 d215697fe1
			
		
	
	
	d215697fe1
	
	
	
		
			
			Make local functions and variable static. Do some rearrangement of the string table stuff to put it where it gets used. Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Acked-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1944 lines
		
	
	
	
		
			58 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1944 lines
		
	
	
	
		
			58 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare Solarstorm network controllers and boards
 | |
|  * Copyright 2005-2006 Fen Systems Ltd.
 | |
|  * Copyright 2006-2009 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include "net_driver.h"
 | |
| #include "bitfield.h"
 | |
| #include "efx.h"
 | |
| #include "nic.h"
 | |
| #include "regs.h"
 | |
| #include "io.h"
 | |
| #include "workarounds.h"
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Configurable values
 | |
|  *
 | |
|  **************************************************************************
 | |
|  */
 | |
| 
 | |
| /* This is set to 16 for a good reason.  In summary, if larger than
 | |
|  * 16, the descriptor cache holds more than a default socket
 | |
|  * buffer's worth of packets (for UDP we can only have at most one
 | |
|  * socket buffer's worth outstanding).  This combined with the fact
 | |
|  * that we only get 1 TX event per descriptor cache means the NIC
 | |
|  * goes idle.
 | |
|  */
 | |
| #define TX_DC_ENTRIES 16
 | |
| #define TX_DC_ENTRIES_ORDER 1
 | |
| 
 | |
| #define RX_DC_ENTRIES 64
 | |
| #define RX_DC_ENTRIES_ORDER 3
 | |
| 
 | |
| /* RX FIFO XOFF watermark
 | |
|  *
 | |
|  * When the amount of the RX FIFO increases used increases past this
 | |
|  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 | |
|  * This also has an effect on RX/TX arbitration
 | |
|  */
 | |
| int efx_nic_rx_xoff_thresh = -1;
 | |
| module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
 | |
| MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
 | |
| 
 | |
| /* RX FIFO XON watermark
 | |
|  *
 | |
|  * When the amount of the RX FIFO used decreases below this
 | |
|  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 | |
|  * This also has an effect on RX/TX arbitration
 | |
|  */
 | |
| int efx_nic_rx_xon_thresh = -1;
 | |
| module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
 | |
| MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
 | |
| 
 | |
| /* If EFX_MAX_INT_ERRORS internal errors occur within
 | |
|  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 | |
|  * disable it.
 | |
|  */
 | |
| #define EFX_INT_ERROR_EXPIRE 3600
 | |
| #define EFX_MAX_INT_ERRORS 5
 | |
| 
 | |
| /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 | |
|  */
 | |
| #define EFX_FLUSH_INTERVAL 10
 | |
| #define EFX_FLUSH_POLL_COUNT 100
 | |
| 
 | |
| /* Size and alignment of special buffers (4KB) */
 | |
| #define EFX_BUF_SIZE 4096
 | |
| 
 | |
| /* Depth of RX flush request fifo */
 | |
| #define EFX_RX_FLUSH_COUNT 4
 | |
| 
 | |
| /* Generated event code for efx_generate_test_event() */
 | |
| #define EFX_CHANNEL_MAGIC_TEST(_channel)	\
 | |
| 	(0x00010100 + (_channel)->channel)
 | |
| 
 | |
| /* Generated event code for efx_generate_fill_event() */
 | |
| #define EFX_CHANNEL_MAGIC_FILL(_channel)	\
 | |
| 	(0x00010200 + (_channel)->channel)
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Solarstorm hardware access
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
 | |
| 				     unsigned int index)
 | |
| {
 | |
| 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
 | |
| 			value, index);
 | |
| }
 | |
| 
 | |
| /* Read the current event from the event queue */
 | |
| static inline efx_qword_t *efx_event(struct efx_channel *channel,
 | |
| 				     unsigned int index)
 | |
| {
 | |
| 	return ((efx_qword_t *) (channel->eventq.addr)) + index;
 | |
| }
 | |
| 
 | |
| /* See if an event is present
 | |
|  *
 | |
|  * We check both the high and low dword of the event for all ones.  We
 | |
|  * wrote all ones when we cleared the event, and no valid event can
 | |
|  * have all ones in either its high or low dwords.  This approach is
 | |
|  * robust against reordering.
 | |
|  *
 | |
|  * Note that using a single 64-bit comparison is incorrect; even
 | |
|  * though the CPU read will be atomic, the DMA write may not be.
 | |
|  */
 | |
| static inline int efx_event_present(efx_qword_t *event)
 | |
| {
 | |
| 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
 | |
| 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
 | |
| }
 | |
| 
 | |
| static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
 | |
| 				     const efx_oword_t *mask)
 | |
| {
 | |
| 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 | |
| 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 | |
| }
 | |
| 
 | |
| int efx_nic_test_registers(struct efx_nic *efx,
 | |
| 			   const struct efx_nic_register_test *regs,
 | |
| 			   size_t n_regs)
 | |
| {
 | |
| 	unsigned address = 0, i, j;
 | |
| 	efx_oword_t mask, imask, original, reg, buf;
 | |
| 
 | |
| 	/* Falcon should be in loopback to isolate the XMAC from the PHY */
 | |
| 	WARN_ON(!LOOPBACK_INTERNAL(efx));
 | |
| 
 | |
| 	for (i = 0; i < n_regs; ++i) {
 | |
| 		address = regs[i].address;
 | |
| 		mask = imask = regs[i].mask;
 | |
| 		EFX_INVERT_OWORD(imask);
 | |
| 
 | |
| 		efx_reado(efx, &original, address);
 | |
| 
 | |
| 		/* bit sweep on and off */
 | |
| 		for (j = 0; j < 128; j++) {
 | |
| 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
 | |
| 				continue;
 | |
| 
 | |
| 			/* Test this testable bit can be set in isolation */
 | |
| 			EFX_AND_OWORD(reg, original, mask);
 | |
| 			EFX_SET_OWORD32(reg, j, j, 1);
 | |
| 
 | |
| 			efx_writeo(efx, ®, address);
 | |
| 			efx_reado(efx, &buf, address);
 | |
| 
 | |
| 			if (efx_masked_compare_oword(®, &buf, &mask))
 | |
| 				goto fail;
 | |
| 
 | |
| 			/* Test this testable bit can be cleared in isolation */
 | |
| 			EFX_OR_OWORD(reg, original, mask);
 | |
| 			EFX_SET_OWORD32(reg, j, j, 0);
 | |
| 
 | |
| 			efx_writeo(efx, ®, address);
 | |
| 			efx_reado(efx, &buf, address);
 | |
| 
 | |
| 			if (efx_masked_compare_oword(®, &buf, &mask))
 | |
| 				goto fail;
 | |
| 		}
 | |
| 
 | |
| 		efx_writeo(efx, &original, address);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	netif_err(efx, hw, efx->net_dev,
 | |
| 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 | |
| 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 | |
| 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Special buffer handling
 | |
|  * Special buffers are used for event queues and the TX and RX
 | |
|  * descriptor rings.
 | |
|  *
 | |
|  *************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Initialise a special buffer
 | |
|  *
 | |
|  * This will define a buffer (previously allocated via
 | |
|  * efx_alloc_special_buffer()) in the buffer table, allowing
 | |
|  * it to be used for event queues, descriptor rings etc.
 | |
|  */
 | |
| static void
 | |
| efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 | |
| {
 | |
| 	efx_qword_t buf_desc;
 | |
| 	int index;
 | |
| 	dma_addr_t dma_addr;
 | |
| 	int i;
 | |
| 
 | |
| 	EFX_BUG_ON_PARANOID(!buffer->addr);
 | |
| 
 | |
| 	/* Write buffer descriptors to NIC */
 | |
| 	for (i = 0; i < buffer->entries; i++) {
 | |
| 		index = buffer->index + i;
 | |
| 		dma_addr = buffer->dma_addr + (i * 4096);
 | |
| 		netif_dbg(efx, probe, efx->net_dev,
 | |
| 			  "mapping special buffer %d at %llx\n",
 | |
| 			  index, (unsigned long long)dma_addr);
 | |
| 		EFX_POPULATE_QWORD_3(buf_desc,
 | |
| 				     FRF_AZ_BUF_ADR_REGION, 0,
 | |
| 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 | |
| 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 | |
| 		efx_write_buf_tbl(efx, &buf_desc, index);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Unmaps a buffer and clears the buffer table entries */
 | |
| static void
 | |
| efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 | |
| {
 | |
| 	efx_oword_t buf_tbl_upd;
 | |
| 	unsigned int start = buffer->index;
 | |
| 	unsigned int end = (buffer->index + buffer->entries - 1);
 | |
| 
 | |
| 	if (!buffer->entries)
 | |
| 		return;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 | |
| 		  buffer->index, buffer->index + buffer->entries - 1);
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
 | |
| 			     FRF_AZ_BUF_UPD_CMD, 0,
 | |
| 			     FRF_AZ_BUF_CLR_CMD, 1,
 | |
| 			     FRF_AZ_BUF_CLR_END_ID, end,
 | |
| 			     FRF_AZ_BUF_CLR_START_ID, start);
 | |
| 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new special buffer
 | |
|  *
 | |
|  * This allocates memory for a new buffer, clears it and allocates a
 | |
|  * new buffer ID range.  It does not write into the buffer table.
