 b4ef95de00
			
		
	
	
	b4ef95de00
	
	
	
		
			
			revert the BTS ptrace extension for now.
based on general objections from Roland McGrath:
    http://lkml.org/lkml/2008/2/21/323
we'll let the BTS functionality cook some more and re-enable
it in v2.6.26. We'll leave the dead code around to help the
development of this code.
(X86_BTS is not defined at the moment)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
	
			
		
			
				
	
	
		
			929 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			929 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *
 | |
|  *  Pentium III FXSR, SSE support
 | |
|  *	Gareth Hughes <gareth@valinux.com>, May 2000
 | |
|  *
 | |
|  *  X86-64 port
 | |
|  *	Andi Kleen.
 | |
|  *
 | |
|  *	CPU hotplug support - ashok.raj@intel.com
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the architecture-dependent parts of process handling..
 | |
|  */
 | |
| 
 | |
| #include <stdarg.h>
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/tick.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/i387.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/pda.h>
 | |
| #include <asm/prctl.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/ia32.h>
 | |
| #include <asm/idle.h>
 | |
| 
 | |
| asmlinkage extern void ret_from_fork(void);
 | |
| 
 | |
| unsigned long kernel_thread_flags = CLONE_VM | CLONE_UNTRACED;
 | |
| 
 | |
| unsigned long boot_option_idle_override = 0;
 | |
| EXPORT_SYMBOL(boot_option_idle_override);
 | |
| 
 | |
| /*
 | |
|  * Powermanagement idle function, if any..
 | |
|  */
 | |
| void (*pm_idle)(void);
 | |
| EXPORT_SYMBOL(pm_idle);
 | |
| static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
 | |
| 
 | |
| static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 | |
| 
 | |
| void idle_notifier_register(struct notifier_block *n)
 | |
| {
 | |
| 	atomic_notifier_chain_register(&idle_notifier, n);
 | |
| }
 | |
| 
 | |
| void enter_idle(void)
 | |
| {
 | |
| 	write_pda(isidle, 1);
 | |
| 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 | |
| }
 | |
| 
 | |
| static void __exit_idle(void)
 | |
| {
 | |
| 	if (test_and_clear_bit_pda(0, isidle) == 0)
 | |
| 		return;
 | |
| 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 | |
| }
 | |
| 
 | |
| /* Called from interrupts to signify idle end */
 | |
| void exit_idle(void)
 | |
| {
 | |
| 	/* idle loop has pid 0 */
 | |
| 	if (current->pid)
 | |
| 		return;
 | |
| 	__exit_idle();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use this if we don't have any better
 | |
|  * idle routine..
 | |
|  */
 | |
| void default_idle(void)
 | |
| {
 | |
| 	current_thread_info()->status &= ~TS_POLLING;
 | |
| 	/*
 | |
| 	 * TS_POLLING-cleared state must be visible before we
 | |
| 	 * test NEED_RESCHED:
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	local_irq_disable();
 | |
| 	if (!need_resched()) {
 | |
| 		ktime_t t0, t1;
 | |
| 		u64 t0n, t1n;
 | |
| 
 | |
| 		t0 = ktime_get();
 | |
| 		t0n = ktime_to_ns(t0);
 | |
| 		safe_halt();	/* enables interrupts racelessly */
 | |
| 		local_irq_disable();
 | |
| 		t1 = ktime_get();
 | |
| 		t1n = ktime_to_ns(t1);
 | |
| 		sched_clock_idle_wakeup_event(t1n - t0n);
 | |
| 	}
 | |
| 	local_irq_enable();
 | |
| 	current_thread_info()->status |= TS_POLLING;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On SMP it's slightly faster (but much more power-consuming!)
 | |
|  * to poll the ->need_resched flag instead of waiting for the
 | |
|  * cross-CPU IPI to arrive. Use this option with caution.
