end);
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| 	__flush_tlb_all();
 | |
| }
 | |
| 
 | |
| static void __meminit
 | |
| phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	int i = pud_index(addr);
 | |
| 
 | |
| 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
 | |
| 		unsigned long pmd_phys;
 | |
| 		pud_t *pud = pud_page + pud_index(addr);
 | |
| 		pmd_t *pmd;
 | |
| 
 | |
| 		if (addr >= end)
 | |
| 			break;
 | |
| 
 | |
| 		if (!after_bootmem &&
 | |
| 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
 | |
| 			set_pud(pud, __pud(0));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (pud_val(*pud)) {
 | |
| 			phys_pmd_update(pud, addr, end);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pmd = alloc_low_page(&pmd_phys);
 | |
| 
 | |
| 		spin_lock(&init_mm.page_table_lock);
 | |
| 		set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
 | |
| 		phys_pmd_init(pmd, addr, end);
 | |
| 		spin_unlock(&init_mm.page_table_lock);
 | |
| 
 | |
| 		unmap_low_page(pmd);
 | |
| 	}
 | |
| 	__flush_tlb_all();
 | |
| }
 | |
| 
 | |
| static void __init find_early_table_space(unsigned long end)
 | |
| {
 | |
| 	unsigned long puds, pmds, tables, start;
 | |
| 
 | |
| 	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
 | |
| 	pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
 | |
| 	tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
 | |
| 		 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * RED-PEN putting page tables only on node 0 could
 | |
| 	 * cause a hotspot and fill up ZONE_DMA. The page tables
 | |
| 	 * need roughly 0.5KB per GB.
 | |
| 	 */
 | |
| 	start = 0x8000;
 | |
| 	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
 | |
| 	if (table_start == -1UL)
 | |
| 		panic("Cannot find space for the kernel page tables");
 | |
| 
 | |
| 	table_start >>= PAGE_SHIFT;
 | |
| 	table_end = table_start;
 | |
| 
 | |
| 	early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
 | |
| 		end, table_start << PAGE_SHIFT,
 | |
| 		(table_start << PAGE_SHIFT) + tables);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 | |
|  * This runs before bootmem is initialized and gets pages directly from
 | |
|  * the physical memory. To access them they are temporarily mapped.
 | |
|  */
 | |
| void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pr_debug("init_memory_mapping\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Find space for the kernel direct mapping tables.
 | |
| 	 *
 | |
| 	 * Later we should allocate these tables in the local node of the
 | |
| 	 * memory mapped. Unfortunately this is done currently before the
 | |
| 	 * nodes are discovered.
 | |
| 	 */
 | |
| 	if (!after_bootmem)
 | |
| 		find_early_table_space(end);
 | |
| 
 | |
| 	start = (unsigned long)__va(start);
 | |
| 	end = (unsigned long)__va(end);
 | |
| 
 | |
| 	for (; start < end; start = next) {
 | |
| 		pgd_t *pgd = pgd_offset_k(start);
 | |
| 		unsigned long pud_phys;
 | |
| 		pud_t *pud;
 | |
| 
 | |
| 		if (after_bootmem)
 | |
| 			pud = pud_offset(pgd, start & PGDIR_MASK);
 | |
| 		else
 | |
| 			pud = alloc_low_page(&pud_phys);
 | |
| 
 | |
| 		next = start + PGDIR_SIZE;
 | |
| 		if (next > end)
 | |
| 			next = end;
 | |
| 		phys_pud_init(pud, __pa(start), __pa(next));
 | |
| 		if (!after_bootmem)
 | |
| 			set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
 | |
| 		unmap_low_page(pud);
 | |
| 	}
 | |
| 
 | |
| 	if (!after_bootmem)
 | |
| 		mmu_cr4_features = read_cr4();
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	if (!after_bootmem)
 | |
| 		reserve_early(table_start << PAGE_SHIFT,
 | |
| 				 table_end << PAGE_SHIFT, "PGTABLE");
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 
 | |
| 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
 | |
| 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
 | |
| 	max_zone_pfns[ZONE_NORMAL] = end_pfn;
 | |
| 
 | |
| 	memory_present(0, 0, end_pfn);
 | |
| 	sparse_init();
 | |
| 	free_area_init_nodes(max_zone_pfns);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Memory hotplug specific functions
 | |
|  */
 | |
| void online_page(struct page *page)
 | |
| {
 | |
| 	ClearPageReserved(page);
 | |
| 	init_page_count(page);
 | |
| 	__free_page(page);
 | |
| 	totalram_pages++;
 | |
| 	num_physpages++;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| /*
 | |
|  * Memory is added always to NORMAL zone. This means you will never get
 | |
|  * additional DMA/DMA32 memory.