 | |
|  *
 | |
|  * This call will allocate 4KB buffers, since 8KB buffers can't be
 | |
|  * used for event queues and descriptor rings.
 | |
|  */
 | |
| static int efx_alloc_special_buffer(struct efx_nic *efx,
 | |
| 				    struct efx_special_buffer *buffer,
 | |
| 				    unsigned int len)
 | |
| {
 | |
| 	len = ALIGN(len, EFX_BUF_SIZE);
 | |
| 
 | |
| 	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
 | |
| 					  &buffer->dma_addr, GFP_KERNEL);
 | |
| 	if (!buffer->addr)
 | |
| 		return -ENOMEM;
 | |
| 	buffer->len = len;
 | |
| 	buffer->entries = len / EFX_BUF_SIZE;
 | |
| 	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
 | |
| 
 | |
| 	/* All zeros is a potentially valid event so memset to 0xff */
 | |
| 	memset(buffer->addr, 0xff, len);
 | |
| 
 | |
| 	/* Select new buffer ID */
 | |
| 	buffer->index = efx->next_buffer_table;
 | |
| 	efx->next_buffer_table += buffer->entries;
 | |
| 
 | |
| 	netif_dbg(efx, probe, efx->net_dev,
 | |
| 		  "allocating special buffers %d-%d at %llx+%x "
 | |
| 		  "(virt %p phys %llx)\n", buffer->index,
 | |
| 		  buffer->index + buffer->entries - 1,
 | |
| 		  (u64)buffer->dma_addr, len,
 | |
| 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 | |
| {
 | |
| 	if (!buffer->addr)
 | |
| 		return;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev,
 | |
| 		  "deallocating special buffers %d-%d at %llx+%x "
 | |
| 		  "(virt %p phys %llx)\n", buffer->index,
 | |
| 		  buffer->index + buffer->entries - 1,
 | |
| 		  (u64)buffer->dma_addr, buffer->len,
 | |
| 		  buffer->addr, (u64)virt_to_phys(buffer->addr));
 | |
| 
 | |
| 	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
 | |
| 			  buffer->dma_addr);
 | |
| 	buffer->addr = NULL;
 | |
| 	buffer->entries = 0;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Generic buffer handling
 | |
|  * These buffers are used for interrupt status and MAC stats
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 | |
| 			 unsigned int len)
 | |
| {
 | |
| 	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
 | |
| 					    &buffer->dma_addr);
 | |
| 	if (!buffer->addr)
 | |
| 		return -ENOMEM;
 | |
| 	buffer->len = len;
 | |
| 	memset(buffer->addr, 0, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 | |
| {
 | |
| 	if (buffer->addr) {
 | |
| 		pci_free_consistent(efx->pci_dev, buffer->len,
 | |
| 				    buffer->addr, buffer->dma_addr);
 | |
| 		buffer->addr = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * TX path
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Returns a pointer to the specified transmit descriptor in the TX
 | |
|  * descriptor queue belonging to the specified channel.
 | |
|  */
 | |
| static inline efx_qword_t *
 | |
| efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
 | |
| {
 | |
| 	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
 | |
| }
 | |
| 
 | |
| /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 | |
| static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	unsigned write_ptr;
 | |
| 	efx_dword_t reg;
 | |
| 
 | |
| 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 | |
| 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 | |
| 	efx_writed_page(tx_queue->efx, ®,
 | |
| 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* For each entry inserted into the software descriptor ring, create a
 | |
|  * descriptor in the hardware TX descriptor ring (in host memory), and
 | |
|  * write a doorbell.
 | |
|  */
 | |
| void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 
 | |
| 	struct efx_tx_buffer *buffer;
 | |
| 	efx_qword_t *txd;
 | |
| 	unsigned write_ptr;
 | |
| 
 | |
| 	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 | |
| 
 | |
| 	do {
 | |
| 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 | |
| 		buffer = &tx_queue->buffer[write_ptr];
 | |
| 		txd = efx_tx_desc(tx_queue, write_ptr);
 | |
| 		++tx_queue->write_count;
 | |
| 
 | |
| 		/* Create TX descriptor ring entry */
 | |
| 		EFX_POPULATE_QWORD_4(*txd,
 | |
| 				     FSF_AZ_TX_KER_CONT, buffer->continuation,
 | |
| 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 | |
| 				     FSF_AZ_TX_KER_BUF_REGION, 0,
 | |
| 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 | |
| 	} while (tx_queue->write_count != tx_queue->insert_count);
 | |
| 
 | |
| 	wmb(); /* Ensure descriptors are written before they are fetched */
 | |
| 	efx_notify_tx_desc(tx_queue);
 | |
| }
 | |
| 
 | |
| /* Allocate hardware resources for a TX queue */
 | |
| int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	unsigned entries;
 | |
| 
 | |
| 	entries = tx_queue->ptr_mask + 1;
 | |
| 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
 | |
| 					entries * sizeof(efx_qword_t));
 | |
| }
 | |
| 
 | |
| void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	efx_oword_t tx_desc_ptr;
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 
 | |
| 	tx_queue->flushed = FLUSH_NONE;
 | |
| 
 | |
| 	/* Pin TX descriptor ring */
 | |
| 	efx_init_special_buffer(efx, &tx_queue->txd);
 | |
| 
 | |
| 	/* Push TX descriptor ring to card */
 | |
| 	EFX_POPULATE_OWORD_10(tx_desc_ptr,
 | |
| 			      FRF_AZ_TX_DESCQ_EN, 1,
 | |
| 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 | |
| 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 | |
| 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 | |
| 			      FRF_AZ_TX_DESCQ_EVQ_ID,
 | |
| 			      tx_queue->channel->channel,
 | |
| 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 | |
| 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 | |
| 			      FRF_AZ_TX_DESCQ_SIZE,
 | |
| 			      __ffs(tx_queue->txd.entries),
 | |
| 			      FRF_AZ_TX_DESCQ_TYPE, 0,
 | |
| 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 | |
| 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 | |
| 		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 | |
| 		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
 | |
| 				    !csum);
 | |
| 	}
 | |
| 
 | |
| 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 | |
| 			 tx_queue->queue);
 | |
| 
 | |
| 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 | |
| 		efx_oword_t reg;
 | |
| 
 | |
| 		/* Only 128 bits in this register */
 | |
| 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
 | |
| 
 | |
| 		efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG);
 | |
| 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 | |
| 			clear_bit_le(tx_queue->queue, (void *)®);
 | |
| 		else
 | |
| 			set_bit_le(tx_queue->queue, (void *)®);
 | |
| 		efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	efx_oword_t tx_flush_descq;
 | |
| 
 | |
| 	tx_queue->flushed = FLUSH_PENDING;
 | |
| 
 | |
| 	/* Post a flush command */
 | |
| 	EFX_POPULATE_OWORD_2(tx_flush_descq,
 | |
| 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 | |
| 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 | |
| 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 | |
| }
 | |
| 
 | |
| void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = tx_queue->efx;
 | |
| 	efx_oword_t tx_desc_ptr;
 | |
| 
 | |
| 	/* The queue should have been flushed */
 | |
| 	WARN_ON(tx_queue->flushed != FLUSH_DONE);
 | |
| 
 | |
| 	/* Remove TX descriptor ring from card */
 | |
| 	EFX_ZERO_OWORD(tx_desc_ptr);
 | |
| 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 | |
| 			 tx_queue->queue);
 | |
| 
 | |
| 	/* Unpin TX descriptor ring */
 | |
| 	efx_fini_special_buffer(efx, &tx_queue->txd);
 | |
| }
 | |
| 
 | |
| /* Free buffers backing TX queue */
 | |
| void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
 | |
| {
 | |
| 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * RX path
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Returns a pointer to the specified descriptor in the RX descriptor queue */
 | |
| static inline efx_qword_t *
 | |
| efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
 | |
| {
 | |
| 	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
 | |
| }
 | |
| 
 | |
| /* This creates an entry in the RX descriptor queue */
 | |
| static inline void
 | |
| efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 | |
| {
 | |
| 	struct efx_rx_buffer *rx_buf;
 | |
| 	efx_qword_t *rxd;
 | |
| 
 | |
| 	rxd = efx_rx_desc(rx_queue, index);
 | |
| 	rx_buf = efx_rx_buffer(rx_queue, index);
 | |
| 	EFX_POPULATE_QWORD_3(*rxd,
 | |
| 			     FSF_AZ_RX_KER_BUF_SIZE,
 | |
| 			     rx_buf->len -
 | |
| 			     rx_queue->efx->type->rx_buffer_padding,
 | |
| 			     FSF_AZ_RX_KER_BUF_REGION, 0,
 | |
| 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 | |
| }
 | |
| 
 | |
| /* This writes to the RX_DESC_WPTR register for the specified receive
 | |
|  * descriptor ring.