 | |
|  */
 | |
| static void poll_idle(void)
 | |
| {
 | |
| 	local_irq_enable();
 | |
| 	cpu_relax();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| DECLARE_PER_CPU(int, cpu_state);
 | |
| 
 | |
| #include <asm/nmi.h>
 | |
| /* We halt the CPU with physical CPU hotplug */
 | |
| static inline void play_dead(void)
 | |
| {
 | |
| 	idle_task_exit();
 | |
| 	wbinvd();
 | |
| 	mb();
 | |
| 	/* Ack it */
 | |
| 	__get_cpu_var(cpu_state) = CPU_DEAD;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	while (1)
 | |
| 		halt();
 | |
| }
 | |
| #else
 | |
| static inline void play_dead(void)
 | |
| {
 | |
| 	BUG();
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * The idle thread. There's no useful work to be
 | |
|  * done, so just try to conserve power and have a
 | |
|  * low exit latency (ie sit in a loop waiting for
 | |
|  * somebody to say that they'd like to reschedule)
 | |
|  */
 | |
| void cpu_idle(void)
 | |
| {
 | |
| 	current_thread_info()->status |= TS_POLLING;
 | |
| 	/* endless idle loop with no priority at all */
 | |
| 	while (1) {
 | |
| 		tick_nohz_stop_sched_tick();
 | |
| 		while (!need_resched()) {
 | |
| 			void (*idle)(void);
 | |
| 
 | |
| 			if (__get_cpu_var(cpu_idle_state))
 | |
| 				__get_cpu_var(cpu_idle_state) = 0;
 | |
| 
 | |
| 			rmb();
 | |
| 			idle = pm_idle;
 | |
| 			if (!idle)
 | |
| 				idle = default_idle;
 | |
| 			if (cpu_is_offline(smp_processor_id()))
 | |
| 				play_dead();
 | |
| 			/*
 | |
| 			 * Idle routines should keep interrupts disabled
 | |
| 			 * from here on, until they go to idle.
 | |
| 			 * Otherwise, idle callbacks can misfire.
 | |
| 			 */
 | |
| 			local_irq_disable();
 | |
| 			enter_idle();
 | |
| 			idle();
 | |
| 			/* In many cases the interrupt that ended idle
 | |
| 			   has already called exit_idle. But some idle
 | |
| 			   loops can be woken up without interrupt. */
 | |
| 			__exit_idle();
 | |
| 		}
 | |
| 
 | |
| 		tick_nohz_restart_sched_tick();
 | |
| 		preempt_enable_no_resched();
 | |
| 		schedule();
 | |
| 		preempt_disable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void do_nothing(void *unused)
 | |
| {
 | |
| }
 | |
| 
 | |
| void cpu_idle_wait(void)
 | |
| {
 | |
| 	unsigned int cpu, this_cpu = get_cpu();
 | |
| 	cpumask_t map, tmp = current->cpus_allowed;
 | |
| 
 | |
| 	set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
 | |
| 	put_cpu();
 | |
| 
 | |
| 	cpus_clear(map);
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		per_cpu(cpu_idle_state, cpu) = 1;
 | |
| 		cpu_set(cpu, map);
 | |
| 	}
 | |
| 
 | |
| 	__get_cpu_var(cpu_idle_state) = 0;
 | |
| 
 | |
| 	wmb();
 | |
| 	do {
 | |
| 		ssleep(1);
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
 | |
| 				cpu_clear(cpu, map);
 | |
| 		}
 | |
| 		cpus_and(map, map, cpu_online_map);
 | |
| 		/*
 | |
| 		 * We waited 1 sec, if a CPU still did not call idle
 | |
| 		 * it may be because it is in idle and not waking up
 | |
| 		 * because it has nothing to do.
 | |
| 		 * Give all the remaining CPUS a kick.
 | |
| 		 */
 | |
| 		smp_call_function_mask(map, do_nothing, 0, 0);
 | |
| 	} while (!cpus_empty(map));
 | |
| 
 | |
| 	set_cpus_allowed(current, tmp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cpu_idle_wait);
 | |
| 
 | |
| /*
 | |
|  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
 | |
|  * which can obviate IPI to trigger checking of need_resched.
 | |
|  * We execute MONITOR against need_resched and enter optimized wait state
 | |
|  * through MWAIT. Whenever someone changes need_resched, we would be woken
 | |
|  * up from MWAIT (without an IPI).
 | |
|  *
 | |
|  * New with Core Duo processors, MWAIT can take some hints based on CPU
 | |
|  * capability.
