 3796958130
			
		
	
	
	3796958130
	
	
	
		
			
			* 'for-2.6.25' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc: (69 commits) [POWERPC] Add SPE registers to core dumps [POWERPC] Use regset code for compat PTRACE_*REGS* calls [POWERPC] Use generic compat_sys_ptrace [POWERPC] Use generic compat_ptrace_request [POWERPC] Use generic ptrace peekdata/pokedata [POWERPC] Use regset code for PTRACE_*REGS* requests [POWERPC] Switch to generic compat_binfmt_elf code [POWERPC] Switch to using user_regset-based core dumps [POWERPC] Add user_regset compat support [POWERPC] Add user_regset_view definitions [POWERPC] Use user_regset accessors for GPRs [POWERPC] ptrace accessors for special regs MSR and TRAP [POWERPC] Use user_regset accessors for SPE regs [POWERPC] Use user_regset accessors for altivec regs [POWERPC] Use user_regset accessors for FP regs [POWERPC] mpc52xx: fix compile error introduce when rebasing patch [POWERPC] 4xx: PCIe indirect DCR spinlock fix. [POWERPC] Add missing native dcr dcr_ind_lock spinlock [POWERPC] 4xx: Fix offset value on Warp board [POWERPC] 4xx: Add 440EPx Sequoia ehci dts entry ...
		
			
				
	
	
		
			826 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			826 lines
		
	
	
	
		
			20 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * pSeries NUMA support
 | |
|  *
 | |
|  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| #include <linux/threads.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <asm/sparsemem.h>
 | |
| #include <asm/lmb.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/smp.h>
 | |
| 
 | |
| static int numa_enabled = 1;
 | |
| 
 | |
| static char *cmdline __initdata;
 | |
| 
 | |
| static int numa_debug;
 | |
| #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
 | |
| 
 | |
| int numa_cpu_lookup_table[NR_CPUS];
 | |
| cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 | |
| struct pglist_data *node_data[MAX_NUMNODES];
 | |
| 
 | |
| EXPORT_SYMBOL(numa_cpu_lookup_table);
 | |
| EXPORT_SYMBOL(numa_cpumask_lookup_table);
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
 | |
| static int min_common_depth;
 | |
| static int n_mem_addr_cells, n_mem_size_cells;
 | |
| 
 | |
| static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
 | |
| 						unsigned int *nid)
 | |
| {
 | |
| 	unsigned long long mem;
 | |
| 	char *p = cmdline;
 | |
| 	static unsigned int fake_nid;
 | |
| 	static unsigned long long curr_boundary;
 | |
| 
 | |
| 	/*
 | |
| 	 * Modify node id, iff we started creating NUMA nodes
 | |
| 	 * We want to continue from where we left of the last time
 | |
| 	 */
 | |
| 	if (fake_nid)
 | |
| 		*nid = fake_nid;
 | |
| 	/*
 | |
| 	 * In case there are no more arguments to parse, the
 | |
| 	 * node_id should be the same as the last fake node id
 | |
| 	 * (we've handled this above).