 | |
|  */
 | |
| void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	efx_dword_t reg;
 | |
| 	unsigned write_ptr;
 | |
| 
 | |
| 	while (rx_queue->notified_count != rx_queue->added_count) {
 | |
| 		efx_build_rx_desc(
 | |
| 			rx_queue,
 | |
| 			rx_queue->notified_count & rx_queue->ptr_mask);
 | |
| 		++rx_queue->notified_count;
 | |
| 	}
 | |
| 
 | |
| 	wmb();
 | |
| 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 | |
| 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 | |
| 	efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0,
 | |
| 			efx_rx_queue_index(rx_queue));
 | |
| }
 | |
| 
 | |
| int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	unsigned entries;
 | |
| 
 | |
| 	entries = rx_queue->ptr_mask + 1;
 | |
| 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 | |
| 					entries * sizeof(efx_qword_t));
 | |
| }
 | |
| 
 | |
| void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	efx_oword_t rx_desc_ptr;
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
 | |
| 	bool iscsi_digest_en = is_b0;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev,
 | |
| 		  "RX queue %d ring in special buffers %d-%d\n",
 | |
| 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 | |
| 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 | |
| 
 | |
| 	rx_queue->flushed = FLUSH_NONE;
 | |
| 
 | |
| 	/* Pin RX descriptor ring */
 | |
| 	efx_init_special_buffer(efx, &rx_queue->rxd);
 | |
| 
 | |
| 	/* Push RX descriptor ring to card */
 | |
| 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
 | |
| 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 | |
| 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 | |
| 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 | |
| 			      FRF_AZ_RX_DESCQ_EVQ_ID,
 | |
| 			      efx_rx_queue_channel(rx_queue)->channel,
 | |
| 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 | |
| 			      FRF_AZ_RX_DESCQ_LABEL,
 | |
| 			      efx_rx_queue_index(rx_queue),
 | |
| 			      FRF_AZ_RX_DESCQ_SIZE,
 | |
| 			      __ffs(rx_queue->rxd.entries),
 | |
| 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 | |
| 			      /* For >=B0 this is scatter so disable */
 | |
| 			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
 | |
| 			      FRF_AZ_RX_DESCQ_EN, 1);
 | |
| 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 | |
| 			 efx_rx_queue_index(rx_queue));
 | |
| }
 | |
| 
 | |
| static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	efx_oword_t rx_flush_descq;
 | |
| 
 | |
| 	rx_queue->flushed = FLUSH_PENDING;
 | |
| 
 | |
| 	/* Post a flush command */
 | |
| 	EFX_POPULATE_OWORD_2(rx_flush_descq,
 | |
| 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 | |
| 			     FRF_AZ_RX_FLUSH_DESCQ,
 | |
| 			     efx_rx_queue_index(rx_queue));
 | |
| 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 | |
| }
 | |
| 
 | |
| void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	efx_oword_t rx_desc_ptr;
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 
 | |
| 	/* The queue should already have been flushed */
 | |
| 	WARN_ON(rx_queue->flushed != FLUSH_DONE);
 | |
| 
 | |
| 	/* Remove RX descriptor ring from card */
 | |
| 	EFX_ZERO_OWORD(rx_desc_ptr);
 | |
| 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 | |
| 			 efx_rx_queue_index(rx_queue));
 | |
| 
 | |
| 	/* Unpin RX descriptor ring */
 | |
| 	efx_fini_special_buffer(efx, &rx_queue->rxd);
 | |
| }
 | |
| 
 | |
| /* Free buffers backing RX queue */
 | |
| void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
 | |
| {
 | |
| 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Event queue processing
 | |
|  * Event queues are processed by per-channel tasklets.
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Update a channel's event queue's read pointer (RPTR) register
 | |
|  *
 | |
|  * This writes the EVQ_RPTR_REG register for the specified channel's
 | |
|  * event queue.
 | |
|  */
 | |
| void efx_nic_eventq_read_ack(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_dword_t reg;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
 | |
| 	efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base,
 | |
| 			 channel->channel);
 | |
| }
 | |
| 
 | |
| /* Use HW to insert a SW defined event */
 | |
| static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
 | |
| {
 | |
| 	efx_oword_t drv_ev_reg;
 | |
| 
 | |
| 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 | |
| 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 | |
| 	drv_ev_reg.u32[0] = event->u32[0];
 | |
| 	drv_ev_reg.u32[1] = event->u32[1];
 | |
| 	drv_ev_reg.u32[2] = 0;
 | |
| 	drv_ev_reg.u32[3] = 0;
 | |
| 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
 | |
| 	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
 | |
| }
 | |
| 
 | |
| /* Handle a transmit completion event
 | |
|  *
 | |
|  * The NIC batches TX completion events; the message we receive is of
 | |
|  * the form "complete all TX events up to this index".
 | |
|  */
 | |
| static int
 | |
| efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 | |
| {
 | |
| 	unsigned int tx_ev_desc_ptr;
 | |
| 	unsigned int tx_ev_q_label;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	int tx_packets = 0;
 | |
| 
 | |
| 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 | |
| 		/* Transmit completion */
 | |
| 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 | |
| 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 | |
| 		tx_queue = efx_channel_get_tx_queue(
 | |
| 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 | |
| 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 | |
| 			      tx_queue->ptr_mask);
 | |
| 		channel->irq_mod_score += tx_packets;
 | |
| 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 | |
| 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 | |
| 		/* Rewrite the FIFO write pointer */
 | |
| 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 | |
| 		tx_queue = efx_channel_get_tx_queue(
 | |
| 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
 | |
| 
 | |
| 		if (efx_dev_registered(efx))
 | |
| 			netif_tx_lock(efx->net_dev);
 | |
| 		efx_notify_tx_desc(tx_queue);
 | |
| 		if (efx_dev_registered(efx))
 | |
| 			netif_tx_unlock(efx->net_dev);
 | |
| 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
 | |
| 		   EFX_WORKAROUND_10727(efx)) {
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
 | |
| 	} else {
 | |
| 		netif_err(efx, tx_err, efx->net_dev,
 | |
| 			  "channel %d unexpected TX event "
 | |
| 			  EFX_QWORD_FMT"\n", channel->channel,
 | |
| 			  EFX_QWORD_VAL(*event));
 | |
| 	}
 | |
| 
 | |
| 	return tx_packets;
 | |
| }
 | |
| 
 | |
| /* Detect errors included in the rx_evt_pkt_ok bit. */
 | |
| static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 | |
| 				 const efx_qword_t *event,
 | |
| 				 bool *rx_ev_pkt_ok,
 | |
| 				 bool *discard)
 | |
| {
 | |
| 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 | |
| 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 | |
| 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 | |
| 	bool rx_ev_other_err, rx_ev_pause_frm;
 | |
| 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 | |
| 	unsigned rx_ev_pkt_type;
 | |
| 
 | |
| 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 | |
| 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 | |
| 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 | |
| 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 | |
| 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 | |
| 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 | |
| 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 | |
| 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 | |
| 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 | |
| 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 | |
| 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 | |
| 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 | |
| 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
 | |
| 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 | |
| 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 | |
| 
 | |
| 	/* Every error apart from tobe_disc and pause_frm */
 | |
| 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 | |
| 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 | |
| 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 | |
| 
 | |
| 	/* Count errors that are not in MAC stats.  Ignore expected
 | |
| 	 * checksum errors during self-test. */
 | |
| 	if (rx_ev_frm_trunc)
 | |
| 		++channel->n_rx_frm_trunc;
 | |
| 	else if (rx_ev_tobe_disc)
 | |
| 		++channel->n_rx_tobe_disc;
 | |
| 	else if (!efx->loopback_selftest) {
 | |
| 		if (rx_ev_ip_hdr_chksum_err)
 | |
| 			++channel->n_rx_ip_hdr_chksum_err;
 | |
| 		else if (rx_ev_tcp_udp_chksum_err)
 | |
| 			++channel->n_rx_tcp_udp_chksum_err;
 | |
| 	}
 | |
| 
 | |
| 	/* The frame must be discarded if any of these are true. */
 | |
| 	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 | |
| 		    rx_ev_tobe_disc | rx_ev_pause_frm);
 | |
| 
 | |
| 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
 | |
| 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 | |
| 	 * to a FIFO overflow.
 | |
| 	 */
 | |
| #ifdef EFX_ENABLE_DEBUG
 | |
| 	if (rx_ev_other_err && net_ratelimit()) {
 | |
| 		netif_dbg(efx, rx_err, efx->net_dev,
 | |
| 			  " RX queue %d unexpected RX event "
 | |
| 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 | |
| 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 | |
| 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 | |
| 			  rx_ev_ip_hdr_chksum_err ?
