 f1452d424d
			
		
	
	
	f1452d424d
	
	
	
		
			
			arch/x86/kernel/kprobes.c:584:16: warning: symbol 'kretprobe_trampoline_holder' was not declared. Should it be static? arch/x86/kernel/kprobes.c:676:6: warning: symbol 'trampoline_handler' was not declared. Should it be static? Make them static and add the __used attribute, approach taken from the arm kprobes implementation. kretprobe_trampoline_holder uses inline assemly to define the global symbol kretprobe_trampoline, but nothing ever calls the holder explicitly. trampoline handler is only called from inline assembly in the same file, mark it used and static. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			1066 lines
		
	
	
	
		
			31 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1066 lines
		
	
	
	
		
			31 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Kernel Probes (KProbes)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  *
 | |
|  * Copyright (C) IBM Corporation, 2002, 2004
 | |
|  *
 | |
|  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 | |
|  *		Probes initial implementation ( includes contributions from
 | |
|  *		Rusty Russell).
 | |
|  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 | |
|  *		interface to access function arguments.
 | |
|  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 | |
|  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
 | |
|  * 2005-Mar	Roland McGrath <roland@redhat.com>
 | |
|  *		Fixed to handle %rip-relative addressing mode correctly.
 | |
|  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 | |
|  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 | |
|  *		<prasanna@in.ibm.com> added function-return probes.
 | |
|  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
 | |
|  * 		Added function return probes functionality
 | |
|  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
 | |
|  * 		kprobe-booster and kretprobe-booster for i386.
 | |
|  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
 | |
|  * 		and kretprobe-booster for x86-64
 | |
|  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
 | |
|  * 		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
 | |
|  * 		unified x86 kprobes code.
 | |
|  */
 | |
| 
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kdebug.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/alternative.h>
 | |
| 
 | |
| void jprobe_return_end(void);
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #define stack_addr(regs) ((unsigned long *)regs->sp)
 | |
| #else
 | |
| /*
 | |
|  * "®s->sp" looks wrong, but it's correct for x86_32.  x86_32 CPUs
 | |
|  * don't save the ss and esp registers if the CPU is already in kernel
 | |
|  * mode when it traps.  So for kprobes, regs->sp and regs->ss are not
 | |
|  * the [nonexistent] saved stack pointer and ss register, but rather
 | |
|  * the top 8 bytes of the pre-int3 stack.  So ®s->sp happens to
 | |
|  * point to the top of the pre-int3 stack.
 | |
|  */
 | |
| #define stack_addr(regs) ((unsigned long *)®s->sp)
 | |
| #endif
 | |
| 
 | |
| #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
 | |
| 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
 | |
| 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
 | |
| 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
 | |
| 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
 | |
| 	 << (row % 32))
 | |
| 	/*
 | |
| 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
 | |
| 	 * Groups, and some special opcodes can not boost.
 | |
| 	 */
 | |
| static const u32 twobyte_is_boostable[256 / 32] = {
 | |
| 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 | |
| 	/*      ----------------------------------------------          */
 | |
| 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
 | |
| 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
 | |
| 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
 | |
| 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
 | |
| 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 | |
| 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
 | |
| 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
 | |
| 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
 | |
| 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
 | |
| 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 | |
| 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
 | |
| 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
 | |
| 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 | |
| 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
 | |
| 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
 | |
| 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
 | |
| 	/*      -----------------------------------------------         */
 | |
| 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 | |
| };
 | |
| static const u32 onebyte_has_modrm[256 / 32] = {
 | |
| 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 | |
| 	/*      -----------------------------------------------         */
 | |
| 	W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 00 */
 | |
| 	W(0x10, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 10 */
 | |
| 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 20 */
 | |
| 	W(0x30, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 30 */
 | |
| 	W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
 | |
| 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
 | |
