 e48bb497b9
			
		
	
	
	e48bb497b9
	
	
	
		
			
			While backporting 72dc67a696, a gfn_to_page()
call was duplicated instead of moved (due to an unrelated patch not being
present in mainline).  This caused a page reference leak, resulting in a
fairly massive memory leak.
Fix by removing the extraneous gfn_to_page() call.
Signed-off-by: Avi Kivity <avi@qumranet.com>
		
	
			
		
			
				
	
	
		
			1907 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1907 lines
		
	
	
	
		
			45 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * This module enables machines with Intel VT-x extensions to run virtual
 | |
|  * machines without emulation or binary translation.
 | |
|  *
 | |
|  * MMU support
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "vmx.h"
 | |
| #include "mmu.h"
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/swap.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/cmpxchg.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #undef MMU_DEBUG
 | |
| 
 | |
| #undef AUDIT
 | |
| 
 | |
| #ifdef AUDIT
 | |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
 | |
| #else
 | |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
 | |
| #endif
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| 
 | |
| #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
 | |
| #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define pgprintk(x...) do { } while (0)
 | |
| #define rmap_printk(x...) do { } while (0)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(MMU_DEBUG) || defined(AUDIT)
 | |
| static int dbg = 1;
 | |
| #endif
 | |
| 
 | |
| #ifndef MMU_DEBUG
 | |
| #define ASSERT(x) do { } while (0)
 | |
| #else
 | |
| #define ASSERT(x)							\
 | |
| 	if (!(x)) {							\
 | |
| 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
 | |
| 		       __FILE__, __LINE__, #x);				\
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #define PT64_PT_BITS 9
 | |
| #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
 | |
| #define PT32_PT_BITS 10
 | |
| #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 | |
| 
 | |
| #define PT_WRITABLE_SHIFT 1
 | |
| 
 | |
| #define PT_PRESENT_MASK (1ULL << 0)
 | |
| #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 | |
| #define PT_USER_MASK (1ULL << 2)
 | |
| #define PT_PWT_MASK (1ULL << 3)
 | |
| #define PT_PCD_MASK (1ULL << 4)
 | |
| #define PT_ACCESSED_MASK (1ULL << 5)
 | |
| #define PT_DIRTY_MASK (1ULL << 6)
 | |
| #define PT_PAGE_SIZE_MASK (1ULL << 7)
 | |
| #define PT_PAT_MASK (1ULL << 7)
 | |
| #define PT_GLOBAL_MASK (1ULL << 8)
 | |
| #define PT64_NX_SHIFT 63
 | |
| #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 | |
| 
 | |
| #define PT_PAT_SHIFT 7
 | |
| #define PT_DIR_PAT_SHIFT 12
 | |
| #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 | |
| 
 | |
| #define PT32_DIR_PSE36_SIZE 4
 | |
| #define PT32_DIR_PSE36_SHIFT 13
 | |
| #define PT32_DIR_PSE36_MASK \
 | |
| 	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 | |
| 
 | |
| 
 | |
| #define PT_FIRST_AVAIL_BITS_SHIFT 9
 | |
| #define PT64_SECOND_AVAIL_BITS_SHIFT 52
 | |
| 
 | |
| #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 | |
| 
 | |
| #define VALID_PAGE(x) ((x) != INVALID_PAGE)
 | |
| 
 | |
| #define PT64_LEVEL_BITS 9
 | |
| 
 | |
| #define PT64_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
 | |
| 
 | |
| #define PT64_LEVEL_MASK(level) \
 | |
| 		(((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
 | |
| 
 | |
| #define PT64_INDEX(address, level)\
 | |
| 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #define PT32_LEVEL_BITS 10
 | |
| 
 | |
| #define PT32_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 | |
| 
 | |
| #define PT32_LEVEL_MASK(level) \
 | |
| 		(((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
 | |
| 
 | |
| #define PT32_INDEX(address, level)\
 | |
| 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
 | |
| #define PT64_DIR_BASE_ADDR_MASK \
 | |
| 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
 | |
| 
 | |
| #define PT32_BASE_ADDR_MASK PAGE_MASK
 | |
| #define PT32_DIR_BASE_ADDR_MASK \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 | |
| 
 | |
| #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
 | |
| 			| PT64_NX_MASK)
 | |
| 
 | |
| #define PFERR_PRESENT_MASK (1U << 0)
 | |
| #define PFERR_WRITE_MASK (1U << 1)
 | |
| #define PFERR_USER_MASK (1U << 2)
 | |
| #define PFERR_FETCH_MASK (1U << 4)
 | |
| 
 | |
| #define PT64_ROOT_LEVEL 4
 | |
| #define PT32_ROOT_LEVEL 2
 | |
| #define PT32E_ROOT_LEVEL 3
 | |
| 
 | |
| #define PT_DIRECTORY_LEVEL 2
 | |
| #define PT_PAGE_TABLE_LEVEL 1
 | |
| 
 | |
| #define RMAP_EXT 4
 | |
| 
 | |
| #define ACC_EXEC_MASK    1
 | |
| #define ACC_WRITE_MASK   PT_WRITABLE_MASK
 | |
| #define ACC_USER_MASK    PT_USER_MASK
 | |
| #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 | |
| 
 | |
| struct kvm_rmap_desc {
 | |
| 	u64 *shadow_ptes[RMAP_EXT];
 | |
| 	struct kvm_rmap_desc *more;
 | |
| };
 | |
| 
 | |
| static struct kmem_cache *pte_chain_cache;
 | |
| static struct kmem_cache *rmap_desc_cache;
 | |
| static struct kmem_cache *mmu_page_header_cache;
 | |
| 
 | |
| static u64 __read_mostly shadow_trap_nonpresent_pte;
 | |
| static u64 __read_mostly shadow_notrap_nonpresent_pte;
 | |
| 
 | |
| void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
 | |
| {
 | |
| 	shadow_trap_nonpresent_pte = trap_pte;
 | |
| 	shadow_notrap_nonpresent_pte = notrap_pte;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
 | |
| 
 | |
| static int is_write_protection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.cr0 & X86_CR0_WP;
 | |
| }
 | |
| 
 | |
| static int is_cpuid_PSE36(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int is_nx(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.shadow_efer & EFER_NX;
 | |
| }
 | |
| 
 | |
| static int is_present_pte(unsigned long pte)
 | |
| {
 | |
| 	return pte & PT_PRESENT_MASK;
 | |
| }
 | |
| 
 | |
| static int is_shadow_present_pte(u64 pte)
 | |
| {
 | |
| 	pte &= ~PT_SHADOW_IO_MARK;
 | |
| 	return pte != shadow_trap_nonpresent_pte
 | |
| 		&& pte != shadow_notrap_nonpresent_pte;
 | |
| }
 | |
| 
 | |
| static int is_writeble_pte(unsigned long pte)
 | |
| {
 | |
| 	return pte & PT_WRITABLE_MASK;
 | |
| }
 | |
| 
 | |
| static int is_dirty_pte(unsigned long pte)
 | |
| {
 | |
| 	return pte & PT_DIRTY_MASK;
 | |
| }
 | |
| 
 | |
| static int is_io_pte(unsigned long pte)
 | |
| {
 | |
| 	return pte & PT_SHADOW_IO_MARK;