 | |
|  */
 | |
| void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
 | |
| {
 | |
| 	if (!need_resched()) {
 | |
| 		__monitor((void *)¤t_thread_info()->flags, 0, 0);
 | |
| 		smp_mb();
 | |
| 		if (!need_resched())
 | |
| 			__mwait(ax, cx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Default MONITOR/MWAIT with no hints, used for default C1 state */
 | |
| static void mwait_idle(void)
 | |
| {
 | |
| 	if (!need_resched()) {
 | |
| 		__monitor((void *)¤t_thread_info()->flags, 0, 0);
 | |
| 		smp_mb();
 | |
| 		if (!need_resched())
 | |
| 			__sti_mwait(0, 0);
 | |
| 		else
 | |
| 			local_irq_enable();
 | |
| 	} else {
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	if (force_mwait)
 | |
| 		return 1;
 | |
| 	/* Any C1 states supported? */
 | |
| 	return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
 | |
| }
 | |
| 
 | |
| void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	static int selected;
 | |
| 
 | |
| 	if (selected)
 | |
| 		return;
 | |
| #ifdef CONFIG_X86_SMP
 | |
| 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
 | |
| 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
 | |
| 			" performance may degrade.\n");
 | |
| 	}
 | |
| #endif
 | |
| 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
 | |
| 		/*
 | |
| 		 * Skip, if setup has overridden idle.
 | |
| 		 * One CPU supports mwait => All CPUs supports mwait
 | |
| 		 */
 | |
| 		if (!pm_idle) {
 | |
| 			printk(KERN_INFO "using mwait in idle threads.\n");
 | |
| 			pm_idle = mwait_idle;
 | |
| 		}
 | |
| 	}
 | |
| 	selected = 1;
 | |
| }
 | |
| 
 | |
| static int __init idle_setup(char *str)
 | |
| {
 | |
| 	if (!strcmp(str, "poll")) {
 | |
| 		printk("using polling idle threads.\n");
 | |
| 		pm_idle = poll_idle;
 | |
| 	} else if (!strcmp(str, "mwait"))
 | |
| 		force_mwait = 1;
 | |
| 	else
 | |
| 		return -1;
 | |
| 
 | |
| 	boot_option_idle_override = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("idle", idle_setup);
 | |
| 
 | |
| /* Prints also some state that isn't saved in the pt_regs */
 | |
| void __show_regs(struct pt_regs * regs)
 | |
| {
 | |
| 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 | |
| 	unsigned long d0, d1, d2, d3, d6, d7;
 | |
| 	unsigned int fsindex, gsindex;
 | |
| 	unsigned int ds, cs, es;
 | |
| 
 | |
| 	printk("\n");
 | |
| 	print_modules();
 | |
| 	printk("Pid: %d, comm: %.20s %s %s %.*s\n",
 | |
| 		current->pid, current->comm, print_tainted(),
 | |
| 		init_utsname()->release,
 | |
| 		(int)strcspn(init_utsname()->version, " "),
 | |
| 		init_utsname()->version);
 | |
| 	printk("RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
 | |
| 	printk_address(regs->ip, 1);
 | |
| 	printk("RSP: %04lx:%016lx  EFLAGS: %08lx\n", regs->ss, regs->sp,
 | |
| 		regs->flags);
 | |
| 	printk("RAX: %016lx RBX: %016lx RCX: %016lx\n",
 | |
| 	       regs->ax, regs->bx, regs->cx);
 | |
| 	printk("RDX: %016lx RSI: %016lx RDI: %016lx\n",
 | |
| 	       regs->dx, regs->si, regs->di);
 | |
| 	printk("RBP: %016lx R08: %016lx R09: %016lx\n",
 | |
| 	       regs->bp, regs->r8, regs->r9);
 | |
| 	printk("R10: %016lx R11: %016lx R12: %016lx\n",
 | |
| 	       regs->r10, regs->r11, regs->r12); 
 | |
| 	printk("R13: %016lx R14: %016lx R15: %016lx\n",
 | |
| 	       regs->r13, regs->r14, regs->r15); 
 | |
| 
 | |
| 	asm("movl %%ds,%0" : "=r" (ds)); 
 | |
| 	asm("movl %%cs,%0" : "=r" (cs)); 
 | |
| 	asm("movl %%es,%0" : "=r" (es)); 
 | |
| 	asm("movl %%fs,%0" : "=r" (fsindex));
 | |
| 	asm("movl %%gs,%0" : "=r" (gsindex));
 | |
| 
 | |
| 	rdmsrl(MSR_FS_BASE, fs);
 | |
| 	rdmsrl(MSR_GS_BASE, gs); 
 | |
| 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 
 | |
| 
 | |
| 	cr0 = read_cr0();
 | |
| 	cr2 = read_cr2();
 | |
| 	cr3 = read_cr3();
 | |
| 	cr4 = read_cr4();
 | |
| 
 | |
| 	printk("FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", 
 | |
| 	       fs,fsindex,gs,gsindex,shadowgs); 
 | |
| 	printk("CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, es, cr0); 
 | |
| 	printk("CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, cr4);
 | |
| 
 | |
| 	get_debugreg(d0, 0);
 | |
| 	get_debugreg(d1, 1);
 | |
| 	get_debugreg(d2, 2);
 | |
| 	printk("DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
 | |
| 	get_debugreg(d3, 3);
 | |
| 	get_debugreg(d6, 6);
 | |
| 	get_debugreg(d7, 7);
 | |
| 	printk("DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
 | |
| }
 | |
| 
 | |
| void show_regs(struct pt_regs *regs)
 | |
| {
 | |
| 	printk("CPU %d:", smp_processor_id());
 | |
| 	__show_regs(regs);
 | |
| 	show_trace(NULL, regs, (void *)(regs + 1), regs->bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free current thread data structures etc..
