 ecc910f520
			
		
	
	
	ecc910f520
	
	
	
		
			
			- Allow the ring size to be specified in non power-of-two sizes (for instance to limit the amount of receive buffers). - Automatically size the event queue. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			745 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			745 lines
		
	
	
	
		
			22 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare Solarstorm network controllers and boards
 | |
|  * Copyright 2005-2006 Fen Systems Ltd.
 | |
|  * Copyright 2005-2009 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| 
 | |
| #include <linux/socket.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/udp.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/checksum.h>
 | |
| #include "net_driver.h"
 | |
| #include "efx.h"
 | |
| #include "nic.h"
 | |
| #include "selftest.h"
 | |
| #include "workarounds.h"
 | |
| 
 | |
| /* Number of RX descriptors pushed at once. */
 | |
| #define EFX_RX_BATCH  8
 | |
| 
 | |
| /* Maximum size of a buffer sharing a page */
 | |
| #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
 | |
| 
 | |
| /* Size of buffer allocated for skb header area. */
 | |
| #define EFX_SKB_HEADERS  64u
 | |
| 
 | |
| /*
 | |
|  * rx_alloc_method - RX buffer allocation method
 | |
|  *
 | |
|  * This driver supports two methods for allocating and using RX buffers:
 | |
|  * each RX buffer may be backed by an skb or by an order-n page.
 | |
|  *
 | |
|  * When LRO is in use then the second method has a lower overhead,
 | |
|  * since we don't have to allocate then free skbs on reassembled frames.
 | |
|  *
 | |
|  * Values:
 | |
|  *   - RX_ALLOC_METHOD_AUTO = 0
 | |
|  *   - RX_ALLOC_METHOD_SKB  = 1
 | |
|  *   - RX_ALLOC_METHOD_PAGE = 2
 | |
|  *
 | |
|  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
 | |
|  * controlled by the parameters below.
 | |
|  *
 | |
|  *   - Since pushing and popping descriptors are separated by the rx_queue
 | |
|  *     size, so the watermarks should be ~rxd_size.
 | |
|  *   - The performance win by using page-based allocation for LRO is less
 | |
|  *     than the performance hit of using page-based allocation of non-LRO,
 | |
|  *     so the watermarks should reflect this.
 | |
|  *
 | |
|  * Per channel we maintain a single variable, updated by each channel:
 | |
|  *
 | |
|  *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
 | |
|  *                      RX_ALLOC_FACTOR_SKB)
 | |
|  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
 | |
|  * limits the hysteresis), and update the allocation strategy:
 | |
|  *
 | |
|  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
 | |
|  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
 | |
|  */
 | |
| static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
 | |
| 
 | |
| #define RX_ALLOC_LEVEL_LRO 0x2000
 | |
| #define RX_ALLOC_LEVEL_MAX 0x3000
 | |
| #define RX_ALLOC_FACTOR_LRO 1
 | |
| #define RX_ALLOC_FACTOR_SKB (-2)
 | |
| 
 | |
| /* This is the percentage fill level below which new RX descriptors
 | |
|  * will be added to the RX descriptor ring.
 | |
|  */
 | |
| static unsigned int rx_refill_threshold = 90;
 | |
| 
 | |
| /* This is the percentage fill level to which an RX queue will be refilled
 | |
|  * when the "RX refill threshold" is reached.
 | |
|  */
 | |
| static unsigned int rx_refill_limit = 95;
 | |
| 
 | |
| /*
 | |
|  * RX maximum head room required.
 | |
|  *
 | |
|  * This must be at least 1 to prevent overflow and at least 2 to allow
 | |
|  * pipelined receives.
 | |
|  */
 | |
| #define EFX_RXD_HEAD_ROOM 2
 | |
| 
 | |
| static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
 | |
| {
 | |
| 	/* Offset is always within one page, so we don't need to consider
 | |
| 	 * the page order.
