 bc8acf2c8c
			
		
	
	
	bc8acf2c8c
	
	
	
		
			
			fresh skbs have ip_summed set to CHECKSUM_NONE (0) We can avoid setting again skb->ip_summed to CHECKSUM_NONE in drivers. Introduce skb_checksum_none_assert() helper so that we keep this assertion documented in driver sources. Change most occurrences of : skb->ip_summed = CHECKSUM_NONE; by : skb_checksum_none_assert(skb); Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			2328 lines
		
	
	
	
		
			60 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2328 lines
		
	
	
	
		
			60 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
 | |
|  *
 | |
|  * Copyright (C) 2003, 2007  IC Plus Corp
 | |
|  *
 | |
|  * Original Author:
 | |
|  *
 | |
|  *   Craig Rich
 | |
|  *   Sundance Technology, Inc.
 | |
|  *   www.sundanceti.com
 | |
|  *   craig_rich@sundanceti.com
 | |
|  *
 | |
|  * Current Maintainer:
 | |
|  *
 | |
|  *   Sorbica Shieh.
 | |
|  *   http://www.icplus.com.tw
 | |
|  *   sorbica@icplus.com.tw
 | |
|  *
 | |
|  *   Jesse Huang
 | |
|  *   http://www.icplus.com.tw
 | |
|  *   jesse@icplus.com.tw
 | |
|  */
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/ethtool.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/mii.h>
 | |
| #include <linux/mutex.h>
 | |
| 
 | |
| #include <asm/div64.h>
 | |
| 
 | |
| #define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
 | |
| #define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
 | |
| #define IPG_RESET_MASK \
 | |
| 	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
 | |
| 	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
 | |
| 	 IPG_AC_AUTO_INIT)
 | |
| 
 | |
| #define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg))
 | |
| #define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg))
 | |
| #define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg))
 | |
| 
 | |
| #define ipg_r32(reg)		ioread32(ioaddr + (reg))
 | |
| #define ipg_r16(reg)		ioread16(ioaddr + (reg))
 | |
| #define ipg_r8(reg)		ioread8(ioaddr + (reg))
 | |
| 
 | |
| enum {
 | |
| 	netdev_io_size = 128
 | |
| };
 | |
| 
 | |
| #include "ipg.h"
 | |
| #define DRV_NAME	"ipg"
 | |
| 
 | |
| MODULE_AUTHOR("IC Plus Corp. 2003");
 | |
| MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| /*
 | |
|  * Defaults
 | |
|  */
 | |
| #define IPG_MAX_RXFRAME_SIZE	0x0600
 | |
| #define IPG_RXFRAG_SIZE		0x0600
 | |
| #define IPG_RXSUPPORT_SIZE	0x0600
 | |
| #define IPG_IS_JUMBO		false
 | |
| 
 | |
| /*
 | |
|  * Variable record -- index by leading revision/length
 | |
|  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
 | |
|  */
 | |
| static unsigned short DefaultPhyParam[] = {
 | |
| 	/* 11/12/03 IP1000A v1-3 rev=0x40 */
 | |
| 	/*--------------------------------------------------------------------------
 | |
| 	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
 | |
| 				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
 | |
| 				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
 | |
| 	  --------------------------------------------------------------------------*/
 | |
| 	/* 12/17/03 IP1000A v1-4 rev=0x40 */
 | |
| 	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
 | |
| 	    0x0000,
 | |
| 	30, 0x005e, 9, 0x0700,
 | |
| 	/* 01/09/04 IP1000A v1-5 rev=0x41 */
 | |
| 	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
 | |
| 	    0x0000,
 | |
| 	30, 0x005e, 9, 0x0700,
 | |
| 	0x0000
 | |
| };
 | |
| 
 | |
| static const char *ipg_brand_name[] = {
 | |
| 	"IC PLUS IP1000 1000/100/10 based NIC",
 | |
| 	"Sundance Technology ST2021 based NIC",
 | |
| 	"Tamarack Microelectronics TC9020/9021 based NIC",
 | |
| 	"Tamarack Microelectronics TC9020/9021 based NIC",
 | |
| 	"D-Link NIC IP1000A"
 | |
| };
 | |
| 
 | |
| static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
 | |
| 	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
 | |
| 	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
 | |
| 	{ PCI_VDEVICE(SUNDANCE,	0x1021), 2 },
 | |
| 	{ PCI_VDEVICE(DLINK,	0x9021), 3 },
 | |
| 	{ PCI_VDEVICE(DLINK,	0x4020), 4 },
 | |
| 	{ 0, }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
 | |
| 
 | |
| static inline void __iomem *ipg_ioaddr(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	return sp->ioaddr;
 | |
| }
 | |
| 
 | |
| #ifdef IPG_DEBUG
 | |
| static void ipg_dump_rfdlist(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int i;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_dump_rfdlist\n");
 | |
| 
 | |
| 	printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
 | |
| 	printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
 | |
| 	printk(KERN_INFO "RFDList start address = %16.16lx\n",
 | |
| 	       (unsigned long) sp->rxd_map);
 | |
| 	printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
 | |
| 	       ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
 | |
| 
 | |
| 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
 | |
| 		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
 | |
| 		printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
 | |
| 		       offset, (unsigned long) sp->rxd[i].next_desc);
 | |
| 		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
 | |
| 		printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
 | |
| 		       offset, (unsigned long) sp->rxd[i].rfs);
 | |
| 		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
 | |
| 		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
 | |
| 		       offset, (unsigned long) sp->rxd[i].frag_info);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ipg_dump_tfdlist(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int i;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_dump_tfdlist\n");
 | |
| 
 | |
| 	printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
 | |
| 	printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
 | |
| 	printk(KERN_INFO "TFDList start address = %16.16lx\n",
 | |
| 	       (unsigned long) sp->txd_map);
 | |
| 	printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
 | |
| 	       ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
 | |
| 
 | |
| 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
 | |
| 		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
 | |
| 		printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
 | |
| 		       offset, (unsigned long) sp->txd[i].next_desc);
 | |
| 
 | |
| 		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
 | |
| 		printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
 | |
| 		       offset, (unsigned long) sp->txd[i].tfc);
 | |
| 		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
 | |
| 		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
 | |
| 		       offset, (unsigned long) sp->txd[i].frag_info);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
 | |
| {
 | |
| 	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
 | |
| 	ndelay(IPG_PC_PHYCTRLWAIT_NS);
 | |
| }
 | |
| 
 | |
| static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
 | |
| {
 | |
| 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
 | |
| 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
 | |
| }
 | |
| 
 | |
| static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
 | |
| {
 | |
| 	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
 | |
| 
 | |
| 	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
 | |
| }
 | |
| 
 | |
| static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
 | |
| {
 | |
| 	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
 | |
| 		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
 | |
| }
 | |
| 
 | |
| static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
 | |
| {
 | |
| 	u16 bit_data;
 | |
| 
 | |
| 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
 | |
| 
 | |
| 	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
 | |
| 
 | |
| 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
 | |
| 
 | |
| 	return bit_data;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a register from the Physical Layer device located
 | |
|  * on the IPG NIC, using the IPG PHYCTRL register.
 | |
|  */
 | |
| static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
 | |
| {
 | |
| 	void __iomem *ioaddr = ipg_ioaddr(dev);
 | |
| 	/*
 | |
| 	 * The GMII mangement frame structure for a read is as follows:
 | |
| 	 *
 | |
| 	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
 | |
| 	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
 | |
| 	 *
 | |
| 	 * <32 1s> = 32 consecutive logic 1 values
 | |
| 	 * A = bit of Physical Layer device address (MSB first)
 | |
| 	 * R = bit of register address (MSB first)
 | |
| 	 * z = High impedance state
 | |
| 	 * D = bit of read data (MSB first)
 | |
| 	 *
 | |
| 	 * Transmission order is 'Preamble' field first, bits transmitted
 | |
| 	 * left to right (first to last).
 | |
| 	 */
 | |
| 	struct {
 | |
| 		u32 field;
 | |
| 		unsigned int len;
 | |
| 	} p[] = {
 | |
| 		{ GMII_PREAMBLE,	32 },	/* Preamble */
 | |
| 		{ GMII_ST,		2  },	/* ST */
 | |
| 		{ GMII_READ,		2  },	/* OP */
 | |
| 		{ phy_id,		5  },	/* PHYAD */
 | |
| 		{ phy_reg,		5  },	/* REGAD */
 | |
| 		{ 0x0000,		2  },	/* TA */
 | |
| 		{ 0x0000,		16 },	/* DATA */
 | |
| 		{ 0x0000,		1  }	/* IDLE */
 | |
| 	};
 | |
| 	unsigned int i, j;
 | |
| 	u8 polarity, data;
 | |
| 
 | |
| 	polarity  = ipg_r8(PHY_CTRL);
 | |
| 	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
 | |
| 
 | |
| 	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
 | |
| 	for (j = 0; j < 5; j++) {
 | |
| 		for (i = 0; i < p[j].len; i++) {
 | |
| 			/* For each variable length field, the MSB must be
 | |
| 			 * transmitted first. Rotate through the field bits,
 | |
| 			 * starting with the MSB, and move each bit into the
 | |
| 			 * the 1st (2^1) bit position (this is the bit position
 | |
| 			 * corresponding to the MgmtData bit of the PhyCtrl
 | |
| 			 * register for the IPG).
 | |
| 			 *
 | |
| 			 * Example: ST = 01;
 | |
| 			 *
 | |
| 			 *          First write a '0' to bit 1 of the PhyCtrl
 | |
| 			 *          register, then write a '1' to bit 1 of the
 | |
| 			 *          PhyCtrl register.
 | |
| 			 *
 | |
| 			 * To do this, right shift the MSB of ST by the value:
 | |
| 			 * [field length - 1 - #ST bits already written]
 | |
| 			 * then left shift this result by 1.
 | |
| 			 */
 | |
| 			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
 | |
| 			data &= IPG_PC_MGMTDATA;
 | |
| 			data |= polarity | IPG_PC_MGMTDIR;
 | |
| 
 | |
| 			ipg_drive_phy_ctl_low_high(ioaddr, data);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	send_three_state(ioaddr, polarity);
 | |
| 
 | |
| 	read_phy_bit(ioaddr, polarity);
 | |
| 
 | |
| 	/*
 | |
| 	 * For a read cycle, the bits for the next two fields (TA and
 | |
| 	 * DATA) are driven by the PHY (the IPG reads these bits).