 | |
|  */
 | |
| void exit_thread(void)
 | |
| {
 | |
| 	struct task_struct *me = current;
 | |
| 	struct thread_struct *t = &me->thread;
 | |
| 
 | |
| 	if (me->thread.io_bitmap_ptr) {
 | |
| 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 | |
| 
 | |
| 		kfree(t->io_bitmap_ptr);
 | |
| 		t->io_bitmap_ptr = NULL;
 | |
| 		clear_thread_flag(TIF_IO_BITMAP);
 | |
| 		/*
 | |
| 		 * Careful, clear this in the TSS too:
 | |
| 		 */
 | |
| 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 | |
| 		t->io_bitmap_max = 0;
 | |
| 		put_cpu();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void flush_thread(void)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
 | |
| 		clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
 | |
| 		if (test_tsk_thread_flag(tsk, TIF_IA32)) {
 | |
| 			clear_tsk_thread_flag(tsk, TIF_IA32);
 | |
| 		} else {
 | |
| 			set_tsk_thread_flag(tsk, TIF_IA32);
 | |
| 			current_thread_info()->status |= TS_COMPAT;
 | |
| 		}
 | |
| 	}
 | |
| 	clear_tsk_thread_flag(tsk, TIF_DEBUG);
 | |
| 
 | |
| 	tsk->thread.debugreg0 = 0;
 | |
| 	tsk->thread.debugreg1 = 0;
 | |
| 	tsk->thread.debugreg2 = 0;
 | |
| 	tsk->thread.debugreg3 = 0;
 | |
| 	tsk->thread.debugreg6 = 0;
 | |
| 	tsk->thread.debugreg7 = 0;
 | |
| 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 | |
| 	/*
 | |
| 	 * Forget coprocessor state..
 | |
| 	 */
 | |
| 	clear_fpu(tsk);
 | |
| 	clear_used_math();
 | |
| }
 | |
| 
 | |
| void release_thread(struct task_struct *dead_task)
 | |
| {
 | |
| 	if (dead_task->mm) {
 | |
| 		if (dead_task->mm->context.size) {
 | |
| 			printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
 | |
| 					dead_task->comm,
 | |
| 					dead_task->mm->context.ldt,
 | |
| 					dead_task->mm->context.size);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
 | |
| {
 | |
| 	struct user_desc ud = {
 | |
| 		.base_addr = addr,
 | |
| 		.limit = 0xfffff,
 | |
| 		.seg_32bit = 1,
 | |
| 		.limit_in_pages = 1,
 | |
| 		.useable = 1,
 | |
| 	};
 | |
| 	struct desc_struct *desc = t->thread.tls_array;
 | |
| 	desc += tls;
 | |
| 	fill_ldt(desc, &ud);
 | |
| }
 | |
| 
 | |
| static inline u32 read_32bit_tls(struct task_struct *t, int tls)
 | |
| {
 | |
| 	return get_desc_base(&t->thread.tls_array[tls]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This gets called before we allocate a new thread and copy
 | |
|  * the current task into it.