 | |
| 	 */
 | |
| 	return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
 | |
| }
 | |
| static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
 | |
| {
 | |
| 	return PAGE_SIZE << efx->rx_buffer_order;
 | |
| }
 | |
| 
 | |
| static inline u32 efx_rx_buf_hash(struct efx_rx_buffer *buf)
 | |
| {
 | |
| #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
 | |
| 	return __le32_to_cpup((const __le32 *)(buf->data - 4));
 | |
| #else
 | |
| 	const u8 *data = (const u8 *)(buf->data - 4);
 | |
| 	return ((u32)data[0]       |
 | |
| 		(u32)data[1] << 8  |
 | |
| 		(u32)data[2] << 16 |
 | |
| 		(u32)data[3] << 24);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
 | |
|  *
 | |
|  * @rx_queue:		Efx RX queue
 | |
|  *
 | |
|  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
 | |
|  * struct efx_rx_buffer for each one. Return a negative error code or 0
 | |
|  * on success. May fail having only inserted fewer than EFX_RX_BATCH
 | |
|  * buffers.
 | |
|  */
 | |
| static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	struct net_device *net_dev = efx->net_dev;
 | |
| 	struct efx_rx_buffer *rx_buf;
 | |
| 	int skb_len = efx->rx_buffer_len;
 | |
| 	unsigned index, count;
 | |
| 
 | |
| 	for (count = 0; count < EFX_RX_BATCH; ++count) {
 | |
| 		index = rx_queue->added_count & rx_queue->ptr_mask;
 | |
| 		rx_buf = efx_rx_buffer(rx_queue, index);
 | |
| 
 | |
| 		rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
 | |
| 		if (unlikely(!rx_buf->skb))
 | |
| 			return -ENOMEM;
 | |
| 		rx_buf->page = NULL;
 | |
| 
 | |
| 		/* Adjust the SKB for padding and checksum */
 | |
| 		skb_reserve(rx_buf->skb, NET_IP_ALIGN);
 | |
| 		rx_buf->len = skb_len - NET_IP_ALIGN;
 | |
| 		rx_buf->data = (char *)rx_buf->skb->data;
 | |
| 		rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 
 | |
| 		rx_buf->dma_addr = pci_map_single(efx->pci_dev,
 | |
| 						  rx_buf->data, rx_buf->len,
 | |
| 						  PCI_DMA_FROMDEVICE);
 | |
| 		if (unlikely(pci_dma_mapping_error(efx->pci_dev,
 | |
| 						   rx_buf->dma_addr))) {
 | |
| 			dev_kfree_skb_any(rx_buf->skb);
 | |
| 			rx_buf->skb = NULL;
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		++rx_queue->added_count;
 | |
| 		++rx_queue->alloc_skb_count;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
 | |
|  *
 | |
|  * @rx_queue:		Efx RX queue
 | |
|  *
 | |
|  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
 | |
|  * and populates struct efx_rx_buffers for each one. Return a negative error
 | |
|  * code or 0 on success. If a single page can be split between two buffers,
 | |
|  * then the page will either be inserted fully, or not at at all.
 | |
|  */
 | |
| static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	struct efx_rx_buffer *rx_buf;
 | |
| 	struct page *page;
 | |
| 	void *page_addr;
 | |
| 	struct efx_rx_page_state *state;
 | |
| 	dma_addr_t dma_addr;
 | |
| 	unsigned index, count;
 | |
| 
 | |
| 	/* We can split a page between two buffers */
 | |
| 	BUILD_BUG_ON(EFX_RX_BATCH & 1);
 | |
| 
 | |
| 	for (count = 0; count < EFX_RX_BATCH; ++count) {
 | |
| 		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
 | |
| 				   efx->rx_buffer_order);
 | |
| 		if (unlikely(page == NULL))
 | |
| 			return -ENOMEM;
 | |
| 		dma_addr = pci_map_page(efx->pci_dev, page, 0,
 | |
| 					efx_rx_buf_size(efx),
 | |
| 					PCI_DMA_FROMDEVICE);
 | |
| 		if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
 | |
| 			__free_pages(page, efx->rx_buffer_order);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		page_addr = page_address(page);
 | |
| 		state = page_addr;
 | |
| 		state->refcnt = 0;
 | |
| 		state->dma_addr = dma_addr;
 | |
| 
 | |
| 		page_addr += sizeof(struct efx_rx_page_state);
 | |
| 		dma_addr += sizeof(struct efx_rx_page_state);
 | |
| 
 | |
| 	split:
 | |
| 		index = rx_queue->added_count & rx_queue->ptr_mask;
 | |
| 		rx_buf = efx_rx_buffer(rx_queue, index);
 | |
| 		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
 | |
| 		rx_buf->skb = NULL;
 | |
| 		rx_buf->page = page;
 | |
| 		rx_buf->data = page_addr + EFX_PAGE_IP_ALIGN;
 | |
| 		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
 | |
| 		++rx_queue->added_count;