| 	W(0x60, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) | /* 60 */
 | |
| 	W(0x70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 70 */
 | |
| 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 | |
| 	W(0x90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 90 */
 | |
| 	W(0xa0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* a0 */
 | |
| 	W(0xb0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* b0 */
 | |
| 	W(0xc0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* c0 */
 | |
| 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 | |
| 	W(0xe0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* e0 */
 | |
| 	W(0xf0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)   /* f0 */
 | |
| 	/*      -----------------------------------------------         */
 | |
| 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 | |
| };
 | |
| static const u32 twobyte_has_modrm[256 / 32] = {
 | |
| 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 | |
| 	/*      -----------------------------------------------         */
 | |
| 	W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) | /* 0f */
 | |
| 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) , /* 1f */
 | |
| 	W(0x20, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 2f */
 | |
| 	W(0x30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 3f */
 | |
| 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 4f */
 | |
| 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 5f */
 | |
| 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 6f */
 | |
| 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1) , /* 7f */
 | |
| 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 8f */
 | |
| 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 9f */
 | |
| 	W(0xa0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) | /* af */
 | |
| 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* bf */
 | |
| 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* cf */
 | |
| 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* df */
 | |
| 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* ef */
 | |
| 	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* ff */
 | |
| 	/*      -----------------------------------------------         */
 | |
| 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 | |
| };
 | |
| #undef W
 | |
| 
 | |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {
 | |
| 	{"__switch_to", }, /* This function switches only current task, but
 | |
| 			      doesn't switch kernel stack.*/
 | |
| 	{NULL, NULL}	/* Terminator */
 | |
| };
 | |
| const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 | |
| 
 | |
| /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 | |
| static void __kprobes set_jmp_op(void *from, void *to)
 | |
| {
 | |
| 	struct __arch_jmp_op {
 | |
| 		char op;
 | |
| 		s32 raddr;
 | |
| 	} __attribute__((packed)) * jop;
 | |
| 	jop = (struct __arch_jmp_op *)from;
 | |
| 	jop->raddr = (s32)((long)(to) - ((long)(from) + 5));
 | |
| 	jop->op = RELATIVEJUMP_INSTRUCTION;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for the REX prefix which can only exist on X86_64
 | |
|  * X86_32 always returns 0
 | |
|  */
 | |
| static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if ((*insn & 0xf0) == 0x40)
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns non-zero if opcode is boostable.
 | |
|  * RIP relative instructions are adjusted at copying time in 64 bits mode
 | |
|  */
 | |
| static int __kprobes can_boost(kprobe_opcode_t *opcodes)
 | |
| {
 | |
| 	kprobe_opcode_t opcode;
 | |
| 	kprobe_opcode_t *orig_opcodes = opcodes;
 | |
| 
 | |
| retry:
 | |
| 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 | |
| 		return 0;
 | |
| 	opcode = *(opcodes++);
 | |
| 
 | |
| 	/* 2nd-byte opcode */
 | |
| 	if (opcode == 0x0f) {
 | |
| 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 | |
| 			return 0;
 | |
| 		return test_bit(*opcodes,
 | |
| 				(unsigned long *)twobyte_is_boostable);
 | |
| 	}
 | |
| 
 | |
| 	switch (opcode & 0xf0) {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case 0x40:
 | |
| 		goto retry; /* REX prefix is boostable */
 | |
| #endif
 | |
| 	case 0x60:
 | |
| 		if (0x63 < opcode && opcode < 0x67)
 | |
| 			goto retry; /* prefixes */
 | |
| 		/* can't boost Address-size override and bound */
 | |
| 		return (opcode != 0x62 && opcode != 0x67);
 | |
| 	case 0x70:
 | |
| 		return 0; /* can't boost conditional jump */
 | |
| 	case 0xc0:
 | |
| 		/* can't boost software-interruptions */
 | |
| 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 | |
| 	case 0xd0:
 | |
| 		/* can boost AA* and XLAT */
 | |
| 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 | |
| 	case 0xe0:
 | |
| 		/* can boost in/out and absolute jmps */
 | |
| 		return ((opcode & 0x04) || opcode == 0xea);
 | |
| 	case 0xf0:
 | |
| 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
 | |
| 			goto retry; /* lock/rep(ne) prefix */
 | |
| 		/* clear and set flags are boostable */
 | |
| 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 | |
| 	default:
 | |
| 		/* segment override prefixes are boostable */
 | |
| 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
 | |
| 			goto retry; /* prefixes */
 | |
| 		/* CS override prefix and call are not boostable */
 | |
| 		return (opcode != 0x2e && opcode != 0x9a);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns non-zero if opcode modifies the interrupt flag.