 | |
| 	 */
 | |
| 	for (i = 0; i < p[6].len; i++) {
 | |
| 		p[6].field |=
 | |
| 		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
 | |
| 	}
 | |
| 
 | |
| 	send_three_state(ioaddr, polarity);
 | |
| 	send_three_state(ioaddr, polarity);
 | |
| 	send_three_state(ioaddr, polarity);
 | |
| 	send_end(ioaddr, polarity);
 | |
| 
 | |
| 	/* Return the value of the DATA field. */
 | |
| 	return p[6].field;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write to a register from the Physical Layer device located
 | |
|  * on the IPG NIC, using the IPG PHYCTRL register.
 | |
|  */
 | |
| static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
 | |
| {
 | |
| 	void __iomem *ioaddr = ipg_ioaddr(dev);
 | |
| 	/*
 | |
| 	 * The GMII mangement frame structure for a read is as follows:
 | |
| 	 *
 | |
| 	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
 | |
| 	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
 | |
| 	 *
 | |
| 	 * <32 1s> = 32 consecutive logic 1 values
 | |
| 	 * A = bit of Physical Layer device address (MSB first)
 | |
| 	 * R = bit of register address (MSB first)
 | |
| 	 * z = High impedance state
 | |
| 	 * D = bit of write data (MSB first)
 | |
| 	 *
 | |
| 	 * Transmission order is 'Preamble' field first, bits transmitted
 | |
| 	 * left to right (first to last).
 | |
| 	 */
 | |
| 	struct {
 | |
| 		u32 field;
 | |
| 		unsigned int len;
 | |
| 	} p[] = {
 | |
| 		{ GMII_PREAMBLE,	32 },	/* Preamble */
 | |
| 		{ GMII_ST,		2  },	/* ST */
 | |
| 		{ GMII_WRITE,		2  },	/* OP */
 | |
| 		{ phy_id,		5  },	/* PHYAD */
 | |
| 		{ phy_reg,		5  },	/* REGAD */
 | |
| 		{ 0x0002,		2  },	/* TA */
 | |
| 		{ val & 0xffff,		16 },	/* DATA */
 | |
| 		{ 0x0000,		1  }	/* IDLE */
 | |
| 	};
 | |
| 	unsigned int i, j;
 | |
| 	u8 polarity, data;
 | |
| 
 | |
| 	polarity  = ipg_r8(PHY_CTRL);
 | |
| 	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
 | |
| 
 | |
| 	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
 | |
| 	for (j = 0; j < 7; j++) {
 | |
| 		for (i = 0; i < p[j].len; i++) {
 | |
| 			/* For each variable length field, the MSB must be
 | |
| 			 * transmitted first. Rotate through the field bits,
 | |
| 			 * starting with the MSB, and move each bit into the
 | |
| 			 * the 1st (2^1) bit position (this is the bit position
 | |
| 			 * corresponding to the MgmtData bit of the PhyCtrl
 | |
| 			 * register for the IPG).
 | |
| 			 *
 | |
| 			 * Example: ST = 01;
 | |
| 			 *
 | |
| 			 *          First write a '0' to bit 1 of the PhyCtrl
 | |
| 			 *          register, then write a '1' to bit 1 of the
 | |
| 			 *          PhyCtrl register.
 | |
| 			 *
 | |
| 			 * To do this, right shift the MSB of ST by the value:
 | |
| 			 * [field length - 1 - #ST bits already written]
 | |
| 			 * then left shift this result by 1.
 | |
| 			 */
 | |
| 			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
 | |
| 			data &= IPG_PC_MGMTDATA;
 | |
| 			data |= polarity | IPG_PC_MGMTDIR;
 | |
| 
 | |
| 			ipg_drive_phy_ctl_low_high(ioaddr, data);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* The last cycle is a tri-state, so read from the PHY. */
 | |
| 	for (j = 7; j < 8; j++) {
 | |
| 		for (i = 0; i < p[j].len; i++) {
 | |
| 			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
 | |
| 
 | |
| 			p[j].field |= ((ipg_r8(PHY_CTRL) &
 | |
| 				IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
 | |
| 
 | |
| 			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ipg_set_led_mode(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	u32 mode;
 | |
| 
 | |
| 	mode = ipg_r32(ASIC_CTRL);
 | |
| 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 | |
| 
 | |
| 	if ((sp->led_mode & 0x03) > 1)
 | |
| 		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */
 | |
| 
 | |
| 	if ((sp->led_mode & 0x01) == 1)
 | |
| 		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */
 | |
| 
 | |
| 	if ((sp->led_mode & 0x08) == 8)
 | |
| 		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */
 | |
| 
 | |
| 	ipg_w32(mode, ASIC_CTRL);
 | |
| }
 | |
| 
 | |
| static void ipg_set_phy_set(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	int physet;
 | |
| 
 | |
| 	physet = ipg_r8(PHY_SET);
 | |
| 	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
 | |
| 	physet |= ((sp->led_mode & 0x70) >> 4);
 | |
| 	ipg_w8(physet, PHY_SET);
 | |
| }
 | |
| 
 | |
| static int ipg_reset(struct net_device *dev, u32 resetflags)
 | |
| {
 | |
| 	/* Assert functional resets via the IPG AsicCtrl
 | |
| 	 * register as specified by the 'resetflags' input
 | |
| 	 * parameter.
 | |
| 	 */
 | |
| 	void __iomem *ioaddr = ipg_ioaddr(dev);
 | |
| 	unsigned int timeout_count = 0;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_reset\n");
 | |
| 
 | |
| 	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
 | |
| 
 | |
| 	/* Delay added to account for problem with 10Mbps reset. */
 | |
| 	mdelay(IPG_AC_RESETWAIT);
 | |
| 
 | |
| 	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
 | |
| 		mdelay(IPG_AC_RESETWAIT);
 | |
| 		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
 | |
| 			return -ETIME;
 | |
| 	}
 | |
| 	/* Set LED Mode in Asic Control */
 | |
| 	ipg_set_led_mode(dev);
 | |
| 
 | |
| 	/* Set PHYSet Register Value */
 | |
| 	ipg_set_phy_set(dev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Find the GMII PHY address. */
 | |
| static int ipg_find_phyaddr(struct net_device *dev)
 | |
| {
 | |
| 	unsigned int phyaddr, i;
 | |
| 
 | |
| 	for (i = 0; i < 32; i++) {
 | |
| 		u32 status;
 | |
| 
 | |
| 		/* Search for the correct PHY address among 32 possible. */
 | |
| 		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
 | |
| 
 | |
| 		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
 | |
| 		   GMII_PHY_ID1
 | |
| 		 */
 | |
| 
 | |
| 		status = mdio_read(dev, phyaddr, MII_BMSR);
 | |
| 
 | |
| 		if ((status != 0xFFFF) && (status != 0))
 | |
| 			return phyaddr;
 | |
| 	}
 | |
| 
 | |
| 	return 0x1f;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Configure IPG based on result of IEEE 802.3 PHY
 | |
|  * auto-negotiation.
 | |
|  */
 | |
| static int ipg_config_autoneg(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int txflowcontrol;
 | |
| 	unsigned int rxflowcontrol;
 | |
| 	unsigned int fullduplex;
 | |
| 	u32 mac_ctrl_val;
 | |
| 	u32 asicctrl;
 | |
| 	u8 phyctrl;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_config_autoneg\n");
 | |
| 
 | |
| 	asicctrl = ipg_r32(ASIC_CTRL);
 | |
| 	phyctrl = ipg_r8(PHY_CTRL);
 | |
| 	mac_ctrl_val = ipg_r32(MAC_CTRL);
 | |
| 
 | |
| 	/* Set flags for use in resolving auto-negotation, assuming
 | |
| 	 * non-1000Mbps, half duplex, no flow control.
 | |
| 	 */
 | |
| 	fullduplex = 0;
 | |
| 	txflowcontrol = 0;
 | |
| 	rxflowcontrol = 0;
 | |
| 
 | |
| 	/* To accomodate a problem in 10Mbps operation,
 | |
| 	 * set a global flag if PHY running in 10Mbps mode.
 | |
| 	 */
 | |
| 	sp->tenmbpsmode = 0;
 | |
| 
 | |
| 	printk(KERN_INFO "%s: Link speed = ", dev->name);
 | |
| 
 | |
| 	/* Determine actual speed of operation. */
 | |
| 	switch (phyctrl & IPG_PC_LINK_SPEED) {
 | |
| 	case IPG_PC_LINK_SPEED_10MBPS:
 | |
| 		printk("10Mbps.\n");
 | |
| 		printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
 | |
| 		       dev->name);
 | |
| 		sp->tenmbpsmode = 1;
 | |
| 		break;
 | |
| 	case IPG_PC_LINK_SPEED_100MBPS:
 | |
| 		printk("100Mbps.\n");
 | |
| 		break;
 | |
| 	case IPG_PC_LINK_SPEED_1000MBPS:
 | |
| 		printk("1000Mbps.\n");
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk("undefined!\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
 | |
| 		fullduplex = 1;
 | |
| 		txflowcontrol = 1;
 | |
| 		rxflowcontrol = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Configure full duplex, and flow control. */
 | |
| 	if (fullduplex == 1) {
 | |
| 		/* Configure IPG for full duplex operation. */
 | |
| 		printk(KERN_INFO "%s: setting full duplex, ", dev->name);
 | |
| 
 | |
| 		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
 | |
| 
 | |
| 		if (txflowcontrol == 1) {
 | |
| 			printk("TX flow control");
 | |
| 			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
 | |
| 		} else {
 | |
| 			printk("no TX flow control");
 | |
| 			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
 | |
| 		}
 | |
| 
 | |
| 		if (rxflowcontrol == 1) {
 | |
| 			printk(", RX flow control.");
 | |
| 			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
 | |
| 		} else {
 | |
| 			printk(", no RX flow control.");
 | |
| 			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
 | |
| 		}
 | |
| 
 | |
| 		printk("\n");
 | |
| 	} else {
 | |
| 		/* Configure IPG for half duplex operation. */
 | |
| 		printk(KERN_INFO "%s: setting half duplex, "
 | |
| 		       "no TX flow control, no RX flow control.\n", dev->name);
 | |
| 
 | |
| 		mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
 | |
| 			~IPG_MC_TX_FLOW_CONTROL_ENABLE &
 | |
| 			~IPG_MC_RX_FLOW_CONTROL_ENABLE;
 | |
| 	}
 | |
| 	ipg_w32(mac_ctrl_val, MAC_CTRL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Determine and configure multicast operation and set
 | |
|  * receive mode for IPG.