 | |
| }
 | |
| 
 | |
| static int is_rmap_pte(u64 pte)
 | |
| {
 | |
| 	return is_shadow_present_pte(pte);
 | |
| }
 | |
| 
 | |
| static gfn_t pse36_gfn_delta(u32 gpte)
 | |
| {
 | |
| 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 | |
| 
 | |
| 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 | |
| }
 | |
| 
 | |
| static void set_shadow_pte(u64 *sptep, u64 spte)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	set_64bit((unsigned long *)sptep, spte);
 | |
| #else
 | |
| 	set_64bit((unsigned long long *)sptep, spte);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 | |
| 				  struct kmem_cache *base_cache, int min)
 | |
| {
 | |
| 	void *obj;
 | |
| 
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 | |
| 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 | |
| 		if (!obj)
 | |
| 			return -ENOMEM;
 | |
| 		cache->objects[cache->nobjs++] = obj;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		kfree(mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 | |
| 				       int min)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 | |
| 		page = alloc_page(GFP_KERNEL);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 		set_page_private(page, 0);
 | |
| 		cache->objects[cache->nobjs++] = page_address(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		free_page((unsigned long)mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
 | |
| 				   pte_chain_cache, 4);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
 | |
| 				   rmap_desc_cache, 1);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 | |
| 				   mmu_page_header_cache, 4);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
 | |
| 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
 | |
| 				    size_t size)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	BUG_ON(!mc->nobjs);
 | |
| 	p = mc->objects[--mc->nobjs];
 | |
| 	memset(p, 0, size);
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
 | |
| 				      sizeof(struct kvm_pte_chain));
 | |
| }
 | |
| 
 | |
| static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
 | |
| {
 | |
| 	kfree(pc);
 | |
| }
 | |
| 
 | |
| static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
 | |
| 				      sizeof(struct kvm_rmap_desc));
 | |
| }
 | |
| 
 | |
| static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
 | |
| {
 | |
| 	kfree(rd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take gfn and return the reverse mapping to it.
 | |
|  * Note: gfn must be unaliased before this function get called
 | |
|  */
 | |
| 
 | |
| static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = gfn_to_memslot(kvm, gfn);
 | |
| 	return &slot->rmap[gfn - slot->base_gfn];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reverse mapping data structures:
 | |
|  *
 | |
|  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
 | |
|  * that points to page_address(page).
 | |
|  *
 | |
|  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
 | |
|  * containing more mappings.
 | |
|  */
 | |
| static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct kvm_rmap_desc *desc;
 | |
| 	unsigned long *rmapp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!is_rmap_pte(*spte))
 | |
| 		return;
 | |
| 	gfn = unalias_gfn(vcpu->kvm, gfn);
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	sp->gfns[spte - sp->spt] = gfn;
 | |
| 	rmapp = gfn_to_rmap(vcpu->kvm, gfn);
 | |
| 	if (!*rmapp) {
 | |
| 		rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
 | |
| 		*rmapp = (unsigned long)spte;
 | |
| 	} else if (!(*rmapp & 1)) {
 | |
| 		rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
 | |
| 		desc = mmu_alloc_rmap_desc(vcpu);
 | |
| 		desc->shadow_ptes[0] = (u64 *)*rmapp;
 | |
| 		desc->shadow_ptes[1] = spte;
 | |
| 		*rmapp = (unsigned long)desc | 1;
 | |
| 	} else {
 | |
| 		rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
 | |
| 		desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
 | |
| 		while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
 | |
| 			desc = desc->more;
 | |
| 		if (desc->shadow_ptes[RMAP_EXT-1]) {
 | |
| 			desc->more = mmu_alloc_rmap_desc(vcpu);
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		for (i = 0; desc->shadow_ptes[i]; ++i)
 | |
| 			;
 | |
| 		desc->shadow_ptes[i] = spte;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rmap_desc_remove_entry(unsigned long *rmapp,
 | |
| 				   struct kvm_rmap_desc *desc,
 | |
| 				   int i,
 | |
| 				   struct kvm_rmap_desc *prev_desc)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
 | |
| 		;
 | |
| 	desc->shadow_ptes[i] = desc->shadow_ptes[j];
 | |
| 	desc->shadow_ptes[j] = NULL;
 | |
| 	if (j != 0)
 | |
| 		return;
 | |
| 	if (!prev_desc && !desc->more)
 | |
| 		*rmapp = (unsigned long)desc->shadow_ptes[0];
 | |
| 	else
 | |
| 		if (prev_desc)
 | |
| 			prev_desc->more = desc->more;
 | |
| 		else
 | |
| 			*rmapp = (unsigned long)desc->more | 1;
 | |
| 	mmu_free_rmap_desc(desc);
 | |
| }
 | |
| 
 | |
| static void rmap_remove(struct kvm *kvm, u64 *spte)
 | |
| {
 | |
| 	struct kvm_rmap_desc *desc;
 | |
| 	struct kvm_rmap_desc *prev_desc;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct page *page;
 | |
| 	unsigned long *rmapp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!is_rmap_pte(*spte))
 | |
| 		return;
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
 | |
| 	mark_page_accessed(page);
 | |
| 	if (is_writeble_pte(*spte))
 | |
| 		kvm_release_page_dirty(page);
 | |
| 	else
 | |
| 		kvm_release_page_clean(page);
 | |
| 	rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
 | |
| 	if (!*rmapp) {
 | |
| 		printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
 | |
| 		BUG();
 | |
| 	} else if (!(*rmapp & 1)) {
 | |
| 		rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
 | |
| 		if ((u64 *)*rmapp != spte) {
 | |
| 			printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
 | |
| 			       spte, *spte);
 | |
| 			BUG();
 | |
| 		}
 | |
| 		*rmapp = 0;
 | |
| 	} else {
 | |
| 		rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
 | |
| 		desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
 | |
| 		prev_desc = NULL;
 | |
| 		while (desc) {
 | |
| 			for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
 | |
| 				if (desc->shadow_ptes[i] == spte) {
 | |
| 					rmap_desc_remove_entry(rmapp,
 | |
| 							       desc, i,
 | |
| 							       prev_desc);
 | |
| 					return;
 | |
| 				}
