 6fcc040f02
			
		
	
	
	6fcc040f02
	
	
	
		
			
			At least one board using the FEC driver does not have a conventional PHY attached to it, it is directly connected to a somewhat simple ethernet switch (the board is the SnapGear/LITE, and the attached 4-port ethernet switch is a RealTek RTL8305). This switch does not present the usual register interface of a PHY, it presents nothing. So a PHY scan will find nothing - it finds ID's of 0 for each PHY on the attached MII bus. After the FEC driver was changed to use phylib for supporting PHYs it no longer works on this particular board/switch setup. Add code support to use a fixed phy if no PHY is found on the MII bus. This is based on the way the cpmac.c driver solved this same problem. Signed-off-by: Greg Ungerer <gerg@uclinux.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1444 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1444 lines
		
	
	
	
		
			36 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 | |
|  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 | |
|  *
 | |
|  * Right now, I am very wasteful with the buffers.  I allocate memory
 | |
|  * pages and then divide them into 2K frame buffers.  This way I know I
 | |
|  * have buffers large enough to hold one frame within one buffer descriptor.
 | |
|  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 | |
|  * will be much more memory efficient and will easily handle lots of
 | |
|  * small packets.
 | |
|  *
 | |
|  * Much better multiple PHY support by Magnus Damm.
 | |
|  * Copyright (c) 2000 Ericsson Radio Systems AB.
 | |
|  *
 | |
|  * Support for FEC controller of ColdFire processors.
 | |
|  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
 | |
|  *
 | |
|  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
 | |
|  * Copyright (c) 2004-2006 Macq Electronique SA.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/phy.h>
 | |
| #include <linux/fec.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| 
 | |
| #ifndef CONFIG_ARCH_MXC
 | |
| #include <asm/coldfire.h>
 | |
| #include <asm/mcfsim.h>
 | |
| #endif
 | |
| 
 | |
| #include "fec.h"
 | |
| 
 | |
| #ifdef CONFIG_ARCH_MXC
 | |
| #include <mach/hardware.h>
 | |
| #define FEC_ALIGNMENT	0xf
 | |
| #else
 | |
| #define FEC_ALIGNMENT	0x3
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Define the fixed address of the FEC hardware.
 | |
|  */
 | |
| #if defined(CONFIG_M5272)
 | |
| 
 | |
| static unsigned char	fec_mac_default[] = {
 | |
| 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Some hardware gets it MAC address out of local flash memory.
 | |
|  * if this is non-zero then assume it is the address to get MAC from.
 | |
|  */
 | |
| #if defined(CONFIG_NETtel)
 | |
| #define	FEC_FLASHMAC	0xf0006006
 | |
| #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 | |
| #define	FEC_FLASHMAC	0xf0006000
 | |
| #elif defined(CONFIG_CANCam)
 | |
| #define	FEC_FLASHMAC	0xf0020000
 | |
| #elif defined (CONFIG_M5272C3)
 | |
| #define	FEC_FLASHMAC	(0xffe04000 + 4)
 | |
| #elif defined(CONFIG_MOD5272)
 | |
| #define FEC_FLASHMAC 	0xffc0406b
 | |
| #else
 | |
| #define	FEC_FLASHMAC	0
 | |
| #endif
 | |
| #endif /* CONFIG_M5272 */
 | |
| 
 | |
| /* The number of Tx and Rx buffers.  These are allocated from the page
 | |
|  * pool.  The code may assume these are power of two, so it it best
 | |
|  * to keep them that size.
 | |
|  * We don't need to allocate pages for the transmitter.  We just use
 | |
|  * the skbuffer directly.
 | |
|  */
 | |
| #define FEC_ENET_RX_PAGES	8
 | |
| #define FEC_ENET_RX_FRSIZE	2048
 | |
| #define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
 | |
| #define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
 | |
| #define FEC_ENET_TX_FRSIZE	2048
 | |
| #define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
 | |
| #define TX_RING_SIZE		16	/* Must be power of two */
 | |
| #define TX_RING_MOD_MASK	15	/*   for this to work */
 | |
| 
 | |
| #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
 | |
| #error "FEC: descriptor ring size constants too large"
 | |
| #endif
 | |
| 
 | |
| /* Interrupt events/masks. */
 | |
| #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
 | |
| #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
 | |
| #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
 | |
| #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
 | |
| #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
 | |
| #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
 | |
| #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
 | |
| #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
 | |
| #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
 | |
| #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
 | |
| 
 | |
| #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
 | |
| 
 | |
| /* The FEC stores dest/src/type, data, and checksum for receive packets.
 | |
|  */
 | |
| #define PKT_MAXBUF_SIZE		1518
 | |
| #define PKT_MINBUF_SIZE		64
 | |
| #define PKT_MAXBLR_SIZE		1520
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 | |
|  * size bits. Other FEC hardware does not, so we need to take that into
 | |
|  * account when setting it.
 | |
|  */
 | |
| #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 | |
|     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
 | |
| #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 | |
| #else
 | |
| #define	OPT_FRAME_SIZE	0
 | |
| #endif
 | |
| 
 | |
| /* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 | |
|  * tx_bd_base always point to the base of the buffer descriptors.  The
 | |
|  * cur_rx and cur_tx point to the currently available buffer.
 | |
|  * The dirty_tx tracks the current buffer that is being sent by the
 | |
|  * controller.  The cur_tx and dirty_tx are equal under both completely
 | |
|  * empty and completely full conditions.  The empty/ready indicator in
 | |
|  * the buffer descriptor determines the actual condition.