 | |
|  */
 | |
| static void ipg_nic_set_multicast_list(struct net_device *dev)
 | |
| {
 | |
| 	void __iomem *ioaddr = ipg_ioaddr(dev);
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	unsigned int hashindex;
 | |
| 	u32 hashtable[2];
 | |
| 	u8 receivemode;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_set_multicast_list\n");
 | |
| 
 | |
| 	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC) {
 | |
| 		/* NIC to be configured in promiscuous mode. */
 | |
| 		receivemode = IPG_RM_RECEIVEALLFRAMES;
 | |
| 	} else if ((dev->flags & IFF_ALLMULTI) ||
 | |
| 		   ((dev->flags & IFF_MULTICAST) &&
 | |
| 		    (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
 | |
| 		/* NIC to be configured to receive all multicast
 | |
| 		 * frames. */
 | |
| 		receivemode |= IPG_RM_RECEIVEMULTICAST;
 | |
| 	} else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
 | |
| 		/* NIC to be configured to receive selected
 | |
| 		 * multicast addresses. */
 | |
| 		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
 | |
| 	 * The IPG applies a cyclic-redundancy-check (the same CRC
 | |
| 	 * used to calculate the frame data FCS) to the destination
 | |
| 	 * address all incoming multicast frames whose destination
 | |
| 	 * address has the multicast bit set. The least significant
 | |
| 	 * 6 bits of the CRC result are used as an addressing index
 | |
| 	 * into the hash table. If the value of the bit addressed by
 | |
| 	 * this index is a 1, the frame is passed to the host system.
 | |
| 	 */
 | |
| 
 | |
| 	/* Clear hashtable. */
 | |
| 	hashtable[0] = 0x00000000;
 | |
| 	hashtable[1] = 0x00000000;
 | |
| 
 | |
| 	/* Cycle through all multicast addresses to filter. */
 | |
| 	netdev_for_each_mc_addr(ha, dev) {
 | |
| 		/* Calculate CRC result for each multicast address. */
 | |
| 		hashindex = crc32_le(0xffffffff, ha->addr,
 | |
| 				     ETH_ALEN);
 | |
| 
 | |
| 		/* Use only the least significant 6 bits. */
 | |
| 		hashindex = hashindex & 0x3F;
 | |
| 
 | |
| 		/* Within "hashtable", set bit number "hashindex"
 | |
| 		 * to a logic 1.
 | |
| 		 */
 | |
| 		set_bit(hashindex, (void *)hashtable);
 | |
| 	}
 | |
| 
 | |
| 	/* Write the value of the hashtable, to the 4, 16 bit
 | |
| 	 * HASHTABLE IPG registers.
 | |
| 	 */
 | |
| 	ipg_w32(hashtable[0], HASHTABLE_0);
 | |
| 	ipg_w32(hashtable[1], HASHTABLE_1);
 | |
| 
 | |
| 	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
 | |
| 
 | |
| 	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
 | |
| }
 | |
| 
 | |
| static int ipg_io_config(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = ipg_ioaddr(dev);
 | |
| 	u32 origmacctrl;
 | |
| 	u32 restoremacctrl;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_io_config\n");
 | |
| 
 | |
| 	origmacctrl = ipg_r32(MAC_CTRL);
 | |
| 
 | |
| 	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
 | |
| 
 | |
| 	/* Based on compilation option, determine if FCS is to be
 | |
| 	 * stripped on receive frames by IPG.
 | |
| 	 */
 | |
| 	if (!IPG_STRIP_FCS_ON_RX)
 | |
| 		restoremacctrl |= IPG_MC_RCV_FCS;
 | |
| 
 | |
| 	/* Determine if transmitter and/or receiver are
 | |
| 	 * enabled so we may restore MACCTRL correctly.
 | |
| 	 */
 | |
| 	if (origmacctrl & IPG_MC_TX_ENABLED)
 | |
| 		restoremacctrl |= IPG_MC_TX_ENABLE;
 | |
| 
 | |
| 	if (origmacctrl & IPG_MC_RX_ENABLED)
 | |
| 		restoremacctrl |= IPG_MC_RX_ENABLE;
 | |
| 
 | |
| 	/* Transmitter and receiver must be disabled before setting
 | |
| 	 * IFSSelect.
 | |
| 	 */
 | |
| 	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
 | |
| 		IPG_MC_RSVD_MASK, MAC_CTRL);
 | |
| 
 | |
| 	/* Now that transmitter and receiver are disabled, write
 | |
| 	 * to IFSSelect.
 | |
| 	 */
 | |
| 	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
 | |
| 
 | |
| 	/* Set RECEIVEMODE register. */
 | |
| 	ipg_nic_set_multicast_list(dev);
 | |
| 
 | |
| 	ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
 | |
| 
 | |
| 	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
 | |
| 	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
 | |
| 	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
 | |
| 	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
 | |
| 	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
 | |
| 	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
 | |
| 	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
 | |
| 		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
 | |
| 		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
 | |
| 		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
 | |
| 	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
 | |
| 	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
 | |
| 
 | |
| 	/* IPG multi-frag frame bug workaround.
 | |
| 	 * Per silicon revision B3 eratta.
 | |
| 	 */
 | |
| 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
 | |
| 
 | |
| 	/* IPG TX poll now bug workaround.
 | |
| 	 * Per silicon revision B3 eratta.
 | |
| 	 */
 | |
| 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
 | |
| 
 | |
| 	/* IPG RX poll now bug workaround.
 | |
| 	 * Per silicon revision B3 eratta.
 | |
| 	 */
 | |
| 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
 | |
| 
 | |
| 	/* Now restore MACCTRL to original setting. */
 | |
| 	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
 | |
| 
 | |
| 	/* Disable unused RMON statistics. */
 | |
| 	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
 | |
| 
 | |
| 	/* Disable unused MIB statistics. */
 | |
| 	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
 | |
| 		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
 | |
| 		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
 | |
| 		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
 | |
| 		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
 | |
| 		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a receive buffer within system memory and update
 | |
|  * NIC private structure appropriately.
 | |
|  */
 | |
| static int ipg_get_rxbuff(struct net_device *dev, int entry)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	struct ipg_rx *rxfd = sp->rxd + entry;
 | |
| 	struct sk_buff *skb;
 | |
| 	u64 rxfragsize;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_get_rxbuff\n");
 | |
| 
 | |
| 	skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
 | |
| 	if (!skb) {
 | |
| 		sp->rx_buff[entry] = NULL;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Associate the receive buffer with the IPG NIC. */
 | |
| 	skb->dev = dev;
 | |
| 
 | |
| 	/* Save the address of the sk_buff structure. */
 | |
| 	sp->rx_buff[entry] = skb;
 | |
| 
 | |
| 	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
 | |
| 		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
 | |
| 
 | |
| 	/* Set the RFD fragment length. */
 | |
| 	rxfragsize = sp->rxfrag_size;
 | |
| 	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int init_rfdlist(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_init_rfdlist\n");
 | |
| 
 | |
| 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
 | |
| 		struct ipg_rx *rxfd = sp->rxd + i;
 | |
| 
 | |
| 		if (sp->rx_buff[i]) {
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
 | |
| 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
 | |
| 			dev_kfree_skb_irq(sp->rx_buff[i]);
 | |
| 			sp->rx_buff[i] = NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* Clear out the RFS field. */
 | |
| 		rxfd->rfs = 0x0000000000000000;
 | |
| 
 | |
| 		if (ipg_get_rxbuff(dev, i) < 0) {
 | |
| 			/*
 | |
| 			 * A receive buffer was not ready, break the
 | |
| 			 * RFD list here.
 | |
| 			 */
 | |
| 			IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
 | |
| 
 | |
| 			/* Just in case we cannot allocate a single RFD.
 | |
| 			 * Should not occur.
 | |
| 			 */
 | |
| 			if (i == 0) {
 | |
| 				printk(KERN_ERR "%s: No memory available"
 | |
| 					" for RFD list.\n", dev->name);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
 | |
| 			sizeof(struct ipg_rx)*(i + 1));
 | |
| 	}
 | |
| 	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
 | |
| 
 | |
| 	sp->rx_current = 0;
 | |
| 	sp->rx_dirty = 0;
 | |
| 
 | |
| 	/* Write the location of the RFDList to the IPG. */
 | |
| 	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
 | |
| 	ipg_w32(0x00000000, RFD_LIST_PTR_1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void init_tfdlist(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_init_tfdlist\n");
 | |
| 
 | |
| 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
 | |
| 		struct ipg_tx *txfd = sp->txd + i;
 | |
| 
 | |
| 		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
 | |
| 
 | |
| 		if (sp->tx_buff[i]) {
 | |
| 			dev_kfree_skb_irq(sp->tx_buff[i]);
 | |
| 			sp->tx_buff[i] = NULL;
 | |
| 		}
 | |
| 
 | |
| 		txfd->next_desc = cpu_to_le64(sp->txd_map +
 | |
| 			sizeof(struct ipg_tx)*(i + 1));
 | |
| 	}
 | |
| 	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
 | |
| 
 | |
| 	sp->tx_current = 0;
 | |
| 	sp->tx_dirty = 0;
 | |
| 
 | |
| 	/* Write the location of the TFDList to the IPG. */
 | |
| 	IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
 | |
| 		       (u32) sp->txd_map);
 | |
| 	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
 | |
| 	ipg_w32(0x00000000, TFD_LIST_PTR_1);
 | |
| 
 | |
| 	sp->reset_current_tfd = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free all transmit buffers which have already been transfered
 | |
|  * via DMA to the IPG.