 | |
| 			  " [IP_HDR_CHKSUM_ERR]" : "",
 | |
| 			  rx_ev_tcp_udp_chksum_err ?
 | |
| 			  " [TCP_UDP_CHKSUM_ERR]" : "",
 | |
| 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 | |
| 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 | |
| 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 | |
| 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 | |
| 			  rx_ev_pause_frm ? " [PAUSE]" : "");
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Handle receive events that are not in-order. */
 | |
| static void
 | |
| efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 | |
| {
 | |
| 	struct efx_nic *efx = rx_queue->efx;
 | |
| 	unsigned expected, dropped;
 | |
| 
 | |
| 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
 | |
| 	dropped = (index - expected) & rx_queue->ptr_mask;
 | |
| 	netif_info(efx, rx_err, efx->net_dev,
 | |
| 		   "dropped %d events (index=%d expected=%d)\n",
 | |
| 		   dropped, index, expected);
 | |
| 
 | |
| 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 | |
| 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 | |
| }
 | |
| 
 | |
| /* Handle a packet received event
 | |
|  *
 | |
|  * The NIC gives a "discard" flag if it's a unicast packet with the
 | |
|  * wrong destination address
 | |
|  * Also "is multicast" and "matches multicast filter" flags can be used to
 | |
|  * discard non-matching multicast packets.
 | |
|  */
 | |
| static void
 | |
| efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 | |
| {
 | |
| 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 | |
| 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 | |
| 	unsigned expected_ptr;
 | |
| 	bool rx_ev_pkt_ok, discard = false, checksummed;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	/* Basic packet information */
 | |
| 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
 | |
| 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
 | |
| 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 | |
| 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
 | |
| 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
 | |
| 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 | |
| 		channel->channel);
 | |
| 
 | |
| 	rx_queue = efx_channel_get_rx_queue(channel);
 | |
| 
 | |
| 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
 | |
| 	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
 | |
| 	if (unlikely(rx_ev_desc_ptr != expected_ptr))
 | |
| 		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
 | |
| 
 | |
| 	if (likely(rx_ev_pkt_ok)) {
 | |
| 		/* If packet is marked as OK and packet type is TCP/IP or
 | |
| 		 * UDP/IP, then we can rely on the hardware checksum.
 | |
| 		 */
 | |
| 		checksummed =
 | |
| 			likely(efx->rx_checksum_enabled) &&
 | |
| 			(rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
 | |
| 			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
 | |
| 	} else {
 | |
| 		efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
 | |
| 		checksummed = false;
 | |
| 	}
 | |
| 
 | |
| 	/* Detect multicast packets that didn't match the filter */
 | |
| 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 | |
| 	if (rx_ev_mcast_pkt) {
 | |
| 		unsigned int rx_ev_mcast_hash_match =
 | |
| 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
 | |
| 
 | |
| 		if (unlikely(!rx_ev_mcast_hash_match)) {
 | |
| 			++channel->n_rx_mcast_mismatch;
 | |
| 			discard = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	channel->irq_mod_score += 2;
 | |
| 
 | |
| 	/* Handle received packet */
 | |
| 	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
 | |
| 		      checksummed, discard);
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	unsigned code;
 | |
| 
 | |
| 	code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
 | |
| 	if (code == EFX_CHANNEL_MAGIC_TEST(channel))
 | |
| 		++channel->magic_count;
 | |
| 	else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
 | |
| 		/* The queue must be empty, so we won't receive any rx
 | |
| 		 * events, so efx_process_channel() won't refill the
 | |
| 		 * queue. Refill it here */
 | |
| 		efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
 | |
| 	else
 | |
| 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
 | |
| 			  "generated event "EFX_QWORD_FMT"\n",
 | |
| 			  channel->channel, EFX_QWORD_VAL(*event));
 | |
| }
 | |
| 
 | |
| /* Global events are basically PHY events */
 | |
| static void
 | |
| efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	bool handled = false;
 | |
| 
 | |
| 	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
 | |
| 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
 | |
| 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
 | |
| 		/* Ignored */
 | |
| 		handled = true;
 | |
| 	}
 | |
| 
 | |
| 	if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
 | |
| 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
 | |
| 		efx->xmac_poll_required = true;
 | |
| 		handled = true;
 | |
| 	}
 | |
| 
 | |
| 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
 | |
| 	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
 | |
| 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
 | |
| 		netif_err(efx, rx_err, efx->net_dev,
 | |
| 			  "channel %d seen global RX_RESET event. Resetting.\n",
 | |
| 			  channel->channel);
 | |
| 
 | |
| 		atomic_inc(&efx->rx_reset);
 | |
| 		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
 | |
| 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 | |
| 		handled = true;
 | |
| 	}
 | |
| 
 | |
| 	if (!handled)
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "channel %d unknown global event "
 | |
| 			  EFX_QWORD_FMT "\n", channel->channel,
 | |
| 			  EFX_QWORD_VAL(*event));
 | |
| }
 | |
| 
 | |
| static void
 | |
| efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	unsigned int ev_sub_code;
 | |
| 	unsigned int ev_sub_data;
 | |
| 
 | |
| 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
 | |
| 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
 | |
| 
 | |
| 	switch (ev_sub_code) {
 | |
| 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
 | |
| 			   channel->channel, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
 | |
| 			   channel->channel, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_AZ_EVQ_INIT_DONE_EV:
 | |
| 		netif_dbg(efx, hw, efx->net_dev,
 | |
| 			  "channel %d EVQ %d initialised\n",
 | |
| 			  channel->channel, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_AZ_SRM_UPD_DONE_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "channel %d SRAM update done\n", channel->channel);
 | |
| 		break;
 | |
| 	case FSE_AZ_WAKE_UP_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "channel %d RXQ %d wakeup event\n",
 | |
| 			   channel->channel, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_AZ_TIMER_EV:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "channel %d RX queue %d timer expired\n",
 | |
| 			   channel->channel, ev_sub_data);
 | |
| 		break;
 | |
| 	case FSE_AA_RX_RECOVER_EV:
 | |
| 		netif_err(efx, rx_err, efx->net_dev,
 | |
| 			  "channel %d seen DRIVER RX_RESET event. "
 | |
| 			"Resetting.\n", channel->channel);
 | |
| 		atomic_inc(&efx->rx_reset);
 | |
| 		efx_schedule_reset(efx,
 | |
| 				   EFX_WORKAROUND_6555(efx) ?
 | |
| 				   RESET_TYPE_RX_RECOVERY :
 | |
| 				   RESET_TYPE_DISABLE);
 | |
| 		break;
 | |
| 	case FSE_BZ_RX_DSC_ERROR_EV:
 | |
| 		netif_err(efx, rx_err, efx->net_dev,
 | |
| 			  "RX DMA Q %d reports descriptor fetch error."
 | |
| 			  " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
 | |
| 		break;
 | |
| 	case FSE_BZ_TX_DSC_ERROR_EV:
 | |
| 		netif_err(efx, tx_err, efx->net_dev,
 | |
| 			  "TX DMA Q %d reports descriptor fetch error."