 | |
|  */
 | |
| struct fec_enet_private {
 | |
| 	/* Hardware registers of the FEC device */
 | |
| 	void __iomem *hwp;
 | |
| 
 | |
| 	struct net_device *netdev;
 | |
| 
 | |
| 	struct clk *clk;
 | |
| 
 | |
| 	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
 | |
| 	unsigned char *tx_bounce[TX_RING_SIZE];
 | |
| 	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
 | |
| 	struct	sk_buff* rx_skbuff[RX_RING_SIZE];
 | |
| 	ushort	skb_cur;
 | |
| 	ushort	skb_dirty;
 | |
| 
 | |
| 	/* CPM dual port RAM relative addresses */
 | |
| 	dma_addr_t	bd_dma;
 | |
| 	/* Address of Rx and Tx buffers */
 | |
| 	struct bufdesc	*rx_bd_base;
 | |
| 	struct bufdesc	*tx_bd_base;
 | |
| 	/* The next free ring entry */
 | |
| 	struct bufdesc	*cur_rx, *cur_tx; 
 | |
| 	/* The ring entries to be free()ed */
 | |
| 	struct bufdesc	*dirty_tx;
 | |
| 
 | |
| 	uint	tx_full;
 | |
| 	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
 | |
| 	spinlock_t hw_lock;
 | |
| 
 | |
| 	struct  platform_device *pdev;
 | |
| 
 | |
| 	int	opened;
 | |
| 
 | |
| 	/* Phylib and MDIO interface */
 | |
| 	struct  mii_bus *mii_bus;
 | |
| 	struct  phy_device *phy_dev;
 | |
| 	int     mii_timeout;
 | |
| 	uint    phy_speed;
 | |
| 	phy_interface_t	phy_interface;
 | |
| 	int	index;
 | |
| 	int	link;
 | |
| 	int	full_duplex;
 | |
| 	struct	completion mdio_done;
 | |
| };
 | |
| 
 | |
| static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
 | |
| static void fec_enet_tx(struct net_device *dev);
 | |
| static void fec_enet_rx(struct net_device *dev);
 | |
| static int fec_enet_close(struct net_device *dev);
 | |
| static void fec_restart(struct net_device *dev, int duplex);
 | |
| static void fec_stop(struct net_device *dev);
 | |
| 
 | |
| /* FEC MII MMFR bits definition */
 | |
| #define FEC_MMFR_ST		(1 << 30)
 | |
| #define FEC_MMFR_OP_READ	(2 << 28)
 | |
| #define FEC_MMFR_OP_WRITE	(1 << 28)
 | |
| #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 | |
| #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 | |
| #define FEC_MMFR_TA		(2 << 16)
 | |
| #define FEC_MMFR_DATA(v)	(v & 0xffff)
 | |
| 
 | |
| #define FEC_MII_TIMEOUT		1000 /* us */
 | |
| 
 | |
| /* Transmitter timeout */
 | |
| #define TX_TIMEOUT (2 * HZ)
 | |
| 
 | |
| static netdev_tx_t
 | |
| fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct bufdesc *bdp;
 | |
| 	void *bufaddr;
 | |
| 	unsigned short	status;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!fep->link) {
 | |
| 		/* Link is down or autonegotiation is in progress. */
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->hw_lock, flags);
 | |
| 	/* Fill in a Tx ring entry */
 | |
| 	bdp = fep->cur_tx;
 | |
| 
 | |
| 	status = bdp->cbd_sc;
 | |
| 
 | |
| 	if (status & BD_ENET_TX_READY) {
 | |
| 		/* Ooops.  All transmit buffers are full.  Bail out.
 | |
| 		 * This should not happen, since dev->tbusy should be set.
 | |
| 		 */
 | |
| 		printk("%s: tx queue full!.\n", dev->name);
 | |
| 		spin_unlock_irqrestore(&fep->hw_lock, flags);
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear all of the status flags */
 | |
| 	status &= ~BD_ENET_TX_STATS;
 | |
| 
 | |
| 	/* Set buffer length and buffer pointer */
 | |
| 	bufaddr = skb->data;
 | |
| 	bdp->cbd_datlen = skb->len;
 | |
| 
 | |
| 	/*
 | |
| 	 * On some FEC implementations data must be aligned on
 | |
| 	 * 4-byte boundaries. Use bounce buffers to copy data
 | |
| 	 * and get it aligned. Ugh.
 | |
| 	 */
 | |
| 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
 | |
| 		unsigned int index;
 | |
| 		index = bdp - fep->tx_bd_base;
 | |
| 		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
 | |
| 		bufaddr = fep->tx_bounce[index];
 | |
| 	}
 | |
| 
 | |
| 	/* Save skb pointer */
 | |
| 	fep->tx_skbuff[fep->skb_cur] = skb;
 | |
| 
 | |
| 	dev->stats.tx_bytes += skb->len;
 | |
| 	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
 | |
| 
 | |
| 	/* Push the data cache so the CPM does not get stale memory
 | |
| 	 * data.
 | |
| 	 */
 | |
| 	bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
 | |
| 			FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 | |
| 
 | |
| 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 | |
| 	 * it's the last BD of the frame, and to put the CRC on the end.