 | |
|  */
 | |
| static void ipg_nic_txfree(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	unsigned int released, pending, dirty;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_txfree\n");
 | |
| 
 | |
| 	pending = sp->tx_current - sp->tx_dirty;
 | |
| 	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
 | |
| 
 | |
| 	for (released = 0; released < pending; released++) {
 | |
| 		struct sk_buff *skb = sp->tx_buff[dirty];
 | |
| 		struct ipg_tx *txfd = sp->txd + dirty;
 | |
| 
 | |
| 		IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
 | |
| 
 | |
| 		/* Look at each TFD's TFC field beginning
 | |
| 		 * at the last freed TFD up to the current TFD.
 | |
| 		 * If the TFDDone bit is set, free the associated
 | |
| 		 * buffer.
 | |
| 		 */
 | |
| 		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
 | |
|                         break;
 | |
| 
 | |
| 		/* Free the transmit buffer. */
 | |
| 		if (skb) {
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
 | |
| 				skb->len, PCI_DMA_TODEVICE);
 | |
| 
 | |
| 			dev_kfree_skb_irq(skb);
 | |
| 
 | |
| 			sp->tx_buff[dirty] = NULL;
 | |
| 		}
 | |
| 		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
 | |
| 	}
 | |
| 
 | |
| 	sp->tx_dirty += released;
 | |
| 
 | |
| 	if (netif_queue_stopped(dev) &&
 | |
| 	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
 | |
| 		netif_wake_queue(dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ipg_tx_timeout(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 
 | |
| 	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
 | |
| 		  IPG_AC_FIFO);
 | |
| 
 | |
| 	spin_lock_irq(&sp->lock);
 | |
| 
 | |
| 	/* Re-configure after DMA reset. */
 | |
| 	if (ipg_io_config(dev) < 0) {
 | |
| 		printk(KERN_INFO "%s: Error during re-configuration.\n",
 | |
| 		       dev->name);
 | |
| 	}
 | |
| 
 | |
| 	init_tfdlist(dev);
 | |
| 
 | |
| 	spin_unlock_irq(&sp->lock);
 | |
| 
 | |
| 	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
 | |
| 		MAC_CTRL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For TxComplete interrupts, free all transmit
 | |
|  * buffers which have already been transfered via DMA
 | |
|  * to the IPG.
 | |
|  */
 | |
| static void ipg_nic_txcleanup(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_txcleanup\n");
 | |
| 
 | |
| 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
 | |
| 		/* Reading the TXSTATUS register clears the
 | |
| 		 * TX_COMPLETE interrupt.
 | |
| 		 */
 | |
| 		u32 txstatusdword = ipg_r32(TX_STATUS);
 | |
| 
 | |
| 		IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
 | |
| 
 | |
| 		/* Check for Transmit errors. Error bits only valid if
 | |
| 		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
 | |
| 		 */
 | |
| 		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
 | |
| 			break;
 | |
| 
 | |
| 		/* If in 10Mbps mode, indicate transmit is ready. */
 | |
| 		if (sp->tenmbpsmode) {
 | |
| 			netif_wake_queue(dev);
 | |
| 		}
 | |
| 
 | |
| 		/* Transmit error, increment stat counters. */
 | |
| 		if (txstatusdword & IPG_TS_TX_ERROR) {
 | |
| 			IPG_DEBUG_MSG("Transmit error.\n");
 | |
| 			sp->stats.tx_errors++;
 | |
| 		}
 | |
| 
 | |
| 		/* Late collision, re-enable transmitter. */
 | |
| 		if (txstatusdword & IPG_TS_LATE_COLLISION) {
 | |
| 			IPG_DEBUG_MSG("Late collision on transmit.\n");
 | |
| 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
 | |
| 				IPG_MC_RSVD_MASK, MAC_CTRL);
 | |
| 		}
 | |
| 
 | |
| 		/* Maximum collisions, re-enable transmitter. */
 | |
| 		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
 | |
| 			IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
 | |
| 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
 | |
| 				IPG_MC_RSVD_MASK, MAC_CTRL);
 | |
| 		}
 | |
| 
 | |
| 		/* Transmit underrun, reset and re-enable
 | |
| 		 * transmitter.
 | |
| 		 */
 | |
| 		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
 | |
| 			IPG_DEBUG_MSG("Transmitter underrun.\n");
 | |
| 			sp->stats.tx_fifo_errors++;
 | |
| 			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
 | |
| 				  IPG_AC_NETWORK | IPG_AC_FIFO);
 | |
| 
 | |
| 			/* Re-configure after DMA reset. */
 | |
| 			if (ipg_io_config(dev) < 0) {
 | |
| 				printk(KERN_INFO
 | |
| 				       "%s: Error during re-configuration.\n",
 | |
| 				       dev->name);
 | |
| 			}
 | |
| 			init_tfdlist(dev);
 | |
| 
 | |
| 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
 | |
| 				IPG_MC_RSVD_MASK, MAC_CTRL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ipg_nic_txfree(dev);
 | |
| }
 | |
| 
 | |
| /* Provides statistical information about the IPG NIC. */
 | |
| static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	u16 temp1;
 | |
| 	u16 temp2;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_get_stats\n");
 | |
| 
 | |
| 	/* Check to see if the NIC has been initialized via nic_open,
 | |
| 	 * before trying to read statistic registers.
 | |
| 	 */
 | |
| 	if (!test_bit(__LINK_STATE_START, &dev->state))
 | |
| 		return &sp->stats;
 | |
| 
 | |
| 	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
 | |
| 	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
 | |
| 	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
 | |
| 	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
 | |
| 	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
 | |
| 	sp->stats.rx_errors += temp1;
 | |
| 	sp->stats.rx_missed_errors += temp1;
 | |
| 	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
 | |
| 		ipg_r32(IPG_LATECOLLISIONS);
 | |
| 	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
 | |
| 	sp->stats.collisions += temp1;
 | |
| 	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
 | |
| 	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
 | |
| 		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
 | |
| 	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
 | |
| 
 | |
| 	/* detailed tx_errors */
 | |
| 	sp->stats.tx_carrier_errors += temp2;
 | |
| 
 | |
| 	/* detailed rx_errors */
 | |
| 	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
 | |
| 		ipg_r16(IPG_FRAMETOOLONGERRRORS);
 | |
| 	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
 | |
| 
 | |
| 	/* Unutilized IPG statistic registers. */
 | |
| 	ipg_r32(IPG_MCSTFRAMESRCVDOK);
 | |
| 
 | |
| 	return &sp->stats;
 | |
| }
 | |
| 
 | |
| /* Restore used receive buffers. */
 | |
| static int ipg_nic_rxrestore(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	const unsigned int curr = sp->rx_current;
 | |
| 	unsigned int dirty = sp->rx_dirty;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_rxrestore\n");
 | |
| 
 | |
| 	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
 | |
| 		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
 | |
| 
 | |
| 		/* rx_copybreak may poke hole here and there. */
 | |
| 		if (sp->rx_buff[entry])
 | |
| 			continue;
 | |
| 
 | |
| 		/* Generate a new receive buffer to replace the
 | |
| 		 * current buffer (which will be released by the
 | |
| 		 * Linux system).
 | |
| 		 */
 | |
| 		if (ipg_get_rxbuff(dev, entry) < 0) {
 | |
| 			IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Reset the RFS field. */
 | |
| 		sp->rxd[entry].rfs = 0x0000000000000000;
 | |
| 	}
 | |
| 	sp->rx_dirty = dirty;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* use jumboindex and jumbosize to control jumbo frame status
 | |
|  * initial status is jumboindex=-1 and jumbosize=0
 | |
|  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
 | |
|  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
 | |
|  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
 | |
|  *               previous receiving and need to continue dumping the current one
 | |
|  */
 | |
| enum {
 | |
| 	NORMAL_PACKET,
 | |
| 	ERROR_PACKET
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	FRAME_NO_START_NO_END	= 0,
 | |
| 	FRAME_WITH_START		= 1,
 | |
| 	FRAME_WITH_END		= 10,
 | |
| 	FRAME_WITH_START_WITH_END = 11
 | |
| };
 | |
| 
 | |
| static void ipg_nic_rx_free_skb(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
 | |
| 
 | |
| 	if (sp->rx_buff[entry]) {
 | |
| 		struct ipg_rx *rxfd = sp->rxd + entry;
 | |
| 
 | |
| 		pci_unmap_single(sp->pdev,
 | |
| 			le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
 | |
| 			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
 | |
| 		dev_kfree_skb_irq(sp->rx_buff[entry]);
 | |
| 		sp->rx_buff[entry] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ipg_nic_rx_check_frame_type(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
 | |
| 	int type = FRAME_NO_START_NO_END;
 | |
| 
 | |
| 	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
 | |
| 		type += FRAME_WITH_START;
 | |
| 	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
 | |
| 		type += FRAME_WITH_END;
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| static int ipg_nic_rx_check_error(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
 | |
| 	struct ipg_rx *rxfd = sp->rxd + entry;
 | |
| 
 | |
| 	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
 | |
| 	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
 | |
| 	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
 | |
| 	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
 | |
| 		IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
 | |
| 			      (unsigned long) rxfd->rfs);
 | |
| 
 | |
| 		/* Increment general receive error statistic. */
 | |
| 		sp->stats.rx_errors++;
 | |
| 
 | |
| 		/* Increment detailed receive error statistics. */
 | |
| 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
 | |
| 			IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
 | |
| 
 | |
| 			sp->stats.rx_fifo_errors++;
 | |
| 		}
 | |
| 
 | |
| 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
 | |
| 			IPG_DEBUG_MSG("RX runt occured.\n");
 | |
| 			sp->stats.rx_length_errors++;
 | |
| 		}
 | |
| 
 | |
| 		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
 | |
| 		 * error count handled by a IPG statistic register.
 | |
| 		 */
 | |
| 
 | |
| 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
 | |
| 			IPG_DEBUG_MSG("RX alignment error occured.\n");
 | |
| 			sp->stats.rx_frame_errors++;
 | |
| 		}
 | |
| 
 | |
| 		/* Do nothing for IPG_RFS_RXFCSERROR, error count
 | |
| 		 * handled by a IPG statistic register.