 | |
| 	 */
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	mem = memparse(p, &p);
 | |
| 	if (!mem)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mem < curr_boundary)
 | |
| 		return 0;
 | |
| 
 | |
| 	curr_boundary = mem;
 | |
| 
 | |
| 	if ((end_pfn << PAGE_SHIFT) > mem) {
 | |
| 		/*
 | |
| 		 * Skip commas and spaces
 | |
| 		 */
 | |
| 		while (*p == ',' || *p == ' ' || *p == '\t')
 | |
| 			p++;
 | |
| 
 | |
| 		cmdline = p;
 | |
| 		fake_nid++;
 | |
| 		*nid = fake_nid;
 | |
| 		dbg("created new fake_node with id %d\n", fake_nid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __cpuinit map_cpu_to_node(int cpu, int node)
 | |
| {
 | |
| 	numa_cpu_lookup_table[cpu] = node;
 | |
| 
 | |
| 	dbg("adding cpu %d to node %d\n", cpu, node);
 | |
| 
 | |
| 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
 | |
| 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static void unmap_cpu_from_node(unsigned long cpu)
 | |
| {
 | |
| 	int node = numa_cpu_lookup_table[cpu];
 | |
| 
 | |
| 	dbg("removing cpu %lu from node %d\n", cpu, node);
 | |
| 
 | |
| 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
 | |
| 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
 | |
| 	} else {
 | |
| 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 | |
| 		       cpu, node);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
 | |
| {
 | |
| 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
 | |
| 	struct device_node *cpu_node = NULL;
 | |
| 	const unsigned int *interrupt_server, *reg;
 | |
| 	int len;
 | |
| 
 | |
| 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
 | |
| 		/* Try interrupt server first */
 | |
| 		interrupt_server = of_get_property(cpu_node,
 | |
| 					"ibm,ppc-interrupt-server#s", &len);
 | |
| 
 | |
| 		len = len / sizeof(u32);
 | |
| 
 | |
| 		if (interrupt_server && (len > 0)) {
 | |
| 			while (len--) {
 | |
| 				if (interrupt_server[len] == hw_cpuid)
 | |
| 					return cpu_node;
 | |
| 			}
 | |
| 		} else {
 | |
| 			reg = of_get_property(cpu_node, "reg", &len);
 | |
| 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
 | |
| 				return cpu_node;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* must hold reference to node during call */
 | |
| static const int *of_get_associativity(struct device_node *dev)
 | |
| {
 | |
| 	return of_get_property(dev, "ibm,associativity", NULL);
 | |
| }
 | |
| 
 | |
| /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 | |
|  * info is found.
 | |
|  */
 | |
| static int of_node_to_nid_single(struct device_node *device)
 | |
| {
 | |
| 	int nid = -1;
 | |
| 	const unsigned int *tmp;
 | |
| 
 | |
| 	if (min_common_depth == -1)
 | |
| 		goto out;
 | |
| 
 | |
| 	tmp = of_get_associativity(device);
 | |
| 	if (!tmp)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (tmp[0] >= min_common_depth)
 | |
| 		nid = tmp[min_common_depth];
 | |
| 
 | |
| 	/* POWER4 LPAR uses 0xffff as invalid node */
 | |
| 	if (nid == 0xffff || nid >= MAX_NUMNODES)
 | |
| 		nid = -1;
 | |
| out:
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /* Walk the device tree upwards, looking for an associativity id */
 | |
| int of_node_to_nid(struct device_node *device)
 | |
| {
 | |
| 	struct device_node *tmp;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	of_node_get(device);
 | |
| 	while (device) {
 | |
| 		nid = of_node_to_nid_single(device);
 | |
| 		if (nid != -1)
 | |
| 			break;
 | |
| 
 | |
| 	        tmp = device;
 | |
| 		device = of_get_parent(tmp);
 | |
| 		of_node_put(tmp);
 | |
| 	}
 | |
| 	of_node_put(device);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(of_node_to_nid);
 | |
| 
 | |
| /*
 | |
|  * In theory, the "ibm,associativity" property may contain multiple
 | |
|  * associativity lists because a resource may be multiply connected
 | |
|  * into the machine.  This resource then has different associativity
 | |
|  * characteristics relative to its multiple connections.  We ignore
 | |
|  * this for now.  We also assume that all cpu and memory sets have
 | |
|  * their distances represented at a common level.  This won't be
 | |
|  * true for hierarchical NUMA.
 | |
|  *
 | |
|  * In any case the ibm,associativity-reference-points should give
 | |
|  * the correct depth for a normal NUMA system.