 | |
| 		++rx_queue->alloc_page_count;
 | |
| 		++state->refcnt;
 | |
| 
 | |
| 		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
 | |
| 			/* Use the second half of the page */
 | |
| 			get_page(page);
 | |
| 			dma_addr += (PAGE_SIZE >> 1);
 | |
| 			page_addr += (PAGE_SIZE >> 1);
 | |
| 			++count;
 | |
| 			goto split;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void efx_unmap_rx_buffer(struct efx_nic *efx,
 | |
| 				struct efx_rx_buffer *rx_buf)
 | |
| {
 | |
| 	if (rx_buf->page) {
 | |
| 		struct efx_rx_page_state *state;
 | |
| 
 | |
| 		EFX_BUG_ON_PARANOID(rx_buf->skb);
 | |
| 
 | |
| 		state = page_address(rx_buf->page);
 | |
| 		if (--state->refcnt == 0) {
 | |
| 			pci_unmap_page(efx->pci_dev,
 | |
| 				       state->dma_addr,
 | |
| 				       efx_rx_buf_size(efx),
 | |
| 				       PCI_DMA_FROMDEVICE);
 | |
| 		}
 | |
| 	} else if (likely(rx_buf->skb)) {
 | |
| 		pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
 | |
| 				 rx_buf->len, PCI_DMA_FROMDEVICE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_free_rx_buffer(struct efx_nic *efx,
 | |
| 			       struct efx_rx_buffer *rx_buf)
 | |
| {
 | |
| 	if (rx_buf->page) {
 | |
| 		__free_pages(rx_buf->page, efx->rx_buffer_order);
 | |
| 		rx_buf->page = NULL;
 | |
| 	} else if (likely(rx_buf->skb)) {
 | |
| 		dev_kfree_skb_any(rx_buf->skb);
 | |
| 		rx_buf->skb = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
 | |
| 			       struct efx_rx_buffer *rx_buf)
 | |
| {
 | |
| 	efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
 | |
| 	efx_free_rx_buffer(rx_queue->efx, rx_buf);
 | |
| }
 | |
| 
 | |
| /* Attempt to resurrect the other receive buffer that used to share this page,
 | |
|  * which had previously been passed up to the kernel and freed. */
 | |
| static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
 | |
| 				    struct efx_rx_buffer *rx_buf)
 | |
| {
 | |
| 	struct efx_rx_page_state *state = page_address(rx_buf->page);
 | |
| 	struct efx_rx_buffer *new_buf;
 | |
| 	unsigned fill_level, index;
 | |
| 
 | |
| 	/* +1 because efx_rx_packet() incremented removed_count. +1 because
 | |
| 	 * we'd like to insert an additional descriptor whilst leaving
 | |
| 	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
 | |
| 	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
 | |
| 	if (unlikely(fill_level > rx_queue->max_fill)) {
 | |
| 		/* We could place "state" on a list, and drain the list in
 | |
| 		 * efx_fast_push_rx_descriptors(). For now, this will do. */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	++state->refcnt;
 | |
| 	get_page(rx_buf->page);
 | |
| 
 | |
| 	index = rx_queue->added_count & rx_queue->ptr_mask;
 | |
| 	new_buf = efx_rx_buffer(rx_queue, index);
 | |
| 	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
 | |
| 	new_buf->skb = NULL;
 | |
| 	new_buf->page = rx_buf->page;
 | |
| 	new_buf->data = (void *)
 | |
| 		((__force unsigned long)rx_buf->data ^ (PAGE_SIZE >> 1));
 | |
| 	new_buf->len = rx_buf->len;
 | |
| 	++rx_queue->added_count;
 | |
| }
 | |
| 
 | |
| /* Recycle the given rx buffer directly back into the rx_queue. There is
 | |
|  * always room to add this buffer, because we've just popped a buffer. */
 | |
| static void efx_recycle_rx_buffer(struct efx_channel *channel,
 | |
| 				  struct efx_rx_buffer *rx_buf)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 | |
| 	struct efx_rx_buffer *new_buf;
 | |
| 	unsigned index;
 | |
| 
 | |
| 	if (rx_buf->page != NULL && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
 | |
| 	    page_count(rx_buf->page) == 1)
 | |
| 		efx_resurrect_rx_buffer(rx_queue, rx_buf);
 | |
| 
 | |
| 	index = rx_queue->added_count & rx_queue->ptr_mask;
 | |
| 	new_buf = efx_rx_buffer(rx_queue, index);
 | |
| 
 | |
| 	memcpy(new_buf, rx_buf, sizeof(*new_buf));
 | |
| 	rx_buf->page = NULL;
 | |
| 	rx_buf->skb = NULL;
 | |
| 	++rx_queue->added_count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
 | |
|  * @rx_queue:		RX descriptor queue
 | |
|  * This will aim to fill the RX descriptor queue up to
 | |
|  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
 | |
|  * memory to do so, a slow fill will be scheduled.