 | |
|  */
 | |
| int arch_add_memory(int nid, u64 start, u64 size)
 | |
| {
 | |
| 	struct pglist_data *pgdat = NODE_DATA(nid);
 | |
| 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
 | |
| 	unsigned long start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long nr_pages = size >> PAGE_SHIFT;
 | |
| 	int ret;
 | |
| 
 | |
| 	init_memory_mapping(start, start + size-1);
 | |
| 
 | |
| 	ret = __add_pages(zone, start_pfn, nr_pages);
 | |
| 	WARN_ON(1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(arch_add_memory);
 | |
| 
 | |
| #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
 | |
| int memory_add_physaddr_to_nid(u64 start)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 | |
| #endif
 | |
| 
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
 | |
| 			 kcore_modules, kcore_vsyscall;
 | |
| 
 | |
| void __init mem_init(void)
 | |
| {
 | |
| 	long codesize, reservedpages, datasize, initsize;
 | |
| 
 | |
| 	pci_iommu_alloc();
 | |
| 
 | |
| 	/* clear_bss() already clear the empty_zero_page */
 | |
| 
 | |
| 	reservedpages = 0;
 | |
| 
 | |
| 	/* this will put all low memory onto the freelists */
 | |
| #ifdef CONFIG_NUMA
 | |
| 	totalram_pages = numa_free_all_bootmem();
 | |
| #else
 | |
| 	totalram_pages = free_all_bootmem();
 | |
| #endif
 | |
| 	reservedpages = end_pfn - totalram_pages -
 | |
| 					absent_pages_in_range(0, end_pfn);
 | |
| 	after_bootmem = 1;
 | |
| 
 | |
| 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
 | |
| 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
 | |
| 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
 | |
| 
 | |
| 	/* Register memory areas for /proc/kcore */
 | |
| 	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
 | |
| 	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
 | |
| 		   VMALLOC_END-VMALLOC_START);
 | |
| 	kclist_add(&kcore_kernel, &_stext, _end - _stext);
 | |
| 	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
 | |
| 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
 | |
| 				 VSYSCALL_END - VSYSCALL_START);
 | |
| 
 | |
| 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
 | |
| 				"%ldk reserved, %ldk data, %ldk init)\n",
 | |
| 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
 | |
| 		end_pfn << (PAGE_SHIFT-10),
 | |
| 		codesize >> 10,
 | |
| 		reservedpages << (PAGE_SHIFT-10),
 | |
| 		datasize >> 10,
 | |
| 		initsize >> 10);
 | |
| 
 | |
| 	cpa_init();
 | |
| }
 | |
| 
 | |
| void free_init_pages(char *what, unsigned long begin, unsigned long end)
 | |
| {
 | |
| 	unsigned long addr = begin;
 | |
| 
 | |
| 	if (addr >= end)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If debugging page accesses then do not free this memory but
 | |
| 	 * mark them not present - any buggy init-section access will
 | |
| 	 * create a kernel page fault:
 | |
| 	 */
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| 	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
 | |
| 		begin, PAGE_ALIGN(end));
 | |
| 	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 | |
| #else
 | |
| 	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
 | |
| 
 | |
| 	for (; addr < end; addr += PAGE_SIZE) {
 | |
| 		ClearPageReserved(virt_to_page(addr));
 | |
| 		init_page_count(virt_to_page(addr));
 | |
| 		memset((void *)(addr & ~(PAGE_SIZE-1)),
 | |
| 			POISON_FREE_INITMEM, PAGE_SIZE);
 | |
| 		free_page(addr);
 | |
| 		totalram_pages++;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void free_initmem(void)
 | |
| {
 | |
| 	free_init_pages("unused kernel memory",
 | |
| 			(unsigned long)(&__init_begin),
 | |
| 			(unsigned long)(&__init_end));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_RODATA
 | |
| const int rodata_test_data = 0xC3;
 | |
| EXPORT_SYMBOL_GPL(rodata_test_data);
 | |
| 
 | |
| void mark_rodata_ro(void)
 | |
| {
 | |
| 	unsigned long start = (unsigned long)_stext, end;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	/* It must still be possible to apply SMP alternatives. */
 | |
| 	if (num_possible_cpus() > 1)
 | |
| 		start = (unsigned long)_etext;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KPROBES
 | |
| 	start = (unsigned long)__start_rodata;
 | |
| #endif
 | |
| 
 | |
| 	end = (unsigned long)__end_rodata;
 | |
| 	start = (start + PAGE_SIZE - 1) & PAGE_MASK;
 | |
| 	end &= PAGE_MASK;
 | |
| 	if (end <= start)
 | |
| 		return;
 | |
| 
 | |
| 
 | |
| 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 | |
| 	       (end - start) >> 10);
 | |
| 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * The rodata section (but not the kernel text!) should also be
 | |
| 	 * not-executable.