 | |
|  */
 | |
| void prepare_to_copy(struct task_struct *tsk)
 | |
| {
 | |
| 	unlazy_fpu(tsk);
 | |
| }
 | |
| 
 | |
| int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
 | |
| 		unsigned long unused,
 | |
| 	struct task_struct * p, struct pt_regs * regs)
 | |
| {
 | |
| 	int err;
 | |
| 	struct pt_regs * childregs;
 | |
| 	struct task_struct *me = current;
 | |
| 
 | |
| 	childregs = ((struct pt_regs *)
 | |
| 			(THREAD_SIZE + task_stack_page(p))) - 1;
 | |
| 	*childregs = *regs;
 | |
| 
 | |
| 	childregs->ax = 0;
 | |
| 	childregs->sp = sp;
 | |
| 	if (sp == ~0UL)
 | |
| 		childregs->sp = (unsigned long)childregs;
 | |
| 
 | |
| 	p->thread.sp = (unsigned long) childregs;
 | |
| 	p->thread.sp0 = (unsigned long) (childregs+1);
 | |
| 	p->thread.usersp = me->thread.usersp;
 | |
| 
 | |
| 	set_tsk_thread_flag(p, TIF_FORK);
 | |
| 
 | |
| 	p->thread.fs = me->thread.fs;
 | |
| 	p->thread.gs = me->thread.gs;
 | |
| 
 | |
| 	asm("mov %%gs,%0" : "=m" (p->thread.gsindex));
 | |
| 	asm("mov %%fs,%0" : "=m" (p->thread.fsindex));
 | |
| 	asm("mov %%es,%0" : "=m" (p->thread.es));
 | |
| 	asm("mov %%ds,%0" : "=m" (p->thread.ds));
 | |
| 
 | |
| 	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
 | |
| 		p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
 | |
| 		if (!p->thread.io_bitmap_ptr) {
 | |
| 			p->thread.io_bitmap_max = 0;
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		memcpy(p->thread.io_bitmap_ptr, me->thread.io_bitmap_ptr,
 | |
| 				IO_BITMAP_BYTES);
 | |
| 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set a new TLS for the child thread?
 | |
| 	 */
 | |
| 	if (clone_flags & CLONE_SETTLS) {
 | |
| #ifdef CONFIG_IA32_EMULATION
 | |
| 		if (test_thread_flag(TIF_IA32))
 | |
| 			err = do_set_thread_area(p, -1,
 | |
| 				(struct user_desc __user *)childregs->si, 0);
 | |
| 		else 			
 | |
| #endif	 
 | |
| 			err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8); 
 | |
| 		if (err) 
 | |
| 			goto out;
 | |
| 	}
 | |
| 	err = 0;
 | |
| out:
 | |
| 	if (err && p->thread.io_bitmap_ptr) {
 | |
| 		kfree(p->thread.io_bitmap_ptr);
 | |
| 		p->thread.io_bitmap_max = 0;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This special macro can be used to load a debugging register
 | |
|  */
 | |
| #define loaddebug(thread, r) set_debugreg(thread->debugreg ## r, r)
 | |
| 
 | |
| static inline void __switch_to_xtra(struct task_struct *prev_p,
 | |
| 				    struct task_struct *next_p,
 | |
| 				    struct tss_struct *tss)
 | |
| {
 | |
| 	struct thread_struct *prev, *next;
 | |
| 	unsigned long debugctl;
 | |
| 
 | |
| 	prev = &prev_p->thread,
 | |
| 	next = &next_p->thread;
 | |
| 
 | |
| 	debugctl = prev->debugctlmsr;
 | |
| 	if (next->ds_area_msr != prev->ds_area_msr) {
 | |
| 		/* we clear debugctl to make sure DS
 | |
| 		 * is not in use when we change it */
 | |
| 		debugctl = 0;
 | |
| 		wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
 | |
| 		wrmsrl(MSR_IA32_DS_AREA, next->ds_area_msr);
 | |
| 	}
 | |
| 
 | |
| 	if (next->debugctlmsr != debugctl)
 | |
| 		wrmsrl(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr);
 | |
| 
 | |
| 	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
 | |
| 		loaddebug(next, 0);
 | |
| 		loaddebug(next, 1);
 | |
| 		loaddebug(next, 2);
 | |
| 		loaddebug(next, 3);
 | |
| 		/* no 4 and 5 */
 | |
| 		loaddebug(next, 6);
 | |
| 		loaddebug(next, 7);
 | |
| 	}
 | |
| 
 | |
| 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 | |
| 		/*
 | |
| 		 * Copy the relevant range of the IO bitmap.
