 d895cb1af1
			
		
	
	
	d895cb1af1
	
	
	
		
			
			Pull vfs pile (part one) from Al Viro: "Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent locking violations, etc. The most visible changes here are death of FS_REVAL_DOT (replaced with "has ->d_weak_revalidate()") and a new helper getting from struct file to inode. Some bits of preparation to xattr method interface changes. Misc patches by various people sent this cycle *and* ocfs2 fixes from several cycles ago that should've been upstream right then. PS: the next vfs pile will be xattr stuff." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits) saner proc_get_inode() calling conventions proc: avoid extra pde_put() in proc_fill_super() fs: change return values from -EACCES to -EPERM fs/exec.c: make bprm_mm_init() static ocfs2/dlm: use GFP_ATOMIC inside a spin_lock ocfs2: fix possible use-after-free with AIO ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero target: writev() on single-element vector is pointless export kernel_write(), convert open-coded instances fs: encode_fh: return FILEID_INVALID if invalid fid_type kill f_vfsmnt vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op nfsd: handle vfs_getattr errors in acl protocol switch vfs_getattr() to struct path default SET_PERSONALITY() in linux/elf.h ceph: prepopulate inodes only when request is aborted d_hash_and_lookup(): export, switch open-coded instances 9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate() 9p: split dropping the acls from v9fs_set_create_acl() ...
		
			
				
	
	
		
			2100 lines
		
	
	
	
		
			53 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2100 lines
		
	
	
	
		
			53 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /* -*- mode: c; c-basic-offset: 8; -*-
 | |
|  * vim: noexpandtab sw=8 ts=8 sts=0:
 | |
|  *
 | |
|  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with this program; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 021110-1307, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/pipe_fs_i.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/quotaops.h>
 | |
| 
 | |
| #include <cluster/masklog.h>
 | |
| 
 | |
| #include "ocfs2.h"
 | |
| 
 | |
| #include "alloc.h"
 | |
| #include "aops.h"
 | |
| #include "dlmglue.h"
 | |
| #include "extent_map.h"
 | |
| #include "file.h"
 | |
| #include "inode.h"
 | |
| #include "journal.h"
 | |
| #include "suballoc.h"
 | |
| #include "super.h"
 | |
| #include "symlink.h"
 | |
| #include "refcounttree.h"
 | |
| #include "ocfs2_trace.h"
 | |
| 
 | |
| #include "buffer_head_io.h"
 | |
| 
 | |
| static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
 | |
| 				   struct buffer_head *bh_result, int create)
 | |
| {
 | |
| 	int err = -EIO;
 | |
| 	int status;
 | |
| 	struct ocfs2_dinode *fe = NULL;
 | |
| 	struct buffer_head *bh = NULL;
 | |
| 	struct buffer_head *buffer_cache_bh = NULL;
 | |
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | |
| 	void *kaddr;
 | |
| 
 | |
| 	trace_ocfs2_symlink_get_block(
 | |
| 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
 | |
| 			(unsigned long long)iblock, bh_result, create);
 | |
| 
 | |
| 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
 | |
| 
 | |
| 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
 | |
| 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
 | |
| 		     (unsigned long long)iblock);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	status = ocfs2_read_inode_block(inode, &bh);
 | |
| 	if (status < 0) {
 | |
| 		mlog_errno(status);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 	fe = (struct ocfs2_dinode *) bh->b_data;
 | |
| 
 | |
| 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
 | |
| 						    le32_to_cpu(fe->i_clusters))) {
 | |
| 		mlog(ML_ERROR, "block offset is outside the allocated size: "
 | |
| 		     "%llu\n", (unsigned long long)iblock);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* We don't use the page cache to create symlink data, so if
 | |
| 	 * need be, copy it over from the buffer cache. */
 | |
| 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
 | |
| 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
 | |
| 			    iblock;
 | |
| 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
 | |
| 		if (!buffer_cache_bh) {
 | |
| 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 | |
| 			goto bail;
 | |
| 		}
 | |
| 
 | |
| 		/* we haven't locked out transactions, so a commit
 | |
| 		 * could've happened. Since we've got a reference on
 | |
| 		 * the bh, even if it commits while we're doing the
 | |
| 		 * copy, the data is still good. */
 | |
| 		if (buffer_jbd(buffer_cache_bh)
 | |
| 		    && ocfs2_inode_is_new(inode)) {
 | |
| 			kaddr = kmap_atomic(bh_result->b_page);
 | |
| 			if (!kaddr) {
 | |
| 				mlog(ML_ERROR, "couldn't kmap!\n");
 | |
| 				goto bail;
 | |
| 			}
 | |
| 			memcpy(kaddr + (bh_result->b_size * iblock),
 | |
| 			       buffer_cache_bh->b_data,
 | |
| 			       bh_result->b_size);
 | |
| 			kunmap_atomic(kaddr);
 | |
| 			set_buffer_uptodate(bh_result);
 | |
| 		}
 | |
| 		brelse(buffer_cache_bh);
 | |
| 	}
 | |
| 
 | |
| 	map_bh(bh_result, inode->i_sb,
 | |
| 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
| bail:
 | |
| 	brelse(bh);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int ocfs2_get_block(struct inode *inode, sector_t iblock,
 | |
| 		    struct buffer_head *bh_result, int create)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	unsigned int ext_flags;
 | |
| 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 | |
| 	u64 p_blkno, count, past_eof;
 | |
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | |
| 
 | |
| 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 | |
| 			      (unsigned long long)iblock, bh_result, create);
 | |
| 
 | |
| 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 | |
| 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 | |
| 		     inode, inode->i_ino);
 | |
| 
 | |
| 	if (S_ISLNK(inode->i_mode)) {
 | |
| 		/* this always does I/O for some reason. */
 | |
| 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 | |
| 					  &ext_flags);
 | |
| 	if (err) {
 | |
| 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 | |
| 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 | |
| 		     (unsigned long long)p_blkno);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	if (max_blocks < count)
 | |
| 		count = max_blocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * ocfs2 never allocates in this function - the only time we
 | |
| 	 * need to use BH_New is when we're extending i_size on a file
 | |
| 	 * system which doesn't support holes, in which case BH_New
 | |
| 	 * allows __block_write_begin() to zero.
 | |
| 	 *
 | |
| 	 * If we see this on a sparse file system, then a truncate has
 | |
| 	 * raced us and removed the cluster. In this case, we clear
 | |
| 	 * the buffers dirty and uptodate bits and let the buffer code
 | |
| 	 * ignore it as a hole.
 | |
| 	 */
 | |
| 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 | |
| 		clear_buffer_dirty(bh_result);
 | |
| 		clear_buffer_uptodate(bh_result);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* Treat the unwritten extent as a hole for zeroing purposes. */
 | |
| 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 | |
| 		map_bh(bh_result, inode->i_sb, p_blkno);
 | |
| 
 | |
| 	bh_result->b_size = count << inode->i_blkbits;
 | |
| 
 | |
| 	if (!ocfs2_sparse_alloc(osb)) {
 | |
| 		if (p_blkno == 0) {
 | |
| 			err = -EIO;
 | |
| 			mlog(ML_ERROR,
 | |
| 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 | |
| 			     (unsigned long long)iblock,
 | |
| 			     (unsigned long long)p_blkno,
 | |
| 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 | |
| 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 | |
| 			dump_stack();
 | |
| 			goto bail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 | |
| 
 | |
| 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 | |
| 				  (unsigned long long)past_eof);
 | |
| 	if (create && (iblock >= past_eof))
 | |
| 		set_buffer_new(bh_result);
 | |
| 
 | |
| bail:
 | |
| 	if (err < 0)
 | |
| 		err = -EIO;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 | |
| 			   struct buffer_head *di_bh)
 | |
| {
 | |
| 	void *kaddr;
 | |
| 	loff_t size;
 | |
| 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 | |
| 
 | |
| 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 | |
| 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 | |
| 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 | |
| 		return -EROFS;
 | |
| 	}
 | |
| 
 | |
| 	size = i_size_read(inode);
 | |
| 
 | |
| 	if (size > PAGE_CACHE_SIZE ||
 | |
| 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 | |
| 		ocfs2_error(inode->i_sb,
 | |
| 			    "Inode %llu has with inline data has bad size: %Lu",
 | |
| 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 | |
| 			    (unsigned long long)size);
 | |
| 		return -EROFS;
 | |
| 	}
 | |
| 
 | |
| 	kaddr = kmap_atomic(page);
 | |
| 	if (size)
 | |
| 		memcpy(kaddr, di->id2.i_data.id_data, size);
 | |
| 	/* Clear the remaining part of the page */
 | |
| 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 | |
| 	flush_dcache_page(page);
 | |
| 	kunmap_atomic(kaddr);
 | |
| 
 | |
| 	SetPageUptodate(page);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct buffer_head *di_bh = NULL;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 | |
| 
 | |
| 	ret = ocfs2_read_inode_block(inode, &di_bh);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = ocfs2_read_inline_data(inode, page, di_bh);
 | |
| out:
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	brelse(di_bh);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ocfs2_readpage(struct file *file, struct page *page)
 | |
| {
 | |
| 	struct inode *inode = page->mapping->host;
 | |
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | |
| 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 | |
| 	int ret, unlock = 1;
 | |
| 
 | |
| 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 | |
| 			     (page ? page->index : 0));
 | |
| 
 | |
| 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 | |
| 	if (ret != 0) {
 | |
| 		if (ret == AOP_TRUNCATED_PAGE)
 | |
| 			unlock = 0;
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 | |
| 		/*
 | |
| 		 * Unlock the page and cycle ip_alloc_sem so that we don't
 | |
| 		 * busyloop waiting for ip_alloc_sem to unlock
 | |
| 		 */
 | |
| 		ret = AOP_TRUNCATED_PAGE;
 | |
| 		unlock_page(page);
 | |
| 		unlock = 0;
 | |
| 		down_read(&oi->ip_alloc_sem);
 | |
| 		up_read(&oi->ip_alloc_sem);
 | |
| 		goto out_inode_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * i_size might have just been updated as we grabed the meta lock.  We
 | |
| 	 * might now be discovering a truncate that hit on another node.