 | |
|  */
 | |
| static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
 | |
| {
 | |
| 	switch (*insn) {
 | |
| 	case 0xfa:		/* cli */
 | |
| 	case 0xfb:		/* sti */
 | |
| 	case 0xcf:		/* iret/iretd */
 | |
| 	case 0x9d:		/* popf/popfd */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
 | |
| 	 * at the next byte instead.. but of course not recurse infinitely
 | |
| 	 */
 | |
| 	if (is_REX_prefix(insn))
 | |
| 		return is_IF_modifier(++insn);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adjust the displacement if the instruction uses the %rip-relative
 | |
|  * addressing mode.
 | |
|  * If it does, Return the address of the 32-bit displacement word.
 | |
|  * If not, return null.
 | |
|  * Only applicable to 64-bit x86.
 | |
|  */
 | |
| static void __kprobes fix_riprel(struct kprobe *p)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	u8 *insn = p->ainsn.insn;
 | |
| 	s64 disp;
 | |
| 	int need_modrm;
 | |
| 
 | |
| 	/* Skip legacy instruction prefixes.  */
 | |
| 	while (1) {
 | |
| 		switch (*insn) {
 | |
| 		case 0x66:
 | |
| 		case 0x67:
 | |
| 		case 0x2e:
 | |
| 		case 0x3e:
 | |
| 		case 0x26:
 | |
| 		case 0x64:
 | |
| 		case 0x65:
 | |
| 		case 0x36:
 | |
| 		case 0xf0:
 | |
| 		case 0xf3:
 | |
| 		case 0xf2:
 | |
| 			++insn;
 | |
| 			continue;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip REX instruction prefix.  */
 | |
| 	if (is_REX_prefix(insn))
 | |
| 		++insn;
 | |
| 
 | |
| 	if (*insn == 0x0f) {
 | |
| 		/* Two-byte opcode.  */
 | |
| 		++insn;
 | |
| 		need_modrm = test_bit(*insn,
 | |
| 				      (unsigned long *)twobyte_has_modrm);
 | |
| 	} else
 | |
| 		/* One-byte opcode.  */
 | |
| 		need_modrm = test_bit(*insn,
 | |
| 				      (unsigned long *)onebyte_has_modrm);
 | |
| 
 | |
| 	if (need_modrm) {
 | |
| 		u8 modrm = *++insn;
 | |
| 		if ((modrm & 0xc7) == 0x05) {
 | |
| 			/* %rip+disp32 addressing mode */
 | |
| 			/* Displacement follows ModRM byte.  */
 | |
| 			++insn;
 | |
| 			/*
 | |
| 			 * The copied instruction uses the %rip-relative
 | |
| 			 * addressing mode.  Adjust the displacement for the
 | |
| 			 * difference between the original location of this
 | |
| 			 * instruction and the location of the copy that will
 | |
| 			 * actually be run.  The tricky bit here is making sure
 | |
| 			 * that the sign extension happens correctly in this
 | |
| 			 * calculation, since we need a signed 32-bit result to
 | |
| 			 * be sign-extended to 64 bits when it's added to the
 | |
| 			 * %rip value and yield the same 64-bit result that the
 | |
| 			 * sign-extension of the original signed 32-bit
 | |
| 			 * displacement would have given.