 | |
| 	 */
 | |
| 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 | |
| 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
 | |
| 	bdp->cbd_sc = status;
 | |
| 
 | |
| 	/* Trigger transmission start */
 | |
| 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 | |
| 
 | |
| 	/* If this was the last BD in the ring, start at the beginning again. */
 | |
| 	if (status & BD_ENET_TX_WRAP)
 | |
| 		bdp = fep->tx_bd_base;
 | |
| 	else
 | |
| 		bdp++;
 | |
| 
 | |
| 	if (bdp == fep->dirty_tx) {
 | |
| 		fep->tx_full = 1;
 | |
| 		netif_stop_queue(dev);
 | |
| 	}
 | |
| 
 | |
| 	fep->cur_tx = bdp;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fep->hw_lock, flags);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static void
 | |
| fec_timeout(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	dev->stats.tx_errors++;
 | |
| 
 | |
| 	fec_restart(dev, fep->full_duplex);
 | |
| 	netif_wake_queue(dev);
 | |
| }
 | |
| 
 | |
| static irqreturn_t
 | |
| fec_enet_interrupt(int irq, void * dev_id)
 | |
| {
 | |
| 	struct	net_device *dev = dev_id;
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	uint	int_events;
 | |
| 	irqreturn_t ret = IRQ_NONE;
 | |
| 
 | |
| 	do {
 | |
| 		int_events = readl(fep->hwp + FEC_IEVENT);
 | |
| 		writel(int_events, fep->hwp + FEC_IEVENT);
 | |
| 
 | |
| 		if (int_events & FEC_ENET_RXF) {
 | |
| 			ret = IRQ_HANDLED;
 | |
| 			fec_enet_rx(dev);
 | |
| 		}
 | |
| 
 | |
| 		/* Transmit OK, or non-fatal error. Update the buffer
 | |
| 		 * descriptors. FEC handles all errors, we just discover
 | |
| 		 * them as part of the transmit process.
 | |
| 		 */
 | |
| 		if (int_events & FEC_ENET_TXF) {
 | |
| 			ret = IRQ_HANDLED;
 | |
| 			fec_enet_tx(dev);
 | |
| 		}
 | |
| 
 | |
| 		if (int_events & FEC_ENET_MII) {
 | |
| 			ret = IRQ_HANDLED;
 | |
| 			complete(&fep->mdio_done);
 | |
| 		}
 | |
| 	} while (int_events);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| fec_enet_tx(struct net_device *dev)
 | |
| {
 | |
| 	struct	fec_enet_private *fep;
 | |
| 	struct bufdesc *bdp;
 | |
| 	unsigned short status;
 | |
| 	struct	sk_buff	*skb;
 | |
| 
 | |
| 	fep = netdev_priv(dev);
 | |
| 	spin_lock(&fep->hw_lock);
 | |
| 	bdp = fep->dirty_tx;
 | |
| 
 | |
| 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 | |
| 		if (bdp == fep->cur_tx && fep->tx_full == 0)
 | |
| 			break;
 | |
| 
 | |
| 		dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
 | |
| 		bdp->cbd_bufaddr = 0;
 | |
| 
 | |
| 		skb = fep->tx_skbuff[fep->skb_dirty];
 | |
| 		/* Check for errors. */
 | |
| 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 | |
| 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
 | |
| 				   BD_ENET_TX_CSL)) {
 | |
| 			dev->stats.tx_errors++;
 | |
| 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
 | |
| 				dev->stats.tx_heartbeat_errors++;
 | |
| 			if (status & BD_ENET_TX_LC)  /* Late collision */
 | |
| 				dev->stats.tx_window_errors++;
 | |
| 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
 | |
| 				dev->stats.tx_aborted_errors++;
 | |
| 			if (status & BD_ENET_TX_UN)  /* Underrun */
 | |
| 				dev->stats.tx_fifo_errors++;
 | |
| 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
 | |
| 				dev->stats.tx_carrier_errors++;
 | |
| 		} else {
 | |
| 			dev->stats.tx_packets++;
 | |
| 		}
 | |
| 
 | |
| 		if (status & BD_ENET_TX_READY)
 | |
| 			printk("HEY! Enet xmit interrupt and TX_READY.\n");
 | |
| 
 | |
| 		/* Deferred means some collisions occurred during transmit,
 | |
| 		 * but we eventually sent the packet OK.
 | |
| 		 */
 | |
| 		if (status & BD_ENET_TX_DEF)
 | |
| 			dev->stats.collisions++;
 | |
| 
 | |
| 		/* Free the sk buffer associated with this last transmit */
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		fep->tx_skbuff[fep->skb_dirty] = NULL;
 | |
| 		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
 | |
| 
 | |
| 		/* Update pointer to next buffer descriptor to be transmitted */
 | |
| 		if (status & BD_ENET_TX_WRAP)
 | |
| 			bdp = fep->tx_bd_base;
 | |
| 		else
 | |
| 			bdp++;
 | |
| 
 | |
| 		/* Since we have freed up a buffer, the ring is no longer full
 | |
| 		 */
 | |
| 		if (fep->tx_full) {
 | |
| 			fep->tx_full = 0;
 | |
| 			if (netif_queue_stopped(dev))
 | |
| 				netif_wake_queue(dev);
 | |
| 		}
 | |
| 	}
 | |
| 	fep->dirty_tx = bdp;
 | |
| 	spin_unlock(&fep->hw_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* During a receive, the cur_rx points to the current incoming buffer.
 | |
|  * When we update through the ring, if the next incoming buffer has
 | |
|  * not been given to the system, we just set the empty indicator,
 | |
|  * effectively tossing the packet.