 | |
| 	 * block_read_full_page->get_block freaks out if it is asked to read
 | |
| 	 * beyond the end of a file, so we check here.  Callers
 | |
| 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 | |
| 	 * and notice that the page they just read isn't needed.
 | |
| 	 *
 | |
| 	 * XXX sys_readahead() seems to get that wrong?
 | |
| 	 */
 | |
| 	if (start >= i_size_read(inode)) {
 | |
| 		zero_user(page, 0, PAGE_SIZE);
 | |
| 		SetPageUptodate(page);
 | |
| 		ret = 0;
 | |
| 		goto out_alloc;
 | |
| 	}
 | |
| 
 | |
| 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 | |
| 		ret = ocfs2_readpage_inline(inode, page);
 | |
| 	else
 | |
| 		ret = block_read_full_page(page, ocfs2_get_block);
 | |
| 	unlock = 0;
 | |
| 
 | |
| out_alloc:
 | |
| 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
 | |
| out_inode_unlock:
 | |
| 	ocfs2_inode_unlock(inode, 0);
 | |
| out:
 | |
| 	if (unlock)
 | |
| 		unlock_page(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is used only for read-ahead. Failures or difficult to handle
 | |
|  * situations are safe to ignore.
 | |
|  *
 | |
|  * Right now, we don't bother with BH_Boundary - in-inode extent lists
 | |
|  * are quite large (243 extents on 4k blocks), so most inodes don't
 | |
|  * grow out to a tree. If need be, detecting boundary extents could
 | |
|  * trivially be added in a future version of ocfs2_get_block().
 | |
|  */
 | |
| static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 | |
| 			   struct list_head *pages, unsigned nr_pages)
 | |
| {
 | |
| 	int ret, err = -EIO;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | |
| 	loff_t start;
 | |
| 	struct page *last;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the nonblocking flag for the dlm code to avoid page
 | |
| 	 * lock inversion, but don't bother with retrying.
 | |
| 	 */
 | |
| 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 | |
| 	if (ret)
 | |
| 		return err;
 | |
| 
 | |
| 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 | |
| 		ocfs2_inode_unlock(inode, 0);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't bother with inline-data. There isn't anything
 | |
| 	 * to read-ahead in that case anyway...
 | |
| 	 */
 | |
| 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether a remote node truncated this file - we just
 | |
| 	 * drop out in that case as it's not worth handling here.
 | |
| 	 */
 | |
| 	last = list_entry(pages->prev, struct page, lru);
 | |
| 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 | |
| 	if (start >= i_size_read(inode))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 | |
| 
 | |
| out_unlock:
 | |
| 	up_read(&oi->ip_alloc_sem);
 | |
| 	ocfs2_inode_unlock(inode, 0);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Note: Because we don't support holes, our allocation has
 | |
|  * already happened (allocation writes zeros to the file data)
 | |
|  * so we don't have to worry about ordered writes in
 | |
|  * ocfs2_writepage.
 | |
|  *
 | |
|  * ->writepage is called during the process of invalidating the page cache
 | |
|  * during blocked lock processing.  It can't block on any cluster locks
 | |
|  * to during block mapping.  It's relying on the fact that the block
 | |
|  * mapping can't have disappeared under the dirty pages that it is
 | |
|  * being asked to write back.
 | |
|  */
 | |
| static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 | |
| {
 | |
| 	trace_ocfs2_writepage(
 | |
| 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 | |
| 		page->index);
 | |
| 
 | |
| 	return block_write_full_page(page, ocfs2_get_block, wbc);
 | |
| }
 | |
| 
 | |
| /* Taken from ext3. We don't necessarily need the full blown
 | |
|  * functionality yet, but IMHO it's better to cut and paste the whole
 | |
|  * thing so we can avoid introducing our own bugs (and easily pick up
 | |
|  * their fixes when they happen) --Mark */
 | |
| int walk_page_buffers(	handle_t *handle,
 | |
| 			struct buffer_head *head,
 | |
| 			unsigned from,
 | |
| 			unsigned to,
 | |
| 			int *partial,
 | |
| 			int (*fn)(	handle_t *handle,
 | |
| 					struct buffer_head *bh))
 | |
| {
 | |
| 	struct buffer_head *bh;
 | |
| 	unsigned block_start, block_end;
 | |
| 	unsigned blocksize = head->b_size;
 | |
| 	int err, ret = 0;
 | |
| 	struct buffer_head *next;
 | |
| 
 | |
| 	for (	bh = head, block_start = 0;
 | |
| 		ret == 0 && (bh != head || !block_start);
 | |
| 	    	block_start = block_end, bh = next)
 | |
| 	{
 | |
| 		next = bh->b_this_page;
 | |
| 		block_end = block_start + blocksize;
 | |
| 		if (block_end <= from || block_start >= to) {
 | |
| 			if (partial && !buffer_uptodate(bh))
 | |
| 				*partial = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		err = (*fn)(handle, bh);
 | |
| 		if (!ret)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 | |
| {
 | |
| 	sector_t status;
 | |
| 	u64 p_blkno = 0;
 | |
| 	int err = 0;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 
 | |
| 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 | |
| 			 (unsigned long long)block);
 | |
| 
 | |
| 	/* We don't need to lock journal system files, since they aren't
 | |
| 	 * accessed concurrently from multiple nodes.
 | |
| 	 */
 | |
| 	if (!INODE_JOURNAL(inode)) {
 | |
| 		err = ocfs2_inode_lock(inode, NULL, 0);
 | |
| 		if (err) {
 | |
| 			if (err != -ENOENT)
 | |
| 				mlog_errno(err);
 | |
| 			goto bail;
 | |
| 		}
 | |
| 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 | |
| 	}
 | |
| 
 | |
| 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 | |
| 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 | |
| 						  NULL);
 | |
| 
 | |
| 	if (!INODE_JOURNAL(inode)) {
 | |
| 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 | |
| 		ocfs2_inode_unlock(inode, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 | |
| 		     (unsigned long long)block);
 | |
| 		mlog_errno(err);
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| bail:
 | |
| 	status = err ? 0 : p_blkno;
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO: Make this into a generic get_blocks function.
 | |
|  *
 | |
|  * From do_direct_io in direct-io.c:
 | |
|  *  "So what we do is to permit the ->get_blocks function to populate
 | |
|  *   bh.b_size with the size of IO which is permitted at this offset and
 | |
|  *   this i_blkbits."
 | |
|  *
 | |
|  * This function is called directly from get_more_blocks in direct-io.c.