 | |
| 			prev_desc = desc;
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
 | |
| {
 | |
| 	struct kvm_rmap_desc *desc;
 | |
| 	struct kvm_rmap_desc *prev_desc;
 | |
| 	u64 *prev_spte;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!*rmapp)
 | |
| 		return NULL;
 | |
| 	else if (!(*rmapp & 1)) {
 | |
| 		if (!spte)
 | |
| 			return (u64 *)*rmapp;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
 | |
| 	prev_desc = NULL;
 | |
| 	prev_spte = NULL;
 | |
| 	while (desc) {
 | |
| 		for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
 | |
| 			if (prev_spte == spte)
 | |
| 				return desc->shadow_ptes[i];
 | |
| 			prev_spte = desc->shadow_ptes[i];
 | |
| 		}
 | |
| 		desc = desc->more;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void rmap_write_protect(struct kvm *kvm, u64 gfn)
 | |
| {
 | |
| 	unsigned long *rmapp;
 | |
| 	u64 *spte;
 | |
| 	int write_protected = 0;
 | |
| 
 | |
| 	gfn = unalias_gfn(kvm, gfn);
 | |
| 	rmapp = gfn_to_rmap(kvm, gfn);
 | |
| 
 | |
| 	spte = rmap_next(kvm, rmapp, NULL);
 | |
| 	while (spte) {
 | |
| 		BUG_ON(!spte);
 | |
| 		BUG_ON(!(*spte & PT_PRESENT_MASK));
 | |
| 		rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
 | |
| 		if (is_writeble_pte(*spte)) {
 | |
| 			set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
 | |
| 			write_protected = 1;
 | |
| 		}
 | |
| 		spte = rmap_next(kvm, rmapp, spte);
 | |
| 	}
 | |
| 	if (write_protected)
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| }
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| static int is_empty_shadow_page(u64 *spt)
 | |
| {
 | |
| 	u64 *pos;
 | |
| 	u64 *end;
 | |
| 
 | |
| 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
 | |
| 		if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
 | |
| 			printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
 | |
| 			       pos, *pos);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	ASSERT(is_empty_shadow_page(sp->spt));
 | |
| 	list_del(&sp->link);
 | |
| 	__free_page(virt_to_page(sp->spt));
 | |
| 	__free_page(virt_to_page(sp->gfns));
 | |
| 	kfree(sp);
 | |
| 	++kvm->arch.n_free_mmu_pages;
 | |
| }
 | |
| 
 | |
| static unsigned kvm_page_table_hashfn(gfn_t gfn)
 | |
| {
 | |
| 	return gfn;
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
 | |
| 					       u64 *parent_pte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
 | |
| 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
 | |
| 	sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
 | |
| 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
 | |
| 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
 | |
| 	ASSERT(is_empty_shadow_page(sp->spt));
 | |
| 	sp->slot_bitmap = 0;
 | |
| 	sp->multimapped = 0;
 | |
| 	sp->parent_pte = parent_pte;
 | |
| 	--vcpu->kvm->arch.n_free_mmu_pages;
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp, u64 *parent_pte)
 | |
| {
 | |
| 	struct kvm_pte_chain *pte_chain;
 | |
| 	struct hlist_node *node;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!parent_pte)
 | |
| 		return;
 | |
| 	if (!sp->multimapped) {
 | |
| 		u64 *old = sp->parent_pte;
 | |
| 
 | |
| 		if (!old) {
 | |
| 			sp->parent_pte = parent_pte;
 | |
| 			return;
 | |
| 		}
 | |
| 		sp->multimapped = 1;
 | |
| 		pte_chain = mmu_alloc_pte_chain(vcpu);
 | |
| 		INIT_HLIST_HEAD(&sp->parent_ptes);
 | |
| 		hlist_add_head(&pte_chain->link, &sp->parent_ptes);
 | |
| 		pte_chain->parent_ptes[0] = old;
 | |
| 	}
 | |
| 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
 | |
| 		if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
 | |
| 			continue;
 | |
| 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
 | |
| 			if (!pte_chain->parent_ptes[i]) {
 | |
| 				pte_chain->parent_ptes[i] = parent_pte;
 | |
| 				return;
 | |
| 			}
 | |
| 	}
 | |
| 	pte_chain = mmu_alloc_pte_chain(vcpu);
 | |
| 	BUG_ON(!pte_chain);
 | |
| 	hlist_add_head(&pte_chain->link, &sp->parent_ptes);
 | |
| 	pte_chain->parent_ptes[0] = parent_pte;
 | |
| }
 | |
| 
 | |
| static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
 | |
| 				       u64 *parent_pte)
 | |
| {
 | |
| 	struct kvm_pte_chain *pte_chain;
 | |
| 	struct hlist_node *node;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sp->multimapped) {
 | |
| 		BUG_ON(sp->parent_pte != parent_pte);
 | |
| 		sp->parent_pte = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
 | |
| 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
 | |
| 			if (!pte_chain->parent_ptes[i])
 | |
| 				break;
 | |
| 			if (pte_chain->parent_ptes[i] != parent_pte)
 | |
| 				continue;
 | |
| 			while (i + 1 < NR_PTE_CHAIN_ENTRIES
 | |
| 				&& pte_chain->parent_ptes[i + 1]) {
 | |
| 				pte_chain->parent_ptes[i]
 | |
| 					= pte_chain->parent_ptes[i + 1];
 | |
| 				++i;
 | |
| 			}
 | |
| 			pte_chain->parent_ptes[i] = NULL;
 | |
| 			if (i == 0) {
 | |
| 				hlist_del(&pte_chain->link);
 | |
| 				mmu_free_pte_chain(pte_chain);
 | |
| 				if (hlist_empty(&sp->parent_ptes)) {
 | |
| 					sp->multimapped = 0;
 | |
| 					sp->parent_pte = NULL;
 | |
| 				}
 | |
| 			}
 | |
| 			return;
 | |
| 		}
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	unsigned index;
 | |
| 	struct hlist_head *bucket;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node;
 | |
| 
 | |
| 	pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
 | |
| 	index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
 | |
| 	bucket = &kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry(sp, node, bucket, hash_link)
 | |
| 		if (sp->gfn == gfn && !sp->role.metaphysical) {
 | |
| 			pgprintk("%s: found role %x\n",
 | |
| 				 __FUNCTION__, sp->role.word);
 | |
| 			return sp;
 | |
| 		}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
 | |
| 					     gfn_t gfn,
 | |
| 					     gva_t gaddr,
 | |
| 					     unsigned level,
 | |
| 					     int metaphysical,
 | |
| 					     unsigned access,
 | |
| 					     u64 *parent_pte)
 | |
| {
 | |
| 	union kvm_mmu_page_role role;
 | |
| 	unsigned index;
 | |
| 	unsigned quadrant;
 | |
| 	struct hlist_head *bucket;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node;
 | |
| 
 | |
| 	role.word = 0;
 | |
| 	role.glevels = vcpu->arch.mmu.root_level;
 | |
| 	role.level = level;
 | |
| 	role.metaphysical = metaphysical;
 | |
| 	role.access = access;
 | |
| 	if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
 | |
| 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
 | |
