 9e9630481e
			
		
	
	
	9e9630481e
	
	
	
		
			
			Revert
commit f62f1fc9ef
Author: Yinghai Lu <yhlu.kernel@gmail.com>
Date:   Fri Mar 7 15:02:50 2008 -0800
    x86: reserve dma32 early for gart
The patch has a dependency on bootmem modifications which are not .25
material that late in the -rc cycle. The problem which is addressed by
the patch is limited to machines with 256G and more memory booted with
NUMA disabled. This is not a .25 regression and the audience which is
affected by this problem is very limited, so it's safer to do the
revert than pulling in intrusive bootmem changes right now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
	
			
		
			
				
	
	
		
			1186 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1186 lines
		
	
	
	
		
			29 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the architecture-dependent parts of initialization
 | |
|  */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/screen_info.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <asm/processor.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include <linux/root_dev.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/edd.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/init_ohci1394_dma.h>
 | |
| 
 | |
| #include <asm/mtrr.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/vsyscall.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/desc.h>
 | |
| #include <video/edid.h>
 | |
| #include <asm/e820.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/gart.h>
 | |
| #include <asm/mpspec.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/mach_apic.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/dmi.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/ds.h>
 | |
| #include <asm/topology.h>
 | |
| 
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| #include <asm/paravirt.h>
 | |
| #else
 | |
| #define ARCH_SETUP
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Machine setup..
 | |
|  */
 | |
| 
 | |
| struct cpuinfo_x86 boot_cpu_data __read_mostly;
 | |
| EXPORT_SYMBOL(boot_cpu_data);
 | |
| 
 | |
| __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
 | |
| 
 | |
| unsigned long mmu_cr4_features;
 | |
| 
 | |
| /* Boot loader ID as an integer, for the benefit of proc_dointvec */
 | |
| int bootloader_type;
 | |
| 
 | |
| unsigned long saved_video_mode;
 | |
| 
 | |
| int force_mwait __cpuinitdata;
 | |
| 
 | |
| /*
 | |
|  * Early DMI memory
 | |
|  */
 | |
| int dmi_alloc_index;
 | |
| char dmi_alloc_data[DMI_MAX_DATA];
 | |
| 
 | |
| /*
 | |
|  * Setup options
 | |
|  */
 | |
| struct screen_info screen_info;
 | |
| EXPORT_SYMBOL(screen_info);
 | |
| struct sys_desc_table_struct {
 | |
| 	unsigned short length;
 | |
| 	unsigned char table[0];
 | |
| };
 | |
| 
 | |
| struct edid_info edid_info;
 | |
| EXPORT_SYMBOL_GPL(edid_info);
 | |
| 
 | |
| extern int root_mountflags;
 | |
| 
 | |
| char __initdata command_line[COMMAND_LINE_SIZE];
 | |
| 
 | |
| struct resource standard_io_resources[] = {
 | |
| 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "pic1", .start = 0x20, .end = 0x21,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "timer0", .start = 0x40, .end = 0x43,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "timer1", .start = 0x50, .end = 0x53,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "keyboard", .start = 0x60, .end = 0x6f,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 | |
| 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 | |
| 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 | |
| };
 | |
| 
 | |
| #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
 | |
| 
 | |
| static struct resource data_resource = {
 | |
| 	.name = "Kernel data",
 | |
| 	.start = 0,
 | |
| 	.end = 0,
 | |
| 	.flags = IORESOURCE_RAM,
 | |
| };
 | |
| static struct resource code_resource = {
 | |
| 	.name = "Kernel code",
 | |
| 	.start = 0,
 | |
| 	.end = 0,
 | |
| 	.flags = IORESOURCE_RAM,
 | |
| };
 | |
| static struct resource bss_resource = {
 | |
| 	.name = "Kernel bss",
 | |
| 	.start = 0,
 | |
| 	.end = 0,
 | |
| 	.flags = IORESOURCE_RAM,
 | |
| };
 | |
| 
 | |
| static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
 | |
| 
 | |
| #ifdef CONFIG_PROC_VMCORE
 | |
| /* elfcorehdr= specifies the location of elf core header
 | |
|  * stored by the crashed kernel. This option will be passed
 | |
|  * by kexec loader to the capture kernel.
 | |
|  */
 | |
| static int __init setup_elfcorehdr(char *arg)
 | |
| {
 | |
| 	char *end;
 | |
| 	if (!arg)
 | |
| 		return -EINVAL;
 | |
| 	elfcorehdr_addr = memparse(arg, &end);
 | |
| 	return end > arg ? 0 : -EINVAL;
 | |
| }
 | |
| early_param("elfcorehdr", setup_elfcorehdr);
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| static void __init
 | |
| contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long bootmap_size, bootmap;
 | |
| 
 | |
| 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
 | |
| 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
 | |
| 				 PAGE_SIZE);
 | |
| 	if (bootmap == -1L)
 | |
| 		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
 | |
| 	bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
 | |
| 	e820_register_active_regions(0, start_pfn, end_pfn);
 | |
| 	free_bootmem_with_active_regions(0, end_pfn);
 | |
| 	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 | |
| struct edd edd;
 | |
| #ifdef CONFIG_EDD_MODULE
 | |
| EXPORT_SYMBOL(edd);
 | |
| #endif
 | |
| /**
 | |
|  * copy_edd() - Copy the BIOS EDD information
 | |
|  *              from boot_params into a safe place.
