 62776d034c
			
		
	
	
	62776d034c
	
	
	
		
			
			Replace EFX_ERR() with netif_err(), EFX_INFO() with netif_info(), EFX_LOG() with netif_dbg() and EFX_TRACE() and EFX_REGDUMP() with netif_vdbg(). Replace EFX_ERR_RL(), EFX_INFO_RL() and EFX_LOG_RL() using explicit calls to net_ratelimit(). Implement the ethtool operations to get and set message level flags, and add a 'debug' module parameter for the initial value. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			269 lines
		
	
	
	
		
			8.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
	
		
			8.5 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************************
 | |
|  * Driver for Solarflare Solarstorm network controllers and boards
 | |
|  * Copyright 2005-2006 Fen Systems Ltd.
 | |
|  * Copyright 2006-2009 Solarflare Communications Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published
 | |
|  * by the Free Software Foundation, incorporated herein by reference.
 | |
|  */
 | |
| 
 | |
| #ifndef EFX_IO_H
 | |
| #define EFX_IO_H
 | |
| 
 | |
| #include <linux/io.h>
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| /**************************************************************************
 | |
|  *
 | |
|  * NIC register I/O
 | |
|  *
 | |
|  **************************************************************************
 | |
|  *
 | |
|  * Notes on locking strategy:
 | |
|  *
 | |
|  * Most NIC registers require 16-byte (or 8-byte, for SRAM) atomic writes
 | |
|  * which necessitates locking.
 | |
|  * Under normal operation few writes to NIC registers are made and these
 | |
|  * registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and TX_DESC_UPD_REG) are special
 | |
|  * cased to allow 4-byte (hence lockless) accesses.
 | |
|  *
 | |
|  * It *is* safe to write to these 4-byte registers in the middle of an
 | |
|  * access to an 8-byte or 16-byte register.  We therefore use a
 | |
|  * spinlock to protect accesses to the larger registers, but no locks
 | |
|  * for the 4-byte registers.
 | |
|  *
 | |
|  * A write barrier is needed to ensure that DW3 is written after DW0/1/2
 | |
|  * due to the way the 16byte registers are "collected" in the BIU.
 | |
|  *
 | |
|  * We also lock when carrying out reads, to ensure consistency of the
 | |
|  * data (made possible since the BIU reads all 128 bits into a cache).
 | |
|  * Reads are very rare, so this isn't a significant performance
 | |
|  * impact.  (Most data transferred from NIC to host is DMAed directly
 | |
|  * into host memory).
 | |
|  *
 | |
|  * I/O BAR access uses locks for both reads and writes (but is only provided
 | |
|  * for testing purposes).
 | |
|  */
 | |
| 
 | |
| #if BITS_PER_LONG == 64
 | |
| #define EFX_USE_QWORD_IO 1
 | |
| #endif
 | |
| 
 | |
| #ifdef EFX_USE_QWORD_IO
 | |
| static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
 | |
| 				  unsigned int reg)
 | |
| {
 | |
| 	__raw_writeq((__force u64)value, efx->membase + reg);
 | |
| }
 | |
| static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
 | |
| {
 | |
| 	return (__force __le64)__raw_readq(efx->membase + reg);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void _efx_writed(struct efx_nic *efx, __le32 value,
 | |
| 				  unsigned int reg)
 | |
| {
 | |
| 	__raw_writel((__force u32)value, efx->membase + reg);
 | |
| }
 | |
| static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
 | |
| {
 | |
| 	return (__force __le32)__raw_readl(efx->membase + reg);
 | |
| }
 | |
| 
 | |
| /* Writes to a normal 16-byte Efx register, locking as appropriate. */
 | |