| 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
 | |
| 		role.quadrant = quadrant;
 | |
| 	}
 | |
| 	pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
 | |
| 		 gfn, role.word);
 | |
| 	index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
 | |
| 	bucket = &vcpu->kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry(sp, node, bucket, hash_link)
 | |
| 		if (sp->gfn == gfn && sp->role.word == role.word) {
 | |
| 			mmu_page_add_parent_pte(vcpu, sp, parent_pte);
 | |
| 			pgprintk("%s: found\n", __FUNCTION__);
 | |
| 			return sp;
 | |
| 		}
 | |
| 	++vcpu->kvm->stat.mmu_cache_miss;
 | |
| 	sp = kvm_mmu_alloc_page(vcpu, parent_pte);
 | |
| 	if (!sp)
 | |
| 		return sp;
 | |
| 	pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
 | |
| 	sp->gfn = gfn;
 | |
| 	sp->role = role;
 | |
| 	hlist_add_head(&sp->hash_link, bucket);
 | |
| 	vcpu->arch.mmu.prefetch_page(vcpu, sp);
 | |
| 	if (!metaphysical)
 | |
| 		rmap_write_protect(vcpu->kvm, gfn);
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_page_unlink_children(struct kvm *kvm,
 | |
| 					 struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	u64 *pt;
 | |
| 	u64 ent;
 | |
| 
 | |
| 	pt = sp->spt;
 | |
| 
 | |
| 	if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
 | |
| 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
 | |
| 			if (is_shadow_present_pte(pt[i]))
 | |
| 				rmap_remove(kvm, &pt[i]);
 | |
| 			pt[i] = shadow_trap_nonpresent_pte;
 | |
| 		}
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
 | |
| 		ent = pt[i];
 | |
| 
 | |
| 		pt[i] = shadow_trap_nonpresent_pte;
 | |
| 		if (!is_shadow_present_pte(ent))
 | |
| 			continue;
 | |
| 		ent &= PT64_BASE_ADDR_MASK;
 | |
| 		mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
 | |
| 	}
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
 | |
| {
 | |
| 	mmu_page_remove_parent_pte(sp, parent_pte);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MAX_VCPUS; ++i)
 | |
| 		if (kvm->vcpus[i])
 | |
| 			kvm->vcpus[i]->arch.last_pte_updated = NULL;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 *parent_pte;
 | |
| 
 | |
| 	++kvm->stat.mmu_shadow_zapped;
 | |
| 	while (sp->multimapped || sp->parent_pte) {
 | |
| 		if (!sp->multimapped)
 | |
| 			parent_pte = sp->parent_pte;
 | |
| 		else {
 | |
| 			struct kvm_pte_chain *chain;
 | |
| 
 | |
| 			chain = container_of(sp->parent_ptes.first,
 | |
| 					     struct kvm_pte_chain, link);
 | |
| 			parent_pte = chain->parent_ptes[0];
 | |
| 		}
 | |
| 		BUG_ON(!parent_pte);
 | |
| 		kvm_mmu_put_page(sp, parent_pte);
 | |
| 		set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
 | |
| 	}
 | |
| 	kvm_mmu_page_unlink_children(kvm, sp);
 | |
| 	if (!sp->root_count) {
 | |
| 		hlist_del(&sp->hash_link);
 | |
| 		kvm_mmu_free_page(kvm, sp);
 | |
| 	} else
 | |
| 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
 | |
| 	kvm_mmu_reset_last_pte_updated(kvm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Changing the number of mmu pages allocated to the vm
 | |
|  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
 | |
|  */
 | |
| void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we set the number of mmu pages to be smaller be than the
 | |
| 	 * number of actived pages , we must to free some mmu pages before we
 | |
| 	 * change the value
 | |
| 	 */
 | |
| 
 | |
| 	if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
 | |
| 	    kvm_nr_mmu_pages) {
 | |
| 		int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
 | |
| 				       - kvm->arch.n_free_mmu_pages;
 | |
| 
 | |
| 		while (n_used_mmu_pages > kvm_nr_mmu_pages) {
 | |
| 			struct kvm_mmu_page *page;
 | |
| 
 | |
| 			page = container_of(kvm->arch.active_mmu_pages.prev,
 | |
| 					    struct kvm_mmu_page, link);
 | |
| 			kvm_mmu_zap_page(kvm, page);
 | |
| 			n_used_mmu_pages--;
 | |
| 		}
 | |
| 		kvm->arch.n_free_mmu_pages = 0;
 | |
| 	}
 | |
| 	else
 | |
| 		kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
 | |
| 					 - kvm->arch.n_alloc_mmu_pages;
 | |
| 
 | |
| 	kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
 | |
| }
 | |
| 
 | |
| static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	unsigned index;
 | |
| 	struct hlist_head *bucket;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node, *n;
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
 | |
| 	r = 0;
 | |
| 	index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
 | |
| 	bucket = &kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
 | |
| 		if (sp->gfn == gfn && !sp->role.metaphysical) {
 | |
| 			pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
 | |
| 				 sp->role.word);
 | |
| 			kvm_mmu_zap_page(kvm, sp);
 | |
| 			r = 1;
 | |
| 		}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
 | |
| 		pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
 | |
| 		kvm_mmu_zap_page(kvm, sp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
 | |
| {
 | |
| 	int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
 | |
| 	struct kvm_mmu_page *sp = page_header(__pa(pte));
 | |
| 
 | |
| 	__set_bit(slot, &sp->slot_bitmap);
 | |
| }
 | |
| 
 | |
| struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA)
 | |
| 		return NULL;
 | |
| 
 | |
| 	down_read(¤t->mm->mmap_sem);
 | |
| 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 	up_read(¤t->mm->mmap_sem);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
 | |
| 			 unsigned pt_access, unsigned pte_access,
 | |
| 			 int user_fault, int write_fault, int dirty,
 | |
| 			 int *ptwrite, gfn_t gfn, struct page *page)
 | |
| {
 | |
| 	u64 spte;
 | |
| 	int was_rmapped = 0;
 | |
| 	int was_writeble = is_writeble_pte(*shadow_pte);
 | |
| 	hfn_t host_pfn = (*shadow_pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 | |
| 
 | |
| 	pgprintk("%s: spte %llx access %x write_fault %d"
 | |
| 		 " user_fault %d gfn %lx\n",
 | |
| 		 __FUNCTION__, *shadow_pte, pt_access,
 | |
| 		 write_fault, user_fault, gfn);
 | |
| 
 | |
| 	if (is_rmap_pte(*shadow_pte)) {
 | |
| 		if (host_pfn != page_to_pfn(page)) {
 | |
| 			pgprintk("hfn old %lx new %lx\n",
 | |
| 				 host_pfn, page_to_pfn(page));
 | |
| 			rmap_remove(vcpu->kvm, shadow_pte);
 | |
| 		}
 | |
| 		else
 | |
| 			was_rmapped = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't set the accessed bit, since we sometimes want to see
 | |
| 	 * whether the guest actually used the pte (in order to detect
 | |
| 	 * demand paging).