 | |
|  *
 | |
|  */
 | |
| static inline void copy_edd(void)
 | |
| {
 | |
|      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 | |
| 	    sizeof(edd.mbr_signature));
 | |
|      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 | |
|      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 | |
|      edd.edd_info_nr = boot_params.eddbuf_entries;
 | |
| }
 | |
| #else
 | |
| static inline void copy_edd(void)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| static void __init reserve_crashkernel(void)
 | |
| {
 | |
| 	unsigned long long total_mem;
 | |
| 	unsigned long long crash_size, crash_base;
 | |
| 	int ret;
 | |
| 
 | |
| 	total_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
 | |
| 
 | |
| 	ret = parse_crashkernel(boot_command_line, total_mem,
 | |
| 			&crash_size, &crash_base);
 | |
| 	if (ret == 0 && crash_size) {
 | |
| 		if (crash_base <= 0) {
 | |
| 			printk(KERN_INFO "crashkernel reservation failed - "
 | |
| 					"you have to specify a base address\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (reserve_bootmem(crash_base, crash_size,
 | |
| 					BOOTMEM_EXCLUSIVE) < 0) {
 | |
| 			printk(KERN_INFO "crashkernel reservation failed - "
 | |
| 					"memory is in use\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 | |
| 				"for crashkernel (System RAM: %ldMB)\n",
 | |
| 				(unsigned long)(crash_size >> 20),
 | |
| 				(unsigned long)(crash_base >> 20),
 | |
| 				(unsigned long)(total_mem >> 20));
 | |
| 		crashk_res.start = crash_base;
 | |
| 		crashk_res.end   = crash_base + crash_size - 1;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void __init reserve_crashkernel(void)
 | |
| {}
 | |
| #endif
 | |
| 
 | |
| /* Overridden in paravirt.c if CONFIG_PARAVIRT */
 | |
| void __attribute__((weak)) __init memory_setup(void)
 | |
| {
 | |
|        machine_specific_memory_setup();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_arch - architecture-specific boot-time initializations
 | |
|  *
 | |
|  * Note: On x86_64, fixmaps are ready for use even before this is called.
 | |
|  */
 | |
| void __init setup_arch(char **cmdline_p)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 | |
| 
 | |
| 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 | |
| 	screen_info = boot_params.screen_info;
 | |
| 	edid_info = boot_params.edid_info;
 | |
| 	saved_video_mode = boot_params.hdr.vid_mode;
 | |
| 	bootloader_type = boot_params.hdr.type_of_loader;
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_RAM
 | |
| 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 | |
| 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 | |
| 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 | |
| #endif
 | |
| #ifdef CONFIG_EFI
 | |
| 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 | |
| 		     "EL64", 4))
 | |
| 		efi_enabled = 1;
 | |
| #endif
 | |
| 
 | |
| 	ARCH_SETUP
 | |
| 
 | |
| 	memory_setup();
 | |
| 	copy_edd();
 | |
| 
 | |
| 	if (!boot_params.hdr.root_flags)
 | |
| 		root_mountflags &= ~MS_RDONLY;
 | |
| 	init_mm.start_code = (unsigned long) &_text;
 | |
| 	init_mm.end_code = (unsigned long) &_etext;
 | |
| 	init_mm.end_data = (unsigned long) &_edata;
 | |
| 	init_mm.brk = (unsigned long) &_end;
 | |
| 
 | |
| 	code_resource.start = virt_to_phys(&_text);
 | |
| 	code_resource.end = virt_to_phys(&_etext)-1;
 | |
| 	data_resource.start = virt_to_phys(&_etext);
 | |
| 	data_resource.end = virt_to_phys(&_edata)-1;
 | |
| 	bss_resource.start = virt_to_phys(&__bss_start);
 | |
| 	bss_resource.end = virt_to_phys(&__bss_stop)-1;
 | |
| 
 | |
| 	early_identify_cpu(&boot_cpu_data);
 | |
| 
 | |
| 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 | |
| 	*cmdline_p = command_line;
 | |
| 
 | |
| 	parse_early_param();
 | |
| 
 | |
| #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
 | |
| 	if (init_ohci1394_dma_early)
 | |
| 		init_ohci1394_dma_on_all_controllers();
 | |
| #endif
 | |
| 
 | |
| 	finish_e820_parsing();
 | |
| 
 | |
| 	early_gart_iommu_check();
 | |
| 
 | |
| 	e820_register_active_regions(0, 0, -1UL);
 | |
| 	/*
 | |
| 	 * partially used pages are not usable - thus
 | |
| 	 * we are rounding upwards:
 | |
| 	 */
 | |
| 	end_pfn = e820_end_of_ram();
 | |
| 	/* update e820 for memory not covered by WB MTRRs */
 | |
| 	mtrr_bp_init();
 | |
| 	if (mtrr_trim_uncached_memory(end_pfn)) {
 | |
| 		e820_register_active_regions(0, 0, -1UL);
 | |
| 		end_pfn = e820_end_of_ram();
 | |
| 	}
 | |
| 
 | |
| 	num_physpages = end_pfn;
 | |
| 
 | |
| 	check_efer();
 | |
| 
 | |
| 	init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
 | |
| 	if (efi_enabled)
 | |
| 		efi_init();
 | |
| 
 | |
| 	dmi_scan_machine();
 | |
| 
 | |
| 	io_delay_init();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* setup to use the early static init tables during kernel startup */
 | |
| 	x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
 | |
| 	x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
 | |
| #ifdef CONFIG_NUMA
 | |
| 	x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 	/*
 | |
| 	 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
 | |
| 	 * Call this early for SRAT node setup.