 | |
| 		 */
 | |
| 
 | |
| 		/* Free the memory associated with the RX
 | |
| 		 * buffer since it is erroneous and we will
 | |
| 		 * not pass it to higher layer processes.
 | |
| 		 */
 | |
| 		if (sp->rx_buff[entry]) {
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
 | |
| 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 			dev_kfree_skb_irq(sp->rx_buff[entry]);
 | |
| 			sp->rx_buff[entry] = NULL;
 | |
| 		}
 | |
| 		return ERROR_PACKET;
 | |
| 	}
 | |
| 	return NORMAL_PACKET;
 | |
| }
 | |
| 
 | |
| static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
 | |
| 					  struct ipg_nic_private *sp,
 | |
| 					  struct ipg_rx *rxfd, unsigned entry)
 | |
| {
 | |
| 	struct ipg_jumbo *jumbo = &sp->jumbo;
 | |
| 	struct sk_buff *skb;
 | |
| 	int framelen;
 | |
| 
 | |
| 	if (jumbo->found_start) {
 | |
| 		dev_kfree_skb_irq(jumbo->skb);
 | |
| 		jumbo->found_start = 0;
 | |
| 		jumbo->current_size = 0;
 | |
| 		jumbo->skb = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* 1: found error, 0 no error */
 | |
| 	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
 | |
| 		return;
 | |
| 
 | |
| 	skb = sp->rx_buff[entry];
 | |
| 	if (!skb)
 | |
| 		return;
 | |
| 
 | |
| 	/* accept this frame and send to upper layer */
 | |
| 	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
 | |
| 	if (framelen > sp->rxfrag_size)
 | |
| 		framelen = sp->rxfrag_size;
 | |
| 
 | |
| 	skb_put(skb, framelen);
 | |
| 	skb->protocol = eth_type_trans(skb, dev);
 | |
| 	skb_checksum_none_assert(skb);
 | |
| 	netif_rx(skb);
 | |
| 	sp->rx_buff[entry] = NULL;
 | |
| }
 | |
| 
 | |
| static void ipg_nic_rx_with_start(struct net_device *dev,
 | |
| 				  struct ipg_nic_private *sp,
 | |
| 				  struct ipg_rx *rxfd, unsigned entry)
 | |
| {
 | |
| 	struct ipg_jumbo *jumbo = &sp->jumbo;
 | |
| 	struct pci_dev *pdev = sp->pdev;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* 1: found error, 0 no error */
 | |
| 	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
 | |
| 		return;
 | |
| 
 | |
| 	/* accept this frame and send to upper layer */
 | |
| 	skb = sp->rx_buff[entry];
 | |
| 	if (!skb)
 | |
| 		return;
 | |
| 
 | |
| 	if (jumbo->found_start)
 | |
| 		dev_kfree_skb_irq(jumbo->skb);
 | |
| 
 | |
| 	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
 | |
| 			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 	skb_put(skb, sp->rxfrag_size);
 | |
| 
 | |
| 	jumbo->found_start = 1;
 | |
| 	jumbo->current_size = sp->rxfrag_size;
 | |
| 	jumbo->skb = skb;
 | |
| 
 | |
| 	sp->rx_buff[entry] = NULL;
 | |
| }
 | |
| 
 | |
| static void ipg_nic_rx_with_end(struct net_device *dev,
 | |
| 				struct ipg_nic_private *sp,
 | |
| 				struct ipg_rx *rxfd, unsigned entry)
 | |
| {
 | |
| 	struct ipg_jumbo *jumbo = &sp->jumbo;
 | |
| 
 | |
| 	/* 1: found error, 0 no error */
 | |
| 	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
 | |
| 		struct sk_buff *skb = sp->rx_buff[entry];
 | |
| 
 | |
| 		if (!skb)
 | |
| 			return;
 | |
| 
 | |
| 		if (jumbo->found_start) {
 | |
| 			int framelen, endframelen;
 | |
| 
 | |
| 			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
 | |
| 
 | |
| 			endframelen = framelen - jumbo->current_size;
 | |
| 			if (framelen > sp->rxsupport_size)
 | |
| 				dev_kfree_skb_irq(jumbo->skb);
 | |
| 			else {
 | |
| 				memcpy(skb_put(jumbo->skb, endframelen),
 | |
| 				       skb->data, endframelen);
 | |
| 
 | |
| 				jumbo->skb->protocol =
 | |
| 				    eth_type_trans(jumbo->skb, dev);
 | |
| 
 | |
| 				skb_checksum_none_assert(jumbo->skb);
 | |
| 				netif_rx(jumbo->skb);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		jumbo->found_start = 0;
 | |
| 		jumbo->current_size = 0;
 | |
| 		jumbo->skb = NULL;
 | |
| 
 | |
| 		ipg_nic_rx_free_skb(dev);
 | |
| 	} else {
 | |
| 		dev_kfree_skb_irq(jumbo->skb);
 | |
| 		jumbo->found_start = 0;
 | |
| 		jumbo->current_size = 0;
 | |
| 		jumbo->skb = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
 | |
| 				       struct ipg_nic_private *sp,
 | |
| 				       struct ipg_rx *rxfd, unsigned entry)
 | |
| {
 | |
| 	struct ipg_jumbo *jumbo = &sp->jumbo;
 | |
| 
 | |
| 	/* 1: found error, 0 no error */
 | |
| 	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
 | |
| 		struct sk_buff *skb = sp->rx_buff[entry];
 | |
| 
 | |
| 		if (skb) {
 | |
| 			if (jumbo->found_start) {
 | |
| 				jumbo->current_size += sp->rxfrag_size;
 | |
| 				if (jumbo->current_size <= sp->rxsupport_size) {
 | |
| 					memcpy(skb_put(jumbo->skb,
 | |
| 						       sp->rxfrag_size),
 | |
| 					       skb->data, sp->rxfrag_size);
 | |
| 				}
 | |
| 			}
 | |
| 			ipg_nic_rx_free_skb(dev);
 | |
| 		}
 | |
| 	} else {
 | |
| 		dev_kfree_skb_irq(jumbo->skb);
 | |
| 		jumbo->found_start = 0;
 | |
| 		jumbo->current_size = 0;
 | |
| 		jumbo->skb = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ipg_nic_rx_jumbo(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	unsigned int curr = sp->rx_current;
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_rx\n");
 | |
| 
 | |
| 	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
 | |
| 		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
 | |
| 		struct ipg_rx *rxfd = sp->rxd + entry;
 | |
| 
 | |
| 		if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
 | |
| 			break;
 | |
| 
 | |
| 		switch (ipg_nic_rx_check_frame_type(dev)) {
 | |
| 		case FRAME_WITH_START_WITH_END:
 | |
| 			ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
 | |
| 			break;
 | |
| 		case FRAME_WITH_START:
 | |
| 			ipg_nic_rx_with_start(dev, sp, rxfd, entry);
 | |
| 			break;
 | |
| 		case FRAME_WITH_END:
 | |
| 			ipg_nic_rx_with_end(dev, sp, rxfd, entry);
 | |
| 			break;
 | |
| 		case FRAME_NO_START_NO_END:
 | |
| 			ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sp->rx_current = curr;
 | |
| 
 | |
| 	if (i == IPG_MAXRFDPROCESS_COUNT) {
 | |
| 		/* There are more RFDs to process, however the
 | |
| 		 * allocated amount of RFD processing time has
 | |
| 		 * expired. Assert Interrupt Requested to make
 | |
| 		 * sure we come back to process the remaining RFDs.
 | |
| 		 */
 | |
| 		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
 | |
| 	}
 | |
| 
 | |
| 	ipg_nic_rxrestore(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ipg_nic_rx(struct net_device *dev)
 | |
| {
 | |
| 	/* Transfer received Ethernet frames to higher network layers. */
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	unsigned int curr = sp->rx_current;
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	struct ipg_rx *rxfd;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_rx\n");
 | |
| 
 | |
| #define __RFS_MASK \
 | |
| 	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
 | |
| 
 | |
| 	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
 | |
| 		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
 | |
| 		struct sk_buff *skb = sp->rx_buff[entry];
 | |
| 		unsigned int framelen;
 | |
| 
 | |
| 		rxfd = sp->rxd + entry;
 | |
| 
 | |
| 		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
 | |
| 			break;
 | |
| 
 | |
| 		/* Get received frame length. */
 | |
| 		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
 | |
| 
 | |
| 		/* Check for jumbo frame arrival with too small
 | |
| 		 * RXFRAG_SIZE.
 | |
| 		 */
 | |
| 		if (framelen > sp->rxfrag_size) {
 | |
| 			IPG_DEBUG_MSG
 | |
| 			    ("RFS FrameLen > allocated fragment size.\n");
 | |
| 
 | |
| 			framelen = sp->rxfrag_size;
 | |
| 		}
 | |
| 
 | |
| 		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
 | |
| 		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
 | |
| 			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
 | |
| 			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
 | |
| 
 | |
| 			IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
 | |
| 				      (unsigned long int) rxfd->rfs);
 | |
| 
 | |
| 			/* Increment general receive error statistic. */
 | |
| 			sp->stats.rx_errors++;
 | |
| 
 | |
| 			/* Increment detailed receive error statistics. */
 | |
| 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
 | |
| 				IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
 | |
| 				sp->stats.rx_fifo_errors++;
 | |
| 			}
 | |
| 
 | |
| 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
 | |
| 				IPG_DEBUG_MSG("RX runt occured.\n");
 | |
| 				sp->stats.rx_length_errors++;
 | |
| 			}
 | |
| 
 | |
| 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
 | |
| 			/* Do nothing, error count handled by a IPG
 | |
| 			 * statistic register.
 | |
| 			 */
 | |
| 
 | |
| 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
 | |
| 				IPG_DEBUG_MSG("RX alignment error occured.\n");
 | |
| 				sp->stats.rx_frame_errors++;
 | |
| 			}
 | |
| 
 | |
| 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
 | |
| 			/* Do nothing, error count handled by a IPG
 | |
| 			 * statistic register.