 | |
|  */
 | |
| static void
 | |
| fec_enet_rx(struct net_device *dev)
 | |
| {
 | |
| 	struct	fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct bufdesc *bdp;
 | |
| 	unsigned short status;
 | |
| 	struct	sk_buff	*skb;
 | |
| 	ushort	pkt_len;
 | |
| 	__u8 *data;
 | |
| 
 | |
| #ifdef CONFIG_M532x
 | |
| 	flush_cache_all();
 | |
| #endif
 | |
| 
 | |
| 	spin_lock(&fep->hw_lock);
 | |
| 
 | |
| 	/* First, grab all of the stats for the incoming packet.
 | |
| 	 * These get messed up if we get called due to a busy condition.
 | |
| 	 */
 | |
| 	bdp = fep->cur_rx;
 | |
| 
 | |
| 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 | |
| 
 | |
| 		/* Since we have allocated space to hold a complete frame,
 | |
| 		 * the last indicator should be set.
 | |
| 		 */
 | |
| 		if ((status & BD_ENET_RX_LAST) == 0)
 | |
| 			printk("FEC ENET: rcv is not +last\n");
 | |
| 
 | |
| 		if (!fep->opened)
 | |
| 			goto rx_processing_done;
 | |
| 
 | |
| 		/* Check for errors. */
 | |
| 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 | |
| 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 | |
| 			dev->stats.rx_errors++;
 | |
| 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 | |
| 				/* Frame too long or too short. */
 | |
| 				dev->stats.rx_length_errors++;
 | |
| 			}
 | |
| 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
 | |
| 				dev->stats.rx_frame_errors++;
 | |
| 			if (status & BD_ENET_RX_CR)	/* CRC Error */
 | |
| 				dev->stats.rx_crc_errors++;
 | |
| 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
 | |
| 				dev->stats.rx_fifo_errors++;
 | |
| 		}
 | |
| 
 | |
| 		/* Report late collisions as a frame error.
 | |
| 		 * On this error, the BD is closed, but we don't know what we
 | |
| 		 * have in the buffer.  So, just drop this frame on the floor.
 | |
| 		 */
 | |
| 		if (status & BD_ENET_RX_CL) {
 | |
| 			dev->stats.rx_errors++;
 | |
| 			dev->stats.rx_frame_errors++;
 | |
| 			goto rx_processing_done;
 | |
| 		}
 | |
| 
 | |
| 		/* Process the incoming frame. */
 | |
| 		dev->stats.rx_packets++;
 | |
| 		pkt_len = bdp->cbd_datlen;
 | |
| 		dev->stats.rx_bytes += pkt_len;
 | |
| 		data = (__u8*)__va(bdp->cbd_bufaddr);
 | |
| 
 | |
| 	        dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
 | |
|         			DMA_FROM_DEVICE);
 | |
| 
 | |
| 		/* This does 16 byte alignment, exactly what we need.
 | |
| 		 * The packet length includes FCS, but we don't want to
 | |
| 		 * include that when passing upstream as it messes up
 | |
| 		 * bridging applications.
 | |
| 		 */
 | |
| 		skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
 | |
| 
 | |
| 		if (unlikely(!skb)) {
 | |
| 			printk("%s: Memory squeeze, dropping packet.\n",
 | |
| 					dev->name);
 | |
| 			dev->stats.rx_dropped++;
 | |
| 		} else {
 | |
| 			skb_reserve(skb, NET_IP_ALIGN);
 | |
| 			skb_put(skb, pkt_len - 4);	/* Make room */
 | |
| 			skb_copy_to_linear_data(skb, data, pkt_len - 4);
 | |
| 			skb->protocol = eth_type_trans(skb, dev);
 | |
| 			netif_rx(skb);
 | |
| 		}
 | |
| 
 | |
|         	bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
 | |
| 			DMA_FROM_DEVICE);
 | |
| rx_processing_done:
 | |
| 		/* Clear the status flags for this buffer */
 | |
| 		status &= ~BD_ENET_RX_STATS;
 | |
| 
 | |
| 		/* Mark the buffer empty */
 | |
| 		status |= BD_ENET_RX_EMPTY;
 | |
| 		bdp->cbd_sc = status;
 | |
| 
 | |
| 		/* Update BD pointer to next entry */
 | |
| 		if (status & BD_ENET_RX_WRAP)
 | |
| 			bdp = fep->rx_bd_base;
 | |
| 		else
 | |
| 			bdp++;
 | |
| 		/* Doing this here will keep the FEC running while we process
 | |
| 		 * incoming frames.  On a heavily loaded network, we should be
 | |
| 		 * able to keep up at the expense of system resources.
 | |
| 		 */
 | |
| 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 | |
| 	}
 | |
| 	fep->cur_rx = bdp;
 | |
| 
 | |
| 	spin_unlock(&fep->hw_lock);
 | |
| }
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| #ifdef CONFIG_M5272
 | |
| static void __inline__ fec_get_mac(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	unsigned char *iap, tmpaddr[ETH_ALEN];
 | |
| 
 | |
| 	if (FEC_FLASHMAC) {
 | |
| 		/*
 | |
| 		 * Get MAC address from FLASH.
 | |
| 		 * If it is all 1's or 0's, use the default.