 | |
| 	 */
 | |
| 	acpi_boot_table_init();
 | |
| #endif
 | |
| 
 | |
| 	/* How many end-of-memory variables you have, grandma! */
 | |
| 	max_low_pfn = end_pfn;
 | |
| 	max_pfn = end_pfn;
 | |
| 	high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
 | |
| 
 | |
| 	/* Remove active ranges so rediscovery with NUMA-awareness happens */
 | |
| 	remove_all_active_ranges();
 | |
| 
 | |
| #ifdef CONFIG_ACPI_NUMA
 | |
| 	/*
 | |
| 	 * Parse SRAT to discover nodes.
 | |
| 	 */
 | |
| 	acpi_numa_init();
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	numa_initmem_init(0, end_pfn);
 | |
| #else
 | |
| 	contig_initmem_init(0, end_pfn);
 | |
| #endif
 | |
| 
 | |
| 	early_res_to_bootmem();
 | |
| 
 | |
| #ifdef CONFIG_ACPI_SLEEP
 | |
| 	/*
 | |
| 	 * Reserve low memory region for sleep support.
 | |
| 	 */
 | |
|        acpi_reserve_bootmem();
 | |
| #endif
 | |
| 
 | |
| 	if (efi_enabled)
 | |
| 		efi_reserve_bootmem();
 | |
| 
 | |
|        /*
 | |
| 	* Find and reserve possible boot-time SMP configuration:
 | |
| 	*/
 | |
| 	find_smp_config();
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
 | |
| 		unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
 | |
| 		unsigned long ramdisk_size  = boot_params.hdr.ramdisk_size;
 | |
| 		unsigned long ramdisk_end   = ramdisk_image + ramdisk_size;
 | |
| 		unsigned long end_of_mem    = end_pfn << PAGE_SHIFT;
 | |
| 
 | |
| 		if (ramdisk_end <= end_of_mem) {
 | |
| 			reserve_bootmem_generic(ramdisk_image, ramdisk_size);
 | |
| 			initrd_start = ramdisk_image + PAGE_OFFSET;
 | |
| 			initrd_end = initrd_start+ramdisk_size;
 | |
| 		} else {
 | |
| 			/* Assumes everything on node 0 */
 | |
| 			free_bootmem(ramdisk_image, ramdisk_size);
 | |
| 			printk(KERN_ERR "initrd extends beyond end of memory "
 | |
| 			       "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
 | |
| 			       ramdisk_end, end_of_mem);
 | |
| 			initrd_start = 0;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	reserve_crashkernel();
 | |
| 	paging_init();
 | |
| 	map_vsyscall();
 | |
| 
 | |
| 	early_quirks();
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 	/*
 | |
| 	 * Read APIC and some other early information from ACPI tables.
 | |
| 	 */
 | |
| 	acpi_boot_init();
 | |
| #endif
 | |
| 
 | |
| 	init_cpu_to_node();
 | |
| 
 | |
| 	/*
 | |
| 	 * get boot-time SMP configuration:
 | |
| 	 */
 | |
| 	if (smp_found_config)
 | |
| 		get_smp_config();
 | |
| 	init_apic_mappings();
 | |
| 	ioapic_init_mappings();
 | |
| 
 | |
| 	/*
 | |
| 	 * We trust e820 completely. No explicit ROM probing in memory.