 | |
| 			 */
 | |
| 			disp = (u8 *) p->addr + *((s32 *) insn) -
 | |
| 			       (u8 *) p->ainsn.insn;
 | |
| 			BUG_ON((s64) (s32) disp != disp); /* Sanity check.  */
 | |
| 			*(s32 *)insn = (s32) disp;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __kprobes arch_copy_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 	fix_riprel(p);
 | |
| 
 | |
| 	if (can_boost(p->addr))
 | |
| 		p->ainsn.boostable = 0;
 | |
| 	else
 | |
| 		p->ainsn.boostable = -1;
 | |
| 
 | |
| 	p->opcode = *p->addr;
 | |
| }
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	/* insn: must be on special executable page on x86. */
 | |
| 	p->ainsn.insn = get_insn_slot();
 | |
| 	if (!p->ainsn.insn)
 | |
| 		return -ENOMEM;
 | |
| 	arch_copy_kprobe(p);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	text_poke(p->addr, &p->opcode, 1);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	mutex_lock(&kprobe_mutex);
 | |
| 	free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
 | |
| 	mutex_unlock(&kprobe_mutex);
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 | |
| 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 | |
| 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 | |
| }
 | |
| 
 | |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 | |
| 				struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 | |
| 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 | |
| 	if (is_IF_modifier(p->ainsn.insn))
 | |
| 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
 | |
| }
 | |
| 
 | |
| static void __kprobes clear_btf(void)
 | |
| {
 | |
| 	if (test_thread_flag(TIF_DEBUGCTLMSR))
 | |
| 		wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_btf(void)
 | |
| {
 | |
| 	if (test_thread_flag(TIF_DEBUGCTLMSR))
 | |
| 		wrmsrl(MSR_IA32_DEBUGCTLMSR, current->thread.debugctlmsr);
 | |
| }
 | |
| 
 | |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	clear_btf();
 | |
| 	regs->flags |= X86_EFLAGS_TF;
 | |
| 	regs->flags &= ~X86_EFLAGS_IF;
 | |
| 	/* single step inline if the instruction is an int3 */
 | |
| 	if (p->opcode == BREAKPOINT_INSTRUCTION)
 | |
| 		regs->ip = (unsigned long)p->addr;
 | |
| 	else
 | |
| 		regs->ip = (unsigned long)p->ainsn.insn;
 | |
| }
 | |
| 
 | |
| /* Called with kretprobe_lock held */
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long *sara = stack_addr(regs);
 | |
| 
 | |
| 	ri->ret_addr = (kprobe_opcode_t *) *sara;
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	*sara = (unsigned long) &kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 | |
| 				       struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
 | |
| 	if (p->ainsn.boostable == 1 && !p->post_handler) {
 | |
| 		/* Boost up -- we can execute copied instructions directly */
 | |
| 		reset_current_kprobe();
 | |
| 		regs->ip = (unsigned long)p->ainsn.insn;
 | |
| 		preempt_enable_no_resched();
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	prepare_singlestep(p, regs);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have reentered the kprobe_handler(), since another probe was hit while
 | |
|  * within the handler. We save the original kprobes variables and just single
 | |
|  * step on the instruction of the new probe without calling any user handlers.
 | |
|  */
 | |
| static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 | |
| 				    struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	switch (kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| #ifdef CONFIG_X86_64
 | |
| 		/* TODO: Provide re-entrancy from post_kprobes_handler() and
 | |
| 		 * avoid exception stack corruption while single-stepping on
 | |
| 		 * the instruction of the new probe.
 | |
| 		 */
 | |
| 		arch_disarm_kprobe(p);
 | |
| 		regs->ip = (unsigned long)p->addr;
 | |
| 		reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| #endif
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 		save_previous_kprobe(kcb);
 | |
| 		set_current_kprobe(p, regs, kcb);
 | |
| 		kprobes_inc_nmissed_count(p);
 | |
| 		prepare_singlestep(p, regs);
 | |
| 		kcb->kprobe_status = KPROBE_REENTER;
 | |
| 		break;
 | |
| 	case KPROBE_HIT_SS:
 | |
| 		if (p == kprobe_running()) {
 | |
| 			regs->flags &= ~TF_MASK;
 | |
| 			regs->flags |= kcb->kprobe_saved_flags;
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			/* A probe has been hit in the codepath leading up
 | |
| 			 * to, or just after, single-stepping of a probed
 | |
| 			 * instruction. This entire codepath should strictly
 | |
| 			 * reside in .kprobes.text section. Raise a warning
 | |
| 			 * to highlight this peculiar case.
 | |
| 			 */
 | |
| 		}
 | |
| 	default:
 | |
| 		/* impossible cases */
 | |
| 		WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 | |
|  * remain disabled thorough out this function.