 | |
| 			  " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
 | |
| 		break;
 | |
| 	default:
 | |
| 		netif_vdbg(efx, hw, efx->net_dev,
 | |
| 			   "channel %d unknown driver event code %d "
 | |
| 			   "data %04x\n", channel->channel, ev_sub_code,
 | |
| 			   ev_sub_data);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int efx_nic_process_eventq(struct efx_channel *channel, int budget)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	unsigned int read_ptr;
 | |
| 	efx_qword_t event, *p_event;
 | |
| 	int ev_code;
 | |
| 	int tx_packets = 0;
 | |
| 	int spent = 0;
 | |
| 
 | |
| 	read_ptr = channel->eventq_read_ptr;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		p_event = efx_event(channel, read_ptr);
 | |
| 		event = *p_event;
 | |
| 
 | |
| 		if (!efx_event_present(&event))
 | |
| 			/* End of events */
 | |
| 			break;
 | |
| 
 | |
| 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
 | |
| 			   "channel %d event is "EFX_QWORD_FMT"\n",
 | |
| 			   channel->channel, EFX_QWORD_VAL(event));
 | |
| 
 | |
| 		/* Clear this event by marking it all ones */
 | |
| 		EFX_SET_QWORD(*p_event);
 | |
| 
 | |
| 		/* Increment read pointer */
 | |
| 		read_ptr = (read_ptr + 1) & channel->eventq_mask;
 | |
| 
 | |
| 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
 | |
| 
 | |
| 		switch (ev_code) {
 | |
| 		case FSE_AZ_EV_CODE_RX_EV:
 | |
| 			efx_handle_rx_event(channel, &event);
 | |
| 			if (++spent == budget)
 | |
| 				goto out;
 | |
| 			break;
 | |
| 		case FSE_AZ_EV_CODE_TX_EV:
 | |
| 			tx_packets += efx_handle_tx_event(channel, &event);
 | |
| 			if (tx_packets > efx->txq_entries) {
 | |
| 				spent = budget;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			break;
 | |
| 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
 | |
| 			efx_handle_generated_event(channel, &event);
 | |
| 			break;
 | |
| 		case FSE_AZ_EV_CODE_GLOBAL_EV:
 | |
| 			efx_handle_global_event(channel, &event);
 | |
| 			break;
 | |
| 		case FSE_AZ_EV_CODE_DRIVER_EV:
 | |
| 			efx_handle_driver_event(channel, &event);
 | |
| 			break;
 | |
| 		case FSE_CZ_EV_CODE_MCDI_EV:
 | |
| 			efx_mcdi_process_event(channel, &event);
 | |
| 			break;
 | |
| 		default:
 | |
| 			netif_err(channel->efx, hw, channel->efx->net_dev,
 | |
| 				  "channel %d unknown event type %d (data "
 | |
| 				  EFX_QWORD_FMT ")\n", channel->channel,
 | |
| 				  ev_code, EFX_QWORD_VAL(event));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	channel->eventq_read_ptr = read_ptr;
 | |
| 	return spent;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Allocate buffer table entries for event queue */
 | |
| int efx_nic_probe_eventq(struct efx_channel *channel)
 | |
| {
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	unsigned entries;
 | |
| 
 | |
| 	entries = channel->eventq_mask + 1;
 | |
| 	return efx_alloc_special_buffer(efx, &channel->eventq,
 | |
| 					entries * sizeof(efx_qword_t));
 | |
| }
 | |
| 
 | |
| void efx_nic_init_eventq(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_oword_t reg;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	netif_dbg(efx, hw, efx->net_dev,
 | |
| 		  "channel %d event queue in special buffers %d-%d\n",
 | |
| 		  channel->channel, channel->eventq.index,
 | |
| 		  channel->eventq.index + channel->eventq.entries - 1);
 | |
| 
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
 | |
| 		EFX_POPULATE_OWORD_3(reg,
 | |
| 				     FRF_CZ_TIMER_Q_EN, 1,
 | |
| 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
 | |
| 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
 | |
| 	}
 | |
| 
 | |
| 	/* Pin event queue buffer */
 | |
| 	efx_init_special_buffer(efx, &channel->eventq);
 | |
| 
 | |
| 	/* Fill event queue with all ones (i.e. empty events) */
 | |
| 	memset(channel->eventq.addr, 0xff, channel->eventq.len);
 | |
| 
 | |
| 	/* Push event queue to card */
 | |
| 	EFX_POPULATE_OWORD_3(reg,
 | |
| 			     FRF_AZ_EVQ_EN, 1,
 | |
| 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
 | |
| 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
 | |
| 	efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
 | |
| 			 channel->channel);
 | |
| 
 | |
| 	efx->type->push_irq_moderation(channel);
 | |
| }
 | |
| 
 | |
| void efx_nic_fini_eventq(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_oword_t reg;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 
 | |
| 	/* Remove event queue from card */
 | |
| 	EFX_ZERO_OWORD(reg);
 | |
| 	efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
 | |
| 			 channel->channel);
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
 | |
| 		efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
 | |
| 
 | |
| 	/* Unpin event queue */
 | |
| 	efx_fini_special_buffer(efx, &channel->eventq);
 | |
| }
 | |
| 
 | |
| /* Free buffers backing event queue */
 | |
| void efx_nic_remove_eventq(struct efx_channel *channel)
 | |
| {
 | |
| 	efx_free_special_buffer(channel->efx, &channel->eventq);
 | |
| }
 | |
| 
 | |
| 
 | |
| void efx_nic_generate_test_event(struct efx_channel *channel)
 | |
| {
 | |
| 	unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
 | |
| 	efx_qword_t test_event;
 | |
| 
 | |
| 	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
 | |
| 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 | |
| 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 | |
| 	efx_generate_event(channel, &test_event);
 | |
| }
 | |
| 
 | |
| void efx_nic_generate_fill_event(struct efx_channel *channel)
 | |
| {
 | |
| 	unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
 | |
| 	efx_qword_t test_event;
 | |
| 
 | |
| 	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
 | |
| 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
 | |
| 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 | |
| 	efx_generate_event(channel, &test_event);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Flush handling
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| 
 | |
| static void efx_poll_flush_events(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel = efx_get_channel(efx, 0);
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	unsigned int read_ptr = channel->eventq_read_ptr;
 | |
| 	unsigned int end_ptr = (read_ptr - 1) & channel->eventq_mask;
 | |
| 
 | |
| 	do {
 | |
| 		efx_qword_t *event = efx_event(channel, read_ptr);
 | |
| 		int ev_code, ev_sub_code, ev_queue;
 | |
| 		bool ev_failed;
 | |
| 
 | |
| 		if (!efx_event_present(event))
 | |
| 			break;
 | |
| 
 | |
| 		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
 | |
| 		ev_sub_code = EFX_QWORD_FIELD(*event,
 | |
| 					      FSF_AZ_DRIVER_EV_SUBCODE);
 | |
| 		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
 | |
| 		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
 | |
| 			ev_queue = EFX_QWORD_FIELD(*event,
 | |
| 						   FSF_AZ_DRIVER_EV_SUBDATA);
 | |
| 			if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
 | |
| 				tx_queue = efx_get_tx_queue(
 | |
| 					efx, ev_queue / EFX_TXQ_TYPES,
 | |
| 					ev_queue % EFX_TXQ_TYPES);
 | |
| 				tx_queue->flushed = FLUSH_DONE;
 | |
| 			}
 | |
| 		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
 | |
| 			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
 | |
| 			ev_queue = EFX_QWORD_FIELD(
 | |
| 				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
 | |
| 			ev_failed = EFX_QWORD_FIELD(
 | |
| 				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
 | |
| 			if (ev_queue < efx->n_rx_channels) {
 | |
| 				rx_queue = efx_get_rx_queue(efx, ev_queue);
 | |
| 				rx_queue->flushed =
 | |
| 					ev_failed ? FLUSH_FAILED : FLUSH_DONE;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* We're about to destroy the queue anyway, so
 | |
| 		 * it's ok to throw away every non-flush event */
 | |
| 		EFX_SET_QWORD(*event);
 | |
| 
 | |
| 		read_ptr = (read_ptr + 1) & channel->eventq_mask;
 | |
| 	} while (read_ptr != end_ptr);
 | |
| 
 | |
| 	channel->eventq_read_ptr = read_ptr;
 | |
| }
 | |
| 
 | |
| /* Handle tx and rx flushes at the same time, since they run in
 | |
|  * parallel in the hardware and there's no reason for us to
 | |
|  * serialise them */
 | |
| int efx_nic_flush_queues(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	struct efx_rx_queue *rx_queue;
 | |
| 	struct efx_tx_queue *tx_queue;
 | |
| 	int i, tx_pending, rx_pending;
 | |
| 
 | |
| 	/* If necessary prepare the hardware for flushing */
 | |
| 	efx->type->prepare_flush(efx);
 | |
| 
 | |
| 	/* Flush all tx queues in parallel */
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		efx_for_each_channel_tx_queue(tx_queue, channel)
 | |
| 			efx_flush_tx_queue(tx_queue);
 | |
| 	}
 | |
| 
 | |
| 	/* The hardware supports four concurrent rx flushes, each of which may
 | |
| 	 * need to be retried if there is an outstanding descriptor fetch */
 | |
| 	for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
 | |
| 		rx_pending = tx_pending = 0;
 | |
| 		efx_for_each_channel(channel, efx) {
 | |
| 			efx_for_each_channel_rx_queue(rx_queue, channel) {
 | |
| 				if (rx_queue->flushed == FLUSH_PENDING)
 | |
| 					++rx_pending;
 | |
| 			}
 | |
| 		}
 | |
| 		efx_for_each_channel(channel, efx) {
 | |
| 			efx_for_each_channel_rx_queue(rx_queue, channel) {
 | |
| 				if (rx_pending == EFX_RX_FLUSH_COUNT)
 | |
| 					break;
 | |
| 				if (rx_queue->flushed == FLUSH_FAILED ||
 | |
| 				    rx_queue->flushed == FLUSH_NONE) {
 | |
| 					efx_flush_rx_queue(rx_queue);
 | |
| 					++rx_pending;
 | |
| 				}
 | |
| 			}
 | |
| 			efx_for_each_channel_tx_queue(tx_queue, channel) {
 | |
| 				if (tx_queue->flushed != FLUSH_DONE)
 | |
| 					++tx_pending;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (rx_pending == 0 && tx_pending == 0)
 | |
| 			return 0;
 | |
| 
 | |
| 		msleep(EFX_FLUSH_INTERVAL);
 | |
| 		efx_poll_flush_events(efx);
 | |
| 	}
 | |
| 
 | |
| 	/* Mark the queues as all flushed. We're going to return failure
 | |
| 	 * leading to a reset, or fake up success anyway */
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		efx_for_each_channel_tx_queue(tx_queue, channel) {
 | |
| 			if (tx_queue->flushed != FLUSH_DONE)
 | |
| 				netif_err(efx, hw, efx->net_dev,
 | |
| 					  "tx queue %d flush command timed out\n",
 | |
| 					  tx_queue->queue);
 | |
| 			tx_queue->flushed = FLUSH_DONE;
 | |
| 		}
 | |
| 		efx_for_each_channel_rx_queue(rx_queue, channel) {
 | |
| 			if (rx_queue->flushed != FLUSH_DONE)
 | |
| 				netif_err(efx, hw, efx->net_dev,
 | |
| 					  "rx queue %d flush command timed out\n",
 | |
| 					  efx_rx_queue_index(rx_queue));
 | |
| 			rx_queue->flushed = FLUSH_DONE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * Hardware interrupts
 | |
|  * The hardware interrupt handler does very little work; all the event
 | |
|  * queue processing is carried out by per-channel tasklets.