 | |
| 	 */
 | |
| 	e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
 | |
| 	e820_mark_nosave_regions();
 | |
| 
 | |
| 	/* request I/O space for devices used on all i[345]86 PCs */
 | |
| 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 | |
| 		request_resource(&ioport_resource, &standard_io_resources[i]);
 | |
| 
 | |
| 	e820_setup_gap();
 | |
| 
 | |
| #ifdef CONFIG_VT
 | |
| #if defined(CONFIG_VGA_CONSOLE)
 | |
| 	if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
 | |
| 		conswitchp = &vga_con;
 | |
| #elif defined(CONFIG_DUMMY_CONSOLE)
 | |
| 	conswitchp = &dummy_con;
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	unsigned int *v;
 | |
| 
 | |
| 	if (c->extended_cpuid_level < 0x80000004)
 | |
| 		return 0;
 | |
| 
 | |
| 	v = (unsigned int *) c->x86_model_id;
 | |
| 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 | |
| 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 | |
| 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 | |
| 	c->x86_model_id[48] = 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	unsigned int n, dummy, eax, ebx, ecx, edx;
 | |
| 
 | |
| 	n = c->extended_cpuid_level;
 | |
| 
 | |
| 	if (n >= 0x80000005) {
 | |
| 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 | |
| 		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
 | |
| 		       "D cache %dK (%d bytes/line)\n",
 | |
| 		       edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
 | |
| 		c->x86_cache_size = (ecx>>24) + (edx>>24);
 | |
| 		/* On K8 L1 TLB is inclusive, so don't count it */
 | |
| 		c->x86_tlbsize = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (n >= 0x80000006) {
 | |
| 		cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 | |
| 		ecx = cpuid_ecx(0x80000006);
 | |
| 		c->x86_cache_size = ecx >> 16;
 | |
| 		c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 | |
| 
 | |
| 		printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
 | |
| 		c->x86_cache_size, ecx & 0xFF);
 | |
| 	}
 | |
| 	if (n >= 0x80000008) {
 | |
| 		cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
 | |
| 		c->x86_virt_bits = (eax >> 8) & 0xff;
 | |
| 		c->x86_phys_bits = eax & 0xff;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static int __cpuinit nearby_node(int apicid)
 | |
| {
 | |
| 	int i, node;
 | |
| 
 | |
| 	for (i = apicid - 1; i >= 0; i--) {
 | |
| 		node = apicid_to_node[i];
 | |
| 		if (node != NUMA_NO_NODE && node_online(node))
 | |
| 			return node;
 | |
| 	}
 | |
| 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
 | |
| 		node = apicid_to_node[i];
 | |
| 		if (node != NUMA_NO_NODE && node_online(node))
 | |
| 			return node;
 | |
| 	}
 | |
| 	return first_node(node_online_map); /* Shouldn't happen */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
 | |
|  * Assumes number of cores is a power of two.
 | |
|  */
 | |
| static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned bits;
 | |
| #ifdef CONFIG_NUMA
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int node = 0;
 | |
| 	unsigned apicid = hard_smp_processor_id();
 | |
| #endif
 | |
| 	bits = c->x86_coreid_bits;
 | |
| 
 | |
| 	/* Low order bits define the core id (index of core in socket) */
 | |
| 	c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
 | |
| 	/* Convert the APIC ID into the socket ID */
 | |
| 	c->phys_proc_id = phys_pkg_id(bits);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	node = c->phys_proc_id;
 | |
| 	if (apicid_to_node[apicid] != NUMA_NO_NODE)
 | |
| 		node = apicid_to_node[apicid];
 | |
| 	if (!node_online(node)) {
 | |
| 		/* Two possibilities here:
 | |
| 		   - The CPU is missing memory and no node was created.
 | |
| 		   In that case try picking one from a nearby CPU
 | |
| 		   - The APIC IDs differ from the HyperTransport node IDs
 | |
| 		   which the K8 northbridge parsing fills in.
 | |
| 		   Assume they are all increased by a constant offset,
 | |
| 		   but in the same order as the HT nodeids.
 | |
| 		   If that doesn't result in a usable node fall back to the
 | |
| 		   path for the previous case.  */
 | |
| 
 | |
| 		int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
 | |
| 
 | |
| 		if (ht_nodeid >= 0 &&
 | |
| 		    apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
 | |
| 			node = apicid_to_node[ht_nodeid];
 | |
| 		/* Pick a nearby node */
 | |
| 		if (!node_online(node))
 | |
| 			node = nearby_node(apicid);
 | |
| 	}
 | |
| 	numa_set_node(cpu, node);
 | |
| 
 | |
| 	printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned bits, ecx;
 | |
| 
 | |
| 	/* Multi core CPU? */
 | |
| 	if (c->extended_cpuid_level < 0x80000008)
 | |
| 		return;
 | |
| 
 | |
| 	ecx = cpuid_ecx(0x80000008);
 | |
| 
 | |
| 	c->x86_max_cores = (ecx & 0xff) + 1;
 | |
| 
 | |