 | |
| 	 */
 | |
| 	spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
 | |
| 	if (!dirty)
 | |
| 		pte_access &= ~ACC_WRITE_MASK;
 | |
| 	if (!(pte_access & ACC_EXEC_MASK))
 | |
| 		spte |= PT64_NX_MASK;
 | |
| 
 | |
| 	spte |= PT_PRESENT_MASK;
 | |
| 	if (pte_access & ACC_USER_MASK)
 | |
| 		spte |= PT_USER_MASK;
 | |
| 
 | |
| 	if (is_error_page(page)) {
 | |
| 		set_shadow_pte(shadow_pte,
 | |
| 			       shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
 | |
| 		kvm_release_page_clean(page);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spte |= page_to_phys(page);
 | |
| 
 | |
| 	if ((pte_access & ACC_WRITE_MASK)
 | |
| 	    || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
 | |
| 		struct kvm_mmu_page *shadow;
 | |
| 
 | |
| 		spte |= PT_WRITABLE_MASK;
 | |
| 		if (user_fault) {
 | |
| 			mmu_unshadow(vcpu->kvm, gfn);
 | |
| 			goto unshadowed;
 | |
| 		}
 | |
| 
 | |
| 		shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
 | |
| 		if (shadow) {
 | |
| 			pgprintk("%s: found shadow page for %lx, marking ro\n",
 | |
| 				 __FUNCTION__, gfn);
 | |
| 			pte_access &= ~ACC_WRITE_MASK;
 | |
| 			if (is_writeble_pte(spte)) {
 | |
| 				spte &= ~PT_WRITABLE_MASK;
 | |
| 				kvm_x86_ops->tlb_flush(vcpu);
 | |
| 			}
 | |
| 			if (write_fault)
 | |
| 				*ptwrite = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unshadowed:
 | |
| 
 | |
| 	if (pte_access & ACC_WRITE_MASK)
 | |
| 		mark_page_dirty(vcpu->kvm, gfn);
 | |
| 
 | |
| 	pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
 | |
| 	set_shadow_pte(shadow_pte, spte);
 | |
| 	page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
 | |
| 	if (!was_rmapped) {
 | |
| 		rmap_add(vcpu, shadow_pte, gfn);
 | |
| 		if (!is_rmap_pte(*shadow_pte))
 | |
| 			kvm_release_page_clean(page);
 | |
| 	} else {
 | |
| 		if (was_writeble)
 | |
| 			kvm_release_page_dirty(page);
 | |
| 		else
 | |
| 			kvm_release_page_clean(page);
 | |
| 	}
 | |
| 	if (!ptwrite || !*ptwrite)
 | |
| 		vcpu->arch.last_pte_updated = shadow_pte;
 | |
| }
 | |
| 
 | |
| static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write,
 | |
| 			   gfn_t gfn, struct page *page)
 | |
| {
 | |
| 	int level = PT32E_ROOT_LEVEL;
 | |
| 	hpa_t table_addr = vcpu->arch.mmu.root_hpa;
 | |
| 	int pt_write = 0;
 | |
| 
 | |
| 	for (; ; level--) {
 | |
| 		u32 index = PT64_INDEX(v, level);
 | |
| 		u64 *table;
 | |
| 
 | |
| 		ASSERT(VALID_PAGE(table_addr));
 | |
| 		table = __va(table_addr);
 | |
| 
 | |
| 		if (level == 1) {
 | |
| 			mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
 | |
| 				     0, write, 1, &pt_write, gfn, page);
 | |
| 			return pt_write || is_io_pte(table[index]);
 | |
| 		}
 | |
| 
 | |
| 		if (table[index] == shadow_trap_nonpresent_pte) {
 | |
| 			struct kvm_mmu_page *new_table;
 | |
| 			gfn_t pseudo_gfn;
 | |
| 
 | |
| 			pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
 | |
| 				>> PAGE_SHIFT;
 | |
| 			new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
 | |
| 						     v, level - 1,
 | |
| 						     1, ACC_ALL, &table[index]);
 | |
| 			if (!new_table) {
 | |
| 				pgprintk("nonpaging_map: ENOMEM\n");
 | |
| 				kvm_release_page_clean(page);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 
 | |
| 			table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
 | |
| 				| PT_WRITABLE_MASK | PT_USER_MASK;
 | |
| 		}
 | |
| 		table_addr = table[index] & PT64_BASE_ADDR_MASK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	struct page *page;
 | |
| 
 | |
| 	down_read(&vcpu->kvm->slots_lock);
 | |
| 
 | |
| 	down_read(¤t->mm->mmap_sem);
 | |
| 	page = gfn_to_page(vcpu->kvm, gfn);
 | |
| 	up_read(¤t->mm->mmap_sem);
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_mmu_free_some_pages(vcpu);
 | |
| 	r = __nonpaging_map(vcpu, v, write, gfn, page);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	up_read(&vcpu->kvm->slots_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
 | |
| 		sp->spt[i] = shadow_trap_nonpresent_pte;
 | |
| }
 | |
| 
 | |
| static void mmu_free_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 		return;
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 
 | |
| 		sp = page_header(root);
 | |
| 		--sp->root_count;
 | |
| 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		if (root) {
 | |
| 			root &= PT64_BASE_ADDR_MASK;
 | |
| 			sp = page_header(root);
 | |
| 			--sp->root_count;
 | |
| 		}
 | |
| 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
 | |
| 	}
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| }
 | |
| 
 | |
| static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	gfn_t root_gfn;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 
 | |
| 		ASSERT(!VALID_PAGE(root));
 | |
| 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
 | |
| 				      PT64_ROOT_LEVEL, 0, ACC_ALL, NULL);
 | |
| 		root = __pa(sp->spt);
 | |
| 		++sp->root_count;
 | |
| 		vcpu->arch.mmu.root_hpa = root;
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		ASSERT(!VALID_PAGE(root));
 | |
| 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
 | |
| 			if (!is_present_pte(vcpu->arch.pdptrs[i])) {
 | |
| 				vcpu->arch.mmu.pae_root[i] = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 			root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
 | |
| 		} else if (vcpu->arch.mmu.root_level == 0)
 | |
| 			root_gfn = 0;
 | |
| 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
 | |
| 				      PT32_ROOT_LEVEL, !is_paging(vcpu),
 | |
| 				      ACC_ALL, NULL);
 | |
| 		root = __pa(sp->spt);
 | |
| 		++sp->root_count;
 | |
| 		vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
 | |
| 	}
 | |
| 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
 | |
| }
 | |
| 
 | |
| static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
 | |
| {
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 				u32 error_code)
 | |
| {
 | |
| 	gfn_t gfn;
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	gfn = gva >> PAGE_SHIFT;
 | |
| 
 | |
| 	return nonpaging_map(vcpu, gva & PAGE_MASK,
 | |
| 			     error_code & PFERR_WRITE_MASK, gfn);
 | |
| }
 | |
| 
 | |
| static void nonpaging_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_roots(vcpu);
 | |
| }
 | |
| 
 | |
| static int nonpaging_init_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.mmu;
 | |
| 
 | |
| 	context->new_cr3 = nonpaging_new_cr3;
 | |
| 	context->page_fault = nonpaging_page_fault;
 | |
| 	context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 	context->free = nonpaging_free;
 | |
| 	context->prefetch_page = nonpaging_prefetch_page;
 | |
| 	context->root_level = 0;
 | |
| 	context->shadow_root_level = PT32E_ROOT_LEVEL;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.tlb_flush;
 | |
| 	kvm_x86_ops->tlb_flush(vcpu);
 | |
| }
 | |
| 
 | |
| static void paging_new_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->arch.cr3);
 | |
| 	mmu_free_roots(vcpu);
 | |
| }
 | |
| 
 | |
| static void inject_page_fault(struct kvm_vcpu *vcpu,
 | |
| 			      u64 addr,
 | |
| 			      u32 err_code)
 | |
| {
 | |
| 	kvm_inject_page_fault(vcpu, addr, err_code);
 | |
| }
 | |
| 
 | |
| static void paging_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	nonpaging_free(vcpu);
 | |
| }
 | |
| 
 | |
| #define PTTYPE 64