| static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
 | |
| 			      unsigned int reg)
 | |
| {
 | |
| 	unsigned long flags __attribute__ ((unused));
 | |
| 
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
 | |
| 		   EFX_OWORD_VAL(*value));
 | |
| 
 | |
| 	spin_lock_irqsave(&efx->biu_lock, flags);
 | |
| #ifdef EFX_USE_QWORD_IO
 | |
| 	_efx_writeq(efx, value->u64[0], reg + 0);
 | |
| 	wmb();
 | |
| 	_efx_writeq(efx, value->u64[1], reg + 8);
 | |
| #else
 | |
| 	_efx_writed(efx, value->u32[0], reg + 0);
 | |
| 	_efx_writed(efx, value->u32[1], reg + 4);
 | |
| 	_efx_writed(efx, value->u32[2], reg + 8);
 | |
| 	wmb();
 | |
| 	_efx_writed(efx, value->u32[3], reg + 12);
 | |
| #endif
 | |
| 	mmiowb();
 | |
| 	spin_unlock_irqrestore(&efx->biu_lock, flags);
 | |
| }
 | |
| 
 | |
| /* Write an 8-byte NIC SRAM entry through the supplied mapping,
 | |
|  * locking as appropriate. */
 | |
| static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
 | |
| 				   efx_qword_t *value, unsigned int index)
 | |
| {
 | |
| 	unsigned int addr = index * sizeof(*value);
 | |
| 	unsigned long flags __attribute__ ((unused));
 | |
| 
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
 | |
| 		   addr, EFX_QWORD_VAL(*value));
 | |
| 
 | |
| 	spin_lock_irqsave(&efx->biu_lock, flags);
 | |
| #ifdef EFX_USE_QWORD_IO
 | |
| 	__raw_writeq((__force u64)value->u64[0], membase + addr);
 | |
| #else
 | |
| 	__raw_writel((__force u32)value->u32[0], membase + addr);
 | |
| 	wmb();
 | |
| 	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
 | |
| #endif
 | |
| 	mmiowb();
 | |
| 	spin_unlock_irqrestore(&efx->biu_lock, flags);
 | |
| }
 | |
| 
 | |
| /* Write dword to NIC register that allows partial writes
 | |
|  *
 | |
|  * Some registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and
 | |
|  * TX_DESC_UPD_REG) can be written to as a single dword.  This allows
 | |
|  * for lockless writes.
 | |
|  */
 | |
| static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value,
 | |
| 			      unsigned int reg)
 | |
| {
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "writing partial register %x with "EFX_DWORD_FMT"\n",
 | |
| 		   reg, EFX_DWORD_VAL(*value));
 | |
| 
 | |
| 	/* No lock required */
 | |
| 	_efx_writed(efx, value->u32[0], reg);
 | |
| }
 | |
| 
 | |
| /* Read from a NIC register
 | |
|  *
 | |
|  * This reads an entire 16-byte register in one go, locking as
 | |
|  * appropriate.  It is essential to read the first dword first, as this
 | |
|  * prompts the NIC to load the current value into the shadow register.
 | |
|  */
 | |
| static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
 | |
| 			     unsigned int reg)
 | |
| {
 | |
| 	unsigned long flags __attribute__ ((unused));
 | |
| 
 | |
| 	spin_lock_irqsave(&efx->biu_lock, flags);
 | |
| 	value->u32[0] = _efx_readd(efx, reg + 0);
 | |
| 	rmb();
 | |
| 	value->u32[1] = _efx_readd(efx, reg + 4);
 | |
| 	value->u32[2] = _efx_readd(efx, reg + 8);
 | |
| 	value->u32[3] = _efx_readd(efx, reg + 12);
 | |
| 	spin_unlock_irqrestore(&efx->biu_lock, flags);
 | |
| 
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
 | |
| 		   EFX_OWORD_VAL(*value));
 | |
| }
 | |
| 
 | |
| /* Read an 8-byte SRAM entry through supplied mapping,
 | |
|  * locking as appropriate. */
 | |
| static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
 | |
| 				  efx_qword_t *value, unsigned int index)
 | |
| {
 | |
| 	unsigned int addr = index * sizeof(*value);
 | |
| 	unsigned long flags __attribute__ ((unused));
 | |
| 
 | |
| 	spin_lock_irqsave(&efx->biu_lock, flags);