 | |
| 		 */
 | |
| 		iap = (unsigned char *)FEC_FLASHMAC;
 | |
| 		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
 | |
| 		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
 | |
| 			iap = fec_mac_default;
 | |
| 		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
 | |
| 		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
 | |
| 			iap = fec_mac_default;
 | |
| 	} else {
 | |
| 		*((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
 | |
| 		*((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
 | |
| 		iap = &tmpaddr[0];
 | |
| 	}
 | |
| 
 | |
| 	memcpy(dev->dev_addr, iap, ETH_ALEN);
 | |
| 
 | |
| 	/* Adjust MAC if using default MAC address */
 | |
| 	if (iap == fec_mac_default)
 | |
| 		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ------------------------------------------------------------------------- */
 | |
| 
 | |
| /*
 | |
|  * Phy section
 | |
|  */
 | |
| static void fec_enet_adjust_link(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct phy_device *phy_dev = fep->phy_dev;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	int status_change = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->hw_lock, flags);
 | |
| 
 | |
| 	/* Prevent a state halted on mii error */
 | |
| 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
 | |
| 		phy_dev->state = PHY_RESUMING;
 | |
| 		goto spin_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Duplex link change */
 | |
| 	if (phy_dev->link) {
 | |
| 		if (fep->full_duplex != phy_dev->duplex) {
 | |
| 			fec_restart(dev, phy_dev->duplex);
 | |
| 			status_change = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Link on or off change */
 | |
| 	if (phy_dev->link != fep->link) {
 | |
| 		fep->link = phy_dev->link;
 | |
| 		if (phy_dev->link)
 | |
| 			fec_restart(dev, phy_dev->duplex);
 | |
| 		else
 | |
| 			fec_stop(dev);
 | |
| 		status_change = 1;
 | |
| 	}
 | |
| 
 | |
| spin_unlock:
 | |
| 	spin_unlock_irqrestore(&fep->hw_lock, flags);
 | |
| 
 | |
| 	if (status_change)
 | |
| 		phy_print_status(phy_dev);
 | |
| }
 | |
| 
 | |
| static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 | |
| {
 | |
| 	struct fec_enet_private *fep = bus->priv;
 | |
| 	unsigned long time_left;
 | |
| 
 | |
| 	fep->mii_timeout = 0;
 | |
| 	init_completion(&fep->mdio_done);
 | |
| 
 | |
| 	/* start a read op */
 | |
| 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
 | |
| 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
 | |
| 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
 | |
| 
 | |
| 	/* wait for end of transfer */
 | |
| 	time_left = wait_for_completion_timeout(&fep->mdio_done,
 | |
| 			usecs_to_jiffies(FEC_MII_TIMEOUT));
 | |
| 	if (time_left == 0) {
 | |
| 		fep->mii_timeout = 1;
 | |
| 		printk(KERN_ERR "FEC: MDIO read timeout\n");
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	/* return value */
 | |
| 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
 | |
| }
 | |
| 
 | |
| static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
 | |
| 			   u16 value)
 | |
| {
 | |
| 	struct fec_enet_private *fep = bus->priv;
 | |
| 	unsigned long time_left;
 | |
| 
 | |
| 	fep->mii_timeout = 0;
 | |
| 	init_completion(&fep->mdio_done);
 | |
| 
 | |
| 	/* start a read op */
 | |
| 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
 | |
| 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
 | |
| 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
 | |
| 		fep->hwp + FEC_MII_DATA);
 | |
| 
 | |
| 	/* wait for end of transfer */
 | |
| 	time_left = wait_for_completion_timeout(&fep->mdio_done,
 | |
| 			usecs_to_jiffies(FEC_MII_TIMEOUT));
 | |
| 	if (time_left == 0) {
 | |
| 		fep->mii_timeout = 1;
 | |
| 		printk(KERN_ERR "FEC: MDIO write timeout\n");
 | |
| 		return -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_enet_mdio_reset(struct mii_bus *bus)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_enet_mii_probe(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct phy_device *phy_dev = NULL;
 | |
| 	char mdio_bus_id[MII_BUS_ID_SIZE];
 | |
| 	char phy_name[MII_BUS_ID_SIZE + 3];
 | |
| 	int phy_id;
 | |
| 
 | |
| 	fep->phy_dev = NULL;
 | |
| 
 | |
| 	/* check for attached phy */
 | |
| 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
 | |
| 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
 | |
| 			continue;
 | |
| 		if (fep->mii_bus->phy_map[phy_id] == NULL)
 | |
| 			continue;
 | |
| 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
 | |
| 			continue;
 | |
| 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (phy_id >= PHY_MAX_ADDR) {
 | |
| 		printk(KERN_INFO "%s: no PHY, assuming direct connection "
 | |
| 			"to switch\n", dev->name);
 | |
| 		strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
 | |
| 		phy_id = 0;
 | |
| 	}
 | |
| 
 | |
| 	snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
 | |
| 	phy_dev = phy_connect(dev, phy_name, &fec_enet_adjust_link, 0,
 | |
| 		PHY_INTERFACE_MODE_MII);
 | |
| 	if (IS_ERR(phy_dev)) {
 | |
| 		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
 | |
| 		return PTR_ERR(phy_dev);
 | |
| 	}
 | |
| 
 | |
| 	/* mask with MAC supported features */
 | |
| 	phy_dev->supported &= PHY_BASIC_FEATURES;
 | |
| 	phy_dev->advertising = phy_dev->supported;
 | |
| 
 | |
| 	fep->phy_dev = phy_dev;
 | |
| 	fep->link = 0;
 | |
| 	fep->full_duplex = 0;
 | |
| 
 | |