 | |
|  *
 | |
|  * - Dave Hansen <haveblue@us.ibm.com>
 | |
|  */
 | |
| static int __init find_min_common_depth(void)
 | |
| {
 | |
| 	int depth;
 | |
| 	const unsigned int *ref_points;
 | |
| 	struct device_node *rtas_root;
 | |
| 	unsigned int len;
 | |
| 
 | |
| 	rtas_root = of_find_node_by_path("/rtas");
 | |
| 
 | |
| 	if (!rtas_root)
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * this property is 2 32-bit integers, each representing a level of
 | |
| 	 * depth in the associativity nodes.  The first is for an SMP
 | |
| 	 * configuration (should be all 0's) and the second is for a normal
 | |
| 	 * NUMA configuration.
 | |
| 	 */
 | |
| 	ref_points = of_get_property(rtas_root,
 | |
| 			"ibm,associativity-reference-points", &len);
 | |
| 
 | |
| 	if ((len >= 1) && ref_points) {
 | |
| 		depth = ref_points[1];
 | |
| 	} else {
 | |
| 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 | |
| 		depth = -1;
 | |
| 	}
 | |
| 	of_node_put(rtas_root);
 | |
| 
 | |
| 	return depth;
 | |
| }
 | |
| 
 | |
| static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 | |
| {
 | |
| 	struct device_node *memory = NULL;
 | |
| 
 | |
| 	memory = of_find_node_by_type(memory, "memory");
 | |
| 	if (!memory)
 | |
| 		panic("numa.c: No memory nodes found!");
 | |
| 
 | |
| 	*n_addr_cells = of_n_addr_cells(memory);
 | |
| 	*n_size_cells = of_n_size_cells(memory);
 | |
| 	of_node_put(memory);
 | |
| }
 | |
| 
 | |
| static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
 | |
| {
 | |
| 	unsigned long result = 0;
 | |
| 
 | |
| 	while (n--) {
 | |
| 		result = (result << 32) | **buf;
 | |
| 		(*buf)++;
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Figure out to which domain a cpu belongs and stick it there.
 | |
|  * Return the id of the domain used.
 | |
|  */
 | |
| static int __cpuinit numa_setup_cpu(unsigned long lcpu)
 | |
| {
 | |
| 	int nid = 0;
 | |
| 	struct device_node *cpu = find_cpu_node(lcpu);
 | |
| 
 | |
| 	if (!cpu) {
 | |
| 		WARN_ON(1);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nid = of_node_to_nid_single(cpu);
 | |
| 
 | |
| 	if (nid < 0 || !node_online(nid))
 | |
| 		nid = any_online_node(NODE_MASK_ALL);
 | |
| out:
 | |
| 	map_cpu_to_node(lcpu, nid);
 | |
| 
 | |
| 	of_node_put(cpu);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
 | |
| 			     unsigned long action,
 | |
| 			     void *hcpu)
 | |
| {
 | |
| 	unsigned long lcpu = (unsigned long)hcpu;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		numa_setup_cpu(lcpu);
 | |
| 		ret = NOTIFY_OK;
 | |
| 		break;
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 		unmap_cpu_from_node(lcpu);
 | |
| 		break;
 | |
| 		ret = NOTIFY_OK;
 | |
| #endif
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check and possibly modify a memory region to enforce the memory limit.
 | |
|  *
 | |
|  * Returns the size the region should have to enforce the memory limit.
 | |
|  * This will either be the original value of size, a truncated value,
 | |
|  * or zero. If the returned value of size is 0 the region should be
 | |
|  * discarded as it lies wholy above the memory limit.
 | |
|  */
 | |
| static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 | |
| 						      unsigned long size)
 | |
| {
 | |
| 	/*
 | |
| 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
 | |
| 	 * we've already adjusted it for the limit and it takes care of
 | |
| 	 * having memory holes below the limit.
 | |
| 	 */
 | |
| 
 | |
| 	if (! memory_limit)
 | |
| 		return size;
 | |
| 
 | |
| 	if (start + size <= lmb_end_of_DRAM())
 | |
| 		return size;
 | |
| 
 | |
| 	if (start >= lmb_end_of_DRAM())
 | |
| 		return 0;
 | |
| 
 | |
| 	return lmb_end_of_DRAM() - start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 | |
|  * node.  This assumes n_mem_{addr,size}_cells have been set.