 | |
|  *
 | |
|  **************************************************************************/
 | |
| 
 | |
| /* Enable/disable/generate interrupts */
 | |
| static inline void efx_nic_interrupts(struct efx_nic *efx,
 | |
| 				      bool enabled, bool force)
 | |
| {
 | |
| 	efx_oword_t int_en_reg_ker;
 | |
| 
 | |
| 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
 | |
| 			     FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
 | |
| 			     FRF_AZ_KER_INT_KER, force,
 | |
| 			     FRF_AZ_DRV_INT_EN_KER, enabled);
 | |
| 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
 | |
| }
 | |
| 
 | |
| void efx_nic_enable_interrupts(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 
 | |
| 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
 | |
| 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
 | |
| 
 | |
| 	/* Enable interrupts */
 | |
| 	efx_nic_interrupts(efx, true, false);
 | |
| 
 | |
| 	/* Force processing of all the channels to get the EVQ RPTRs up to
 | |
| 	   date */
 | |
| 	efx_for_each_channel(channel, efx)
 | |
| 		efx_schedule_channel(channel);
 | |
| }
 | |
| 
 | |
| void efx_nic_disable_interrupts(struct efx_nic *efx)
 | |
| {
 | |
| 	/* Disable interrupts */
 | |
| 	efx_nic_interrupts(efx, false, false);
 | |
| }
 | |
| 
 | |
| /* Generate a test interrupt
 | |
|  * Interrupt must already have been enabled, otherwise nasty things
 | |
|  * may happen.
 | |
|  */
 | |
| void efx_nic_generate_interrupt(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_nic_interrupts(efx, true, true);
 | |
| }
 | |
| 
 | |
| /* Process a fatal interrupt
 | |
|  * Disable bus mastering ASAP and schedule a reset
 | |
|  */
 | |
| irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
 | |
| {
 | |
| 	struct falcon_nic_data *nic_data = efx->nic_data;
 | |
| 	efx_oword_t *int_ker = efx->irq_status.addr;
 | |
| 	efx_oword_t fatal_intr;
 | |
| 	int error, mem_perr;
 | |
| 
 | |
| 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
 | |
| 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
 | |
| 
 | |
| 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
 | |
| 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
 | |
| 		  EFX_OWORD_VAL(fatal_intr),
 | |
| 		  error ? "disabling bus mastering" : "no recognised error");
 | |
| 
 | |
| 	/* If this is a memory parity error dump which blocks are offending */
 | |
| 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
 | |
| 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
 | |
| 	if (mem_perr) {
 | |
| 		efx_oword_t reg;
 | |
| 		efx_reado(efx, ®, FR_AZ_MEM_STAT);
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
 | |
| 			  EFX_OWORD_VAL(reg));
 | |
| 	}
 | |
| 
 | |
| 	/* Disable both devices */
 | |
| 	pci_clear_master(efx->pci_dev);
 | |
| 	if (efx_nic_is_dual_func(efx))
 | |
| 		pci_clear_master(nic_data->pci_dev2);
 | |
| 	efx_nic_disable_interrupts(efx);
 | |
| 
 | |
| 	/* Count errors and reset or disable the NIC accordingly */
 | |
| 	if (efx->int_error_count == 0 ||
 | |
| 	    time_after(jiffies, efx->int_error_expire)) {
 | |
| 		efx->int_error_count = 0;
 | |
| 		efx->int_error_expire =
 | |
| 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
 | |
| 	}
 | |
| 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "SYSTEM ERROR - reset scheduled\n");
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
 | |
| 	} else {
 | |
| 		netif_err(efx, hw, efx->net_dev,
 | |
| 			  "SYSTEM ERROR - max number of errors seen."
 | |
| 			  "NIC will be disabled\n");
 | |
| 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Handle a legacy interrupt
 | |
|  * Acknowledges the interrupt and schedule event queue processing.
 | |
|  */
 | |
| static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct efx_nic *efx = dev_id;
 | |
| 	efx_oword_t *int_ker = efx->irq_status.addr;
 | |
| 	irqreturn_t result = IRQ_NONE;
 | |
| 	struct efx_channel *channel;
 | |
| 	efx_dword_t reg;
 | |
| 	u32 queues;
 | |
| 	int syserr;
 | |
| 
 | |
| 	/* Read the ISR which also ACKs the interrupts */
 | |
| 	efx_readd(efx, ®, FR_BZ_INT_ISR0);
 | |
| 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
 | |
| 
 | |
| 	/* Check to see if we have a serious error condition */
 | |
| 	if (queues & (1U << efx->fatal_irq_level)) {
 | |
| 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 | |
| 		if (unlikely(syserr))
 | |
| 			return efx_nic_fatal_interrupt(efx);
 | |
| 	}
 | |
| 
 | |
| 	if (queues != 0) {
 | |
| 		if (EFX_WORKAROUND_15783(efx))
 | |
| 			efx->irq_zero_count = 0;
 | |
| 
 | |
| 		/* Schedule processing of any interrupting queues */
 | |
| 		efx_for_each_channel(channel, efx) {
 | |
| 			if (queues & 1)
 | |
| 				efx_schedule_channel(channel);
 | |
| 			queues >>= 1;
 | |
| 		}
 | |
| 		result = IRQ_HANDLED;
 | |
| 
 | |
| 	} else if (EFX_WORKAROUND_15783(efx)) {
 | |
| 		efx_qword_t *event;
 | |
| 
 | |
| 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
 | |
| 		 * because this might be a shared interrupt. */
 | |
| 		if (efx->irq_zero_count++ == 0)
 | |
| 			result = IRQ_HANDLED;
 | |
| 
 | |
| 		/* Ensure we schedule or rearm all event queues */
 | |
| 		efx_for_each_channel(channel, efx) {
 | |
| 			event = efx_event(channel, channel->eventq_read_ptr);
 | |
| 			if (efx_event_present(event))
 | |
| 				efx_schedule_channel(channel);
 | |
| 			else
 | |
| 				efx_nic_eventq_read_ack(channel);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (result == IRQ_HANDLED) {
 | |
| 		efx->last_irq_cpu = raw_smp_processor_id();
 | |
| 		netif_vdbg(efx, intr, efx->net_dev,
 | |
| 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
 | |
| 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* Handle an MSI interrupt
 | |
|  *
 | |
|  * Handle an MSI hardware interrupt.  This routine schedules event
 | |
|  * queue processing.  No interrupt acknowledgement cycle is necessary.
 | |
|  * Also, we never need to check that the interrupt is for us, since
 | |
|  * MSI interrupts cannot be shared.
 | |
|  */
 | |
| static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct efx_channel *channel = *(struct efx_channel **)dev_id;
 | |
| 	struct efx_nic *efx = channel->efx;
 | |
| 	efx_oword_t *int_ker = efx->irq_status.addr;
 | |
| 	int syserr;
 | |
| 
 | |
| 	efx->last_irq_cpu = raw_smp_processor_id();
 | |
| 	netif_vdbg(efx, intr, efx->net_dev,
 | |
| 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 | |
| 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 | |
| 
 | |
| 	/* Check to see if we have a serious error condition */
 | |
| 	if (channel->channel == efx->fatal_irq_level) {
 | |
| 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 | |
| 		if (unlikely(syserr))
 | |
| 			return efx_nic_fatal_interrupt(efx);
 | |
| 	}
 | |
| 
 | |
| 	/* Schedule processing of the channel */
 | |
| 	efx_schedule_channel(channel);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Setup RSS indirection table.
 | |
|  * This maps from the hash value of the packet to RXQ
 | |
|  */
 | |
| void efx_nic_push_rx_indir_table(struct efx_nic *efx)
 | |
| {
 | |
| 	size_t i = 0;
 | |
| 	efx_dword_t dword;
 | |
| 
 | |
| 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
 | |
| 		return;
 | |
| 
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
 | |
| 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
 | |
| 
 | |
| 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
 | |
| 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
 | |
| 				     efx->rx_indir_table[i]);
 | |
| 		efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Hook interrupt handler(s)
 | |
|  * Try MSI and then legacy interrupts.