 | |
|  *
 | |
|  * called like this: dio->get_blocks(dio->inode, fs_startblk,
 | |
|  * 					fs_count, map_bh, dio->rw == WRITE);
 | |
|  *
 | |
|  * Note that we never bother to allocate blocks here, and thus ignore the
 | |
|  * create argument.
 | |
|  */
 | |
| static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 | |
| 				     struct buffer_head *bh_result, int create)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 p_blkno, inode_blocks, contig_blocks;
 | |
| 	unsigned int ext_flags;
 | |
| 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 | |
| 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 | |
| 
 | |
| 	/* This function won't even be called if the request isn't all
 | |
| 	 * nicely aligned and of the right size, so there's no need
 | |
| 	 * for us to check any of that. */
 | |
| 
 | |
| 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 | |
| 
 | |
| 	/* This figures out the size of the next contiguous block, and
 | |
| 	 * our logical offset */
 | |
| 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 | |
| 					  &contig_blocks, &ext_flags);
 | |
| 	if (ret) {
 | |
| 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 | |
| 		     (unsigned long long)iblock);
 | |
| 		ret = -EIO;
 | |
| 		goto bail;
 | |
| 	}
 | |
| 
 | |
| 	/* We should already CoW the refcounted extent in case of create. */
 | |
| 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 | |
| 
 | |
| 	/*
 | |
| 	 * get_more_blocks() expects us to describe a hole by clearing
 | |
| 	 * the mapped bit on bh_result().
 | |
| 	 *
 | |
| 	 * Consider an unwritten extent as a hole.
 | |
| 	 */
 | |
| 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 | |
| 		map_bh(bh_result, inode->i_sb, p_blkno);
 | |
| 	else
 | |
| 		clear_buffer_mapped(bh_result);
 | |
| 
 | |
| 	/* make sure we don't map more than max_blocks blocks here as
 | |
| 	   that's all the kernel will handle at this point. */
 | |
| 	if (max_blocks < contig_blocks)
 | |
| 		contig_blocks = max_blocks;
 | |
| 	bh_result->b_size = contig_blocks << blocksize_bits;
 | |
| bail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 | |
|  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 | |
|  * to protect io on one node from truncation on another.
 | |
|  */
 | |
| static void ocfs2_dio_end_io(struct kiocb *iocb,
 | |
| 			     loff_t offset,
 | |
| 			     ssize_t bytes,
 | |
| 			     void *private,
 | |
| 			     int ret,
 | |
| 			     bool is_async)
 | |
| {
 | |
| 	struct inode *inode = file_inode(iocb->ki_filp);
 | |
| 	int level;
 | |
| 	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
 | |
| 
 | |
| 	/* this io's submitter should not have unlocked this before we could */
 | |
| 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 | |
| 
 | |
| 	if (ocfs2_iocb_is_sem_locked(iocb))
 | |
| 		ocfs2_iocb_clear_sem_locked(iocb);
 | |
| 
 | |
| 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
 | |
| 		ocfs2_iocb_clear_unaligned_aio(iocb);
 | |
| 
 | |
| 		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
 | |
| 		    waitqueue_active(wq)) {
 | |
| 			wake_up_all(wq);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ocfs2_iocb_clear_rw_locked(iocb);
 | |
| 
 | |
| 	level = ocfs2_iocb_rw_locked_level(iocb);
 | |
| 	ocfs2_rw_unlock(inode, level);
 | |
| 
 | |
| 	inode_dio_done(inode);
 | |
| 	if (is_async)
 | |
| 		aio_complete(iocb, ret, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 | |
|  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 | |
|  * do journalled data.
 | |
|  */
 | |
| static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
 | |
| {
 | |
| 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 | |
| 
 | |
| 	jbd2_journal_invalidatepage(journal, page, offset);
 | |
| }
 | |
| 
 | |
| static int ocfs2_releasepage(struct page *page, gfp_t wait)
 | |
| {
 | |
| 	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 | |
| 
 | |
| 	if (!page_has_buffers(page))
 | |
| 		return 0;
 | |
| 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
 | |
| }
 | |
| 
 | |
| static ssize_t ocfs2_direct_IO(int rw,
 | |
| 			       struct kiocb *iocb,
 | |
| 			       const struct iovec *iov,
 | |
| 			       loff_t offset,
 | |
| 			       unsigned long nr_segs)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file_inode(file)->i_mapping->host;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fallback to buffered I/O if we see an inode without
 | |
| 	 * extents.
 | |
| 	 */
 | |
| 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Fallback to buffered I/O if we are appending. */
 | |
| 	if (i_size_read(inode) <= offset)
 | |
| 		return 0;
 | |
| 
 | |
| 	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
 | |
| 				    iov, offset, nr_segs,
 | |
| 				    ocfs2_direct_IO_get_blocks,
 | |
| 				    ocfs2_dio_end_io, NULL, 0);
 | |
| }
 | |
| 
 | |
| static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 | |
| 					    u32 cpos,
 | |
| 					    unsigned int *start,
 | |
| 					    unsigned int *end)
 | |
| {
 | |
| 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 | |
| 
 | |
| 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 | |
| 		unsigned int cpp;
 | |
| 
 | |
| 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 | |
| 
 | |
| 		cluster_start = cpos % cpp;
 | |
| 		cluster_start = cluster_start << osb->s_clustersize_bits;
 | |
| 
 | |
| 		cluster_end = cluster_start + osb->s_clustersize;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(cluster_start > PAGE_SIZE);
 | |
| 	BUG_ON(cluster_end > PAGE_SIZE);
 | |
| 
 | |
| 	if (start)
 | |
| 		*start = cluster_start;
 | |
| 	if (end)
 | |
| 		*end = cluster_end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'from' and 'to' are the region in the page to avoid zeroing.
 | |
|  *
 | |
|  * If pagesize > clustersize, this function will avoid zeroing outside
 | |
|  * of the cluster boundary.
 | |
|  *
 | |
|  * from == to == 0 is code for "zero the entire cluster region"
 | |
|  */
 | |
| static void ocfs2_clear_page_regions(struct page *page,
 | |
| 				     struct ocfs2_super *osb, u32 cpos,
 | |
| 				     unsigned from, unsigned to)
 | |
| {
 | |
| 	void *kaddr;
 | |
| 	unsigned int cluster_start, cluster_end;
 | |
| 
 | |
| 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 | |
| 
 | |
| 	kaddr = kmap_atomic(page);
 | |
| 
 | |
| 	if (from || to) {
 | |
| 		if (from > cluster_start)
 | |
| 			memset(kaddr + cluster_start, 0, from - cluster_start);
 | |
| 		if (to < cluster_end)
 | |
| 			memset(kaddr + to, 0, cluster_end - to);
 | |
| 	} else {
 | |
| 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 | |
| 	}
 | |
| 
 | |
| 	kunmap_atomic(kaddr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Nonsparse file systems fully allocate before we get to the write
 | |
|  * code. This prevents ocfs2_write() from tagging the write as an
 | |
|  * allocating one, which means ocfs2_map_page_blocks() might try to
 | |
|  * read-in the blocks at the tail of our file. Avoid reading them by
 | |
|  * testing i_size against each block offset.
 | |
|  */
 | |
| static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 | |
| 				 unsigned int block_start)
 | |
| {
 | |
| 	u64 offset = page_offset(page) + block_start;
 | |
| 
 | |
| 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (i_size_read(inode) > offset)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some of this taken from __block_write_begin(). We already have our
 | |
|  * mapping by now though, and the entire write will be allocating or
 | |
|  * it won't, so not much need to use BH_New.
 | |
|  *
 | |
|  * This will also skip zeroing, which is handled externally.
 | |
|  */
 | |
| int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 | |
| 			  struct inode *inode, unsigned int from,
 | |
| 			  unsigned int to, int new)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 | |
| 	unsigned int block_end, block_start;
 | |
| 	unsigned int bsize = 1 << inode->i_blkbits;
 | |
| 
 | |
| 	if (!page_has_buffers(page))
 | |
| 		create_empty_buffers(page, bsize, 0);
 | |
| 
 | |
| 	head = page_buffers(page);
 | |
| 	for (bh = head, block_start = 0; bh != head || !block_start;
 | |
| 	     bh = bh->b_this_page, block_start += bsize) {
 | |
| 		block_end = block_start + bsize;
 | |
| 
 | |
| 		clear_buffer_new(bh);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ignore blocks outside of our i/o range -
 | |
| 		 * they may belong to unallocated clusters.