| 	printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
 | |
| 		"(mii_bus:phy_addr=%s, irq=%d)\n", dev->name,
 | |
| 		fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
 | |
| 		fep->phy_dev->irq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_enet_mii_init(struct platform_device *pdev)
 | |
| {
 | |
| 	struct net_device *dev = platform_get_drvdata(pdev);
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int err = -ENXIO, i;
 | |
| 
 | |
| 	fep->mii_timeout = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
 | |
| 	 */
 | |
| 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
 | |
| 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 | |
| 
 | |
| 	fep->mii_bus = mdiobus_alloc();
 | |
| 	if (fep->mii_bus == NULL) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	fep->mii_bus->name = "fec_enet_mii_bus";
 | |
| 	fep->mii_bus->read = fec_enet_mdio_read;
 | |
| 	fep->mii_bus->write = fec_enet_mdio_write;
 | |
| 	fep->mii_bus->reset = fec_enet_mdio_reset;
 | |
| 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
 | |
| 	fep->mii_bus->priv = fep;
 | |
| 	fep->mii_bus->parent = &pdev->dev;
 | |
| 
 | |
| 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
 | |
| 	if (!fep->mii_bus->irq) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto err_out_free_mdiobus;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < PHY_MAX_ADDR; i++)
 | |
| 		fep->mii_bus->irq[i] = PHY_POLL;
 | |
| 
 | |
| 	platform_set_drvdata(dev, fep->mii_bus);
 | |
| 
 | |
| 	if (mdiobus_register(fep->mii_bus))
 | |
| 		goto err_out_free_mdio_irq;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_free_mdio_irq:
 | |
| 	kfree(fep->mii_bus->irq);
 | |
| err_out_free_mdiobus:
 | |
| 	mdiobus_free(fep->mii_bus);
 | |
| err_out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void fec_enet_mii_remove(struct fec_enet_private *fep)
 | |
| {
 | |
| 	if (fep->phy_dev)
 | |
| 		phy_disconnect(fep->phy_dev);
 | |
| 	mdiobus_unregister(fep->mii_bus);
 | |
| 	kfree(fep->mii_bus->irq);
 | |
| 	mdiobus_free(fep->mii_bus);
 | |
| }
 | |
| 
 | |
| static int fec_enet_get_settings(struct net_device *dev,
 | |
| 				  struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct phy_device *phydev = fep->phy_dev;
 | |
| 
 | |
| 	if (!phydev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return phy_ethtool_gset(phydev, cmd);
 | |
| }
 | |
| 
 | |
| static int fec_enet_set_settings(struct net_device *dev,
 | |
| 				 struct ethtool_cmd *cmd)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct phy_device *phydev = fep->phy_dev;
 | |
| 
 | |
| 	if (!phydev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return phy_ethtool_sset(phydev, cmd);
 | |
| }
 | |
| 
 | |
| static void fec_enet_get_drvinfo(struct net_device *dev,
 | |
| 				 struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	strcpy(info->driver, fep->pdev->dev.driver->name);
 | |
| 	strcpy(info->version, "Revision: 1.0");
 | |
| 	strcpy(info->bus_info, dev_name(&dev->dev));
 | |
| }
 | |
| 
 | |
| static struct ethtool_ops fec_enet_ethtool_ops = {
 | |
| 	.get_settings		= fec_enet_get_settings,
 | |
| 	.set_settings		= fec_enet_set_settings,
 | |
| 	.get_drvinfo		= fec_enet_get_drvinfo,
 | |
| 	.get_link		= ethtool_op_get_link,
 | |
| };
 | |
| 
 | |
| static int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct phy_device *phydev = fep->phy_dev;
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!phydev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return phy_mii_ioctl(phydev, rq, cmd);
 | |
| }
 | |
| 
 | |
| static void fec_enet_free_buffers(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int i;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct bufdesc	*bdp;
 | |
| 
 | |
| 	bdp = fep->rx_bd_base;
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		skb = fep->rx_skbuff[i];
 | |
| 
 | |
| 		if (bdp->cbd_bufaddr)
 | |
| 			dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
 | |
| 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
 | |
| 		if (skb)
 | |
| 			dev_kfree_skb(skb);
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	bdp = fep->tx_bd_base;
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++)
 | |
| 		kfree(fep->tx_bounce[i]);
 | |
| }
 | |
| 
 | |
| static int fec_enet_alloc_buffers(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int i;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct bufdesc	*bdp;
 | |
| 
 | |
| 	bdp = fep->rx_bd_base;
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
 | |
| 		if (!skb) {
 | |
| 			fec_enet_free_buffers(dev);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		fep->rx_skbuff[i] = skb;
 | |
| 
 | |
| 		bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
 | |
| 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
 | |
| 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the last buffer to wrap. */
 | |
| 	bdp--;
 | |
| 	bdp->cbd_sc |= BD_SC_WRAP;
 | |
| 
 | |
| 	bdp = fep->tx_bd_base;
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
 | |
| 
 | |
| 		bdp->cbd_sc = 0;
 | |
| 		bdp->cbd_bufaddr = 0;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the last buffer to wrap. */
 | |
| 	bdp--;
 | |
| 	bdp->cbd_sc |= BD_SC_WRAP;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fec_enet_open(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* I should reset the ring buffers here, but I don't yet know
 | |
| 	 * a simple way to do that.