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| #define PTTYPE 32
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.mmu;
 | |
| 
 | |
| 	ASSERT(is_pae(vcpu));
 | |
| 	context->new_cr3 = paging_new_cr3;
 | |
| 	context->page_fault = paging64_page_fault;
 | |
| 	context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	context->prefetch_page = paging64_prefetch_page;
 | |
| 	context->free = paging_free;
 | |
| 	context->root_level = level;
 | |
| 	context->shadow_root_level = level;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int paging64_init_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
 | |
| }
 | |
| 
 | |
| static int paging32_init_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.mmu;
 | |
| 
 | |
| 	context->new_cr3 = paging_new_cr3;
 | |
| 	context->page_fault = paging32_page_fault;
 | |
| 	context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 	context->free = paging_free;
 | |
| 	context->prefetch_page = paging32_prefetch_page;
 | |
| 	context->root_level = PT32_ROOT_LEVEL;
 | |
| 	context->shadow_root_level = PT32E_ROOT_LEVEL;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int paging32E_init_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
 | |
| }
 | |
| 
 | |
| static int init_kvm_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	if (!is_paging(vcpu))
 | |
| 		return nonpaging_init_context(vcpu);
 | |
| 	else if (is_long_mode(vcpu))
 | |
| 		return paging64_init_context(vcpu);
 | |
| 	else if (is_pae(vcpu))
 | |
| 		return paging32E_init_context(vcpu);
 | |
| 	else
 | |
| 		return paging32_init_context(vcpu);
 | |
| }
 | |
| 
 | |
| static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
 | |
| 		vcpu->arch.mmu.free(vcpu);
 | |
| 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	destroy_kvm_mmu(vcpu);
 | |
| 	return init_kvm_mmu(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
 | |
| 
 | |
| int kvm_mmu_load(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_mmu_free_some_pages(vcpu);
 | |
| 	mmu_alloc_roots(vcpu);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
 | |
| 	kvm_mmu_flush_tlb(vcpu);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_load);
 | |
| 
 | |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_roots(vcpu);
 | |
| }
 | |
| 
 | |
| static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp,
 | |
| 				  u64 *spte)
 | |
| {
 | |
| 	u64 pte;
 | |
| 	struct kvm_mmu_page *child;
 | |
| 
 | |
| 	pte = *spte;
 | |
| 	if (is_shadow_present_pte(pte)) {
 | |
| 		if (sp->role.level == PT_PAGE_TABLE_LEVEL)
 | |
| 			rmap_remove(vcpu->kvm, spte);
 | |
| 		else {
 | |
| 			child = page_header(pte & PT64_BASE_ADDR_MASK);
 | |
| 			mmu_page_remove_parent_pte(child, spte);
 | |
| 		}
 | |
| 	}
 | |
| 	set_shadow_pte(spte, shadow_trap_nonpresent_pte);
 | |
| }
 | |
| 
 | |
| static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp,
 | |
| 				  u64 *spte,
 | |
| 				  const void *new, int bytes,
 | |
| 				  int offset_in_pte)
 | |
| {
 | |
| 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
 | |
| 		++vcpu->kvm->stat.mmu_pde_zapped;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	++vcpu->kvm->stat.mmu_pte_updated;
 | |
| 	if (sp->role.glevels == PT32_ROOT_LEVEL)
 | |
| 		paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
 | |
| 	else
 | |
| 		paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
 | |
| }
 | |
| 
 | |
| static bool need_remote_flush(u64 old, u64 new)
 | |
| {
 | |
| 	if (!is_shadow_present_pte(old))
 | |
| 		return false;
 | |
| 	if (!is_shadow_present_pte(new))
 | |
| 		return true;
 | |
| 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
 | |
| 		return true;
 | |
| 	old ^= PT64_NX_MASK;
 | |
| 	new ^= PT64_NX_MASK;
 | |
| 	return (old & ~new & PT64_PERM_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
 | |
| {
 | |
| 	if (need_remote_flush(old, new))
 | |
| 		kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 	else
 | |
| 		kvm_mmu_flush_tlb(vcpu);
 | |
| }
 | |
| 
 | |
| static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 *spte = vcpu->arch.last_pte_updated;
 | |
| 
 | |
| 	return !!(spte && (*spte & PT_ACCESSED_MASK));
 | |
| }
 | |
| 
 | |
| static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 					  const u8 *new, int bytes)
 | |
| {
 | |
| 	gfn_t gfn;
 | |
| 	int r;
 | |
| 	u64 gpte = 0;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (bytes != 4 && bytes != 8)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume that the pte write on a page table of the same type
 | |
| 	 * as the current vcpu paging mode.  This is nearly always true
 | |
| 	 * (might be false while changing modes).  Note it is verified later
 | |
| 	 * by update_pte().
 | |
| 	 */
 | |
| 	if (is_pae(vcpu)) {
 | |
| 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
 | |
| 		if ((bytes == 4) && (gpa % 4 == 0)) {
 | |
| 			r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
 | |
| 			if (r)
 | |
| 				return;
 | |
| 			memcpy((void *)&gpte + (gpa % 8), new, 4);
 | |
| 		} else if ((bytes == 8) && (gpa % 8 == 0)) {
 | |
| 			memcpy((void *)&gpte, new, 8);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((bytes == 4) && (gpa % 4 == 0))
 | |
| 			memcpy((void *)&gpte, new, 4);
 | |
| 	}
 | |
| 	if (!is_present_pte(gpte))
 | |
| 		return;
 | |
| 	gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 | |
| 
 | |
| 	down_read(¤t->mm->mmap_sem);
 | |
| 	page = gfn_to_page(vcpu->kvm, gfn);
 | |
| 	up_read(¤t->mm->mmap_sem);
 | |
| 
 | |
| 	vcpu->arch.update_pte.gfn = gfn;
 | |
| 	vcpu->arch.update_pte.page = page;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 		       const u8 *new, int bytes)
 | |
| {
 | |
| 	gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node, *n;
 | |
| 	struct hlist_head *bucket;
 | |
| 	unsigned index;
 | |
| 	u64 entry;
 | |
| 	u64 *spte;
 | |
| 	unsigned offset = offset_in_page(gpa);
 | |
| 	unsigned pte_size;
 | |
| 	unsigned page_offset;
 | |
| 	unsigned misaligned;
 | |
| 	unsigned quadrant;
 | |
| 	int level;
 | |
| 	int flooded = 0;
 | |
| 	int npte;
 | |
| 
 | |
| 	pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
 | |
| 	mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_mmu_free_some_pages(vcpu);
 | |
| 	++vcpu->kvm->stat.mmu_pte_write;
 | |
| 	kvm_mmu_audit(vcpu, "pre pte write");
 | |
| 	if (gfn == vcpu->arch.last_pt_write_gfn
 | |
| 	    && !last_updated_pte_accessed(vcpu)) {
 | |
| 		++vcpu->arch.last_pt_write_count;
 | |
| 		if (vcpu->arch.last_pt_write_count >= 3)
 | |
| 			flooded = 1;
 | |
| 	} else {
 | |
| 		vcpu->arch.last_pt_write_gfn = gfn;
 | |
| 		vcpu->arch.last_pt_write_count = 1;
 | |
| 		vcpu->arch.last_pte_updated = NULL;
 | |
| 	}
 | |
| 	index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
 | |
| 	bucket = &vcpu->kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
 | |
| 		if (sp->gfn != gfn || sp->role.metaphysical)
 | |
| 			continue;
 | |
| 		pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
 | |
| 		misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
 | |
| 		misaligned |= bytes < 4;
 | |
| 		if (misaligned || flooded) {
 | |
| 			/*
 | |
| 			 * Misaligned accesses are too much trouble to fix
 | |
| 			 * up; also, they usually indicate a page is not used
 | |
| 			 * as a page table.