 | |
|  */
 | |
| int efx_nic_init_interrupt(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!EFX_INT_MODE_USE_MSI(efx)) {
 | |
| 		irq_handler_t handler;
 | |
| 		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
 | |
| 			handler = efx_legacy_interrupt;
 | |
| 		else
 | |
| 			handler = falcon_legacy_interrupt_a1;
 | |
| 
 | |
| 		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
 | |
| 				 efx->name, efx);
 | |
| 		if (rc) {
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "failed to hook legacy IRQ %d\n",
 | |
| 				  efx->pci_dev->irq);
 | |
| 			goto fail1;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Hook MSI or MSI-X interrupt */
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		rc = request_irq(channel->irq, efx_msi_interrupt,
 | |
| 				 IRQF_PROBE_SHARED, /* Not shared */
 | |
| 				 efx->channel_name[channel->channel],
 | |
| 				 &efx->channel[channel->channel]);
 | |
| 		if (rc) {
 | |
| 			netif_err(efx, drv, efx->net_dev,
 | |
| 				  "failed to hook IRQ %d\n", channel->irq);
 | |
| 			goto fail2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  fail2:
 | |
| 	efx_for_each_channel(channel, efx)
 | |
| 		free_irq(channel->irq, &efx->channel[channel->channel]);
 | |
|  fail1:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void efx_nic_fini_interrupt(struct efx_nic *efx)
 | |
| {
 | |
| 	struct efx_channel *channel;
 | |
| 	efx_oword_t reg;
 | |
| 
 | |
| 	/* Disable MSI/MSI-X interrupts */
 | |
| 	efx_for_each_channel(channel, efx) {
 | |
| 		if (channel->irq)
 | |
| 			free_irq(channel->irq, &efx->channel[channel->channel]);
 | |
| 	}
 | |
| 
 | |
| 	/* ACK legacy interrupt */
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
 | |
| 		efx_reado(efx, ®, FR_BZ_INT_ISR0);
 | |
| 	else
 | |
| 		falcon_irq_ack_a1(efx);
 | |
| 
 | |
| 	/* Disable legacy interrupt */
 | |
| 	if (efx->legacy_irq)
 | |
| 		free_irq(efx->legacy_irq, efx);
 | |
| }
 | |
| 
 | |
| u32 efx_nic_fpga_ver(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t altera_build;
 | |
| 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
 | |
| 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
 | |
| }
 | |
| 
 | |
| void efx_nic_init_common(struct efx_nic *efx)
 | |
| {
 | |
| 	efx_oword_t temp;
 | |
| 
 | |
| 	/* Set positions of descriptor caches in SRAM. */
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
 | |
| 			     efx->type->tx_dc_base / 8);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
 | |
| 			     efx->type->rx_dc_base / 8);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
 | |
| 
 | |
| 	/* Set TX descriptor cache size. */
 | |
| 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
 | |
| 
 | |
| 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
 | |
| 	 * this allows most efficient prefetching.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
 | |
| 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
 | |
| 
 | |
| 	/* Program INT_KER address */
 | |
| 	EFX_POPULATE_OWORD_2(temp,
 | |
| 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
 | |
| 			     EFX_INT_MODE_USE_MSI(efx),
 | |
| 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
 | |
| 
 | |
| 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
 | |
| 		/* Use an interrupt level unused by event queues */
 | |
| 		efx->fatal_irq_level = 0x1f;
 | |
| 	else
 | |
| 		/* Use a valid MSI-X vector */
 | |
| 		efx->fatal_irq_level = 0;
 | |
| 
 | |
| 	/* Enable all the genuinely fatal interrupts.  (They are still
 | |
| 	 * masked by the overall interrupt mask, controlled by
 | |
| 	 * falcon_interrupts()).
 | |
| 	 *
 | |
| 	 * Note: All other fatal interrupts are enabled
 | |
| 	 */
 | |
| 	EFX_POPULATE_OWORD_3(temp,
 | |
| 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
 | |
| 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
 | |
| 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
 | |
| 	EFX_INVERT_OWORD(temp);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
 | |
| 
 | |
| 	efx_nic_push_rx_indir_table(efx);
 | |
| 
 | |
| 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
 | |
| 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
 | |
| 	 */
 | |
| 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
 | |
| 	/* Enable SW_EV to inherit in char driver - assume harmless here */
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
 | |
| 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
 | |
| 	/* Disable hardware watchdog which can misfire */
 | |
| 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
 | |
| 	/* Squash TX of packets of 16 bytes or less */
 | |
| 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
 | |
| 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
 | |
| 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
 | |
| }
 | |
| 
 | |
| /* Register dump */
 | |
| 
 | |
| #define REGISTER_REVISION_A	1
 | |
| #define REGISTER_REVISION_B	2
 | |
| #define REGISTER_REVISION_C	3
 | |
| #define REGISTER_REVISION_Z	3	/* latest revision */
 | |
| 
 | |
| struct efx_nic_reg {
 | |
| 	u32 offset:24;
 | |
| 	u32 min_revision:2, max_revision:2;
 | |
| };
 | |
| 
 | |
| #define REGISTER(name, min_rev, max_rev) {				\
 | |
| 	FR_ ## min_rev ## max_rev ## _ ## name,				\
 | |
| 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
 | |
| }
 | |
| #define REGISTER_AA(name) REGISTER(name, A, A)
 | |
| #define REGISTER_AB(name) REGISTER(name, A, B)
 | |
| #define REGISTER_AZ(name) REGISTER(name, A, Z)
 | |
| #define REGISTER_BB(name) REGISTER(name, B, B)
 | |
| #define REGISTER_BZ(name) REGISTER(name, B, Z)
 | |
| #define REGISTER_CZ(name) REGISTER(name, C, Z)
 | |
| 
 | |
| static const struct efx_nic_reg efx_nic_regs[] = {
 | |
| 	REGISTER_AZ(ADR_REGION),
 | |
| 	REGISTER_AZ(INT_EN_KER),
 | |
| 	REGISTER_BZ(INT_EN_CHAR),
 | |
| 	REGISTER_AZ(INT_ADR_KER),
 | |
| 	REGISTER_BZ(INT_ADR_CHAR),
 | |
| 	/* INT_ACK_KER is WO */
 | |
| 	/* INT_ISR0 is RC */
 | |
| 	REGISTER_AZ(HW_INIT),
 | |
| 	REGISTER_CZ(USR_EV_CFG),
 | |
| 	REGISTER_AB(EE_SPI_HCMD),
 | |
| 	REGISTER_AB(EE_SPI_HADR),
 | |
| 	REGISTER_AB(EE_SPI_HDATA),
 | |
| 	REGISTER_AB(EE_BASE_PAGE),
 | |
| 	REGISTER_AB(EE_VPD_CFG0),
 | |
| 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
 | |
| 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
 | |
| 	/* PCIE_CORE_INDIRECT is indirect */
 | |
| 	REGISTER_AB(NIC_STAT),
 | |
| 	REGISTER_AB(GPIO_CTL),
 | |
| 	REGISTER_AB(GLB_CTL),
 | |
| 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
 | |
| 	REGISTER_BZ(DP_CTRL),
 | |
| 	REGISTER_AZ(MEM_STAT),
 | |
| 	REGISTER_AZ(CS_DEBUG),
 | |
| 	REGISTER_AZ(ALTERA_BUILD),
 | |
| 	REGISTER_AZ(CSR_SPARE),
 | |
| 	REGISTER_AB(PCIE_SD_CTL0123),
 | |
| 	REGISTER_AB(PCIE_SD_CTL45),
 | |
| 	REGISTER_AB(PCIE_PCS_CTL_STAT),
 | |
| 	/* DEBUG_DATA_OUT is not used */
 | |
| 	/* DRV_EV is WO */
 | |
| 	REGISTER_AZ(EVQ_CTL),
 | |
| 	REGISTER_AZ(EVQ_CNT1),
 | |
| 	REGISTER_AZ(EVQ_CNT2),
 | |
| 	REGISTER_AZ(BUF_TBL_CFG),
 | |
| 	REGISTER_AZ(SRM_RX_DC_CFG),
 | |
| 	REGISTER_AZ(SRM_TX_DC_CFG),
 | |
| 	REGISTER_AZ(SRM_CFG),
 | |
| 	/* BUF_TBL_UPD is WO */
 | |
| 	REGISTER_AZ(SRM_UPD_EVQ),
 | |
| 	REGISTER_AZ(SRAM_PARITY),
 | |
| 	REGISTER_AZ(RX_CFG),
 | |
| 	REGISTER_BZ(RX_FILTER_CTL),
 | |
| 	/* RX_FLUSH_DESCQ is WO */
 | |
| 	REGISTER_AZ(RX_DC_CFG),
 | |
| 	REGISTER_AZ(RX_DC_PF_WM),
 | |
| 	REGISTER_BZ(RX_RSS_TKEY),
 | |
| 	/* RX_NODESC_DROP is RC */
 | |