 | |
| #ifdef EFX_USE_QWORD_IO
 | |
| 	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
 | |
| #else
 | |
| 	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
 | |
| 	rmb();
 | |
| 	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
 | |
| #endif
 | |
| 	spin_unlock_irqrestore(&efx->biu_lock, flags);
 | |
| 
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
 | |
| 		   addr, EFX_QWORD_VAL(*value));
 | |
| }
 | |
| 
 | |
| /* Read dword from register that allows partial writes (sic) */
 | |
| static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
 | |
| 				unsigned int reg)
 | |
| {
 | |
| 	value->u32[0] = _efx_readd(efx, reg);
 | |
| 	netif_vdbg(efx, hw, efx->net_dev,
 | |
| 		   "read from register %x, got "EFX_DWORD_FMT"\n",
 | |
| 		   reg, EFX_DWORD_VAL(*value));
 | |
| }
 | |
| 
 | |
| /* Write to a register forming part of a table */
 | |
| static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value,
 | |
| 				      unsigned int reg, unsigned int index)
 | |
| {
 | |
| 	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
 | |
| }
 | |
| 
 | |
| /* Read to a register forming part of a table */
 | |
| static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
 | |
| 				     unsigned int reg, unsigned int index)
 | |
| {
 | |
| 	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
 | |
| }
 | |
| 
 | |
| /* Write to a dword register forming part of a table */
 | |
| static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value,
 | |
| 				       unsigned int reg, unsigned int index)
 | |
| {
 | |
| 	efx_writed(efx, value, reg + index * sizeof(efx_oword_t));
 | |
| }
 | |
| 
 | |
| /* Read from a dword register forming part of a table */
 | |
| static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
 | |
| 				   unsigned int reg, unsigned int index)
 | |
| {
 | |
| 	efx_readd(efx, value, reg + index * sizeof(efx_dword_t));
 | |
| }
 | |
| 
 | |
| /* Page-mapped register block size */
 | |
| #define EFX_PAGE_BLOCK_SIZE 0x2000
 | |
| 
 | |
| /* Calculate offset to page-mapped register block */
 | |
| #define EFX_PAGED_REG(page, reg) \
 | |
| 	((page) * EFX_PAGE_BLOCK_SIZE + (reg))
 | |
| 
 | |
| /* As for efx_writeo(), but for a page-mapped register. */
 | |
| static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
 | |
| 				   unsigned int reg, unsigned int page)
 | |
| {
 | |
| 	efx_writeo(efx, value, EFX_PAGED_REG(page, reg));
 | |
| }
 | |
| 
 | |
| /* As for efx_writed(), but for a page-mapped register. */
 | |
| static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value,
 | |
| 				   unsigned int reg, unsigned int page)
 | |
| {
 | |
| 	efx_writed(efx, value, EFX_PAGED_REG(page, reg));
 | |
| }
 | |
| 
 | |
| /* Write dword to page-mapped register with an extra lock.
 | |
|  *
 | |
|  * As for efx_writed_page(), but for a register that suffers from
 | |
|  * SFC bug 3181. Take out a lock so the BIU collector cannot be
 | |
|  * confused. */
 | |
| static inline void efx_writed_page_locked(struct efx_nic *efx,
 | |
| 					  efx_dword_t *value,
 | |
| 					  unsigned int reg,
 | |
| 					  unsigned int page)
 | |
| {
 | |
| 	unsigned long flags __attribute__ ((unused));
 | |
| 
 | |
| 	if (page == 0) {
 | |
| 		spin_lock_irqsave(&efx->biu_lock, flags);
 | |
| 		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
 | |
| 		spin_unlock_irqrestore(&efx->biu_lock, flags);
 | |
| 	} else {
 | |
| 		efx_writed(efx, value, EFX_PAGED_REG(page, reg));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif /* EFX_IO_H */
 |