 | |
|  *
 | |
|  * The caller must provide serialisation (none is used here). In practise,
 | |
|  * this means this function must run from the NAPI handler, or be called
 | |
|  * when NAPI is disabled.
 | |
|  */
 | |
| void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 | |
| 	unsigned fill_level;
 | |
| 	int space, rc = 0;
 | |
| 
 | |
| 	/* Calculate current fill level, and exit if we don't need to fill */
 | |
| 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
 | |
| 	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
 | |
| 	if (fill_level >= rx_queue->fast_fill_trigger)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Record minimum fill level */
 | |
| 	if (unlikely(fill_level < rx_queue->min_fill)) {
 | |
| 		if (fill_level)
 | |
| 			rx_queue->min_fill = fill_level;
 | |
| 	}
 | |
| 
 | |
| 	space = rx_queue->fast_fill_limit - fill_level;
 | |
| 	if (space < EFX_RX_BATCH)
 | |
| 		goto out;
 | |
| 
 | |
| 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 | |
| 		   "RX queue %d fast-filling descriptor ring from"
 | |
| 		   " level %d to level %d using %s allocation\n",
 | |
| 		   efx_rx_queue_index(rx_queue), fill_level,
 | |
| 		   rx_queue->fast_fill_limit,
 | |
| 		   channel->rx_alloc_push_pages ? "page" : "skb");
 | |
| 
 | |
| 	do {
 | |
| 		if (channel->rx_alloc_push_pages)
 | |
| 			rc = efx_init_rx_buffers_page(rx_queue);
 | |
| 		else
 | |
| 			rc = efx_init_rx_buffers_skb(rx_queue);
 | |
| 		if (unlikely(rc)) {
 | |
| 			/* Ensure that we don't leave the rx queue empty */
 | |
| 			if (rx_queue->added_count == rx_queue->removed_count)
 | |
| 				efx_schedule_slow_fill(rx_queue);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
 | |
| 
 | |
| 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 | |
| 		   "RX queue %d fast-filled descriptor ring "
 | |
| 		   "to level %d\n", efx_rx_queue_index(rx_queue),
 | |
| 		   rx_queue->added_count - rx_queue->removed_count);
 | |
| 
 | |
|  out:
 | |
| 	if (rx_queue->notified_count != rx_queue->added_count)
 | |
| 		efx_nic_notify_rx_desc(rx_queue);
 | |
| }
 | |
| 
 | |
| void efx_rx_slow_fill(unsigned long context)
 | |
| {
 | |
| 	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
 | |
| 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 | |
| 
 | |
| 	/* Post an event to cause NAPI to run and refill the queue */
 | |
| 	efx_nic_generate_fill_event(channel);
 | |
| 	++rx_queue->slow_fill_count;
 | |
| }
 | |
| 
 | |
| static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
 | |
| 				     struct efx_rx_buffer *rx_buf,
 | |
| 				     int len, bool *discard,
 | |
| 				     bool *leak_packet)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
 | |
| 
 | |
| 	if (likely(len <= max_len))
 | |
| 		return;
 | |
| 
 | |
| 	/* The packet must be discarded, but this is only a fatal error
 | |
| 	 * if the caller indicated it was
 | |
| 	 */
 | |
| 	*discard = true;
 | |
| 
 | |
| 	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
 | |
| 		if (net_ratelimit())
 | |
| 			netif_err(efx, rx_err, efx->net_dev,
 | |
| 				  " RX queue %d seriously overlength "
 | |
| 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
 | |
| 				  efx_rx_queue_index(rx_queue), len, max_len,
 | |
| 				  efx->type->rx_buffer_padding);
 | |
| 		/* If this buffer was skb-allocated, then the meta
 | |
| 		 * data at the end of the skb will be trashed. So
 | |
| 		 * we have no choice but to leak the fragment.