 | |
|  */
 | |
| static void __init parse_drconf_memory(struct device_node *memory)
 | |
| {
 | |
| 	const unsigned int *lm, *dm, *aa;
 | |
| 	unsigned int ls, ld, la;
 | |
| 	unsigned int n, aam, aalen;
 | |
| 	unsigned long lmb_size, size, start;
 | |
| 	int nid, default_nid = 0;
 | |
| 	unsigned int ai, flags;
 | |
| 
 | |
| 	lm = of_get_property(memory, "ibm,lmb-size", &ls);
 | |
| 	dm = of_get_property(memory, "ibm,dynamic-memory", &ld);
 | |
| 	aa = of_get_property(memory, "ibm,associativity-lookup-arrays", &la);
 | |
| 	if (!lm || !dm || !aa ||
 | |
| 	    ls < sizeof(unsigned int) || ld < sizeof(unsigned int) ||
 | |
| 	    la < 2 * sizeof(unsigned int))
 | |
| 		return;
 | |
| 
 | |
| 	lmb_size = read_n_cells(n_mem_size_cells, &lm);
 | |
| 	n = *dm++;		/* number of LMBs */
 | |
| 	aam = *aa++;		/* number of associativity lists */
 | |
| 	aalen = *aa++;		/* length of each associativity list */
 | |
| 	if (ld < (n * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int) ||
 | |
| 	    la < (aam * aalen + 2) * sizeof(unsigned int))
 | |
| 		return;
 | |
| 
 | |
| 	for (; n != 0; --n) {
 | |
| 		start = read_n_cells(n_mem_addr_cells, &dm);
 | |
| 		ai = dm[2];
 | |
| 		flags = dm[3];
 | |
| 		dm += 4;
 | |
| 		/* 0x80 == reserved, 0x8 = assigned to us */
 | |
| 		if ((flags & 0x80) || !(flags & 0x8))
 | |
| 			continue;
 | |
| 		nid = default_nid;
 | |
| 		/* flags & 0x40 means associativity index is invalid */
 | |
| 		if (min_common_depth > 0 && min_common_depth <= aalen &&
 | |
| 		    (flags & 0x40) == 0 && ai < aam) {
 | |
| 			/* this is like of_node_to_nid_single */
 | |
| 			nid = aa[ai * aalen + min_common_depth - 1];
 | |
| 			if (nid == 0xffff || nid >= MAX_NUMNODES)
 | |
| 				nid = default_nid;
 | |
| 		}
 | |
| 
 | |
| 		fake_numa_create_new_node(((start + lmb_size) >> PAGE_SHIFT),
 | |
| 						&nid);
 | |
| 		node_set_online(nid);
 | |
| 
 | |
| 		size = numa_enforce_memory_limit(start, lmb_size);
 | |
| 		if (!size)
 | |
| 			continue;
 | |
| 
 | |
| 		add_active_range(nid, start >> PAGE_SHIFT,
 | |
| 				 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init parse_numa_properties(void)
 | |
| {
 | |
| 	struct device_node *cpu = NULL;
 | |
| 	struct device_node *memory = NULL;
 | |
| 	int default_nid = 0;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (numa_enabled == 0) {
 | |
| 		printk(KERN_WARNING "NUMA disabled by user\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	min_common_depth = find_min_common_depth();
 | |
| 
 | |
| 	if (min_common_depth < 0)
 | |
| 		return min_common_depth;
 | |
| 
 | |
| 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 | |
| 
 | |
| 	/*
 | |
| 	 * Even though we connect cpus to numa domains later in SMP
 | |
| 	 * init, we need to know the node ids now. This is because
 | |
| 	 * each node to be onlined must have NODE_DATA etc backing it.
 | |
| 	 */
 | |
| 	for_each_present_cpu(i) {
 | |
| 		int nid;
 | |
| 
 | |
| 		cpu = find_cpu_node(i);
 | |
| 		BUG_ON(!cpu);
 | |
| 		nid = of_node_to_nid_single(cpu);
 | |
| 		of_node_put(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't fall back to default_nid yet -- we will plug
 | |
| 		 * cpus into nodes once the memory scan has discovered
 | |
| 		 * the topology.