 | |
| 			 *
 | |
| 			 * If we're seeing too many writes to a page,
 | |
| 			 * it may no longer be a page table, or we may be
 | |
| 			 * forking, in which case it is better to unmap the
 | |
| 			 * page.
 | |
| 			 */
 | |
| 			pgprintk("misaligned: gpa %llx bytes %d role %x\n",
 | |
| 				 gpa, bytes, sp->role.word);
 | |
| 			kvm_mmu_zap_page(vcpu->kvm, sp);
 | |
| 			++vcpu->kvm->stat.mmu_flooded;
 | |
| 			continue;
 | |
| 		}
 | |
| 		page_offset = offset;
 | |
| 		level = sp->role.level;
 | |
| 		npte = 1;
 | |
| 		if (sp->role.glevels == PT32_ROOT_LEVEL) {
 | |
| 			page_offset <<= 1;	/* 32->64 */
 | |
| 			/*
 | |
| 			 * A 32-bit pde maps 4MB while the shadow pdes map
 | |
| 			 * only 2MB.  So we need to double the offset again
 | |
| 			 * and zap two pdes instead of one.
 | |
| 			 */
 | |
| 			if (level == PT32_ROOT_LEVEL) {
 | |
| 				page_offset &= ~7; /* kill rounding error */
 | |
| 				page_offset <<= 1;
 | |
| 				npte = 2;
 | |
| 			}
 | |
| 			quadrant = page_offset >> PAGE_SHIFT;
 | |
| 			page_offset &= ~PAGE_MASK;
 | |
| 			if (quadrant != sp->role.quadrant)
 | |
| 				continue;
 | |
| 		}
 | |
| 		spte = &sp->spt[page_offset / sizeof(*spte)];
 | |
| 		while (npte--) {
 | |
| 			entry = *spte;
 | |
| 			mmu_pte_write_zap_pte(vcpu, sp, spte);
 | |
| 			mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
 | |
| 					      page_offset & (pte_size - 1));
 | |
| 			mmu_pte_write_flush_tlb(vcpu, entry, *spte);
 | |
| 			++spte;
 | |
| 		}
 | |
| 	}
 | |
| 	kvm_mmu_audit(vcpu, "post pte write");
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	if (vcpu->arch.update_pte.page) {
 | |
| 		kvm_release_page_clean(vcpu->arch.update_pte.page);
 | |
| 		vcpu->arch.update_pte.page = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 	int r;
 | |
| 
 | |
| 	down_read(&vcpu->kvm->slots_lock);
 | |
| 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
 | |
| 	up_read(&vcpu->kvm->slots_lock);
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 
 | |
| 		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
 | |
| 				  struct kvm_mmu_page, link);
 | |
| 		kvm_mmu_zap_page(vcpu->kvm, sp);
 | |
| 		++vcpu->kvm->stat.mmu_recycled;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
 | |
| {
 | |
| 	int r;
 | |
| 	enum emulation_result er;
 | |
| 
 | |
| 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!r) {
 | |
| 		r = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
 | |
| 
 | |
| 	switch (er) {
 | |
| 	case EMULATE_DONE:
 | |
| 		return 1;
 | |
| 	case EMULATE_DO_MMIO:
 | |
| 		++vcpu->stat.mmio_exits;
 | |
| 		return 0;
 | |
| 	case EMULATE_FAIL:
 | |
| 		kvm_report_emulation_failure(vcpu, "pagetable");
 | |
| 		return 1;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
 | |
| 
 | |
| static void free_mmu_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
 | |
| 		sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
 | |
| 				  struct kvm_mmu_page, link);
 | |
| 		kvm_mmu_zap_page(vcpu->kvm, sp);
 | |
| 	}
 | |
| 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
 | |
| }
 | |
| 
 | |
| static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 
 | |
| 	if (vcpu->kvm->arch.n_requested_mmu_pages)
 | |
| 		vcpu->kvm->arch.n_free_mmu_pages =
 | |
| 					vcpu->kvm->arch.n_requested_mmu_pages;
 | |
| 	else
 | |
| 		vcpu->kvm->arch.n_free_mmu_pages =
 | |
| 					vcpu->kvm->arch.n_alloc_mmu_pages;
 | |
| 	/*
 | |
| 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
 | |
| 	 * Therefore we need to allocate shadow page tables in the first
 | |
| 	 * 4GB of memory, which happens to fit the DMA32 zone.
 | |
| 	 */
 | |
| 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
 | |
| 	if (!page)
 | |
| 		goto error_1;
 | |
| 	vcpu->arch.mmu.pae_root = page_address(page);
 | |
| 	for (i = 0; i < 4; ++i)
 | |
| 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_1:
 | |
| 	free_mmu_pages(vcpu);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_create(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	return alloc_mmu_pages(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_setup(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	return init_kvm_mmu(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 
 | |
| 	destroy_kvm_mmu(vcpu);
 | |
| 	free_mmu_pages(vcpu);
 | |
| 	mmu_free_memory_caches(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
 | |
| 		int i;
 | |
| 		u64 *pt;
 | |
| 
 | |
| 		if (!test_bit(slot, &sp->slot_bitmap))
 | |
| 			continue;
 | |
| 
 | |
| 		pt = sp->spt;
 | |
| 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
 | |
| 			/* avoid RMW */
 | |
| 			if (pt[i] & PT_WRITABLE_MASK)
 | |
| 				pt[i] &= ~PT_WRITABLE_MASK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_mmu_zap_all(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *node;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
 | |
| 		kvm_mmu_zap_page(kvm, sp);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_module_exit(void)
 | |
| {
 | |
| 	if (pte_chain_cache)
 | |
| 		kmem_cache_destroy(pte_chain_cache);
 | |
| 	if (rmap_desc_cache)
 | |
| 		kmem_cache_destroy(rmap_desc_cache);
 | |
| 	if (mmu_page_header_cache)
 | |
| 		kmem_cache_destroy(mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_module_init(void)
 | |
| {
 | |
| 	pte_chain_cache = kmem_cache_create("kvm_pte_chain",
 | |
| 					    sizeof(struct kvm_pte_chain),
 | |
| 					    0, 0, NULL);
 | |
| 	if (!pte_chain_cache)
 | |
| 		goto nomem;
 | |
| 	rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
 | |
| 					    sizeof(struct kvm_rmap_desc),
 | |
| 					    0, 0, NULL);
 | |
| 	if (!rmap_desc_cache)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
 | |
| 						  sizeof(struct kvm_mmu_page),
 | |
| 						  0, 0, NULL);
 | |
| 	if (!mmu_page_header_cache)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	kvm_mmu_module_exit();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caculate mmu pages needed for kvm.