 | |
| 	 */
 | |
| 
 | |
| 	ret = fec_enet_alloc_buffers(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Probe and connect to PHY when open the interface */
 | |
| 	ret = fec_enet_mii_probe(dev);
 | |
| 	if (ret) {
 | |
| 		fec_enet_free_buffers(dev);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	phy_start(fep->phy_dev);
 | |
| 	netif_start_queue(dev);
 | |
| 	fep->opened = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fec_enet_close(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	/* Don't know what to do yet. */
 | |
| 	fep->opened = 0;
 | |
| 	netif_stop_queue(dev);
 | |
| 	fec_stop(dev);
 | |
| 
 | |
| 	if (fep->phy_dev)
 | |
| 		phy_disconnect(fep->phy_dev);
 | |
| 
 | |
|         fec_enet_free_buffers(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Set or clear the multicast filter for this adaptor.
 | |
|  * Skeleton taken from sunlance driver.
 | |
|  * The CPM Ethernet implementation allows Multicast as well as individual
 | |
|  * MAC address filtering.  Some of the drivers check to make sure it is
 | |
|  * a group multicast address, and discard those that are not.  I guess I
 | |
|  * will do the same for now, but just remove the test if you want
 | |
|  * individual filtering as well (do the upper net layers want or support
 | |
|  * this kind of feature?).
 | |
|  */
 | |
| 
 | |
| #define HASH_BITS	6		/* #bits in hash */
 | |
| #define CRC32_POLY	0xEDB88320
 | |
| 
 | |
| static void set_multicast_list(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	unsigned int i, bit, data, crc, tmp;
 | |
| 	unsigned char hash;
 | |
| 
 | |
| 	if (dev->flags & IFF_PROMISC) {
 | |
| 		tmp = readl(fep->hwp + FEC_R_CNTRL);
 | |
| 		tmp |= 0x8;
 | |
| 		writel(tmp, fep->hwp + FEC_R_CNTRL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tmp = readl(fep->hwp + FEC_R_CNTRL);
 | |
| 	tmp &= ~0x8;
 | |
| 	writel(tmp, fep->hwp + FEC_R_CNTRL);
 | |
| 
 | |
| 	if (dev->flags & IFF_ALLMULTI) {
 | |
| 		/* Catch all multicast addresses, so set the
 | |
| 		 * filter to all 1's
 | |
| 		 */
 | |
| 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear filter and add the addresses in hash register
 | |
| 	 */
 | |
| 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| 
 | |
| 	netdev_for_each_mc_addr(ha, dev) {
 | |
| 		/* Only support group multicast for now */
 | |
| 		if (!(ha->addr[0] & 1))
 | |
| 			continue;
 | |
| 
 | |
| 		/* calculate crc32 value of mac address */
 | |
| 		crc = 0xffffffff;
 | |
| 
 | |
| 		for (i = 0; i < dev->addr_len; i++) {
 | |
| 			data = ha->addr[i];
 | |
| 			for (bit = 0; bit < 8; bit++, data >>= 1) {
 | |
| 				crc = (crc >> 1) ^
 | |
| 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* only upper 6 bits (HASH_BITS) are used
 | |
| 		 * which point to specific bit in he hash registers
 | |
| 		 */
 | |
| 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
 | |
| 
 | |
| 		if (hash > 31) {
 | |
| 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 			tmp |= 1 << (hash - 32);
 | |
| 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 		} else {
 | |
| 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| 			tmp |= 1 << hash;
 | |
| 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Set a MAC change in hardware. */
 | |
| static int
 | |
| fec_set_mac_address(struct net_device *dev, void *p)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct sockaddr *addr = p;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 
 | |
| 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
 | |
| 
 | |
| 	writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
 | |
| 		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
 | |
| 		fep->hwp + FEC_ADDR_LOW);
 | |
| 	writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
 | |
| 		fep->hwp + FEC_ADDR_HIGH);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops fec_netdev_ops = {
 | |
| 	.ndo_open		= fec_enet_open,
 | |
| 	.ndo_stop		= fec_enet_close,
 | |
| 	.ndo_start_xmit		= fec_enet_start_xmit,
 | |
| 	.ndo_set_multicast_list = set_multicast_list,
 | |
| 	.ndo_change_mtu		= eth_change_mtu,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_tx_timeout		= fec_timeout,
 | |
| 	.ndo_set_mac_address	= fec_set_mac_address,
 | |
| 	.ndo_do_ioctl           = fec_enet_ioctl,
 | |
| };
 | |
| 
 | |
|  /*
 | |
|   * XXX:  We need to clean up on failure exits here.