 | |
| 		 */
 | |
| 		if (block_start >= to || block_end <= from) {
 | |
| 			if (PageUptodate(page))
 | |
| 				set_buffer_uptodate(bh);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * For an allocating write with cluster size >= page
 | |
| 		 * size, we always write the entire page.
 | |
| 		 */
 | |
| 		if (new)
 | |
| 			set_buffer_new(bh);
 | |
| 
 | |
| 		if (!buffer_mapped(bh)) {
 | |
| 			map_bh(bh, inode->i_sb, *p_blkno);
 | |
| 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 | |
| 		}
 | |
| 
 | |
| 		if (PageUptodate(page)) {
 | |
| 			if (!buffer_uptodate(bh))
 | |
| 				set_buffer_uptodate(bh);
 | |
| 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 | |
| 			   !buffer_new(bh) &&
 | |
| 			   ocfs2_should_read_blk(inode, page, block_start) &&
 | |
| 			   (block_start < from || block_end > to)) {
 | |
| 			ll_rw_block(READ, 1, &bh);
 | |
| 			*wait_bh++=bh;
 | |
| 		}
 | |
| 
 | |
| 		*p_blkno = *p_blkno + 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we issued read requests - let them complete.
 | |
| 	 */
 | |
| 	while(wait_bh > wait) {
 | |
| 		wait_on_buffer(*--wait_bh);
 | |
| 		if (!buffer_uptodate(*wait_bh))
 | |
| 			ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0 || !new)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we get -EIO above, zero out any newly allocated blocks
 | |
| 	 * to avoid exposing stale data.
 | |
| 	 */
 | |
| 	bh = head;
 | |
| 	block_start = 0;
 | |
| 	do {
 | |
| 		block_end = block_start + bsize;
 | |
| 		if (block_end <= from)
 | |
| 			goto next_bh;
 | |
| 		if (block_start >= to)
 | |
| 			break;
 | |
| 
 | |
| 		zero_user(page, block_start, bh->b_size);
 | |
| 		set_buffer_uptodate(bh);
 | |
| 		mark_buffer_dirty(bh);
 | |
| 
 | |
| next_bh:
 | |
| 		block_start = block_end;
 | |
| 		bh = bh->b_this_page;
 | |
| 	} while (bh != head);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 | |
| #define OCFS2_MAX_CTXT_PAGES	1
 | |
| #else
 | |
| #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
 | |
| #endif
 | |
| 
 | |
| #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 | |
| 
 | |
| /*
 | |
|  * Describe the state of a single cluster to be written to.
 | |
|  */
 | |
| struct ocfs2_write_cluster_desc {
 | |
| 	u32		c_cpos;
 | |
| 	u32		c_phys;
 | |
| 	/*
 | |
| 	 * Give this a unique field because c_phys eventually gets
 | |
| 	 * filled.
 | |
| 	 */
 | |
| 	unsigned	c_new;
 | |
| 	unsigned	c_unwritten;
 | |
| 	unsigned	c_needs_zero;
 | |
| };
 | |
| 
 | |
| struct ocfs2_write_ctxt {
 | |
| 	/* Logical cluster position / len of write */
 | |
| 	u32				w_cpos;
 | |
| 	u32				w_clen;
 | |
| 
 | |
| 	/* First cluster allocated in a nonsparse extend */
 | |
| 	u32				w_first_new_cpos;
 | |
| 
 | |
| 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 | |
| 
 | |
| 	/*
 | |
| 	 * This is true if page_size > cluster_size.
 | |
| 	 *
 | |
| 	 * It triggers a set of special cases during write which might
 | |
| 	 * have to deal with allocating writes to partial pages.
 | |
| 	 */
 | |
| 	unsigned int			w_large_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pages involved in this write.
 | |
| 	 *
 | |
| 	 * w_target_page is the page being written to by the user.
 | |
| 	 *
 | |
| 	 * w_pages is an array of pages which always contains
 | |
| 	 * w_target_page, and in the case of an allocating write with
 | |
| 	 * page_size < cluster size, it will contain zero'd and mapped
 | |
| 	 * pages adjacent to w_target_page which need to be written
 | |
| 	 * out in so that future reads from that region will get
 | |
| 	 * zero's.
 | |
| 	 */
 | |
| 	unsigned int			w_num_pages;
 | |
| 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 | |
| 	struct page			*w_target_page;
 | |
| 
 | |
| 	/*
 | |
| 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 | |
| 	 * against w_target_page in ocfs2_write_end_nolock.
 | |
| 	 */
 | |
| 	unsigned int			w_target_locked:1;
 | |
| 
 | |
| 	/*
 | |
| 	 * ocfs2_write_end() uses this to know what the real range to
 | |
| 	 * write in the target should be.
 | |
| 	 */
 | |
| 	unsigned int			w_target_from;
 | |
| 	unsigned int			w_target_to;
 | |
| 
 | |
| 	/*
 | |
| 	 * We could use journal_current_handle() but this is cleaner,
 | |
| 	 * IMHO -Mark
 | |
| 	 */
 | |
| 	handle_t			*w_handle;
 | |
| 
 | |
| 	struct buffer_head		*w_di_bh;
 | |
| 
 | |
| 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 | |
| };
 | |
| 
 | |
| void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for(i = 0; i < num_pages; i++) {
 | |
| 		if (pages[i]) {
 | |
| 			unlock_page(pages[i]);
 | |
| 			mark_page_accessed(pages[i]);
 | |
| 			page_cache_release(pages[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * w_target_locked is only set to true in the page_mkwrite() case.
 | |
| 	 * The intent is to allow us to lock the target page from write_begin()
 | |
| 	 * to write_end(). The caller must hold a ref on w_target_page.
 | |
| 	 */
 | |
| 	if (wc->w_target_locked) {
 | |
| 		BUG_ON(!wc->w_target_page);
 | |
| 		for (i = 0; i < wc->w_num_pages; i++) {
 | |
| 			if (wc->w_target_page == wc->w_pages[i]) {
 | |
| 				wc->w_pages[i] = NULL;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		mark_page_accessed(wc->w_target_page);
 | |
| 		page_cache_release(wc->w_target_page);
 | |
| 	}
 | |
| 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 | |
| 
 | |
| 	brelse(wc->w_di_bh);
 | |
| 	kfree(wc);
 | |
| }
 | |
| 
 | |
| static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 | |
| 				  struct ocfs2_super *osb, loff_t pos,
 | |
| 				  unsigned len, struct buffer_head *di_bh)
 | |
| {
 | |
| 	u32 cend;
 | |
| 	struct ocfs2_write_ctxt *wc;
 | |
| 
 | |
| 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 | |
| 	if (!wc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	wc->w_cpos = pos >> osb->s_clustersize_bits;
 | |
| 	wc->w_first_new_cpos = UINT_MAX;
 | |
| 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 | |
| 	wc->w_clen = cend - wc->w_cpos + 1;
 | |
| 	get_bh(di_bh);
 | |
| 	wc->w_di_bh = di_bh;
 | |
| 
 | |
| 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
 | |
| 		wc->w_large_pages = 1;
 | |
| 	else
 | |
| 		wc->w_large_pages = 0;
 | |
| 
 | |
| 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 | |
| 
 | |
| 	*wcp = wc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If a page has any new buffers, zero them out here, and mark them uptodate
 | |
|  * and dirty so they'll be written out (in order to prevent uninitialised
 | |
|  * block data from leaking). And clear the new bit.
 | |
|  */
 | |
| static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 | |
| {
 | |
| 	unsigned int block_start, block_end;
 | |
| 	struct buffer_head *head, *bh;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	if (!page_has_buffers(page))
 | |
| 		return;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	block_start = 0;
 | |
| 	do {
 | |
| 		block_end = block_start + bh->b_size;
 | |
| 
 | |
| 		if (buffer_new(bh)) {
 | |
| 			if (block_end > from && block_start < to) {
 | |
| 				if (!PageUptodate(page)) {
 | |
| 					unsigned start, end;
 | |
| 
 | |
| 					start = max(from, block_start);
 | |
| 					end = min(to, block_end);
 | |
| 
 | |
| 					zero_user_segment(page, start, end);
 | |
| 					set_buffer_uptodate(bh);
 | |
| 				}
 | |
| 
 | |
| 				clear_buffer_new(bh);
 | |
| 				mark_buffer_dirty(bh);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		block_start = block_end;
 | |
| 		bh = bh->b_this_page;
 | |
| 	} while (bh != head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only called when we have a failure during allocating write to write
 | |
|  * zero's to the newly allocated region.