 | |
| 			 */
 | |
| 
 | |
| 			/* Free the memory associated with the RX
 | |
| 			 * buffer since it is erroneous and we will
 | |
| 			 * not pass it to higher layer processes.
 | |
| 			 */
 | |
| 			if (skb) {
 | |
| 				__le64 info = rxfd->frag_info;
 | |
| 
 | |
| 				pci_unmap_single(sp->pdev,
 | |
| 					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
 | |
| 					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
 | |
| 
 | |
| 				dev_kfree_skb_irq(skb);
 | |
| 			}
 | |
| 		} else {
 | |
| 
 | |
| 			/* Adjust the new buffer length to accomodate the size
 | |
| 			 * of the received frame.
 | |
| 			 */
 | |
| 			skb_put(skb, framelen);
 | |
| 
 | |
| 			/* Set the buffer's protocol field to Ethernet. */
 | |
| 			skb->protocol = eth_type_trans(skb, dev);
 | |
| 
 | |
| 			/* The IPG encountered an error with (or
 | |
| 			 * there were no) IP/TCP/UDP checksums.
 | |
| 			 * This may or may not indicate an invalid
 | |
| 			 * IP/TCP/UDP frame was received. Let the
 | |
| 			 * upper layer decide.
 | |
| 			 */
 | |
| 			skb_checksum_none_assert(skb);
 | |
| 
 | |
| 			/* Hand off frame for higher layer processing.
 | |
| 			 * The function netif_rx() releases the sk_buff
 | |
| 			 * when processing completes.
 | |
| 			 */
 | |
| 			netif_rx(skb);
 | |
| 		}
 | |
| 
 | |
| 		/* Assure RX buffer is not reused by IPG. */
 | |
| 		sp->rx_buff[entry] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are more RFDs to proces and the allocated amount of RFD
 | |
| 	 * processing time has expired, assert Interrupt Requested to make
 | |
| 	 * sure we come back to process the remaining RFDs.
 | |
| 	 */
 | |
| 	if (i == IPG_MAXRFDPROCESS_COUNT)
 | |
| 		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
 | |
| 
 | |
| #ifdef IPG_DEBUG
 | |
| 	/* Check if the RFD list contained no receive frame data. */
 | |
| 	if (!i)
 | |
| 		sp->EmptyRFDListCount++;
 | |
| #endif
 | |
| 	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
 | |
| 	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
 | |
| 		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
 | |
| 		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
 | |
| 
 | |
| 		rxfd = sp->rxd + entry;
 | |
| 
 | |
| 		IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
 | |
| 
 | |
| 		/* An unexpected event, additional code needed to handle
 | |
| 		 * properly. So for the time being, just disregard the
 | |
| 		 * frame.
 | |
| 		 */
 | |
| 
 | |
| 		/* Free the memory associated with the RX
 | |
| 		 * buffer since it is erroneous and we will
 | |
| 		 * not pass it to higher layer processes.
 | |
| 		 */
 | |
| 		if (sp->rx_buff[entry]) {
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
 | |
| 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
 | |
| 			dev_kfree_skb_irq(sp->rx_buff[entry]);
 | |
| 		}
 | |
| 
 | |
| 		/* Assure RX buffer is not reused by IPG. */
 | |
| 		sp->rx_buff[entry] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	sp->rx_current = curr;
 | |
| 
 | |
| 	/* Check to see if there are a minimum number of used
 | |
| 	 * RFDs before restoring any (should improve performance.)
 | |
| 	 */
 | |
| 	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
 | |
| 		ipg_nic_rxrestore(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ipg_reset_after_host_error(struct work_struct *work)
 | |
| {
 | |
| 	struct ipg_nic_private *sp =
 | |
| 		container_of(work, struct ipg_nic_private, task.work);
 | |
| 	struct net_device *dev = sp->dev;
 | |
| 
 | |
| 	/*
 | |
| 	 * Acknowledge HostError interrupt by resetting
 | |
| 	 * IPG DMA and HOST.
 | |
| 	 */
 | |
| 	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
 | |
| 
 | |
| 	init_rfdlist(dev);
 | |
| 	init_tfdlist(dev);
 | |
| 
 | |
| 	if (ipg_io_config(dev) < 0) {
 | |
| 		printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
 | |
| 		       dev->name);
 | |
| 		schedule_delayed_work(&sp->task, HZ);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
 | |
| {
 | |
| 	struct net_device *dev = dev_inst;
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int handled = 0;
 | |
| 	u16 status;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_interrupt_handler\n");
 | |
| 
 | |
| 	if (sp->is_jumbo)
 | |
| 		ipg_nic_rxrestore(dev);
 | |
| 
 | |
| 	spin_lock(&sp->lock);
 | |
| 
 | |
| 	/* Get interrupt source information, and acknowledge
 | |
| 	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
 | |
| 	 * IntRequested, MacControlFrame, LinkEvent) interrupts
 | |
| 	 * if issued. Also, all IPG interrupts are disabled by
 | |
| 	 * reading IntStatusAck.
 | |
| 	 */
 | |
| 	status = ipg_r16(INT_STATUS_ACK);
 | |
| 
 | |
| 	IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
 | |
| 
 | |
| 	/* Shared IRQ of remove event. */
 | |
| 	if (!(status & IPG_IS_RSVD_MASK))
 | |
| 		goto out_enable;
 | |
| 
 | |
| 	handled = 1;
 | |
| 
 | |
| 	if (unlikely(!netif_running(dev)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* If RFDListEnd interrupt, restore all used RFDs. */
 | |
| 	if (status & IPG_IS_RFD_LIST_END) {
 | |
| 		IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
 | |
| 
 | |
| 		/* The RFD list end indicates an RFD was encountered
 | |
| 		 * with a 0 NextPtr, or with an RFDDone bit set to 1
 | |
| 		 * (indicating the RFD is not read for use by the
 | |
| 		 * IPG.) Try to restore all RFDs.
 | |
| 		 */
 | |
| 		ipg_nic_rxrestore(dev);
 | |
| 
 | |
| #ifdef IPG_DEBUG
 | |
| 		/* Increment the RFDlistendCount counter. */
 | |
| 		sp->RFDlistendCount++;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
 | |
| 	 * IntRequested interrupt, process received frames. */
 | |
| 	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
 | |
| 	    (status & IPG_IS_RFD_LIST_END) ||
 | |
| 	    (status & IPG_IS_RX_DMA_COMPLETE) ||
 | |
| 	    (status & IPG_IS_INT_REQUESTED)) {
 | |
| #ifdef IPG_DEBUG
 | |
| 		/* Increment the RFD list checked counter if interrupted
 | |
| 		 * only to check the RFD list. */
 | |
| 		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
 | |
| 				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
 | |
| 			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
 | |
| 				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
 | |
| 				IPG_IS_UPDATE_STATS)))
 | |
| 			sp->RFDListCheckedCount++;
 | |
| #endif
 | |
| 
 | |
| 		if (sp->is_jumbo)
 | |
| 			ipg_nic_rx_jumbo(dev);
 | |
| 		else
 | |
| 			ipg_nic_rx(dev);
 | |
| 	}
 | |
| 
 | |
| 	/* If TxDMAComplete interrupt, free used TFDs. */
 | |
| 	if (status & IPG_IS_TX_DMA_COMPLETE)
 | |
| 		ipg_nic_txfree(dev);
 | |
| 
 | |
| 	/* TxComplete interrupts indicate one of numerous actions.
 | |
| 	 * Determine what action to take based on TXSTATUS register.
 | |
| 	 */
 | |
| 	if (status & IPG_IS_TX_COMPLETE)
 | |
| 		ipg_nic_txcleanup(dev);
 | |
| 
 | |
| 	/* If UpdateStats interrupt, update Linux Ethernet statistics */
 | |
| 	if (status & IPG_IS_UPDATE_STATS)
 | |
| 		ipg_nic_get_stats(dev);
 | |
| 
 | |
| 	/* If HostError interrupt, reset IPG. */
 | |
| 	if (status & IPG_IS_HOST_ERROR) {
 | |
| 		IPG_DDEBUG_MSG("HostError Interrupt\n");
 | |
| 
 | |
| 		schedule_delayed_work(&sp->task, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* If LinkEvent interrupt, resolve autonegotiation. */
 | |
| 	if (status & IPG_IS_LINK_EVENT) {
 | |
| 		if (ipg_config_autoneg(dev) < 0)
 | |
| 			printk(KERN_INFO "%s: Auto-negotiation error.\n",
 | |
| 			       dev->name);
 | |
| 	}
 | |
| 
 | |
| 	/* If MACCtrlFrame interrupt, do nothing. */
 | |
| 	if (status & IPG_IS_MAC_CTRL_FRAME)
 | |
| 		IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
 | |
| 
 | |
| 	/* If RxComplete interrupt, do nothing. */
 | |
| 	if (status & IPG_IS_RX_COMPLETE)
 | |
| 		IPG_DEBUG_MSG("RxComplete interrupt.\n");
 | |
| 
 | |
| 	/* If RxEarly interrupt, do nothing. */
 | |
| 	if (status & IPG_IS_RX_EARLY)
 | |
| 		IPG_DEBUG_MSG("RxEarly interrupt.\n");
 | |
| 
 | |
| out_enable:
 | |
| 	/* Re-enable IPG interrupts. */
 | |
| 	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
 | |
| 		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
 | |
| 		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
 | |
| out_unlock:
 | |
| 	spin_unlock(&sp->lock);
 | |
| 
 | |
| 	return IRQ_RETVAL(handled);
 | |
| }
 | |
| 
 | |
| static void ipg_rx_clear(struct ipg_nic_private *sp)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
 | |
| 		if (sp->rx_buff[i]) {
 | |
| 			struct ipg_rx *rxfd = sp->rxd + i;
 | |
| 
 | |
| 			dev_kfree_skb_irq(sp->rx_buff[i]);
 | |
| 			sp->rx_buff[i] = NULL;
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
 | |
| 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ipg_tx_clear(struct ipg_nic_private *sp)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
 | |
| 		if (sp->tx_buff[i]) {
 | |
| 			struct ipg_tx *txfd = sp->txd + i;
 | |
| 
 | |
| 			pci_unmap_single(sp->pdev,
 | |
| 				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
 | |
| 				sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
 | |
| 
 | |
| 			dev_kfree_skb_irq(sp->tx_buff[i]);
 | |
| 
 | |
| 			sp->tx_buff[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ipg_nic_open(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	struct pci_dev *pdev = sp->pdev;
 | |
| 	int rc;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_open\n");
 | |
| 
 | |
| 	sp->rx_buf_sz = sp->rxsupport_size;
 | |
| 
 | |
| 	/* Check for interrupt line conflicts, and request interrupt
 | |
| 	 * line for IPG.