 | |
| 		 */
 | |
| 		*leak_packet = (rx_buf->skb != NULL);
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
 | |
| 	} else {
 | |
| 		if (net_ratelimit())
 | |
| 			netif_err(efx, rx_err, efx->net_dev,
 | |
| 				  " RX queue %d overlength RX event "
 | |
| 				  "(0x%x > 0x%x)\n",
 | |
| 				  efx_rx_queue_index(rx_queue), len, max_len);
 | |
| 	}
 | |
| 
 | |
| 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
 | |
| }
 | |
| 
 | |
| /* Pass a received packet up through the generic LRO stack
 | |
|  *
 | |
|  * Handles driverlink veto, and passes the fragment up via
 | |
|  * the appropriate LRO method
 | |
|  */
 | |
| static void efx_rx_packet_lro(struct efx_channel *channel,
 | |
| 			      struct efx_rx_buffer *rx_buf,
 | |
| 			      bool checksummed)
 | |
| {
 | |
| 	struct napi_struct *napi = &channel->napi_str;
 | |
| 	gro_result_t gro_result;
 | |
| 
 | |
| 	/* Pass the skb/page into the LRO engine */
 | |
| 	if (rx_buf->page) {
 | |
| 		struct efx_nic *efx = channel->efx;
 | |
| 		struct page *page = rx_buf->page;
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		EFX_BUG_ON_PARANOID(rx_buf->skb);
 | |
| 		rx_buf->page = NULL;
 | |
| 
 | |
| 		skb = napi_get_frags(napi);
 | |
| 		if (!skb) {
 | |
| 			put_page(page);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (efx->net_dev->features & NETIF_F_RXHASH)
 | |
| 			skb->rxhash = efx_rx_buf_hash(rx_buf);
 | |
| 
 | |
| 		skb_shinfo(skb)->frags[0].page = page;
 | |
| 		skb_shinfo(skb)->frags[0].page_offset =
 | |
| 			efx_rx_buf_offset(rx_buf);
 | |
| 		skb_shinfo(skb)->frags[0].size = rx_buf->len;
 | |
| 		skb_shinfo(skb)->nr_frags = 1;
 | |
| 
 | |
| 		skb->len = rx_buf->len;
 | |
| 		skb->data_len = rx_buf->len;
 | |
| 		skb->truesize += rx_buf->len;
 | |
| 		skb->ip_summed =
 | |
| 			checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
 | |
| 
 | |
| 		skb_record_rx_queue(skb, channel->channel);
 | |
| 
 | |
| 		gro_result = napi_gro_frags(napi);
 | |
| 	} else {
 | |
| 		struct sk_buff *skb = rx_buf->skb;
 | |
| 
 | |
| 		EFX_BUG_ON_PARANOID(!skb);
 | |
| 		EFX_BUG_ON_PARANOID(!checksummed);
 | |
| 		rx_buf->skb = NULL;
 | |
| 
 | |
| 		gro_result = napi_gro_receive(napi, skb);
 | |
| 	}
 | |
| 
 | |
| 	if (gro_result == GRO_NORMAL) {
 | |
| 		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
 | |
| 	} else if (gro_result != GRO_DROP) {
 | |
| 		channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
 | |
| 		channel->irq_mod_score += 2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
 | |
| 		   unsigned int len, bool checksummed, bool discard)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 | |
| 	struct efx_rx_buffer *rx_buf;
 | |
| 	bool leak_packet = false;
 | |
| 
 | |
| 	rx_buf = efx_rx_buffer(rx_queue, index);
 | |
| 	EFX_BUG_ON_PARANOID(!rx_buf->data);
 | |
| 	EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
 | |
| 	EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
 | |
| 
 | |
| 	/* This allows the refill path to post another buffer.