 | |
|  */
 | |
| static void ocfs2_write_failure(struct inode *inode,
 | |
| 				struct ocfs2_write_ctxt *wc,
 | |
| 				loff_t user_pos, unsigned user_len)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
 | |
| 		to = user_pos + user_len;
 | |
| 	struct page *tmppage;
 | |
| 
 | |
| 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 | |
| 
 | |
| 	for(i = 0; i < wc->w_num_pages; i++) {
 | |
| 		tmppage = wc->w_pages[i];
 | |
| 
 | |
| 		if (page_has_buffers(tmppage)) {
 | |
| 			if (ocfs2_should_order_data(inode))
 | |
| 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 | |
| 
 | |
| 			block_commit_write(tmppage, from, to);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 | |
| 					struct ocfs2_write_ctxt *wc,
 | |
| 					struct page *page, u32 cpos,
 | |
| 					loff_t user_pos, unsigned user_len,
 | |
| 					int new)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned int map_from = 0, map_to = 0;
 | |
| 	unsigned int cluster_start, cluster_end;
 | |
| 	unsigned int user_data_from = 0, user_data_to = 0;
 | |
| 
 | |
| 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 | |
| 					&cluster_start, &cluster_end);
 | |
| 
 | |
| 	/* treat the write as new if the a hole/lseek spanned across
 | |
| 	 * the page boundary.
 | |
| 	 */
 | |
| 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
 | |
| 			(page_offset(page) <= user_pos));
 | |
| 
 | |
| 	if (page == wc->w_target_page) {
 | |
| 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
 | |
| 		map_to = map_from + user_len;
 | |
| 
 | |
| 		if (new)
 | |
| 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 | |
| 						    cluster_start, cluster_end,
 | |
| 						    new);
 | |
| 		else
 | |
| 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 | |
| 						    map_from, map_to, new);
 | |
| 		if (ret) {
 | |
| 			mlog_errno(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		user_data_from = map_from;
 | |
| 		user_data_to = map_to;
 | |
| 		if (new) {
 | |
| 			map_from = cluster_start;
 | |
| 			map_to = cluster_end;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If we haven't allocated the new page yet, we
 | |
| 		 * shouldn't be writing it out without copying user
 | |
| 		 * data. This is likely a math error from the caller.
 | |
| 		 */
 | |
| 		BUG_ON(!new);
 | |
| 
 | |
| 		map_from = cluster_start;
 | |
| 		map_to = cluster_end;
 | |
| 
 | |
| 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 | |
| 					    cluster_start, cluster_end, new);
 | |
| 		if (ret) {
 | |
| 			mlog_errno(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Parts of newly allocated pages need to be zero'd.
 | |
| 	 *
 | |
| 	 * Above, we have also rewritten 'to' and 'from' - as far as
 | |
| 	 * the rest of the function is concerned, the entire cluster
 | |
| 	 * range inside of a page needs to be written.
 | |
| 	 *
 | |
| 	 * We can skip this if the page is up to date - it's already
 | |
| 	 * been zero'd from being read in as a hole.
 | |
| 	 */
 | |
| 	if (new && !PageUptodate(page))
 | |
| 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
 | |
| 					 cpos, user_data_from, user_data_to);
 | |
| 
 | |
| 	flush_dcache_page(page);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function will only grab one clusters worth of pages.
 | |
|  */
 | |
| static int ocfs2_grab_pages_for_write(struct address_space *mapping,
 | |
| 				      struct ocfs2_write_ctxt *wc,
 | |
| 				      u32 cpos, loff_t user_pos,
 | |
| 				      unsigned user_len, int new,
 | |
| 				      struct page *mmap_page)
 | |
| {
 | |
| 	int ret = 0, i;
 | |
| 	unsigned long start, target_index, end_index, index;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	loff_t last_byte;
 | |
| 
 | |
| 	target_index = user_pos >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out how many pages we'll be manipulating here. For
 | |
| 	 * non allocating write, we just change the one
 | |
| 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
 | |
| 	 * writing past i_size, we only need enough pages to cover the
 | |
| 	 * last page of the write.
 | |
| 	 */
 | |
| 	if (new) {
 | |
| 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
 | |
| 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
 | |
| 		/*
 | |
| 		 * We need the index *past* the last page we could possibly
 | |
| 		 * touch.  This is the page past the end of the write or
 | |
| 		 * i_size, whichever is greater.
 | |
| 		 */
 | |
| 		last_byte = max(user_pos + user_len, i_size_read(inode));
 | |
| 		BUG_ON(last_byte < 1);
 | |
| 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
 | |
| 		if ((start + wc->w_num_pages) > end_index)
 | |
| 			wc->w_num_pages = end_index - start;
 | |
| 	} else {
 | |
| 		wc->w_num_pages = 1;
 | |
| 		start = target_index;
 | |
| 	}
 | |
| 
 | |
| 	for(i = 0; i < wc->w_num_pages; i++) {
 | |
| 		index = start + i;
 | |
| 
 | |
| 		if (index == target_index && mmap_page) {
 | |
| 			/*
 | |
| 			 * ocfs2_pagemkwrite() is a little different
 | |
| 			 * and wants us to directly use the page
 | |
| 			 * passed in.
 | |
| 			 */
 | |
| 			lock_page(mmap_page);
 | |
| 
 | |
| 			/* Exit and let the caller retry */
 | |
| 			if (mmap_page->mapping != mapping) {
 | |
| 				WARN_ON(mmap_page->mapping);
 | |
| 				unlock_page(mmap_page);
 | |
| 				ret = -EAGAIN;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			page_cache_get(mmap_page);
 | |
| 			wc->w_pages[i] = mmap_page;
 | |
| 			wc->w_target_locked = true;
 | |
| 		} else {
 | |
| 			wc->w_pages[i] = find_or_create_page(mapping, index,
 | |
| 							     GFP_NOFS);
 | |
| 			if (!wc->w_pages[i]) {
 | |
| 				ret = -ENOMEM;
 | |
| 				mlog_errno(ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		wait_for_stable_page(wc->w_pages[i]);
 | |
| 
 | |
| 		if (index == target_index)
 | |
| 			wc->w_target_page = wc->w_pages[i];
 | |
| 	}
 | |
| out:
 | |
| 	if (ret)
 | |
| 		wc->w_target_locked = false;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare a single cluster for write one cluster into the file.
 | |
|  */
 | |
| static int ocfs2_write_cluster(struct address_space *mapping,
 | |
| 			       u32 phys, unsigned int unwritten,
 | |
| 			       unsigned int should_zero,
 | |
| 			       struct ocfs2_alloc_context *data_ac,
 | |
| 			       struct ocfs2_alloc_context *meta_ac,
 | |
| 			       struct ocfs2_write_ctxt *wc, u32 cpos,
 | |
| 			       loff_t user_pos, unsigned user_len)
 | |
| {
 | |
| 	int ret, i, new;
 | |
| 	u64 v_blkno, p_blkno;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct ocfs2_extent_tree et;
 | |
| 
 | |
| 	new = phys == 0 ? 1 : 0;
 | |
| 	if (new) {
 | |
| 		u32 tmp_pos;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is safe to call with the page locks - it won't take
 | |
| 		 * any additional semaphores or cluster locks.
 | |
| 		 */
 | |
| 		tmp_pos = cpos;
 | |
| 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
 | |
| 					   &tmp_pos, 1, 0, wc->w_di_bh,
 | |
| 					   wc->w_handle, data_ac,
 | |
| 					   meta_ac, NULL);
 | |
| 		/*
 | |
| 		 * This shouldn't happen because we must have already
 | |
| 		 * calculated the correct meta data allocation required. The
 | |
| 		 * internal tree allocation code should know how to increase
 | |
| 		 * transaction credits itself.
 | |
| 		 *
 | |
| 		 * If need be, we could handle -EAGAIN for a
 | |
| 		 * RESTART_TRANS here.