 | |
| 	 *
 | |
| 	 * IMPORTANT: Disable IPG interrupts prior to registering
 | |
| 	 *            IRQ.
 | |
| 	 */
 | |
| 	ipg_w16(0x0000, INT_ENABLE);
 | |
| 
 | |
| 	/* Register the interrupt line to be used by the IPG within
 | |
| 	 * the Linux system.
 | |
| 	 */
 | |
| 	rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
 | |
| 			 dev->name, dev);
 | |
| 	if (rc < 0) {
 | |
| 		printk(KERN_INFO "%s: Error when requesting interrupt.\n",
 | |
| 		       dev->name);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dev->irq = pdev->irq;
 | |
| 
 | |
| 	rc = -ENOMEM;
 | |
| 
 | |
| 	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
 | |
| 				     &sp->rxd_map, GFP_KERNEL);
 | |
| 	if (!sp->rxd)
 | |
| 		goto err_free_irq_0;
 | |
| 
 | |
| 	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
 | |
| 				     &sp->txd_map, GFP_KERNEL);
 | |
| 	if (!sp->txd)
 | |
| 		goto err_free_rx_1;
 | |
| 
 | |
| 	rc = init_rfdlist(dev);
 | |
| 	if (rc < 0) {
 | |
| 		printk(KERN_INFO "%s: Error during configuration.\n",
 | |
| 		       dev->name);
 | |
| 		goto err_free_tx_2;
 | |
| 	}
 | |
| 
 | |
| 	init_tfdlist(dev);
 | |
| 
 | |
| 	rc = ipg_io_config(dev);
 | |
| 	if (rc < 0) {
 | |
| 		printk(KERN_INFO "%s: Error during configuration.\n",
 | |
| 		       dev->name);
 | |
| 		goto err_release_tfdlist_3;
 | |
| 	}
 | |
| 
 | |
| 	/* Resolve autonegotiation. */
 | |
| 	if (ipg_config_autoneg(dev) < 0)
 | |
| 		printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
 | |
| 
 | |
| 	/* initialize JUMBO Frame control variable */
 | |
| 	sp->jumbo.found_start = 0;
 | |
| 	sp->jumbo.current_size = 0;
 | |
| 	sp->jumbo.skb = NULL;
 | |
| 
 | |
| 	/* Enable transmit and receive operation of the IPG. */
 | |
| 	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
 | |
| 		 IPG_MC_RSVD_MASK, MAC_CTRL);
 | |
| 
 | |
| 	netif_start_queue(dev);
 | |
| out:
 | |
| 	return rc;
 | |
| 
 | |
| err_release_tfdlist_3:
 | |
| 	ipg_tx_clear(sp);
 | |
| 	ipg_rx_clear(sp);
 | |
| err_free_tx_2:
 | |
| 	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
 | |
| err_free_rx_1:
 | |
| 	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
 | |
| err_free_irq_0:
 | |
| 	free_irq(pdev->irq, dev);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static int ipg_nic_stop(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	struct pci_dev *pdev = sp->pdev;
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_stop\n");
 | |
| 
 | |
| 	netif_stop_queue(dev);
 | |
| 
 | |
| 	IPG_DUMPTFDLIST(dev);
 | |
| 
 | |
| 	do {
 | |
| 		(void) ipg_r16(INT_STATUS_ACK);
 | |
| 
 | |
| 		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
 | |
| 
 | |
| 		synchronize_irq(pdev->irq);
 | |
| 	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
 | |
| 
 | |
| 	ipg_rx_clear(sp);
 | |
| 
 | |
| 	ipg_tx_clear(sp);
 | |
| 
 | |
| 	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
 | |
| 	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
 | |
| 
 | |
| 	free_irq(pdev->irq, dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
 | |
| 					   struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
 | |
| 	unsigned long flags;
 | |
| 	struct ipg_tx *txfd;
 | |
| 
 | |
| 	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
 | |
| 
 | |
| 	/* If in 10Mbps mode, stop the transmit queue so
 | |
| 	 * no more transmit frames are accepted.
 | |
| 	 */
 | |
| 	if (sp->tenmbpsmode)
 | |
| 		netif_stop_queue(dev);
 | |
| 
 | |
| 	if (sp->reset_current_tfd) {
 | |
| 		sp->reset_current_tfd = 0;
 | |
| 		entry = 0;
 | |
| 	}
 | |
| 
 | |
| 	txfd = sp->txd + entry;
 | |
| 
 | |
| 	sp->tx_buff[entry] = skb;
 | |
| 
 | |
| 	/* Clear all TFC fields, except TFDDONE. */
 | |
| 	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
 | |
| 
 | |
| 	/* Specify the TFC field within the TFD. */
 | |
| 	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
 | |
| 		(IPG_TFC_FRAMEID & sp->tx_current) |
 | |
| 		(IPG_TFC_FRAGCOUNT & (1 << 24)));
 | |
| 	/*
 | |
| 	 * 16--17 (WordAlign) <- 3 (disable),
 | |
| 	 * 0--15 (FrameId) <- sp->tx_current,
 | |
| 	 * 24--27 (FragCount) <- 1
 | |
| 	 */
 | |
| 
 | |
| 	/* Request TxComplete interrupts at an interval defined
 | |
| 	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
 | |
| 	 * Request TxComplete interrupt for every frame
 | |
| 	 * if in 10Mbps mode to accomodate problem with 10Mbps
 | |
| 	 * processing.
 | |
| 	 */
 | |
| 	if (sp->tenmbpsmode)
 | |
| 		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
 | |
| 	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
 | |
| 	/* Based on compilation option, determine if FCS is to be
 | |
| 	 * appended to transmit frame by IPG.
 | |
| 	 */
 | |
| 	if (!(IPG_APPEND_FCS_ON_TX))
 | |
| 		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
 | |
| 
 | |
| 	/* Based on compilation option, determine if IP, TCP and/or
 | |
| 	 * UDP checksums are to be added to transmit frame by IPG.
 | |
| 	 */
 | |
| 	if (IPG_ADD_IPCHECKSUM_ON_TX)
 | |
| 		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
 | |
| 
 | |
| 	if (IPG_ADD_TCPCHECKSUM_ON_TX)
 | |
| 		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
 | |
| 
 | |
| 	if (IPG_ADD_UDPCHECKSUM_ON_TX)
 | |
| 		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
 | |
| 
 | |
| 	/* Based on compilation option, determine if VLAN tag info is to be
 | |
| 	 * inserted into transmit frame by IPG.
 | |
| 	 */
 | |
| 	if (IPG_INSERT_MANUAL_VLAN_TAG) {
 | |
| 		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
 | |
| 			((u64) IPG_MANUAL_VLAN_VID << 32) |
 | |
| 			((u64) IPG_MANUAL_VLAN_CFI << 44) |
 | |
| 			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
 | |
| 	}
 | |
| 
 | |
| 	/* The fragment start location within system memory is defined
 | |
| 	 * by the sk_buff structure's data field. The physical address
 | |
| 	 * of this location within the system's virtual memory space
 | |
| 	 * is determined using the IPG_HOST2BUS_MAP function.
 | |
| 	 */
 | |
| 	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
 | |
| 		skb->len, PCI_DMA_TODEVICE));
 | |
| 
 | |
| 	/* The length of the fragment within system memory is defined by
 | |
| 	 * the sk_buff structure's len field.
 | |
| 	 */
 | |
| 	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
 | |
| 		((u64) (skb->len & 0xffff) << 48));
 | |
| 
 | |
| 	/* Clear the TFDDone bit last to indicate the TFD is ready
 | |
| 	 * for transfer to the IPG.