| 	/* CPU telling us the core id bits shift? */
 | |
| 	bits = (ecx >> 12) & 0xF;
 | |
| 
 | |
| 	/* Otherwise recompute */
 | |
| 	if (bits == 0) {
 | |
| 		while ((1 << bits) < c->x86_max_cores)
 | |
| 			bits++;
 | |
| 	}
 | |
| 
 | |
| 	c->x86_coreid_bits = bits;
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define ENABLE_C1E_MASK		0x18000000
 | |
| #define CPUID_PROCESSOR_SIGNATURE	1
 | |
| #define CPUID_XFAM		0x0ff00000
 | |
| #define CPUID_XFAM_K8		0x00000000
 | |
| #define CPUID_XFAM_10H		0x00100000
 | |
| #define CPUID_XFAM_11H		0x00200000
 | |
| #define CPUID_XMOD		0x000f0000
 | |
| #define CPUID_XMOD_REV_F	0x00040000
 | |
| 
 | |
| /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
 | |
| static __cpuinit int amd_apic_timer_broken(void)
 | |
| {
 | |
| 	u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 | |
| 
 | |
| 	switch (eax & CPUID_XFAM) {
 | |
| 	case CPUID_XFAM_K8:
 | |
| 		if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
 | |
| 			break;
 | |
| 	case CPUID_XFAM_10H:
 | |
| 	case CPUID_XFAM_11H:
 | |
| 		rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
 | |
| 		if (lo & ENABLE_C1E_MASK)
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* err on the side of caution */
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	early_init_amd_mc(c);
 | |
| 
 | |
|  	/* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
 | |
| 	if (c->x86_power & (1<<8))
 | |
| 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 | |
| }
 | |
| 
 | |
| static void __cpuinit init_amd(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	unsigned level;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8
 | |
| 	 * bit 6 of msr C001_0015
 | |
| 	 *
 | |
| 	 * Errata 63 for SH-B3 steppings
 | |
| 	 * Errata 122 for all steppings (F+ have it disabled by default)
 | |
| 	 */
 | |
| 	if (c->x86 == 15) {
 | |
| 		rdmsrl(MSR_K8_HWCR, value);
 | |
| 		value |= 1 << 6;
 | |
| 		wrmsrl(MSR_K8_HWCR, value);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
 | |
| 	   3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
 | |
| 	clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
 | |
| 
 | |
| 	/* On C+ stepping K8 rep microcode works well for copy/memset */
 | |
| 	level = cpuid_eax(1);
 | |
| 	if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
 | |
| 			     level >= 0x0f58))
 | |
| 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 | |
| 	if (c->x86 == 0x10 || c->x86 == 0x11)
 | |
| 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 | |
| 
 | |
| 	/* Enable workaround for FXSAVE leak */
 | |
| 	if (c->x86 >= 6)
 | |
| 		set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
 | |
| 
 | |
| 	level = get_model_name(c);
 | |
| 	if (!level) {
 | |
| 		switch (c->x86) {
 | |
| 		case 15:
 | |
| 			/* Should distinguish Models here, but this is only
 | |
| 			   a fallback anyways. */
 | |
| 			strcpy(c->x86_model_id, "Hammer");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	display_cacheinfo(c);
 | |
| 
 | |
| 	/* Multi core CPU? */
 | |
| 	if (c->extended_cpuid_level >= 0x80000008)
 | |
| 		amd_detect_cmp(c);
 | |
| 
 | |
| 	if (c->extended_cpuid_level >= 0x80000006 &&
 | |
| 		(cpuid_edx(0x80000006) & 0xf000))
 | |
| 		num_cache_leaves = 4;
 | |
| 	else
 | |
| 		num_cache_leaves = 3;
 | |
| 
 | |
| 	if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
 | |
| 		set_cpu_cap(c, X86_FEATURE_K8);
 | |
| 
 | |
| 	/* MFENCE stops RDTSC speculation */
 | |
| 	set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
 | |
| 
 | |
| 	if (amd_apic_timer_broken())
 | |
| 		disable_apic_timer = 1;
 | |
| }
 | |
| 
 | |
| void __cpuinit detect_ht(struct cpuinfo_x86 *c)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	u32 eax, ebx, ecx, edx;
 | |
| 	int index_msb, core_bits;
 | |
| 
 | |
| 	cpuid(1, &eax, &ebx, &ecx, &edx);
 | |
| 
 | |
| 
 | |
| 	if (!cpu_has(c, X86_FEATURE_HT))
 | |
| 		return;
 | |
| 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 | |
| 		goto out;
 | |
| 
 | |
| 	smp_num_siblings = (ebx & 0xff0000) >> 16;
 | |
| 
 | |
| 	if (smp_num_siblings == 1) {
 | |
| 		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
 | |
| 	} else if (smp_num_siblings > 1) {
 | |
| 
 | |
| 		if (smp_num_siblings > NR_CPUS) {
 | |
| 			printk(KERN_WARNING "CPU: Unsupported number of "
 | |
| 			       "siblings %d", smp_num_siblings);
 | |
| 			smp_num_siblings = 1;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		index_msb = get_count_order(smp_num_siblings);
 | |
| 		c->phys_proc_id = phys_pkg_id(index_msb);
 | |
| 
 | |
| 		smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 | |
| 
 | |
| 		index_msb = get_count_order(smp_num_siblings);
 | |
| 
 | |
| 		core_bits = get_count_order(c->x86_max_cores);
 | |
| 
 | |