 | |
| 		 */
 | |
| 		mlog_bug_on_msg(ret == -EAGAIN,
 | |
| 				"Inode %llu: EAGAIN return during allocation.\n",
 | |
| 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
 | |
| 		if (ret < 0) {
 | |
| 			mlog_errno(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else if (unwritten) {
 | |
| 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
 | |
| 					      wc->w_di_bh);
 | |
| 		ret = ocfs2_mark_extent_written(inode, &et,
 | |
| 						wc->w_handle, cpos, 1, phys,
 | |
| 						meta_ac, &wc->w_dealloc);
 | |
| 		if (ret < 0) {
 | |
| 			mlog_errno(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (should_zero)
 | |
| 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
 | |
| 	else
 | |
| 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * The only reason this should fail is due to an inability to
 | |
| 	 * find the extent added.
 | |
| 	 */
 | |
| 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
 | |
| 					  NULL);
 | |
| 	if (ret < 0) {
 | |
| 		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
 | |
| 			    "at logical block %llu",
 | |
| 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 | |
| 			    (unsigned long long)v_blkno);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(p_blkno == 0);
 | |
| 
 | |
| 	for(i = 0; i < wc->w_num_pages; i++) {
 | |
| 		int tmpret;
 | |
| 
 | |
| 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
 | |
| 						      wc->w_pages[i], cpos,
 | |
| 						      user_pos, user_len,
 | |
| 						      should_zero);
 | |
| 		if (tmpret) {
 | |
| 			mlog_errno(tmpret);
 | |
| 			if (ret == 0)
 | |
| 				ret = tmpret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We only have cleanup to do in case of allocating write.
 | |
| 	 */
 | |
| 	if (ret && new)
 | |
| 		ocfs2_write_failure(inode, wc, user_pos, user_len);
 | |
| 
 | |
| out:
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
 | |
| 				       struct ocfs2_alloc_context *data_ac,
 | |
| 				       struct ocfs2_alloc_context *meta_ac,
 | |
| 				       struct ocfs2_write_ctxt *wc,
 | |
| 				       loff_t pos, unsigned len)
 | |
| {
 | |
| 	int ret, i;
 | |
| 	loff_t cluster_off;
 | |
| 	unsigned int local_len = len;
 | |
| 	struct ocfs2_write_cluster_desc *desc;
 | |
| 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
 | |
| 
 | |
| 	for (i = 0; i < wc->w_clen; i++) {
 | |
| 		desc = &wc->w_desc[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * We have to make sure that the total write passed in
 | |
| 		 * doesn't extend past a single cluster.
 | |
| 		 */
 | |
| 		local_len = len;
 | |
| 		cluster_off = pos & (osb->s_clustersize - 1);
 | |
| 		if ((cluster_off + local_len) > osb->s_clustersize)
 | |
| 			local_len = osb->s_clustersize - cluster_off;
 | |
| 
 | |
| 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
 | |
| 					  desc->c_unwritten,
 | |
| 					  desc->c_needs_zero,
 | |
| 					  data_ac, meta_ac,
 | |
| 					  wc, desc->c_cpos, pos, local_len);
 | |
| 		if (ret) {
 | |
| 			mlog_errno(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		len -= local_len;
 | |
| 		pos += local_len;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ocfs2_write_end() wants to know which parts of the target page it
 | |
|  * should complete the write on. It's easiest to compute them ahead of
 | |
|  * time when a more complete view of the write is available.
 | |
|  */
 | |
| static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
 | |
| 					struct ocfs2_write_ctxt *wc,
 | |
| 					loff_t pos, unsigned len, int alloc)
 | |
| {
 | |
| 	struct ocfs2_write_cluster_desc *desc;
 | |
| 
 | |
| 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
 | |
| 	wc->w_target_to = wc->w_target_from + len;
 | |
| 
 | |
| 	if (alloc == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocating write - we may have different boundaries based
 | |
| 	 * on page size and cluster size.
 | |
| 	 *
 | |
| 	 * NOTE: We can no longer compute one value from the other as
 | |
| 	 * the actual write length and user provided length may be
 | |
| 	 * different.
 | |
| 	 */
 | |
| 
 | |
| 	if (wc->w_large_pages) {
 | |
| 		/*
 | |
| 		 * We only care about the 1st and last cluster within
 | |
| 		 * our range and whether they should be zero'd or not. Either
 | |
| 		 * value may be extended out to the start/end of a
 | |
| 		 * newly allocated cluster.
 | |
| 		 */
 | |
| 		desc = &wc->w_desc[0];
 | |
| 		if (desc->c_needs_zero)
 | |
| 			ocfs2_figure_cluster_boundaries(osb,
 | |
| 							desc->c_cpos,
 | |
| 							&wc->w_target_from,
 | |
| 							NULL);
 | |
| 
 | |
| 		desc = &wc->w_desc[wc->w_clen - 1];
 | |
| 		if (desc->c_needs_zero)
 | |
| 			ocfs2_figure_cluster_boundaries(osb,
 | |
| 							desc->c_cpos,
 | |
| 							NULL,
 | |
| 							&wc->w_target_to);
 | |
| 	} else {
 | |
| 		wc->w_target_from = 0;
 | |
| 		wc->w_target_to = PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Populate each single-cluster write descriptor in the write context
 | |
|  * with information about the i/o to be done.
 | |
|  *
 | |
|  * Returns the number of clusters that will have to be allocated, as
 | |
|  * well as a worst case estimate of the number of extent records that
 | |
|  * would have to be created during a write to an unwritten region.
 | |
|  */
 | |
| static int ocfs2_populate_write_desc(struct inode *inode,
 | |
| 				     struct ocfs2_write_ctxt *wc,
 | |
| 				     unsigned int *clusters_to_alloc,
 | |
| 				     unsigned int *extents_to_split)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct ocfs2_write_cluster_desc *desc;
 | |
| 	unsigned int num_clusters = 0;
 | |
| 	unsigned int ext_flags = 0;
 | |
| 	u32 phys = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	*clusters_to_alloc = 0;
 | |
| 	*extents_to_split = 0;
 | |
| 
 | |
| 	for (i = 0; i < wc->w_clen; i++) {
 | |
| 		desc = &wc->w_desc[i];
 | |
| 		desc->c_cpos = wc->w_cpos + i;
 | |
| 
 | |
| 		if (num_clusters == 0) {
 | |
| 			/*
 | |
| 			 * Need to look up the next extent record.
 | |
| 			 */
 | |
| 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
 | |
| 						 &num_clusters, &ext_flags);
 | |
| 			if (ret) {
 | |
| 				mlog_errno(ret);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			/* We should already CoW the refcountd extent. */
 | |
| 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
 | |
| 
 | |
| 			/*
 | |
| 			 * Assume worst case - that we're writing in
 | |
| 			 * the middle of the extent.
 | |
| 			 *
 | |
| 			 * We can assume that the write proceeds from
 | |
| 			 * left to right, in which case the extent
 | |
| 			 * insert code is smart enough to coalesce the
 | |
| 			 * next splits into the previous records created.
 | |
| 			 */
 | |
| 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
 | |
| 				*extents_to_split = *extents_to_split + 2;
 | |
| 		} else if (phys) {
 | |
| 			/*
 | |
| 			 * Only increment phys if it doesn't describe
 | |
| 			 * a hole.
 | |
| 			 */
 | |
| 			phys++;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
 | |
| 		 * file that got extended.  w_first_new_cpos tells us
 | |
| 		 * where the newly allocated clusters are so we can
 | |
| 		 * zero them.
 | |
| 		 */
 | |
| 		if (desc->c_cpos >= wc->w_first_new_cpos) {
 | |
| 			BUG_ON(phys == 0);
 | |
| 			desc->c_needs_zero = 1;
 | |
| 		}
 | |
| 
 | |
| 		desc->c_phys = phys;
 | |
| 		if (phys == 0) {
 | |
| 			desc->c_new = 1;
 | |
| 			desc->c_needs_zero = 1;
 | |
| 			*clusters_to_alloc = *clusters_to_alloc + 1;
 | |
| 		}
 | |
| 
 | |
| 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
 | |
| 			desc->c_unwritten = 1;
 | |
| 			desc->c_needs_zero = 1;
 | |
| 		}
 | |
| 
 | |
| 		num_clusters--;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ocfs2_write_begin_inline(struct address_space *mapping,
 | |
| 				    struct inode *inode,
 | |
| 				    struct ocfs2_write_ctxt *wc)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | |
| 	struct page *page;
 | |
| 	handle_t *handle;
 | |
| 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
 | |
| 
 | |
| 	page = find_or_create_page(mapping, 0, GFP_NOFS);
 | |
| 	if (!page) {
 | |
| 		ret = -ENOMEM;
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If we don't set w_num_pages then this page won't get unlocked
 | |
| 	 * and freed on cleanup of the write context.