 | |
| 	 */
 | |
| 	start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
 | |
| 	set_memory_nx(start, (end - start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	rodata_test();
 | |
| 
 | |
| #ifdef CONFIG_CPA_DEBUG
 | |
| 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
 | |
| 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	printk(KERN_INFO "Testing CPA: again\n");
 | |
| 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| void free_initrd_mem(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	free_init_pages("initrd memory", start, end);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	int nid = phys_to_nid(phys);
 | |
| #endif
 | |
| 	unsigned long pfn = phys >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (pfn >= end_pfn) {
 | |
| 		/*
 | |
| 		 * This can happen with kdump kernels when accessing
 | |
| 		 * firmware tables:
 | |
| 		 */
 | |
| 		if (pfn < end_pfn_map)
 | |
| 			return;
 | |
| 
 | |
| 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
 | |
| 				phys, len);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Should check here against the e820 map to avoid double free */
 | |
| #ifdef CONFIG_NUMA
 | |
| 	reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
 | |
| #else
 | |
| 	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
 | |
| #endif
 | |
| 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
 | |
| 		dma_reserve += len / PAGE_SIZE;
 | |
| 		set_dma_reserve(dma_reserve);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kern_addr_valid(unsigned long addr)
 | |
| {
 | |
| 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (above != 0 && above != -1UL)
 | |
| 		return 0;
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return 0;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	if (pud_none(*pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_large(*pmd))
 | |
| 		return pfn_valid(pmd_pfn(*pmd));
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	if (pte_none(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pfn_valid(pte_pfn(*pte));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
 | |
|  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
 | |
|  * not need special handling anymore:
 | |
|  */
 | |
| static struct vm_area_struct gate_vma = {
 | |
| 	.vm_start	= VSYSCALL_START,
 | |
| 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
 | |
| 	.vm_page_prot	= PAGE_READONLY_EXEC,
 | |
| 	.vm_flags	= VM_READ | VM_EXEC
 | |
| };
 | |
| 
 | |
| struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
 | |
| {
 | |
| #ifdef CONFIG_IA32_EMULATION
 | |
| 	if (test_tsk_thread_flag(tsk, TIF_IA32))
 | |
| 		return NULL;
 | |
| #endif
 | |
| 	return &gate_vma;
 | |
| }
 | |
| 
 | |
| int in_gate_area(struct task_struct *task, unsigned long addr)
 | |
| {
 | |
| 	struct vm_area_struct *vma = get_gate_vma(task);
 | |
| 
 | |
| 	if (!vma)
 | |
| 		return 0;
 | |
| 
 | |
| 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use this when you have no reliable task/vma, typically from interrupt
 | |
|  * context. It is less reliable than using the task's vma and may give
 | |
|  * false positives:
 | |
|  */
 | |
| int in_gate_area_no_task(unsigned long addr)
 | |
| {
 | |
| 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
 | |
| }
 | |
| 
 | |
| const char *arch_vma_name(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
 | |
| 		return "[vdso]";
 | |
| 	if (vma == &gate_vma)
 | |
| 		return "[vsyscall]";
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| /*
 | |
|  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
 | |
|  */
 | |
| int __meminit
 | |
| vmemmap_populate(struct page *start_page, unsigned long size, int node)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)start_page;
 | |
| 	unsigned long end = (unsigned long)(start_page + size);
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	for (; addr < end; addr = next) {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 		pgd = vmemmap_pgd_populate(addr, node);
 | |
| 		if (!pgd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pud = vmemmap_pud_populate(pgd, addr, node);
 | |
| 		if (!pud)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pmd = pmd_offset(pud, addr);
 | |
| 		if (pmd_none(*pmd)) {
 | |
| 			pte_t entry;
 | |
| 			void *p;
 | |
| 
 | |
| 			p = vmemmap_alloc_block(PMD_SIZE, node);
 | |
| 			if (!p)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
 | |
| 							PAGE_KERNEL_LARGE);
 | |
| 			set_pmd(pmd, __pmd(pte_val(entry)));
 | |
| 
 | |
| 			printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
 | |
| 				addr, addr + PMD_SIZE - 1, p, node);
 | |
| 		} else {
 | |
| 			vmemmap_verify((pte_t *)pmd, node, addr, next);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 |