| 		c->cpu_core_id = phys_pkg_id(index_msb) &
 | |
| 					       ((1 << core_bits) - 1);
 | |
| 	}
 | |
| out:
 | |
| 	if ((c->x86_max_cores * smp_num_siblings) > 1) {
 | |
| 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
 | |
| 		       c->phys_proc_id);
 | |
| 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
 | |
| 		       c->cpu_core_id);
 | |
| 	}
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find out the number of processor cores on the die
 | |
|  */
 | |
| static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	unsigned int eax, t;
 | |
| 
 | |
| 	if (c->cpuid_level < 4)
 | |
| 		return 1;
 | |
| 
 | |
| 	cpuid_count(4, 0, &eax, &t, &t, &t);
 | |
| 
 | |
| 	if (eax & 0x1f)
 | |
| 		return ((eax >> 26) + 1);
 | |
| 	else
 | |
| 		return 1;
 | |
| }
 | |
| 
 | |
| static void __cpuinit srat_detect_node(void)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	unsigned node;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int apicid = hard_smp_processor_id();
 | |
| 
 | |
| 	/* Don't do the funky fallback heuristics the AMD version employs
 | |
| 	   for now. */
 | |
| 	node = apicid_to_node[apicid];
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		node = first_node(node_online_map);
 | |
| 	numa_set_node(cpu, node);
 | |
| 
 | |
| 	printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 | |
| 	    (c->x86 == 0x6 && c->x86_model >= 0x0e))
 | |
| 		set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
 | |
| }
 | |
| 
 | |
| static void __cpuinit init_intel(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	/* Cache sizes */
 | |
| 	unsigned n;
 | |
| 
 | |
| 	init_intel_cacheinfo(c);
 | |
| 	if (c->cpuid_level > 9) {
 | |
| 		unsigned eax = cpuid_eax(10);
 | |
| 		/* Check for version and the number of counters */
 | |
| 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
 | |
| 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_ds) {
 | |
| 		unsigned int l1, l2;
 | |
| 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
 | |
| 		if (!(l1 & (1<<11)))
 | |
| 			set_cpu_cap(c, X86_FEATURE_BTS);
 | |
| 		if (!(l1 & (1<<12)))
 | |
| 			set_cpu_cap(c, X86_FEATURE_PEBS);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (cpu_has_bts)
 | |
| 		ds_init_intel(c);
 | |
| 
 | |
| 	n = c->extended_cpuid_level;
 | |
| 	if (n >= 0x80000008) {
 | |
| 		unsigned eax = cpuid_eax(0x80000008);
 | |
| 		c->x86_virt_bits = (eax >> 8) & 0xff;
 | |
| 		c->x86_phys_bits = eax & 0xff;
 | |
| 		/* CPUID workaround for Intel 0F34 CPU */
 | |
| 		if (c->x86_vendor == X86_VENDOR_INTEL &&
 | |
| 		    c->x86 == 0xF && c->x86_model == 0x3 &&
 | |
| 		    c->x86_mask == 0x4)
 | |
| 			c->x86_phys_bits = 36;
 | |
| 	}
 | |
| 
 | |
| 	if (c->x86 == 15)
 | |
| 		c->x86_cache_alignment = c->x86_clflush_size * 2;
 | |
| 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 | |
| 	    (c->x86 == 0x6 && c->x86_model >= 0x0e))
 | |
| 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 | |
| 	if (c->x86 == 6)
 | |
| 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 | |
| 	set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
 | |
| 	c->x86_max_cores = intel_num_cpu_cores(c);
 | |
| 
 | |
| 	srat_detect_node();
 | |
| }
 | |
| 
 | |
| static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	char *v = c->x86_vendor_id;
 | |
| 
 | |
| 	if (!strcmp(v, "AuthenticAMD"))
 | |
| 		c->x86_vendor = X86_VENDOR_AMD;
 | |
| 	else if (!strcmp(v, "GenuineIntel"))
 | |
| 		c->x86_vendor = X86_VENDOR_INTEL;
 | |
| 	else
 | |
| 		c->x86_vendor = X86_VENDOR_UNKNOWN;
 | |
| }
 | |
| 
 | |
| /* Do some early cpuid on the boot CPU to get some parameter that are
 | |
|    needed before check_bugs. Everything advanced is in identify_cpu
 | |
|    below. */
 | |
| static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	u32 tfms, xlvl;
 | |
| 
 | |
| 	c->loops_per_jiffy = loops_per_jiffy;
 | |
| 	c->x86_cache_size = -1;
 | |
| 	c->x86_vendor = X86_VENDOR_UNKNOWN;
 | |
| 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
 | |
| 	c->x86_vendor_id[0] = '\0'; /* Unset */
 | |
| 	c->x86_model_id[0] = '\0';  /* Unset */
 | |
| 	c->x86_clflush_size = 64;
 | |
| 	c->x86_cache_alignment = c->x86_clflush_size;
 | |
| 	c->x86_max_cores = 1;
 | |
| 	c->x86_coreid_bits = 0;
 | |
| 	c->extended_cpuid_level = 0;
 | |
| 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 | |
| 
 | |
| 	/* Get vendor name */
 | |
| 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 | |
| 	      (unsigned int *)&c->x86_vendor_id[0],
 | |
| 	      (unsigned int *)&c->x86_vendor_id[8],
 | |
| 	      (unsigned int *)&c->x86_vendor_id[4]);
 | |
| 
 | |
| 	get_cpu_vendor(c);
 | |
| 
 | |
| 	/* Initialize the standard set of capabilities */
 | |
| 	/* Note that the vendor-specific code below might override */