 | |
| 	 */
 | |
| 	wc->w_pages[0] = wc->w_target_page = page;
 | |
| 	wc->w_num_pages = 1;
 | |
| 
 | |
| 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		ret = PTR_ERR(handle);
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
 | |
| 				      OCFS2_JOURNAL_ACCESS_WRITE);
 | |
| 	if (ret) {
 | |
| 		ocfs2_commit_trans(osb, handle);
 | |
| 
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 | |
| 		ocfs2_set_inode_data_inline(inode, di);
 | |
| 
 | |
| 	if (!PageUptodate(page)) {
 | |
| 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
 | |
| 		if (ret) {
 | |
| 			ocfs2_commit_trans(osb, handle);
 | |
| 
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	wc->w_handle = handle;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
 | |
| {
 | |
| 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 | |
| 
 | |
| 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
 | |
| 					  struct inode *inode, loff_t pos,
 | |
| 					  unsigned len, struct page *mmap_page,
 | |
| 					  struct ocfs2_write_ctxt *wc)
 | |
| {
 | |
| 	int ret, written = 0;
 | |
| 	loff_t end = pos + len;
 | |
| 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 | |
| 	struct ocfs2_dinode *di = NULL;
 | |
| 
 | |
| 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
 | |
| 					     len, (unsigned long long)pos,
 | |
| 					     oi->ip_dyn_features);
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle inodes which already have inline data 1st.
 | |
| 	 */
 | |
| 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
 | |
| 		if (mmap_page == NULL &&
 | |
| 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
 | |
| 			goto do_inline_write;
 | |
| 
 | |
| 		/*
 | |
| 		 * The write won't fit - we have to give this inode an
 | |
| 		 * inline extent list now.
 | |
| 		 */
 | |
| 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
 | |
| 		if (ret)
 | |
| 			mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether the inode can accept inline data.
 | |
| 	 */
 | |
| 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether the write can fit.
 | |
| 	 */
 | |
| 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
 | |
| 	if (mmap_page ||
 | |
| 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
 | |
| 		return 0;
 | |
| 
 | |
| do_inline_write:
 | |
| 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This signals to the caller that the data can be written
 | |
| 	 * inline.
 | |
| 	 */
 | |
| 	written = 1;
 | |
| out:
 | |
| 	return written ? written : ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function only does anything for file systems which can't
 | |
|  * handle sparse files.
 | |
|  *
 | |
|  * What we want to do here is fill in any hole between the current end
 | |
|  * of allocation and the end of our write. That way the rest of the
 | |
|  * write path can treat it as an non-allocating write, which has no
 | |
|  * special case code for sparse/nonsparse files.
 | |
|  */
 | |
| static int ocfs2_expand_nonsparse_inode(struct inode *inode,
 | |
| 					struct buffer_head *di_bh,
 | |
| 					loff_t pos, unsigned len,
 | |
| 					struct ocfs2_write_ctxt *wc)
 | |
| {
 | |
| 	int ret;
 | |
| 	loff_t newsize = pos + len;
 | |
| 
 | |
| 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
 | |
| 
 | |
| 	if (newsize <= i_size_read(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
 | |
| 	if (ret)
 | |
| 		mlog_errno(ret);
 | |
| 
 | |
| 	wc->w_first_new_cpos =
 | |
| 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
 | |
| 			   loff_t pos)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
 | |
| 	if (pos > i_size_read(inode))
 | |
| 		ret = ocfs2_zero_extend(inode, di_bh, pos);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to flush truncate logs if we can free enough clusters from it.
 | |
|  * As for return value, "< 0" means error, "0" no space and "1" means
 | |
|  * we have freed enough spaces and let the caller try to allocate again.
 | |
|  */
 | |
| static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
 | |
| 					  unsigned int needed)
 | |
| {
 | |
| 	tid_t target;
 | |
| 	int ret = 0;
 | |
| 	unsigned int truncated_clusters;
 | |
| 
 | |
| 	mutex_lock(&osb->osb_tl_inode->i_mutex);
 | |
| 	truncated_clusters = osb->truncated_clusters;
 | |
| 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we can succeed in allocating if we free
 | |
| 	 * the truncate log.
 | |
| 	 */
 | |
| 	if (truncated_clusters < needed)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = ocfs2_flush_truncate_log(osb);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
 | |
| 		jbd2_log_wait_commit(osb->journal->j_journal, target);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int ocfs2_write_begin_nolock(struct file *filp,
 | |
| 			     struct address_space *mapping,
 | |
| 			     loff_t pos, unsigned len, unsigned flags,
 | |
| 			     struct page **pagep, void **fsdata,
 | |
| 			     struct buffer_head *di_bh, struct page *mmap_page)
 | |
| {
 | |
| 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
 | |
| 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
 | |
| 	struct ocfs2_write_ctxt *wc;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | |
| 	struct ocfs2_dinode *di;
 | |
| 	struct ocfs2_alloc_context *data_ac = NULL;
 | |
| 	struct ocfs2_alloc_context *meta_ac = NULL;
 | |
| 	handle_t *handle;
 | |
| 	struct ocfs2_extent_tree et;
 | |
| 	int try_free = 1, ret1;
 | |
| 
 | |
| try_again:
 | |
| 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (ocfs2_supports_inline_data(osb)) {
 | |
| 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
 | |
| 						     mmap_page, wc);
 | |
| 		if (ret == 1) {
 | |
| 			ret = 0;
 | |
| 			goto success;
 | |
| 		}
 | |
| 		if (ret < 0) {
 | |
| 			mlog_errno(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ocfs2_sparse_alloc(osb))
 | |
| 		ret = ocfs2_zero_tail(inode, di_bh, pos);
 | |
| 	else
 | |
| 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
 | |
| 						   wc);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
 | |
| 	if (ret < 0) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	} else if (ret == 1) {
 | |
| 		clusters_need = wc->w_clen;
 | |
| 		ret = ocfs2_refcount_cow(inode, filp, di_bh,
 | |
| 					 wc->w_cpos, wc->w_clen, UINT_MAX);
 | |
| 		if (ret) {
 | |
| 			mlog_errno(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
 | |
| 					&extents_to_split);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	clusters_need += clusters_to_alloc;
 | |
| 
 | |
| 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
 | |
| 
 | |
| 	trace_ocfs2_write_begin_nolock(
 | |
| 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
 | |
| 			(long long)i_size_read(inode),
 | |
| 			le32_to_cpu(di->i_clusters),
 | |
| 			pos, len, flags, mmap_page,
 | |
| 			clusters_to_alloc, extents_to_split);
 | |
| 
 | |
| 	/*
 | |
| 	 * We set w_target_from, w_target_to here so that
 | |
| 	 * ocfs2_write_end() knows which range in the target page to
 | |
| 	 * write out. An allocation requires that we write the entire
 | |
| 	 * cluster range.
 | |
| 	 */
 | |
| 	if (clusters_to_alloc || extents_to_split) {
 | |
| 		/*
 | |
| 		 * XXX: We are stretching the limits of
 | |
| 		 * ocfs2_lock_allocators(). It greatly over-estimates
 | |
| 		 * the work to be done.
 | |
| 		 */
 | |
| 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
 | |
| 					      wc->w_di_bh);
 | |
| 		ret = ocfs2_lock_allocators(inode, &et,
 | |
| 					    clusters_to_alloc, extents_to_split,
 | |
| 					    &data_ac, &meta_ac);
 | |
| 		if (ret) {
 | |
| 			mlog_errno(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (data_ac)
 | |
| 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
 | |
| 
 | |
| 		credits = ocfs2_calc_extend_credits(inode->i_sb,
 | |
| 						    &di->id2.i_list,
 | |
| 						    clusters_to_alloc);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
 | |
| 	 * and non-sparse clusters we just extended.  For non-sparse writes,
 | |
| 	 * we know zeros will only be needed in the first and/or last cluster.