 | |
|  */
 | |
| static int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	kprobe_opcode_t *addr;
 | |
| 	struct kprobe *p;
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 | |
| 	if (*addr != BREAKPOINT_INSTRUCTION) {
 | |
| 		/*
 | |
| 		 * The breakpoint instruction was removed right
 | |
| 		 * after we hit it.  Another cpu has removed
 | |
| 		 * either a probepoint or a debugger breakpoint
 | |
| 		 * at this address.  In either case, no further
 | |
| 		 * handling of this interrupt is appropriate.
 | |
| 		 * Back up over the (now missing) int3 and run
 | |
| 		 * the original instruction.
 | |
| 		 */
 | |
| 		regs->ip = (unsigned long)addr;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to be preempted for the entire
 | |
| 	 * duration of kprobe processing. We conditionally
 | |
| 	 * re-enable preemption at the end of this function,
 | |
| 	 * and also in reenter_kprobe() and setup_singlestep().
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 	p = get_kprobe(addr);
 | |
| 
 | |
| 	if (p) {
 | |
| 		if (kprobe_running()) {
 | |
| 			if (reenter_kprobe(p, regs, kcb))
 | |
| 				return 1;
 | |
| 		} else {
 | |
| 			set_current_kprobe(p, regs, kcb);
 | |
| 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 
 | |
| 			/*
 | |
| 			 * If we have no pre-handler or it returned 0, we
 | |
| 			 * continue with normal processing.  If we have a
 | |
| 			 * pre-handler and it returned non-zero, it prepped
 | |
| 			 * for calling the break_handler below on re-entry
 | |
| 			 * for jprobe processing, so get out doing nothing
 | |
| 			 * more here.
 | |
| 			 */
 | |
| 			if (!p->pre_handler || !p->pre_handler(p, regs))
 | |
| 				setup_singlestep(p, regs, kcb);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else if (kprobe_running()) {
 | |
| 		p = __get_cpu_var(current_kprobe);
 | |
| 		if (p->break_handler && p->break_handler(p, regs)) {
 | |
| 			setup_singlestep(p, regs, kcb);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} /* else: not a kprobe fault; let the kernel handle it */
 | |
| 
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a retprobed function returns, this code saves registers and
 | |
|  * calls trampoline_handler() runs, which calls the kretprobe's handler.
 | |
|  */
 | |
| static void __used __kprobes kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	asm volatile (
 | |
| 			".global kretprobe_trampoline\n"
 | |
| 			"kretprobe_trampoline: \n"
 | |
| #ifdef CONFIG_X86_64
 | |
| 			/* We don't bother saving the ss register */
 | |
| 			"	pushq %rsp\n"
 | |
| 			"	pushfq\n"
 | |
| 			/*
 | |
| 			 * Skip cs, ip, orig_ax.
 | |
| 			 * trampoline_handler() will plug in these values
 | |
| 			 */
 | |
| 			"	subq $24, %rsp\n"
 | |
| 			"	pushq %rdi\n"
 | |
| 			"	pushq %rsi\n"
 | |
| 			"	pushq %rdx\n"
 | |
| 			"	pushq %rcx\n"
 | |
| 			"	pushq %rax\n"
 | |
| 			"	pushq %r8\n"
 | |
| 			"	pushq %r9\n"
 | |
| 			"	pushq %r10\n"
 | |
| 			"	pushq %r11\n"
 | |
| 			"	pushq %rbx\n"
 | |
| 			"	pushq %rbp\n"
 | |
| 			"	pushq %r12\n"
 | |
| 			"	pushq %r13\n"
 | |
| 			"	pushq %r14\n"
 | |
| 			"	pushq %r15\n"
 | |
| 			"	movq %rsp, %rdi\n"
 | |
| 			"	call trampoline_handler\n"
 | |
| 			/* Replace saved sp with true return address. */
 | |
| 			"	movq %rax, 152(%rsp)\n"
 | |
| 			"	popq %r15\n"
 | |
| 			"	popq %r14\n"
 | |
| 			"	popq %r13\n"
 | |
| 			"	popq %r12\n"
 | |
| 			"	popq %rbp\n"
 | |
| 			"	popq %rbx\n"
 | |
| 			"	popq %r11\n"
 | |
| 			"	popq %r10\n"
 | |
| 			"	popq %r9\n"
 | |
| 			"	popq %r8\n"
 | |
| 			"	popq %rax\n"
 | |
| 			"	popq %rcx\n"
 | |
| 			"	popq %rdx\n"
 | |
| 			"	popq %rsi\n"
 | |
| 			"	popq %rdi\n"
 | |
| 			/* Skip orig_ax, ip, cs */
 | |
| 			"	addq $24, %rsp\n"
 | |
| 			"	popfq\n"
 | |
| #else
 | |
| 			"	pushf\n"
 | |
| 			/*
 | |
| 			 * Skip cs, ip, orig_ax.