 | |
|  */
 | |
| unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int nr_mmu_pages;
 | |
| 	unsigned int  nr_pages = 0;
 | |
| 
 | |
| 	for (i = 0; i < kvm->nmemslots; i++)
 | |
| 		nr_pages += kvm->memslots[i].npages;
 | |
| 
 | |
| 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
 | |
| 	nr_mmu_pages = max(nr_mmu_pages,
 | |
| 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
 | |
| 
 | |
| 	return nr_mmu_pages;
 | |
| }
 | |
| 
 | |
| #ifdef AUDIT
 | |
| 
 | |
| static const char *audit_msg;
 | |
| 
 | |
| static gva_t canonicalize(gva_t gva)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	gva = (long long)(gva << 16) >> 16;
 | |
| #endif
 | |
| 	return gva;
 | |
| }
 | |
| 
 | |
| static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
 | |
| 				gva_t va, int level)
 | |
| {
 | |
| 	u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
 | |
| 	int i;
 | |
| 	gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
 | |
| 		u64 ent = pt[i];
 | |
| 
 | |
| 		if (ent == shadow_trap_nonpresent_pte)
 | |
| 			continue;
 | |
| 
 | |
| 		va = canonicalize(va);
 | |
| 		if (level > 1) {
 | |
| 			if (ent == shadow_notrap_nonpresent_pte)
 | |
| 				printk(KERN_ERR "audit: (%s) nontrapping pte"
 | |
| 				       " in nonleaf level: levels %d gva %lx"
 | |
| 				       " level %d pte %llx\n", audit_msg,
 | |
| 				       vcpu->arch.mmu.root_level, va, level, ent);
 | |
| 
 | |
| 			audit_mappings_page(vcpu, ent, va, level - 1);
 | |
| 		} else {
 | |
| 			gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
 | |
| 			struct page *page = gpa_to_page(vcpu, gpa);
 | |
| 			hpa_t hpa = page_to_phys(page);
 | |
| 
 | |
| 			if (is_shadow_present_pte(ent)
 | |
| 			    && (ent & PT64_BASE_ADDR_MASK) != hpa)
 | |
| 				printk(KERN_ERR "xx audit error: (%s) levels %d"
 | |
| 				       " gva %lx gpa %llx hpa %llx ent %llx %d\n",
 | |
| 				       audit_msg, vcpu->arch.mmu.root_level,
 | |
| 				       va, gpa, hpa, ent,
 | |
| 				       is_shadow_present_pte(ent));
 | |
| 			else if (ent == shadow_notrap_nonpresent_pte
 | |
| 				 && !is_error_hpa(hpa))
 | |
| 				printk(KERN_ERR "audit: (%s) notrap shadow,"
 | |
| 				       " valid guest gva %lx\n", audit_msg, va);
 | |
| 			kvm_release_page_clean(page);
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void audit_mappings(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	if (vcpu->arch.mmu.root_level == 4)
 | |
| 		audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
 | |
| 	else
 | |
| 		for (i = 0; i < 4; ++i)
 | |
| 			if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
 | |
| 				audit_mappings_page(vcpu,
 | |
| 						    vcpu->arch.mmu.pae_root[i],
 | |
| 						    i << 30,
 | |
| 						    2);
 | |
| }
 | |
| 
 | |
| static int count_rmaps(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int nmaps = 0;
 | |
| 	int i, j, k;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 | |
| 		struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
 | |
| 		struct kvm_rmap_desc *d;
 | |
| 
 | |
| 		for (j = 0; j < m->npages; ++j) {
 | |
| 			unsigned long *rmapp = &m->rmap[j];
 | |
| 
 | |
| 			if (!*rmapp)
 | |
| 				continue;
 | |
| 			if (!(*rmapp & 1)) {
 | |
| 				++nmaps;
 | |
| 				continue;
 | |
| 			}
 | |
| 			d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
 | |
| 			while (d) {
 | |
| 				for (k = 0; k < RMAP_EXT; ++k)
 | |
| 					if (d->shadow_ptes[k])
 | |
| 						++nmaps;
 | |
| 					else
 | |
| 						break;
 | |
| 				d = d->more;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return nmaps;
 | |
| }
 | |
| 
 | |
| static int count_writable_mappings(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int nmaps = 0;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int i;
 | |
| 
 | |
| 	list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
 | |
| 		u64 *pt = sp->spt;
 | |
| 
 | |
| 		if (sp->role.level != PT_PAGE_TABLE_LEVEL)
 | |
| 			continue;
 | |
| 
 | |
| 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
 | |
| 			u64 ent = pt[i];
 | |
| 
 | |
| 			if (!(ent & PT_PRESENT_MASK))
 | |
| 				continue;
 | |
| 			if (!(ent & PT_WRITABLE_MASK))
 | |
| 				continue;
 | |
| 			++nmaps;
 | |
| 		}
 | |
| 	}
 | |
| 	return nmaps;
 | |
| }
 | |
| 
 | |
| static void audit_rmap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int n_rmap = count_rmaps(vcpu);
 | |
| 	int n_actual = count_writable_mappings(vcpu);
 | |
| 
 | |
| 	if (n_rmap != n_actual)
 | |
| 		printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
 | |
| 		       __FUNCTION__, audit_msg, n_rmap, n_actual);
 | |
| }
 | |
| 
 | |
| static void audit_write_protection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	unsigned long *rmapp;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
 | |
| 		if (sp->role.metaphysical)
 | |
| 			continue;
 | |
| 
 | |
| 		slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
 | |
| 		gfn = unalias_gfn(vcpu->kvm, sp->gfn);
 | |
| 		rmapp = &slot->rmap[gfn - slot->base_gfn];
 | |
| 		if (*rmapp)
 | |
| 			printk(KERN_ERR "%s: (%s) shadow page has writable"
 | |
| 			       " mappings: gfn %lx role %x\n",
 | |
| 			       __FUNCTION__, audit_msg, sp->gfn,
 | |
| 			       sp->role.word);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
 | |
| {
 | |
| 	int olddbg = dbg;
 | |
| 
 | |
| 	dbg = 0;
 | |
| 	audit_msg = msg;
 | |
| 	audit_rmap(vcpu);
 | |
| 	audit_write_protection(vcpu);
 | |
| 	audit_mappings(vcpu);
 | |
| 	dbg = olddbg;
 | |
| }
 | |
| 
 | |
| #endif
 |