 | |
| 
 | |
| 	/* Intel-defined flags: level 0x00000001 */
 | |
| 	if (c->cpuid_level >= 0x00000001) {
 | |
| 		__u32 misc;
 | |
| 		cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
 | |
| 		      &c->x86_capability[0]);
 | |
| 		c->x86 = (tfms >> 8) & 0xf;
 | |
| 		c->x86_model = (tfms >> 4) & 0xf;
 | |
| 		c->x86_mask = tfms & 0xf;
 | |
| 		if (c->x86 == 0xf)
 | |
| 			c->x86 += (tfms >> 20) & 0xff;
 | |
| 		if (c->x86 >= 0x6)
 | |
| 			c->x86_model += ((tfms >> 16) & 0xF) << 4;
 | |
| 		if (c->x86_capability[0] & (1<<19))
 | |
| 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 | |
| 	} else {
 | |
| 		/* Have CPUID level 0 only - unheard of */
 | |
| 		c->x86 = 4;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
 | |
| #endif
 | |
| 	/* AMD-defined flags: level 0x80000001 */
 | |
| 	xlvl = cpuid_eax(0x80000000);
 | |
| 	c->extended_cpuid_level = xlvl;
 | |
| 	if ((xlvl & 0xffff0000) == 0x80000000) {
 | |
| 		if (xlvl >= 0x80000001) {
 | |
| 			c->x86_capability[1] = cpuid_edx(0x80000001);
 | |
| 			c->x86_capability[6] = cpuid_ecx(0x80000001);
 | |
| 		}
 | |
| 		if (xlvl >= 0x80000004)
 | |
| 			get_model_name(c); /* Default name */
 | |
| 	}
 | |
| 
 | |
| 	/* Transmeta-defined flags: level 0x80860001 */
 | |
| 	xlvl = cpuid_eax(0x80860000);
 | |
| 	if ((xlvl & 0xffff0000) == 0x80860000) {
 | |
| 		/* Don't set x86_cpuid_level here for now to not confuse. */
 | |
| 		if (xlvl >= 0x80860001)
 | |
| 			c->x86_capability[2] = cpuid_edx(0x80860001);
 | |
| 	}
 | |
| 
 | |
| 	c->extended_cpuid_level = cpuid_eax(0x80000000);
 | |
| 	if (c->extended_cpuid_level >= 0x80000007)
 | |
| 		c->x86_power = cpuid_edx(0x80000007);
 | |
| 
 | |
| 	switch (c->x86_vendor) {
 | |
| 	case X86_VENDOR_AMD:
 | |
| 		early_init_amd(c);
 | |
| 		break;
 | |
| 	case X86_VENDOR_INTEL:
 | |
| 		early_init_intel(c);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This does the hard work of actually picking apart the CPU stuff...
 | |
|  */
 | |
| void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	early_identify_cpu(c);
 | |
| 
 | |
| 	init_scattered_cpuid_features(c);
 | |
| 
 | |
| 	c->apicid = phys_pkg_id(0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Vendor-specific initialization.  In this section we
 | |
| 	 * canonicalize the feature flags, meaning if there are
 | |
| 	 * features a certain CPU supports which CPUID doesn't
 | |
| 	 * tell us, CPUID claiming incorrect flags, or other bugs,
 | |
| 	 * we handle them here.
 | |
| 	 *
 | |
| 	 * At the end of this section, c->x86_capability better
 | |
| 	 * indicate the features this CPU genuinely supports!
 | |
| 	 */
 | |
| 	switch (c->x86_vendor) {
 | |
| 	case X86_VENDOR_AMD:
 | |
| 		init_amd(c);
 | |
| 		break;
 | |
| 
 | |
| 	case X86_VENDOR_INTEL:
 | |
| 		init_intel(c);
 | |
| 		break;
 | |
| 
 | |
| 	case X86_VENDOR_UNKNOWN:
 | |
| 	default:
 | |
| 		display_cacheinfo(c);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	detect_ht(c);
 | |
| 
 | |
| 	/*
 | |
| 	 * On SMP, boot_cpu_data holds the common feature set between
 | |
| 	 * all CPUs; so make sure that we indicate which features are
 | |
| 	 * common between the CPUs.  The first time this routine gets
 | |
| 	 * executed, c == &boot_cpu_data.
 | |
| 	 */
 | |
| 	if (c != &boot_cpu_data) {
 | |
| 		/* AND the already accumulated flags with these */
 | |
| 		for (i = 0; i < NCAPINTS; i++)
 | |
| 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
 | |
| 	}
 | |
| 
 | |
| 	/* Clear all flags overriden by options */
 | |
| 	for (i = 0; i < NCAPINTS; i++)
 | |
| 		c->x86_capability[i] &= ~cleared_cpu_caps[i];
 | |
| 
 | |
| #ifdef CONFIG_X86_MCE
 | |
| 	mcheck_init(c);
 | |
| #endif
 | |
| 	select_idle_routine(c);
 | |
| 
 | |
| 	if (c != &boot_cpu_data)
 | |
| 		mtrr_ap_init();
 | |
| #ifdef CONFIG_NUMA
 | |
| 	numa_add_cpu(smp_processor_id());
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| static __init int setup_noclflush(char *arg)
 | |
| {
 | |
| 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noclflush", setup_noclflush);
 | |
| 
 | |
| void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	if (c->x86_model_id[0])
 | |
| 		printk(KERN_CONT "%s", c->x86_model_id);
 | |
| 
 | |
| 	if (c->x86_mask || c->cpuid_level >= 0)
 | |
| 		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
 | |
| 	else
 | |
| 		printk(KERN_CONT "\n");
 | |
| }
 | |
| 
 | |
| static __init int setup_disablecpuid(char *arg)
 | |
| {
 | |
| 	int bit;
 | |
| 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
 | |
| 		setup_clear_cpu_cap(bit);
 | |
| 	else
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("clearcpuid=", setup_disablecpuid);
 | |
| 
 | |
| /*
 | |
|  *	Get CPU information for use by the procfs.