 | |
| 		 */
 | |
| 		if (nid < 0)
 | |
| 			continue;
 | |
| 		node_set_online(nid);
 | |
| 	}
 | |
| 
 | |
| 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 | |
| 	memory = NULL;
 | |
| 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 | |
| 		unsigned long start;
 | |
| 		unsigned long size;
 | |
| 		int nid;
 | |
| 		int ranges;
 | |
| 		const unsigned int *memcell_buf;
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		memcell_buf = of_get_property(memory,
 | |
| 			"linux,usable-memory", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			memcell_buf = of_get_property(memory, "reg", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* ranges in cell */
 | |
| 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 | |
| new_range:
 | |
| 		/* these are order-sensitive, and modify the buffer pointer */
 | |
| 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 | |
| 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 | |
| 
 | |
| 		/*
 | |
| 		 * Assumption: either all memory nodes or none will
 | |
| 		 * have associativity properties.  If none, then
 | |
| 		 * everything goes to default_nid.
 | |
| 		 */
 | |
| 		nid = of_node_to_nid_single(memory);
 | |
| 		if (nid < 0)
 | |
| 			nid = default_nid;
 | |
| 
 | |
| 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 | |
| 		node_set_online(nid);
 | |
| 
 | |
| 		if (!(size = numa_enforce_memory_limit(start, size))) {
 | |
| 			if (--ranges)
 | |
| 				goto new_range;
 | |
| 			else
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		add_active_range(nid, start >> PAGE_SHIFT,
 | |
| 				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
 | |
| 
 | |
| 		if (--ranges)
 | |
| 			goto new_range;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
 | |
| 	 * property in the ibm,dynamic-reconfiguration-memory node.
 | |
| 	 */
 | |
| 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 | |
| 	if (memory)
 | |
| 		parse_drconf_memory(memory);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init setup_nonnuma(void)
 | |
| {
 | |
| 	unsigned long top_of_ram = lmb_end_of_DRAM();
 | |
| 	unsigned long total_ram = lmb_phys_mem_size();
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	unsigned int i, nid = 0;
 | |
| 
 | |
| 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 | |
| 	       top_of_ram, total_ram);
 | |
| 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 | |
| 	       (top_of_ram - total_ram) >> 20);
 | |
| 
 | |
| 	for (i = 0; i < lmb.memory.cnt; ++i) {
 | |
| 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
 | |
| 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
 | |
| 
 | |
| 		fake_numa_create_new_node(end_pfn, &nid);
 | |
| 		add_active_range(nid, start_pfn, end_pfn);
 | |
| 		node_set_online(nid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init dump_numa_cpu_topology(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int cpu, count;
 | |
| 
 | |
| 	if (min_common_depth == -1 || !numa_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		printk(KERN_DEBUG "Node %d CPUs:", node);
 | |
| 
 | |
| 		count = 0;
 | |
| 		/*
 | |
| 		 * If we used a CPU iterator here we would miss printing
 | |
| 		 * the holes in the cpumap.
 | |
| 		 */
 | |
| 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
 | |
| 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
 | |
| 				if (count == 0)
 | |
| 					printk(" %u", cpu);
 | |
| 				++count;
 | |
| 			} else {
 | |
| 				if (count > 1)
 | |
| 					printk("-%u", cpu - 1);
 | |
| 				count = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (count > 1)
 | |
| 			printk("-%u", NR_CPUS - 1);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init dump_numa_memory_topology(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int count;
 | |
| 
 | |
| 	if (min_common_depth == -1 || !numa_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		unsigned long i;
 | |
| 
 | |
| 		printk(KERN_DEBUG "Node %d Memory:", node);
 | |
| 
 | |
| 		count = 0;
 | |
| 
 | |
| 		for (i = 0; i < lmb_end_of_DRAM();
 | |
| 		     i += (1 << SECTION_SIZE_BITS)) {
 | |
| 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 | |
| 				if (count == 0)
 | |
| 					printk(" 0x%lx", i);
 | |
| 				++count;
 | |
| 			} else {
 | |
| 				if (count > 0)
 | |
| 					printk("-0x%lx", i);
 | |
| 				count = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (count > 0)
 | |
| 			printk("-0x%lx", i);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate some memory, satisfying the lmb or bootmem allocator where
 | |
|  * required. nid is the preferred node and end is the physical address of
 | |
|  * the highest address in the node.