 | |
| 	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
 | |
| 	 * isn't overwritten yet.
 | |
| 	 */
 | |
| 	rx_queue->removed_count++;
 | |
| 
 | |
| 	/* Validate the length encoded in the event vs the descriptor pushed */
 | |
| 	efx_rx_packet__check_len(rx_queue, rx_buf, len,
 | |
| 				 &discard, &leak_packet);
 | |
| 
 | |
| 	netif_vdbg(efx, rx_status, efx->net_dev,
 | |
| 		   "RX queue %d received id %x at %llx+%x %s%s\n",
 | |
| 		   efx_rx_queue_index(rx_queue), index,
 | |
| 		   (unsigned long long)rx_buf->dma_addr, len,
 | |
| 		   (checksummed ? " [SUMMED]" : ""),
 | |
| 		   (discard ? " [DISCARD]" : ""));
 | |
| 
 | |
| 	/* Discard packet, if instructed to do so */
 | |
| 	if (unlikely(discard)) {
 | |
| 		if (unlikely(leak_packet))
 | |
| 			channel->n_skbuff_leaks++;
 | |
| 		else
 | |
| 			efx_recycle_rx_buffer(channel, rx_buf);
 | |
| 
 | |
| 		/* Don't hold off the previous receive */
 | |
| 		rx_buf = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Release card resources - assumes all RX buffers consumed in-order
 | |
| 	 * per RX queue
 | |
| 	 */
 | |
| 	efx_unmap_rx_buffer(efx, rx_buf);
 | |
| 
 | |
| 	/* Prefetch nice and early so data will (hopefully) be in cache by
 | |
| 	 * the time we look at it.
 | |
| 	 */
 | |
| 	prefetch(rx_buf->data);
 | |
| 
 | |
| 	/* Pipeline receives so that we give time for packet headers to be
 | |
| 	 * prefetched into cache.
 | |
| 	 */
 | |
| 	rx_buf->len = len;
 | |
| out:
 | |
| 	if (channel->rx_pkt)
 | |
| 		__efx_rx_packet(channel,
 | |
| 				channel->rx_pkt, channel->rx_pkt_csummed);
 | |
| 	channel->rx_pkt = rx_buf;
 | |
| 	channel->rx_pkt_csummed = checksummed;
 | |
| }
 | |
| 
 | |
| /* Handle a received packet.  Second half: Touches packet payload. */
 | |
| void __efx_rx_packet(struct efx_channel *channel,
 | |
| 		     struct efx_rx_buffer *rx_buf, bool checksummed)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	rx_buf->data += efx->type->rx_buffer_hash_size;
 | |
| 	rx_buf->len -= efx->type->rx_buffer_hash_size;
 | |
| 
 | |
| 	/* If we're in loopback test, then pass the packet directly to the
 | |
| 	 * loopback layer, and free the rx_buf here
 | |
| 	 */
 | |
| 	if (unlikely(efx->loopback_selftest)) {
 | |
| 		efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
 | |
| 		efx_free_rx_buffer(efx, rx_buf);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (rx_buf->skb) {
 | |
| 		prefetch(skb_shinfo(rx_buf->skb));
 | |
| 
 | |
| 		skb_reserve(rx_buf->skb, efx->type->rx_buffer_hash_size);
 | |
| 		skb_put(rx_buf->skb, rx_buf->len);
 | |
| 
 | |
| 		if (efx->net_dev->features & NETIF_F_RXHASH)
 | |
| 			rx_buf->skb->rxhash = efx_rx_buf_hash(rx_buf);
 | |
| 
 | |
| 		/* Move past the ethernet header. rx_buf->data still points
 | |
| 		 * at the ethernet header */
 | |
| 		rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
 | |
| 						       efx->net_dev);
 | |
| 
 | |
| 		skb_record_rx_queue(rx_buf->skb, channel->channel);
 | |
| 	}
 | |
| 
 | |
| 	if (likely(checksummed || rx_buf->page)) {
 | |
| 		efx_rx_packet_lro(channel, rx_buf, checksummed);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* We now own the SKB */
 | |
| 	skb = rx_buf->skb;
 | |
| 	rx_buf->skb = NULL;
 | |
| 	EFX_BUG_ON_PARANOID(!skb);
 | |
| 
 | |
| 	/* Set the SKB flags */
 | |
| 	skb_checksum_none_assert(skb);
 | |
| 
 | |
| 	/* Pass the packet up */
 | |
| 	netif_receive_skb(skb);
 | |
| 
 | |
| 	/* Update allocation strategy method */
 | |
| 	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
 | |
| }
 | |
| 
 | |
| void efx_rx_strategy(struct efx_channel *channel)
 | |
| {
 | |
| 	enum efx_rx_alloc_method method = rx_alloc_method;
 | |
| 
 | |