 | |
|  */
 | |
| 
 | |
| static int show_cpuinfo(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct cpuinfo_x86 *c = v;
 | |
| 	int cpu = 0, i;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	cpu = c->cpu_index;
 | |
| #endif
 | |
| 
 | |
| 	seq_printf(m, "processor\t: %u\n"
 | |
| 		   "vendor_id\t: %s\n"
 | |
| 		   "cpu family\t: %d\n"
 | |
| 		   "model\t\t: %d\n"
 | |
| 		   "model name\t: %s\n",
 | |
| 		   (unsigned)cpu,
 | |
| 		   c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
 | |
| 		   c->x86,
 | |
| 		   (int)c->x86_model,
 | |
| 		   c->x86_model_id[0] ? c->x86_model_id : "unknown");
 | |
| 
 | |
| 	if (c->x86_mask || c->cpuid_level >= 0)
 | |
| 		seq_printf(m, "stepping\t: %d\n", c->x86_mask);
 | |
| 	else
 | |
| 		seq_printf(m, "stepping\t: unknown\n");
 | |
| 
 | |
| 	if (cpu_has(c, X86_FEATURE_TSC)) {
 | |
| 		unsigned int freq = cpufreq_quick_get((unsigned)cpu);
 | |
| 
 | |
| 		if (!freq)
 | |
| 			freq = cpu_khz;
 | |
| 		seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
 | |
| 			   freq / 1000, (freq % 1000));
 | |
| 	}
 | |
| 
 | |
| 	/* Cache size */
 | |
| 	if (c->x86_cache_size >= 0)
 | |
| 		seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (smp_num_siblings * c->x86_max_cores > 1) {
 | |
| 		seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
 | |
| 		seq_printf(m, "siblings\t: %d\n",
 | |
| 			       cpus_weight(per_cpu(cpu_core_map, cpu)));
 | |
| 		seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
 | |
| 		seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	seq_printf(m,
 | |
| 		   "fpu\t\t: yes\n"
 | |
| 		   "fpu_exception\t: yes\n"
 | |
| 		   "cpuid level\t: %d\n"
 | |
| 		   "wp\t\t: yes\n"
 | |
| 		   "flags\t\t:",
 | |
| 		   c->cpuid_level);
 | |
| 
 | |
| 	for (i = 0; i < 32*NCAPINTS; i++)
 | |
| 		if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
 | |
| 			seq_printf(m, " %s", x86_cap_flags[i]);
 | |
| 
 | |
| 	seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
 | |
| 		   c->loops_per_jiffy/(500000/HZ),
 | |
| 		   (c->loops_per_jiffy/(5000/HZ)) % 100);
 | |
| 
 | |
| 	if (c->x86_tlbsize > 0)
 | |
| 		seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
 | |
| 	seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
 | |
| 	seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
 | |
| 
 | |
| 	seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
 | |
| 		   c->x86_phys_bits, c->x86_virt_bits);
 | |
| 
 | |
| 	seq_printf(m, "power management:");
 | |
| 	for (i = 0; i < 32; i++) {
 | |
| 		if (c->x86_power & (1 << i)) {
 | |
| 			if (i < ARRAY_SIZE(x86_power_flags) &&
 | |
| 			    x86_power_flags[i])
 | |
| 				seq_printf(m, "%s%s",
 | |
| 					   x86_power_flags[i][0]?" ":"",
 | |
| 					   x86_power_flags[i]);
 | |
| 			else
 | |
| 				seq_printf(m, " [%d]", i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	seq_printf(m, "\n\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *c_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	if (*pos == 0)	/* just in case, cpu 0 is not the first */
 | |
| 		*pos = first_cpu(cpu_online_map);
 | |
| 	if ((*pos) < NR_CPUS && cpu_online(*pos))
 | |
| 		return &cpu_data(*pos);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos)
 | |
| {
 | |
| 	*pos = next_cpu(*pos, cpu_online_map);
 | |
| 	return c_start(m, pos);
 | |
| }
 | |
| 
 | |
| static void c_stop(struct seq_file *m, void *v)
 | |
| {
 | |
| }
 | |
| 
 | |
| const struct seq_operations cpuinfo_op = {
 | |
| 	.start = c_start,
 | |
| 	.next =	c_next,
 | |
| 	.stop =	c_stop,
 | |
| 	.show =	show_cpuinfo,
 | |
| };
 |