 | |
|  *
 | |
|  * Returns the physical address of the memory.
 | |
|  */
 | |
| static void __init *careful_allocation(int nid, unsigned long size,
 | |
| 				       unsigned long align,
 | |
| 				       unsigned long end_pfn)
 | |
| {
 | |
| 	int new_nid;
 | |
| 	unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 | |
| 
 | |
| 	/* retry over all memory */
 | |
| 	if (!ret)
 | |
| 		ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
 | |
| 
 | |
| 	if (!ret)
 | |
| 		panic("numa.c: cannot allocate %lu bytes on node %d",
 | |
| 		      size, nid);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the memory came from a previously allocated node, we must
 | |
| 	 * retry with the bootmem allocator.
 | |
| 	 */
 | |
| 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
 | |
| 	if (new_nid < nid) {
 | |
| 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
 | |
| 				size, align, 0);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			panic("numa.c: cannot allocate %lu bytes on node %d",
 | |
| 			      size, new_nid);
 | |
| 
 | |
| 		ret = __pa(ret);
 | |
| 
 | |
| 		dbg("alloc_bootmem %lx %lx\n", ret, size);
 | |
| 	}
 | |
| 
 | |
| 	return (void *)ret;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata ppc64_numa_nb = {
 | |
| 	.notifier_call = cpu_numa_callback,
 | |
| 	.priority = 1 /* Must run before sched domains notifier. */
 | |
| };
 | |
| 
 | |
| void __init do_init_bootmem(void)
 | |
| {
 | |
| 	int nid;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	min_low_pfn = 0;
 | |
| 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	max_pfn = max_low_pfn;
 | |
| 
 | |
| 	if (parse_numa_properties())
 | |
| 		setup_nonnuma();
 | |
| 	else
 | |
| 		dump_numa_memory_topology();
 | |
| 
 | |
| 	register_cpu_notifier(&ppc64_numa_nb);
 | |
| 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
 | |
| 			  (void *)(unsigned long)boot_cpuid);
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 		unsigned long bootmem_paddr;
 | |
| 		unsigned long bootmap_pages;
 | |
| 
 | |
| 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| 
 | |
| 		/* Allocate the node structure node local if possible */
 | |
| 		NODE_DATA(nid) = careful_allocation(nid,
 | |
| 					sizeof(struct pglist_data),
 | |
| 					SMP_CACHE_BYTES, end_pfn);
 | |
| 		NODE_DATA(nid) = __va(NODE_DATA(nid));
 | |
| 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 | |
| 
 | |
|   		dbg("node %d\n", nid);
 | |
| 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
 | |
| 
 | |
| 		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
 | |
| 		NODE_DATA(nid)->node_start_pfn = start_pfn;
 | |
| 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
 | |
| 
 | |
| 		if (NODE_DATA(nid)->node_spanned_pages == 0)
 | |
|   			continue;
 | |
| 
 | |
|   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
 | |
|   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
 | |
| 
 | |
| 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
 | |
| 		bootmem_paddr = (unsigned long)careful_allocation(nid,
 | |
| 					bootmap_pages << PAGE_SHIFT,
 | |
| 					PAGE_SIZE, end_pfn);
 | |
| 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
 | |
| 
 | |
| 		dbg("bootmap_paddr = %lx\n", bootmem_paddr);
 | |
| 
 | |
| 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
 | |
| 				  start_pfn, end_pfn);
 | |
| 
 | |
| 		free_bootmem_with_active_regions(nid, end_pfn);
 | |
| 
 | |
| 		/* Mark reserved regions on this node */
 | |
| 		for (i = 0; i < lmb.reserved.cnt; i++) {