 | |
| 		 * Normally this is 128 bytes or less:
 | |
| 		 */
 | |
| 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 | |
| 		       max(prev->io_bitmap_max, next->io_bitmap_max));
 | |
| 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 | |
| 		/*
 | |
| 		 * Clear any possible leftover bits:
 | |
| 		 */
 | |
| 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 | |
| 	}
 | |
| 
 | |
| #ifdef X86_BTS
 | |
| 	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
 | |
| 		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
 | |
| 
 | |
| 	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
 | |
| 		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	switch_to(x,y) should switch tasks from x to y.
 | |
|  *
 | |
|  * This could still be optimized:
 | |
|  * - fold all the options into a flag word and test it with a single test.
 | |
|  * - could test fs/gs bitsliced
 | |
|  *
 | |
|  * Kprobes not supported here. Set the probe on schedule instead.
 | |
|  */
 | |
| struct task_struct *
 | |
| __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 | |
| {
 | |
| 	struct thread_struct *prev = &prev_p->thread,
 | |
| 				 *next = &next_p->thread;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct tss_struct *tss = &per_cpu(init_tss, cpu);
 | |
| 
 | |
| 	/* we're going to use this soon, after a few expensive things */
 | |
| 	if (next_p->fpu_counter>5)
 | |
| 		prefetch(&next->i387.fxsave);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reload esp0, LDT and the page table pointer:
 | |
| 	 */
 | |
| 	load_sp0(tss, next);
 | |
| 
 | |
| 	/* 
 | |
| 	 * Switch DS and ES.
 | |
| 	 * This won't pick up thread selector changes, but I guess that is ok.
 | |
| 	 */
 | |
| 	asm volatile("mov %%es,%0" : "=m" (prev->es));
 | |
| 	if (unlikely(next->es | prev->es))
 | |
| 		loadsegment(es, next->es); 
 | |
| 	
 | |
| 	asm volatile ("mov %%ds,%0" : "=m" (prev->ds));
 | |
| 	if (unlikely(next->ds | prev->ds))
 | |
| 		loadsegment(ds, next->ds);
 | |
| 
 | |
| 	load_TLS(next, cpu);
 | |
| 
 | |
| 	/* 
 | |
| 	 * Switch FS and GS.
 | |
| 	 */
 | |
| 	{ 
 | |
| 		unsigned fsindex;
 | |
| 		asm volatile("movl %%fs,%0" : "=r" (fsindex)); 
 | |
| 		/* segment register != 0 always requires a reload. 
 | |
| 		   also reload when it has changed. 
 | |
| 		   when prev process used 64bit base always reload
 | |
| 		   to avoid an information leak. */
 | |
| 		if (unlikely(fsindex | next->fsindex | prev->fs)) {
 | |
| 			loadsegment(fs, next->fsindex);
 | |
| 			/* check if the user used a selector != 0
 | |
| 	                 * if yes clear 64bit base, since overloaded base
 | |
|                          * is always mapped to the Null selector
 | |
|                          */
 | |
| 			if (fsindex)
 | |
| 			prev->fs = 0;				
 | |
| 		}
 | |
| 		/* when next process has a 64bit base use it */
 | |
| 		if (next->fs) 
 | |
| 			wrmsrl(MSR_FS_BASE, next->fs); 
 | |
| 		prev->fsindex = fsindex;
 | |
| 	}
 | |
| 	{ 
 | |
| 		unsigned gsindex;
 | |
| 		asm volatile("movl %%gs,%0" : "=r" (gsindex)); 
 | |
| 		if (unlikely(gsindex | next->gsindex | prev->gs)) {
 | |
| 			load_gs_index(next->gsindex);
 | |
| 			if (gsindex)
 | |
| 			prev->gs = 0;				
 | |
| 		}
 | |
| 		if (next->gs)
 | |
| 			wrmsrl(MSR_KERNEL_GS_BASE, next->gs); 
 | |
| 		prev->gsindex = gsindex;
 | |
| 	}
 | |
| 
 | |
| 	/* Must be after DS reload */
 | |
| 	unlazy_fpu(prev_p);
 | |
| 
 | |
| 	/* 
 | |
| 	 * Switch the PDA and FPU contexts.