 | |
| 			 * trampoline_handler() will plug in these values
 | |
| 			 */
 | |
| 			"	subl $12, %esp\n"
 | |
| 			"	pushl %fs\n"
 | |
| 			"	pushl %ds\n"
 | |
| 			"	pushl %es\n"
 | |
| 			"	pushl %eax\n"
 | |
| 			"	pushl %ebp\n"
 | |
| 			"	pushl %edi\n"
 | |
| 			"	pushl %esi\n"
 | |
| 			"	pushl %edx\n"
 | |
| 			"	pushl %ecx\n"
 | |
| 			"	pushl %ebx\n"
 | |
| 			"	movl %esp, %eax\n"
 | |
| 			"	call trampoline_handler\n"
 | |
| 			/* Move flags to cs */
 | |
| 			"	movl 52(%esp), %edx\n"
 | |
| 			"	movl %edx, 48(%esp)\n"
 | |
| 			/* Replace saved flags with true return address. */
 | |
| 			"	movl %eax, 52(%esp)\n"
 | |
| 			"	popl %ebx\n"
 | |
| 			"	popl %ecx\n"
 | |
| 			"	popl %edx\n"
 | |
| 			"	popl %esi\n"
 | |
| 			"	popl %edi\n"
 | |
| 			"	popl %ebp\n"
 | |
| 			"	popl %eax\n"
 | |
| 			/* Skip ip, orig_ax, es, ds, fs */
 | |
| 			"	addl $20, %esp\n"
 | |
| 			"	popf\n"
 | |
| #endif
 | |
| 			"	ret\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from kretprobe_trampoline
 | |
|  */
 | |
| static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *node, *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	spin_lock_irqsave(&kretprobe_lock, flags);
 | |
| 	head = kretprobe_inst_table_head(current);
 | |
| 	/* fixup registers */
 | |
| #ifdef CONFIG_X86_64
 | |
| 	regs->cs = __KERNEL_CS;
 | |
| #else
 | |
| 	regs->cs = __KERNEL_CS | get_kernel_rpl();
 | |
| #endif
 | |
| 	regs->ip = trampoline_address;
 | |
| 	regs->orig_ax = ~0UL;
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because multiple functions in the call path have
 | |
| 	 * return probes installed on them, and/or more then one
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always pushed into the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *	 function, the (chronologically) first instance's ret_addr
 | |
| 	 *	 will be the real return address, and all the rest will
 | |
| 	 *	 point to kretprobe_trampoline.
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler) {
 | |
| 			__get_cpu_var(current_kprobe) = &ri->rp->kp;
 | |
| 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 			__get_cpu_var(current_kprobe) = NULL;
 | |
| 		}
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&kretprobe_lock, flags);
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 	return (void *)orig_ret_address;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after single-stepping.  p->addr is the address of the
 | |
|  * instruction whose first byte has been replaced by the "int 3"
 | |
|  * instruction.  To avoid the SMP problems that can occur when we
 | |
|  * temporarily put back the original opcode to single-step, we
 | |
|  * single-stepped a copy of the instruction.  The address of this
 | |
|  * copy is p->ainsn.insn.
 | |
|  *
 | |
|  * This function prepares to return from the post-single-step
 | |
|  * interrupt.  We have to fix up the stack as follows:
 | |
|  *
 | |
|  * 0) Except in the case of absolute or indirect jump or call instructions,
 | |
|  * the new ip is relative to the copied instruction.  We need to make
 | |
|  * it relative to the original instruction.