 | |
| 	 */
 | |
| 	if (clusters_to_alloc || extents_to_split ||
 | |
| 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
 | |
| 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
 | |
| 		cluster_of_pages = 1;
 | |
| 	else
 | |
| 		cluster_of_pages = 0;
 | |
| 
 | |
| 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
 | |
| 
 | |
| 	handle = ocfs2_start_trans(osb, credits);
 | |
| 	if (IS_ERR(handle)) {
 | |
| 		ret = PTR_ERR(handle);
 | |
| 		mlog_errno(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	wc->w_handle = handle;
 | |
| 
 | |
| 	if (clusters_to_alloc) {
 | |
| 		ret = dquot_alloc_space_nodirty(inode,
 | |
| 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
 | |
| 		if (ret)
 | |
| 			goto out_commit;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We don't want this to fail in ocfs2_write_end(), so do it
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
 | |
| 				      OCFS2_JOURNAL_ACCESS_WRITE);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out_quota;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill our page array first. That way we've grabbed enough so
 | |
| 	 * that we can zero and flush if we error after adding the
 | |
| 	 * extent.
 | |
| 	 */
 | |
| 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
 | |
| 					 cluster_of_pages, mmap_page);
 | |
| 	if (ret && ret != -EAGAIN) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out_quota;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
 | |
| 	 * the target page. In this case, we exit with no error and no target
 | |
| 	 * page. This will trigger the caller, page_mkwrite(), to re-try
 | |
| 	 * the operation.
 | |
| 	 */
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		BUG_ON(wc->w_target_page);
 | |
| 		ret = 0;
 | |
| 		goto out_quota;
 | |
| 	}
 | |
| 
 | |
| 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
 | |
| 					  len);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out_quota;
 | |
| 	}
 | |
| 
 | |
| 	if (data_ac)
 | |
| 		ocfs2_free_alloc_context(data_ac);
 | |
| 	if (meta_ac)
 | |
| 		ocfs2_free_alloc_context(meta_ac);
 | |
| 
 | |
| success:
 | |
| 	*pagep = wc->w_target_page;
 | |
| 	*fsdata = wc;
 | |
| 	return 0;
 | |
| out_quota:
 | |
| 	if (clusters_to_alloc)
 | |
| 		dquot_free_space(inode,
 | |
| 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
 | |
| out_commit:
 | |
| 	ocfs2_commit_trans(osb, handle);
 | |
| 
 | |
| out:
 | |
| 	ocfs2_free_write_ctxt(wc);
 | |
| 
 | |
| 	if (data_ac)
 | |
| 		ocfs2_free_alloc_context(data_ac);
 | |
| 	if (meta_ac)
 | |
| 		ocfs2_free_alloc_context(meta_ac);
 | |
| 
 | |
| 	if (ret == -ENOSPC && try_free) {
 | |
| 		/*
 | |
| 		 * Try to free some truncate log so that we can have enough
 | |
| 		 * clusters to allocate.
 | |
| 		 */
 | |
| 		try_free = 0;
 | |
| 
 | |
| 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
 | |
| 		if (ret1 == 1)
 | |
| 			goto try_again;
 | |
| 
 | |
| 		if (ret1 < 0)
 | |
| 			mlog_errno(ret1);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
 | |
| 			     loff_t pos, unsigned len, unsigned flags,
 | |
| 			     struct page **pagep, void **fsdata)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct buffer_head *di_bh = NULL;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 
 | |
| 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Take alloc sem here to prevent concurrent lookups. That way
 | |
| 	 * the mapping, zeroing and tree manipulation within
 | |
| 	 * ocfs2_write() will be safe against ->readpage(). This
 | |
| 	 * should also serve to lock out allocation from a shared
 | |
| 	 * writeable region.
 | |
| 	 */
 | |
| 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
 | |
| 
 | |
| 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
 | |
| 				       fsdata, di_bh, NULL);
 | |
| 	if (ret) {
 | |
| 		mlog_errno(ret);
 | |
| 		goto out_fail;
 | |
| 	}
 | |
| 
 | |
| 	brelse(di_bh);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_fail:
 | |
| 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
 | |
| 
 | |
| 	brelse(di_bh);
 | |
| 	ocfs2_inode_unlock(inode, 1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
 | |
| 				   unsigned len, unsigned *copied,
 | |
| 				   struct ocfs2_dinode *di,
 | |
| 				   struct ocfs2_write_ctxt *wc)
 | |
| {
 | |
| 	void *kaddr;
 | |
| 
 | |
| 	if (unlikely(*copied < len)) {
 | |
| 		if (!PageUptodate(wc->w_target_page)) {
 | |
| 			*copied = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kaddr = kmap_atomic(wc->w_target_page);
 | |
| 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
 | |
| 	kunmap_atomic(kaddr);
 | |
| 
 | |
| 	trace_ocfs2_write_end_inline(
 | |
| 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
 | |
| 	     (unsigned long long)pos, *copied,
 | |
| 	     le16_to_cpu(di->id2.i_data.id_count),
 | |
| 	     le16_to_cpu(di->i_dyn_features));
 | |
| }
 | |
| 
 | |
| int ocfs2_write_end_nolock(struct address_space *mapping,
 | |
| 			   loff_t pos, unsigned len, unsigned copied,
 | |
| 			   struct page *page, void *fsdata)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 | |
| 	struct ocfs2_write_ctxt *wc = fsdata;
 | |
| 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
 | |
| 	handle_t *handle = wc->w_handle;
 | |
| 	struct page *tmppage;
 | |
| 
 | |
| 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
 | |
| 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
 | |
| 		goto out_write_size;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(copied < len)) {
 | |
| 		if (!PageUptodate(wc->w_target_page))
 | |
| 			copied = 0;
 | |
| 
 | |
| 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
 | |
| 				       start+len);
 | |
| 	}
 | |
| 	flush_dcache_page(wc->w_target_page);
 | |
| 
 | |
| 	for(i = 0; i < wc->w_num_pages; i++) {
 | |
| 		tmppage = wc->w_pages[i];
 | |
| 
 | |
| 		if (tmppage == wc->w_target_page) {
 | |
| 			from = wc->w_target_from;
 | |
| 			to = wc->w_target_to;
 | |
| 
 | |
| 			BUG_ON(from > PAGE_CACHE_SIZE ||
 | |
| 			       to > PAGE_CACHE_SIZE ||
 | |
| 			       to < from);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Pages adjacent to the target (if any) imply
 | |
| 			 * a hole-filling write in which case we want
 | |
| 			 * to flush their entire range.
 | |
| 			 */
 | |
| 			from = 0;
 | |
| 			to = PAGE_CACHE_SIZE;
 | |
| 		}
 | |
| 
 | |
| 		if (page_has_buffers(tmppage)) {
 | |
| 			if (ocfs2_should_order_data(inode))
 | |
| 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 | |
| 			block_commit_write(tmppage, from, to);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out_write_size:
 | |
| 	pos += copied;
 | |
| 	if (pos > inode->i_size) {
 | |
| 		i_size_write(inode, pos);
 | |
| 		mark_inode_dirty(inode);
 | |
| 	}
 | |
| 	inode->i_blocks = ocfs2_inode_sector_count(inode);
 | |
| 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
 | |
| 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 | |
| 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
 | |
| 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
 | |
| 	ocfs2_journal_dirty(handle, wc->w_di_bh);
 | |
| 
 | |
| 	ocfs2_commit_trans(osb, handle);
 | |
| 
 | |
| 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
 | |
| 
 | |
| 	ocfs2_free_write_ctxt(wc);
 | |
| 
 | |
| 	return copied;
 | |
| }
 | |
| 
 | |
| static int ocfs2_write_end(struct file *file, struct address_space *mapping,
 | |
| 			   loff_t pos, unsigned len, unsigned copied,
 | |
| 			   struct page *page, void *fsdata)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 
 | |
| 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
 | |
| 
 | |
| 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
 | |
| 	ocfs2_inode_unlock(inode, 1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct address_space_operations ocfs2_aops = {
 | |
| 	.readpage		= ocfs2_readpage,
 | |
| 	.readpages		= ocfs2_readpages,
 | |
| 	.writepage		= ocfs2_writepage,
 | |
| 	.write_begin		= ocfs2_write_begin,
 | |
| 	.write_end		= ocfs2_write_end,
 | |
| 	.bmap			= ocfs2_bmap,
 | |
| 	.direct_IO		= ocfs2_direct_IO,
 | |
| 	.invalidatepage		= ocfs2_invalidatepage,
 | |
| 	.releasepage		= ocfs2_releasepage,
 | |
| 	.migratepage		= buffer_migrate_page,
 | |
| 	.is_partially_uptodate	= block_is_partially_uptodate,
 | |
| 	.error_remove_page	= generic_error_remove_page,
 | |
| };
 |