 | |
| 	 */
 | |
| 	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
 | |
| 
 | |
| 	spin_lock_irqsave(&sp->lock, flags);
 | |
| 
 | |
| 	sp->tx_current++;
 | |
| 
 | |
| 	mmiowb();
 | |
| 
 | |
| 	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
 | |
| 
 | |
| 	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
 | |
| 		netif_stop_queue(dev);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&sp->lock, flags);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static void ipg_set_phy_default_param(unsigned char rev,
 | |
| 				      struct net_device *dev, int phy_address)
 | |
| {
 | |
| 	unsigned short length;
 | |
| 	unsigned char revision;
 | |
| 	unsigned short *phy_param;
 | |
| 	unsigned short address, value;
 | |
| 
 | |
| 	phy_param = &DefaultPhyParam[0];
 | |
| 	length = *phy_param & 0x00FF;
 | |
| 	revision = (unsigned char)((*phy_param) >> 8);
 | |
| 	phy_param++;
 | |
| 	while (length != 0) {
 | |
| 		if (rev == revision) {
 | |
| 			while (length > 1) {
 | |
| 				address = *phy_param;
 | |
| 				value = *(phy_param + 1);
 | |
| 				phy_param += 2;
 | |
| 				mdio_write(dev, phy_address, address, value);
 | |
| 				length -= 4;
 | |
| 			}
 | |
| 			break;
 | |
| 		} else {
 | |
| 			phy_param += length / 2;
 | |
| 			length = *phy_param & 0x00FF;
 | |
| 			revision = (unsigned char)((*phy_param) >> 8);
 | |
| 			phy_param++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int read_eeprom(struct net_device *dev, int eep_addr)
 | |
| {
 | |
| 	void __iomem *ioaddr = ipg_ioaddr(dev);
 | |
| 	unsigned int i;
 | |
| 	int ret = 0;
 | |
| 	u16 value;
 | |
| 
 | |
| 	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
 | |
| 	ipg_w16(value, EEPROM_CTRL);
 | |
| 
 | |
| 	for (i = 0; i < 1000; i++) {
 | |
| 		u16 data;
 | |
| 
 | |
| 		mdelay(10);
 | |
| 		data = ipg_r16(EEPROM_CTRL);
 | |
| 		if (!(data & IPG_EC_EEPROM_BUSY)) {
 | |
| 			ret = ipg_r16(EEPROM_DATA);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ipg_init_mii(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	struct mii_if_info *mii_if = &sp->mii_if;
 | |
| 	int phyaddr;
 | |
| 
 | |
| 	mii_if->dev          = dev;
 | |
| 	mii_if->mdio_read    = mdio_read;
 | |
| 	mii_if->mdio_write   = mdio_write;
 | |
| 	mii_if->phy_id_mask  = 0x1f;
 | |
| 	mii_if->reg_num_mask = 0x1f;
 | |
| 
 | |
| 	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
 | |
| 
 | |
| 	if (phyaddr != 0x1f) {
 | |
| 		u16 mii_phyctrl, mii_1000cr;
 | |
| 		u8 revisionid = 0;
 | |
| 
 | |
| 		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
 | |
| 		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
 | |
| 			GMII_PHY_1000BASETCONTROL_PreferMaster;
 | |
| 		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
 | |
| 
 | |
| 		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
 | |
| 
 | |
| 		/* Set default phyparam */
 | |
| 		pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
 | |
| 		ipg_set_phy_default_param(revisionid, dev, phyaddr);
 | |
| 
 | |
| 		/* Reset PHY */
 | |
| 		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
 | |
| 		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ipg_hw_init(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = sp->ioaddr;
 | |
| 	unsigned int i;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Read/Write and Reset EEPROM Value */
 | |
| 	/* Read LED Mode Configuration from EEPROM */
 | |
| 	sp->led_mode = read_eeprom(dev, 6);
 | |
| 
 | |
| 	/* Reset all functions within the IPG. Do not assert
 | |
| 	 * RST_OUT as not compatible with some PHYs.
 | |
| 	 */
 | |
| 	rc = ipg_reset(dev, IPG_RESET_MASK);
 | |
| 	if (rc < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ipg_init_mii(dev);
 | |
| 
 | |
| 	/* Read MAC Address from EEPROM */
 | |
| 	for (i = 0; i < 3; i++)
 | |
| 		sp->station_addr[i] = read_eeprom(dev, 16 + i);
 | |
| 
 | |
| 	for (i = 0; i < 3; i++)
 | |
| 		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
 | |
| 
 | |
| 	/* Set station address in ethernet_device structure. */
 | |
| 	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
 | |
| 	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
 | |
| 	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
 | |
| 	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
 | |
| 	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
 | |
| 	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	mutex_lock(&sp->mii_mutex);
 | |
| 	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
 | |
| 	mutex_unlock(&sp->mii_mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	int err;
 | |
| 
 | |
| 	/* Function to accomodate changes to Maximum Transfer Unit
 | |
| 	 * (or MTU) of IPG NIC. Cannot use default function since
 | |
| 	 * the default will not allow for MTU > 1500 bytes.
 | |
| 	 */
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_nic_change_mtu\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that the new MTU value is between 68 (14 byte header, 46 byte
 | |
| 	 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
 | |
| 	 */
 | |
| 	if (new_mtu < 68 || new_mtu > 10240)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = ipg_nic_stop(dev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	dev->mtu = new_mtu;
 | |
| 
 | |
| 	sp->max_rxframe_size = new_mtu;
 | |
| 
 | |
| 	sp->rxfrag_size = new_mtu;
 | |
| 	if (sp->rxfrag_size > 4088)
 | |
| 		sp->rxfrag_size = 4088;
 | |
| 
 | |
| 	sp->rxsupport_size = sp->max_rxframe_size;
 | |
| 
 | |
| 	if (new_mtu > 0x0600)
 | |
| 		sp->is_jumbo = true;
 | |
| 	else
 | |
| 		sp->is_jumbo = false;
 | |
| 
 | |
| 	return ipg_nic_open(dev);
 | |
| }
 | |
| 
 | |
| static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	mutex_lock(&sp->mii_mutex);
 | |
| 	rc = mii_ethtool_gset(&sp->mii_if, cmd);
 | |
| 	mutex_unlock(&sp->mii_mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	mutex_lock(&sp->mii_mutex);
 | |
| 	rc = mii_ethtool_sset(&sp->mii_if, cmd);
 | |
| 	mutex_unlock(&sp->mii_mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int ipg_nway_reset(struct net_device *dev)
 | |
| {
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 	int rc;
 | |
| 
 | |
| 	mutex_lock(&sp->mii_mutex);
 | |
| 	rc = mii_nway_restart(&sp->mii_if);
 | |
| 	mutex_unlock(&sp->mii_mutex);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops ipg_ethtool_ops = {
 | |
| 	.get_settings = ipg_get_settings,
 | |
| 	.set_settings = ipg_set_settings,
 | |
| 	.nway_reset   = ipg_nway_reset,
 | |
| };
 | |
| 
 | |
| static void __devexit ipg_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata(pdev);
 | |
| 	struct ipg_nic_private *sp = netdev_priv(dev);
 | |
| 
 | |
| 	IPG_DEBUG_MSG("_remove\n");
 | |
| 
 | |
| 	/* Un-register Ethernet device. */
 | |
| 	unregister_netdev(dev);
 | |
| 
 | |
| 	pci_iounmap(pdev, sp->ioaddr);
 | |
| 
 | |
| 	pci_release_regions(pdev);
 | |
| 
 | |
| 	free_netdev(dev);
 | |
| 	pci_disable_device(pdev);
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops ipg_netdev_ops = {
 | |
| 	.ndo_open		= ipg_nic_open,
 | |
| 	.ndo_stop		= ipg_nic_stop,
 | |
| 	.ndo_start_xmit		= ipg_nic_hard_start_xmit,
 | |
| 	.ndo_get_stats		= ipg_nic_get_stats,
 | |
| 	.ndo_set_multicast_list = ipg_nic_set_multicast_list,
 | |
| 	.ndo_do_ioctl		= ipg_ioctl,
 | |
| 	.ndo_tx_timeout 	= ipg_tx_timeout,
 | |
| 	.ndo_change_mtu 	= ipg_nic_change_mtu,
 | |
| 	.ndo_set_mac_address	= eth_mac_addr,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| };
 | |
| 
 | |
| static int __devinit ipg_probe(struct pci_dev *pdev,
 | |
| 			       const struct pci_device_id *id)
 | |
| {
 | |
| 	unsigned int i = id->driver_data;
 | |
| 	struct ipg_nic_private *sp;
 | |
| 	struct net_device *dev;
 | |
| 	void __iomem *ioaddr;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = pci_enable_device(pdev);
 | |
| 	if (rc < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
 | |
| 	if (rc < 0) {
 | |
| 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
 | |
| 		if (rc < 0) {
 | |
| 			printk(KERN_ERR "%s: DMA config failed.\n",
 | |
| 			       pci_name(pdev));
 | |
| 			goto err_disable_0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize net device.
 | |
| 	 */
 | |
| 	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
 | |
| 	if (!dev) {
 | |
| 		printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err_disable_0;
 | |
| 	}
 | |
| 
 | |
| 	sp = netdev_priv(dev);
 | |
| 	spin_lock_init(&sp->lock);
 | |
| 	mutex_init(&sp->mii_mutex);
 | |
| 
 | |
| 	sp->is_jumbo = IPG_IS_JUMBO;
 | |
| 	sp->rxfrag_size = IPG_RXFRAG_SIZE;
 | |
| 	sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
 | |
| 	sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
 | |
| 
 | |
| 	/* Declare IPG NIC functions for Ethernet device methods.
 | |
| 	 */
 | |
| 	dev->netdev_ops = &ipg_netdev_ops;
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
 | |
| 
 | |
| 	rc = pci_request_regions(pdev, DRV_NAME);
 | |
| 	if (rc)
 | |
| 		goto err_free_dev_1;
 | |
| 
 | |
| 	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
 | |
| 	if (!ioaddr) {
 | |
| 		printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
 | |
| 		rc = -EIO;
 | |
| 		goto err_release_regions_2;
 | |
| 	}
 | |
| 
 | |
| 	/* Save the pointer to the PCI device information. */
 | |
| 	sp->ioaddr = ioaddr;
 | |
| 	sp->pdev = pdev;
 | |
| 	sp->dev = dev;
 | |
| 
 | |
| 	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
 | |
| 
 | |
| 	pci_set_drvdata(pdev, dev);
 | |
| 
 | |
| 	rc = ipg_hw_init(dev);
 | |
| 	if (rc < 0)
 | |
| 		goto err_unmap_3;
 | |
| 
 | |
| 	rc = register_netdev(dev);
 | |
| 	if (rc < 0)
 | |
| 		goto err_unmap_3;
 | |
| 
 | |
| 	printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
 | |
| out:
 | |
| 	return rc;
 | |
| 
 | |
| err_unmap_3:
 | |
| 	pci_iounmap(pdev, ioaddr);
 | |
| err_release_regions_2:
 | |
| 	pci_release_regions(pdev);
 | |
| err_free_dev_1:
 | |
| 	free_netdev(dev);
 | |
| err_disable_0:
 | |
| 	pci_disable_device(pdev);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static struct pci_driver ipg_pci_driver = {
 | |
| 	.name		= IPG_DRIVER_NAME,
 | |
| 	.id_table	= ipg_pci_tbl,
 | |
| 	.probe		= ipg_probe,
 | |
| 	.remove		= __devexit_p(ipg_remove),
 | |
| };
 | |
| 
 | |
| static int __init ipg_init_module(void)
 | |
| {
 | |
| 	return pci_register_driver(&ipg_pci_driver);
 | |
| }
 | |
| 
 | |
| static void __exit ipg_exit_module(void)
 | |
| {
 | |
| 	pci_unregister_driver(&ipg_pci_driver);
 | |
| }
 | |
| 
 | |
| module_init(ipg_init_module);
 | |
| module_exit(ipg_exit_module);
 |