 | |
| 			unsigned long physbase = lmb.reserved.region[i].base;
 | |
| 			unsigned long size = lmb.reserved.region[i].size;
 | |
| 			unsigned long start_paddr = start_pfn << PAGE_SHIFT;
 | |
| 			unsigned long end_paddr = end_pfn << PAGE_SHIFT;
 | |
| 
 | |
| 			if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
 | |
| 			    early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
 | |
| 				continue;
 | |
| 
 | |
| 			if (physbase < end_paddr &&
 | |
| 			    (physbase+size) > start_paddr) {
 | |
| 				/* overlaps */
 | |
| 				if (physbase < start_paddr) {
 | |
| 					size -= start_paddr - physbase;
 | |
| 					physbase = start_paddr;
 | |
| 				}
 | |
| 
 | |
| 				if (size > end_paddr - physbase)
 | |
| 					size = end_paddr - physbase;
 | |
| 
 | |
| 				dbg("reserve_bootmem %lx %lx\n", physbase,
 | |
| 				    size);
 | |
| 				reserve_bootmem_node(NODE_DATA(nid), physbase,
 | |
| 						     size, BOOTMEM_DEFAULT);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		sparse_memory_present_with_active_regions(nid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	free_area_init_nodes(max_zone_pfns);
 | |
| }
 | |
| 
 | |
| static int __init early_numa(char *p)
 | |
| {
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (strstr(p, "off"))
 | |
| 		numa_enabled = 0;
 | |
| 
 | |
| 	if (strstr(p, "debug"))
 | |
| 		numa_debug = 1;
 | |
| 
 | |
| 	p = strstr(p, "fake=");
 | |
| 	if (p)
 | |
| 		cmdline = p + strlen("fake=");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("numa", early_numa);
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| /*
 | |
|  * Find the node associated with a hot added memory section.  Section
 | |
|  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
 | |
|  * sections are fully contained within a single LMB.
 | |
|  */
 | |
| int hot_add_scn_to_nid(unsigned long scn_addr)
 | |
| {
 | |
| 	struct device_node *memory = NULL;
 | |
| 	nodemask_t nodes;
 | |
| 	int default_nid = any_online_node(NODE_MASK_ALL);
 | |
| 	int nid;
 | |
| 
 | |
| 	if (!numa_enabled || (min_common_depth < 0))
 | |
| 		return default_nid;
 | |
| 
 | |
| 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 | |
| 		unsigned long start, size;
 | |
| 		int ranges;
 | |
| 		const unsigned int *memcell_buf;
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		memcell_buf = of_get_property(memory, "reg", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* ranges in cell */
 | |
| 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 | |
| ha_new_range:
 | |
| 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 | |
| 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 | |
| 		nid = of_node_to_nid_single(memory);
 | |
| 
 | |
| 		/* Domains not present at boot default to 0 */
 | |
| 		if (nid < 0 || !node_online(nid))
 | |
| 			nid = default_nid;
 | |
| 
 | |
| 		if ((scn_addr >= start) && (scn_addr < (start + size))) {
 | |
| 			of_node_put(memory);
 | |
| 			goto got_nid;
 | |
| 		}
 | |
| 
 | |
| 		if (--ranges)		/* process all ranges in cell */
 | |
| 			goto ha_new_range;
 | |
| 	}
 | |
| 	BUG();	/* section address should be found above */
 | |
| 	return 0;
 | |
| 
 | |
| 	/* Temporary code to ensure that returned node is not empty */
 | |
| got_nid:
 | |
| 	nodes_setall(nodes);
 | |
| 	while (NODE_DATA(nid)->node_spanned_pages == 0) {
 | |
| 		node_clear(nid, nodes);
 | |
| 		nid = any_online_node(nodes);
 | |
| 	}
 | |
| 	return nid;
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 |