 | |
| 	 */
 | |
| 	prev->usersp = read_pda(oldrsp);
 | |
| 	write_pda(oldrsp, next->usersp);
 | |
| 	write_pda(pcurrent, next_p); 
 | |
| 
 | |
| 	write_pda(kernelstack,
 | |
| 	(unsigned long)task_stack_page(next_p) + THREAD_SIZE - PDA_STACKOFFSET);
 | |
| #ifdef CONFIG_CC_STACKPROTECTOR
 | |
| 	write_pda(stack_canary, next_p->stack_canary);
 | |
| 	/*
 | |
| 	 * Build time only check to make sure the stack_canary is at
 | |
| 	 * offset 40 in the pda; this is a gcc ABI requirement
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(offsetof(struct x8664_pda, stack_canary) != 40);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Now maybe reload the debug registers and handle I/O bitmaps
 | |
| 	 */
 | |
| 	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
 | |
| 		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
 | |
| 		__switch_to_xtra(prev_p, next_p, tss);
 | |
| 
 | |
| 	/* If the task has used fpu the last 5 timeslices, just do a full
 | |
| 	 * restore of the math state immediately to avoid the trap; the
 | |
| 	 * chances of needing FPU soon are obviously high now
 | |
| 	 */
 | |
| 	if (next_p->fpu_counter>5)
 | |
| 		math_state_restore();
 | |
| 	return prev_p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sys_execve() executes a new program.
 | |
|  */
 | |
| asmlinkage
 | |
| long sys_execve(char __user *name, char __user * __user *argv,
 | |
| 		char __user * __user *envp, struct pt_regs *regs)
 | |
| {
 | |
| 	long error;
 | |
| 	char * filename;
 | |
| 
 | |
| 	filename = getname(name);
 | |
| 	error = PTR_ERR(filename);
 | |
| 	if (IS_ERR(filename))
 | |
| 		return error;
 | |
| 	error = do_execve(filename, argv, envp, regs);
 | |
| 	putname(filename);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void set_personality_64bit(void)
 | |
| {
 | |
| 	/* inherit personality from parent */
 | |
| 
 | |
| 	/* Make sure to be in 64bit mode */
 | |
| 	clear_thread_flag(TIF_IA32);
 | |
| 
 | |
| 	/* TBD: overwrites user setup. Should have two bits.
 | |
| 	   But 64bit processes have always behaved this way,
 | |
| 	   so it's not too bad. The main problem is just that
 | |
| 	   32bit childs are affected again. */
 | |
| 	current->personality &= ~READ_IMPLIES_EXEC;
 | |
| }
 | |
| 
 | |
| asmlinkage long sys_fork(struct pt_regs *regs)
 | |
| {
 | |
| 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_clone(unsigned long clone_flags, unsigned long newsp,
 | |
| 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
 | |
| {
 | |
| 	if (!newsp)
 | |
| 		newsp = regs->sp;
 | |
| 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is trivial, and on the face of it looks like it
 | |
|  * could equally well be done in user mode.
 | |
|  *
 | |
|  * Not so, for quite unobvious reasons - register pressure.
 | |
|  * In user mode vfork() cannot have a stack frame, and if
 | |
|  * done by calling the "clone()" system call directly, you
 | |
|  * do not have enough call-clobbered registers to hold all
 | |
|  * the information you need.
 | |
|  */
 | |
| asmlinkage long sys_vfork(struct pt_regs *regs)
 | |
| {
 | |
| 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
 | |
| 		    NULL, NULL);
 | |
| }
 | |
| 
 | |
| unsigned long get_wchan(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long stack;
 | |
| 	u64 fp,ip;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (!p || p == current || p->state==TASK_RUNNING)
 | |
| 		return 0; 
 | |
| 	stack = (unsigned long)task_stack_page(p);
 | |
| 	if (p->thread.sp < stack || p->thread.sp > stack+THREAD_SIZE)
 | |
| 		return 0;
 | |