| 	/* Only makes sense to use page based allocation if LRO is enabled */
 | |
| 	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
 | |
| 		method = RX_ALLOC_METHOD_SKB;
 | |
| 	} else if (method == RX_ALLOC_METHOD_AUTO) {
 | |
| 		/* Constrain the rx_alloc_level */
 | |
| 		if (channel->rx_alloc_level < 0)
 | |
| 			channel->rx_alloc_level = 0;
 | |
| 		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
 | |
| 			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
 | |
| 
 | |
| 		/* Decide on the allocation method */
 | |
| 		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
 | |
| 			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
 | |
| 	}
 | |
| 
 | |
| 	/* Push the option */
 | |
| 	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
 | |
| }
 | |
| 
 | |
| int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	unsigned int entries;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Create the smallest power-of-two aligned ring */
 | |
| 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
 | |
| 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 | |
| 	rx_queue->ptr_mask = entries - 1;
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev,
 | |
| 		  "creating RX queue %d size %#x mask %#x\n",
 | |
| 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
 | |
| 		  rx_queue->ptr_mask);
 | |
| 
 | |
| 	/* Allocate RX buffers */
 | |
| 	rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer),
 | |
| 				   GFP_KERNEL);
 | |
| 	if (!rx_queue->buffer)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = efx_nic_probe_rx(rx_queue);
 | |
| 	if (rc) {
 | |
| 		kfree(rx_queue->buffer);
 | |
| 		rx_queue->buffer = NULL;
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	unsigned int max_fill, trigger, limit;
 | |
| 
 | |
| 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 | |
| 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
 | |
| 
 | |
| 	/* Initialise ptr fields */
 | |
| 	rx_queue->added_count = 0;
 | |
| 	rx_queue->notified_count = 0;
 | |
| 	rx_queue->removed_count = 0;
 | |
| 	rx_queue->min_fill = -1U;
 | |
| 
 | |
| 	/* Initialise limit fields */
 | |
| 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
 | |
| 	trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
 | |
| 	limit = max_fill * min(rx_refill_limit, 100U) / 100U;
 | |
| 
 | |
| 	rx_queue->max_fill = max_fill;
 | |
| 	rx_queue->fast_fill_trigger = trigger;
 | |
| 	rx_queue->fast_fill_limit = limit;
 | |
| 
 | |
| 	/* Set up RX descriptor ring */
 | |
| 	efx_nic_init_rx(rx_queue);
 | |
| }
 | |
| 
 | |
| void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	int i;
 | |
| 	struct efx_rx_buffer *rx_buf;
 | |
| 
 | |
| 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 | |
| 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
 | |
| 
 | |
| 	del_timer_sync(&rx_queue->slow_fill);
 | |
| 	efx_nic_fini_rx(rx_queue);
 | |
| 
 | |
| 	/* Release RX buffers NB start at index 0 not current HW ptr */
 | |
| 	if (rx_queue->buffer) {
 | |
| 		for (i = 0; i <= rx_queue->ptr_mask; i++) {
 | |
| 			rx_buf = efx_rx_buffer(rx_queue, i);
 | |
| 			efx_fini_rx_buffer(rx_queue, rx_buf);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 | |
| 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
 | |
| 
 | |
| 	efx_nic_remove_rx(rx_queue);
 | |
| 
 | |
| 	kfree(rx_queue->buffer);
 | |
| 	rx_queue->buffer = NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| module_param(rx_alloc_method, int, 0644);
 | |
| MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
 | |
| 
 | |
| module_param(rx_refill_threshold, uint, 0444);
 | |
| MODULE_PARM_DESC(rx_refill_threshold,
 | |
| 		 "RX descriptor ring fast/slow fill threshold (%)");
 | |
| 
 |