 | |
|  *
 | |
|  * 1) If the single-stepped instruction was pushfl, then the TF and IF
 | |
|  * flags are set in the just-pushed flags, and may need to be cleared.
 | |
|  *
 | |
|  * 2) If the single-stepped instruction was a call, the return address
 | |
|  * that is atop the stack is the address following the copied instruction.
 | |
|  * We need to make it the address following the original instruction.
 | |
|  *
 | |
|  * If this is the first time we've single-stepped the instruction at
 | |
|  * this probepoint, and the instruction is boostable, boost it: add a
 | |
|  * jump instruction after the copied instruction, that jumps to the next
 | |
|  * instruction after the probepoint.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p,
 | |
| 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	unsigned long *tos = stack_addr(regs);
 | |
| 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 | |
| 	unsigned long orig_ip = (unsigned long)p->addr;
 | |
| 	kprobe_opcode_t *insn = p->ainsn.insn;
 | |
| 
 | |
| 	/*skip the REX prefix*/
 | |
| 	if (is_REX_prefix(insn))
 | |
| 		insn++;
 | |
| 
 | |
| 	regs->flags &= ~X86_EFLAGS_TF;
 | |
| 	switch (*insn) {
 | |
| 	case 0x9c:	/* pushfl */
 | |
| 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
 | |
| 		*tos |= kcb->kprobe_old_flags;
 | |
| 		break;
 | |
| 	case 0xc2:	/* iret/ret/lret */
 | |
| 	case 0xc3:
 | |
| 	case 0xca:
 | |
| 	case 0xcb:
 | |
| 	case 0xcf:
 | |
| 	case 0xea:	/* jmp absolute -- ip is correct */
 | |
| 		/* ip is already adjusted, no more changes required */
 | |
| 		p->ainsn.boostable = 1;
 | |
| 		goto no_change;
 | |
| 	case 0xe8:	/* call relative - Fix return addr */
 | |
| 		*tos = orig_ip + (*tos - copy_ip);
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_32
 | |
| 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
 | |
| 		*tos = orig_ip + (*tos - copy_ip);
 | |
| 		goto no_change;
 | |
| #endif
 | |
| 	case 0xff:
 | |
| 		if ((insn[1] & 0x30) == 0x10) {
 | |
| 			/*
 | |
| 			 * call absolute, indirect
 | |
| 			 * Fix return addr; ip is correct.
 | |
| 			 * But this is not boostable
 | |
| 			 */
 | |
| 			*tos = orig_ip + (*tos - copy_ip);
 | |
| 			goto no_change;
 | |
| 		} else if (((insn[1] & 0x31) == 0x20) ||
 | |
| 			   ((insn[1] & 0x31) == 0x21)) {
 | |
| 			/*
 | |
| 			 * jmp near and far, absolute indirect
 | |
| 			 * ip is correct. And this is boostable
 | |
| 			 */
 | |
| 			p->ainsn.boostable = 1;
 | |
| 			goto no_change;
 | |
| 		}
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (p->ainsn.boostable == 0) {
 | |
| 		if ((regs->ip > copy_ip) &&
 | |
| 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
 | |
| 			/*
 | |
| 			 * These instructions can be executed directly if it
 | |
| 			 * jumps back to correct address.
 | |
| 			 */
 | |
| 			set_jmp_op((void *)regs->ip,
 | |
| 				   (void *)orig_ip + (regs->ip - copy_ip));
 | |
| 			p->ainsn.boostable = 1;
 | |
| 		} else {
 | |
| 			p->ainsn.boostable = -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	regs->ip += orig_ip - copy_ip;
 | |
| 
 | |
| no_change:
 | |
| 	restore_btf();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 | |
|  * remain disabled thoroughout this function.
 | |
|  */
 | |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	resume_execution(cur, regs, kcb);
 | |
| 	regs->flags |= kcb->kprobe_saved_flags;
 | |
| 	trace_hardirqs_fixup_flags(regs->flags);
 | |
| 
 | |
| 	/* Restore back the original saved kprobes variables and continue. */
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	reset_current_kprobe();
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	/*
 | |
| 	 * if somebody else is singlestepping across a probe point, flags
 | |
| 	 * will have TF set, in which case, continue the remaining processing
 | |
| 	 * of do_debug, as if this is not a probe hit.