| 	REGISTER_AA(RX_SELF_RST),
 | |
| 	/* RX_DEBUG, RX_PUSH_DROP are not used */
 | |
| 	REGISTER_CZ(RX_RSS_IPV6_REG1),
 | |
| 	REGISTER_CZ(RX_RSS_IPV6_REG2),
 | |
| 	REGISTER_CZ(RX_RSS_IPV6_REG3),
 | |
| 	/* TX_FLUSH_DESCQ is WO */
 | |
| 	REGISTER_AZ(TX_DC_CFG),
 | |
| 	REGISTER_AA(TX_CHKSM_CFG),
 | |
| 	REGISTER_AZ(TX_CFG),
 | |
| 	/* TX_PUSH_DROP is not used */
 | |
| 	REGISTER_AZ(TX_RESERVED),
 | |
| 	REGISTER_BZ(TX_PACE),
 | |
| 	/* TX_PACE_DROP_QID is RC */
 | |
| 	REGISTER_BB(TX_VLAN),
 | |
| 	REGISTER_BZ(TX_IPFIL_PORTEN),
 | |
| 	REGISTER_AB(MD_TXD),
 | |
| 	REGISTER_AB(MD_RXD),
 | |
| 	REGISTER_AB(MD_CS),
 | |
| 	REGISTER_AB(MD_PHY_ADR),
 | |
| 	REGISTER_AB(MD_ID),
 | |
| 	/* MD_STAT is RC */
 | |
| 	REGISTER_AB(MAC_STAT_DMA),
 | |
| 	REGISTER_AB(MAC_CTRL),
 | |
| 	REGISTER_BB(GEN_MODE),
 | |
| 	REGISTER_AB(MAC_MC_HASH_REG0),
 | |
| 	REGISTER_AB(MAC_MC_HASH_REG1),
 | |
| 	REGISTER_AB(GM_CFG1),
 | |
| 	REGISTER_AB(GM_CFG2),
 | |
| 	/* GM_IPG and GM_HD are not used */
 | |
| 	REGISTER_AB(GM_MAX_FLEN),
 | |
| 	/* GM_TEST is not used */
 | |
| 	REGISTER_AB(GM_ADR1),
 | |
| 	REGISTER_AB(GM_ADR2),
 | |
| 	REGISTER_AB(GMF_CFG0),
 | |
| 	REGISTER_AB(GMF_CFG1),
 | |
| 	REGISTER_AB(GMF_CFG2),
 | |
| 	REGISTER_AB(GMF_CFG3),
 | |
| 	REGISTER_AB(GMF_CFG4),
 | |
| 	REGISTER_AB(GMF_CFG5),
 | |
| 	REGISTER_BB(TX_SRC_MAC_CTL),
 | |
| 	REGISTER_AB(XM_ADR_LO),
 | |
| 	REGISTER_AB(XM_ADR_HI),
 | |
| 	REGISTER_AB(XM_GLB_CFG),
 | |
| 	REGISTER_AB(XM_TX_CFG),
 | |
| 	REGISTER_AB(XM_RX_CFG),
 | |
| 	REGISTER_AB(XM_MGT_INT_MASK),
 | |
| 	REGISTER_AB(XM_FC),
 | |
| 	REGISTER_AB(XM_PAUSE_TIME),
 | |
| 	REGISTER_AB(XM_TX_PARAM),
 | |
| 	REGISTER_AB(XM_RX_PARAM),
 | |
| 	/* XM_MGT_INT_MSK (note no 'A') is RC */
 | |
| 	REGISTER_AB(XX_PWR_RST),
 | |
| 	REGISTER_AB(XX_SD_CTL),
 | |
| 	REGISTER_AB(XX_TXDRV_CTL),
 | |
| 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
 | |
| 	/* XX_CORE_STAT is partly RC */
 | |
| };
 | |
| 
 | |
| struct efx_nic_reg_table {
 | |
| 	u32 offset:24;
 | |
| 	u32 min_revision:2, max_revision:2;
 | |
| 	u32 step:6, rows:21;
 | |
| };
 | |
| 
 | |
| #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
 | |
| 	offset,								\
 | |
| 	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
 | |
| 	step, rows							\
 | |
| }
 | |
| #define REGISTER_TABLE(name, min_rev, max_rev) 				\
 | |
| 	REGISTER_TABLE_DIMENSIONS(					\
 | |
| 		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
 | |
| 		min_rev, max_rev,					\
 | |
| 		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
 | |
| 		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
 | |
| #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
 | |
| #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
 | |
| #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
 | |
| #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
 | |
| #define REGISTER_TABLE_BB_CZ(name)					\
 | |
| 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
 | |
| 				  FR_BZ_ ## name ## _STEP,		\
 | |
| 				  FR_BB_ ## name ## _ROWS),		\
 | |
| 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
 | |
| 				  FR_BZ_ ## name ## _STEP,		\
 | |
| 				  FR_CZ_ ## name ## _ROWS)
 | |
| #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
 | |
| 
 | |
| static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
 | |
| 	/* DRIVER is not used */
 | |
| 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
 | |
| 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
 | |
| 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
 | |
| 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
 | |
| 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
 | |
| 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
 | |
| 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
 | |
| 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
 | |
| 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
 | |
| 	/* We can't reasonably read all of the buffer table (up to 8MB!).
 | |
| 	 * However this driver will only use a few entries.  Reading
 | |
| 	 * 1K entries allows for some expansion of queue count and
 | |
| 	 * size before we need to change the version. */
 | |
| 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
 | |
| 				  A, A, 8, 1024),
 | |
| 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
 | |
| 				  B, Z, 8, 1024),
 | |
| 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
 | |
| 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
 | |
| 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
 | |
| 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
 | |
| 	/* TX_FILTER_TBL0 is huge and not used by this driver */
 | |
| 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
 | |
| 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
 | |
| 	/* MSIX_PBA_TABLE is not mapped */
 | |
| 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
 | |
| 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
 | |
| };
 | |
| 
 | |
| size_t efx_nic_get_regs_len(struct efx_nic *efx)
 | |
| {
 | |
| 	const struct efx_nic_reg *reg;
 | |
| 	const struct efx_nic_reg_table *table;
 | |
| 	size_t len = 0;
 | |
| 
 | |
| 	for (reg = efx_nic_regs;
 | |
| 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
 | |
| 	     reg++)
 | |
| 		if (efx->type->revision >= reg->min_revision &&
 | |
| 		    efx->type->revision <= reg->max_revision)
 | |
| 			len += sizeof(efx_oword_t);
 | |
| 
 | |
| 	for (table = efx_nic_reg_tables;
 | |
| 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
 | |
| 	     table++)
 | |
| 		if (efx->type->revision >= table->min_revision &&
 | |
| 		    efx->type->revision <= table->max_revision)
 | |
| 			len += table->rows * min_t(size_t, table->step, 16);
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| void efx_nic_get_regs(struct efx_nic *efx, void *buf)
 | |
| {
 | |
| 	const struct efx_nic_reg *reg;
 | |
| 	const struct efx_nic_reg_table *table;
 | |
| 
 | |
| 	for (reg = efx_nic_regs;
 | |
| 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
 | |
| 	     reg++) {
 | |
| 		if (efx->type->revision >= reg->min_revision &&
 | |
| 		    efx->type->revision <= reg->max_revision) {
 | |
| 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
 | |
| 			buf += sizeof(efx_oword_t);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (table = efx_nic_reg_tables;
 | |
| 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
 | |
| 	     table++) {
 | |
| 		size_t size, i;
 | |
| 
 | |
| 		if (!(efx->type->revision >= table->min_revision &&
 | |
| 		      efx->type->revision <= table->max_revision))
 | |
| 			continue;
 | |
| 
 | |
| 		size = min_t(size_t, table->step, 16);
 | |
| 
 | |
| 		for (i = 0; i < table->rows; i++) {
 | |
| 			switch (table->step) {
 | |
| 			case 4: /* 32-bit register or SRAM */
 | |
| 				efx_readd_table(efx, buf, table->offset, i);
 | |
| 				break;
 | |
| 			case 8: /* 64-bit SRAM */
 | |
| 				efx_sram_readq(efx,
 | |
| 					       efx->membase + table->offset,
 | |
| 					       buf, i);
 | |
| 				break;
 | |
| 			case 16: /* 128-bit register */
 | |
| 				efx_reado_table(efx, buf, table->offset, i);
 | |
| 				break;
 | |
| 			case 32: /* 128-bit register, interleaved */
 | |
| 				efx_reado_table(efx, buf, table->offset, 2 * i);
 | |
| 				break;
 | |
| 			default:
 | |
| 				WARN_ON(1);
 | |
| 				return;
 | |
| 			}
 | |
| 			buf += size;
 | |
| 		}
 | |
| 	}
 | |
| }
 |