| 	fp = *(u64 *)(p->thread.sp);
 | |
| 	do { 
 | |
| 		if (fp < (unsigned long)stack ||
 | |
| 		    fp > (unsigned long)stack+THREAD_SIZE)
 | |
| 			return 0; 
 | |
| 		ip = *(u64 *)(fp+8);
 | |
| 		if (!in_sched_functions(ip))
 | |
| 			return ip;
 | |
| 		fp = *(u64 *)fp; 
 | |
| 	} while (count++ < 16); 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
 | |
| { 
 | |
| 	int ret = 0; 
 | |
| 	int doit = task == current;
 | |
| 	int cpu;
 | |
| 
 | |
| 	switch (code) { 
 | |
| 	case ARCH_SET_GS:
 | |
| 		if (addr >= TASK_SIZE_OF(task))
 | |
| 			return -EPERM; 
 | |
| 		cpu = get_cpu();
 | |
| 		/* handle small bases via the GDT because that's faster to 
 | |
| 		   switch. */
 | |
| 		if (addr <= 0xffffffff) {  
 | |
| 			set_32bit_tls(task, GS_TLS, addr); 
 | |
| 			if (doit) { 
 | |
| 				load_TLS(&task->thread, cpu);
 | |
| 				load_gs_index(GS_TLS_SEL); 
 | |
| 			}
 | |
| 			task->thread.gsindex = GS_TLS_SEL; 
 | |
| 			task->thread.gs = 0;
 | |
| 		} else { 
 | |
| 			task->thread.gsindex = 0;
 | |
| 			task->thread.gs = addr;
 | |
| 			if (doit) {
 | |
| 				load_gs_index(0);
 | |
| 				ret = checking_wrmsrl(MSR_KERNEL_GS_BASE, addr);
 | |
| 			} 
 | |
| 		}
 | |
| 		put_cpu();
 | |
| 		break;
 | |
| 	case ARCH_SET_FS:
 | |
| 		/* Not strictly needed for fs, but do it for symmetry
 | |
| 		   with gs */
 | |
| 		if (addr >= TASK_SIZE_OF(task))
 | |
| 			return -EPERM;
 | |
| 		cpu = get_cpu();
 | |
| 		/* handle small bases via the GDT because that's faster to
 | |
| 		   switch. */
 | |
| 		if (addr <= 0xffffffff) {
 | |
| 			set_32bit_tls(task, FS_TLS, addr);
 | |
| 			if (doit) {
 | |
| 				load_TLS(&task->thread, cpu);
 | |
| 				asm volatile("movl %0,%%fs" :: "r"(FS_TLS_SEL));
 | |
| 			}
 | |
| 			task->thread.fsindex = FS_TLS_SEL;
 | |
| 			task->thread.fs = 0;
 | |
| 		} else {
 | |
| 			task->thread.fsindex = 0;
 | |
| 			task->thread.fs = addr;
 | |
| 			if (doit) {
 | |
| 				/* set the selector to 0 to not confuse
 | |
| 				   __switch_to */
 | |
| 				asm volatile("movl %0,%%fs" :: "r" (0));
 | |
| 				ret = checking_wrmsrl(MSR_FS_BASE, addr);
 | |
| 			}
 | |
| 		}
 | |
| 		put_cpu();
 | |
| 		break;
 | |
| 	case ARCH_GET_FS: {
 | |
| 		unsigned long base;
 | |
| 		if (task->thread.fsindex == FS_TLS_SEL)
 | |
| 			base = read_32bit_tls(task, FS_TLS);
 | |
| 		else if (doit)
 | |
| 			rdmsrl(MSR_FS_BASE, base);
 | |
| 		else
 | |
| 			base = task->thread.fs;
 | |
| 		ret = put_user(base, (unsigned long __user *)addr);
 | |
| 		break;
 | |
| 	}
 | |
| 	case ARCH_GET_GS: {
 | |
| 		unsigned long base;
 | |
| 		unsigned gsindex;
 | |
| 		if (task->thread.gsindex == GS_TLS_SEL)
 | |
| 			base = read_32bit_tls(task, GS_TLS);
 | |
| 		else if (doit) {
 | |
| 			asm("movl %%gs,%0" : "=r" (gsindex));
 | |
| 			if (gsindex)
 | |
| 				rdmsrl(MSR_KERNEL_GS_BASE, base);
 | |
| 			else
 | |
| 				base = task->thread.gs;
 | |
| 		}
 | |
| 		else
 | |
| 			base = task->thread.gs;
 | |
| 		ret = put_user(base, (unsigned long __user *)addr);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| long sys_arch_prctl(int code, unsigned long addr)
 | |
| {
 | |
| 	return do_arch_prctl(current, code, addr);
 | |
| }
 | |
| 
 | |
| unsigned long arch_align_stack(unsigned long sp)
 | |
| {
 | |
| 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | |
| 		sp -= get_random_int() % 8192;
 | |
| 	return sp & ~0xf;
 | |
| }
 | |
| 
 | |
| unsigned long arch_randomize_brk(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long range_end = mm->brk + 0x02000000;
 | |
| 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 | |
| }
 |