 | |
| 	 */
 | |
| 	if (regs->flags & X86_EFLAGS_TF)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	switch (kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe and the ip points back to the probe address
 | |
| 		 * and allow the page fault handler to continue as a
 | |
| 		 * normal page fault.
 | |
| 		 */
 | |
| 		regs->ip = (unsigned long)cur->addr;
 | |
| 		regs->flags |= kcb->kprobe_old_flags;
 | |
| 		if (kcb->kprobe_status == KPROBE_REENTER)
 | |
| 			restore_previous_kprobe(kcb);
 | |
| 		else
 | |
| 			reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accounting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it first.
 | |
| 		 */
 | |
| 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the user-specified fault handler returned
 | |
| 		 * zero, try to fix up.
 | |
| 		 */
 | |
| 		if (fixup_exception(regs))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup routine could not handle it,
 | |
| 		 * Let do_page_fault() fix it.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = data;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	if (args->regs && user_mode_vm(args->regs))
 | |
| 		return ret;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_INT3:
 | |
| 		if (kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_DEBUG:
 | |
| 		if (post_kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_GPF:
 | |
| 		/*
 | |
| 		 * To be potentially processing a kprobe fault and to
 | |
| 		 * trust the result from kprobe_running(), we have
 | |
| 		 * be non-preemptible.
 | |
| 		 */
 | |
| 		if (!preemptible() && kprobe_running() &&
 | |
| 		    kprobe_fault_handler(args->regs, args->trapnr))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	unsigned long addr;
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	kcb->jprobe_saved_regs = *regs;
 | |
| 	kcb->jprobe_saved_sp = stack_addr(regs);
 | |
| 	addr = (unsigned long)(kcb->jprobe_saved_sp);
 | |
| 
 | |
| 	/*
 | |
| 	 * As Linus pointed out, gcc assumes that the callee
 | |
| 	 * owns the argument space and could overwrite it, e.g.
 | |
| 	 * tailcall optimization. So, to be absolutely safe
 | |
| 	 * we also save and restore enough stack bytes to cover
 | |
| 	 * the argument area.
 | |
| 	 */
 | |
| 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
 | |
| 	       MIN_STACK_SIZE(addr));
 | |
| 	regs->flags &= ~X86_EFLAGS_IF;
 | |
| 	trace_hardirqs_off();
 | |
| 	regs->ip = (unsigned long)(jp->entry);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	asm volatile (
 | |
| #ifdef CONFIG_X86_64
 | |
| 			"       xchg   %%rbx,%%rsp	\n"
 | |
| #else
 | |
| 			"       xchgl   %%ebx,%%esp	\n"
 | |
| #endif
 | |
| 			"       int3			\n"
 | |
| 			"       .globl jprobe_return_end\n"
 | |
| 			"       jprobe_return_end:	\n"
 | |
| 			"       nop			\n"::"b"
 | |
| 			(kcb->jprobe_saved_sp):"memory");
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	u8 *addr = (u8 *) (regs->ip - 1);
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 
 | |
| 	if ((addr > (u8 *) jprobe_return) &&
 | |
| 	    (addr < (u8 *) jprobe_return_end)) {
 | |
| 		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
 | |
| 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
 | |
| 			printk(KERN_ERR
 | |
| 			       "current sp %p does not match saved sp %p\n",
 | |
| 			       stack_addr(regs), kcb->jprobe_saved_sp);
 | |
| 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
 | |
| 			show_registers(saved_regs);
 | |
| 			printk(KERN_ERR "Current registers\n");
 | |
| 			show_registers(regs);
 | |
| 			BUG();
 | |
| 		}
 | |
| 		*regs = kcb->jprobe_saved_regs;
 | |
| 		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
 | |
| 		       kcb->jprobes_stack,
 | |
| 		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
 | |
| 		preempt_enable_no_resched();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	return 0;
 | |
| }
 |