 | |
|   *
 | |
|   * index is only used in legacy code
 | |
|   */
 | |
| static int fec_enet_init(struct net_device *dev, int index)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	struct bufdesc *cbd_base;
 | |
| 	struct bufdesc *bdp;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Allocate memory for buffer descriptors. */
 | |
| 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
 | |
| 			GFP_KERNEL);
 | |
| 	if (!cbd_base) {
 | |
| 		printk("FEC: allocate descriptor memory failed?\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&fep->hw_lock);
 | |
| 
 | |
| 	fep->index = index;
 | |
| 	fep->hwp = (void __iomem *)dev->base_addr;
 | |
| 	fep->netdev = dev;
 | |
| 
 | |
| 	/* Set the Ethernet address */
 | |
| #ifdef CONFIG_M5272
 | |
| 	fec_get_mac(dev);
 | |
| #else
 | |
| 	{
 | |
| 		unsigned long l;
 | |
| 		l = readl(fep->hwp + FEC_ADDR_LOW);
 | |
| 		dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
 | |
| 		dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
 | |
| 		dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
 | |
| 		dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
 | |
| 		l = readl(fep->hwp + FEC_ADDR_HIGH);
 | |
| 		dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
 | |
| 		dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Set receive and transmit descriptor base. */
 | |
| 	fep->rx_bd_base = cbd_base;
 | |
| 	fep->tx_bd_base = cbd_base + RX_RING_SIZE;
 | |
| 
 | |
| 	/* The FEC Ethernet specific entries in the device structure */
 | |
| 	dev->watchdog_timeo = TX_TIMEOUT;
 | |
| 	dev->netdev_ops = &fec_netdev_ops;
 | |
| 	dev->ethtool_ops = &fec_enet_ethtool_ops;
 | |
| 
 | |
| 	/* Initialize the receive buffer descriptors. */
 | |
| 	bdp = fep->rx_bd_base;
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 
 | |
| 		/* Initialize the BD for every fragment in the page. */
 | |
| 		bdp->cbd_sc = 0;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the last buffer to wrap */
 | |
| 	bdp--;
 | |
| 	bdp->cbd_sc |= BD_SC_WRAP;
 | |
| 
 | |
| 	/* ...and the same for transmit */
 | |
| 	bdp = fep->tx_bd_base;
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 
 | |
| 		/* Initialize the BD for every fragment in the page. */
 | |
| 		bdp->cbd_sc = 0;
 | |
| 		bdp->cbd_bufaddr = 0;
 | |
| 		bdp++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the last buffer to wrap */
 | |
| 	bdp--;
 | |
| 	bdp->cbd_sc |= BD_SC_WRAP;
 | |
| 
 | |
| 	fec_restart(dev, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function is called to start or restart the FEC during a link
 | |
|  * change.  This only happens when switching between half and full
 | |
|  * duplex.
 | |
|  */
 | |
| static void
 | |
| fec_restart(struct net_device *dev, int duplex)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	/* Whack a reset.  We should wait for this. */
 | |
| 	writel(1, fep->hwp + FEC_ECNTRL);
 | |
| 	udelay(10);
 | |
| 
 | |
| 	/* Clear any outstanding interrupt. */
 | |
| 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
 | |
| 
 | |
| 	/* Reset all multicast.	*/
 | |
| 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
 | |
| 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
 | |
| #ifndef CONFIG_M5272
 | |
| 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
 | |
| 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
 | |
| #endif
 | |
| 
 | |
| 	/* Set maximum receive buffer size. */
 | |
| 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
 | |
| 
 | |
| 	/* Set receive and transmit descriptor base. */
 | |
| 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
 | |
| 	writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
 | |
| 			fep->hwp + FEC_X_DES_START);
 | |
| 
 | |
| 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 | |
| 	fep->cur_rx = fep->rx_bd_base;
 | |
| 
 | |
| 	/* Reset SKB transmit buffers. */
 | |
| 	fep->skb_cur = fep->skb_dirty = 0;
 | |
| 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
 | |
| 		if (fep->tx_skbuff[i]) {
 | |
| 			dev_kfree_skb_any(fep->tx_skbuff[i]);
 | |
| 			fep->tx_skbuff[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Enable MII mode */
 | |
| 	if (duplex) {
 | |
| 		/* MII enable / FD enable */
 | |
| 		writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
 | |
| 		writel(0x04, fep->hwp + FEC_X_CNTRL);
 | |
| 	} else {
 | |
| 		/* MII enable / No Rcv on Xmit */
 | |
| 		writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
 | |
| 		writel(0x0, fep->hwp + FEC_X_CNTRL);
 | |
| 	}
 | |
| 	fep->full_duplex = duplex;
 | |
| 
 | |
| 	/* Set MII speed */
 | |
| 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 | |
| 
 | |
| #ifdef FEC_MIIGSK_ENR
 | |
| 	if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
 | |
| 		/* disable the gasket and wait */
 | |
| 		writel(0, fep->hwp + FEC_MIIGSK_ENR);
 | |
| 		while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 | |
| 			udelay(1);
 | |
| 
 | |
| 		/* configure the gasket: RMII, 50 MHz, no loopback, no echo */
 | |
| 		writel(1, fep->hwp + FEC_MIIGSK_CFGR);
 | |
| 
 | |
| 		/* re-enable the gasket */
 | |
| 		writel(2, fep->hwp + FEC_MIIGSK_ENR);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* And last, enable the transmit and receive processing */
 | |
| 	writel(2, fep->hwp + FEC_ECNTRL);
 | |
| 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 | |
| 
 | |
| 	/* Enable interrupts we wish to service */
 | |
| 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 | |
| }
 | |
| 
 | |
| static void
 | |
| fec_stop(struct net_device *dev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(dev);
 | |
| 
 | |
| 	/* We cannot expect a graceful transmit stop without link !!! */
 | |
| 	if (fep->link) {
 | |
| 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
 | |
| 		udelay(10);
 | |
| 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
 | |
| 			printk("fec_stop : Graceful transmit stop did not complete !\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Whack a reset.  We should wait for this. */
 | |
| 	writel(1, fep->hwp + FEC_ECNTRL);
 | |
| 	udelay(10);
 | |
| 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 | |
| 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 | |
| }
 | |
| 
 | |
| static int __devinit
 | |
| fec_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct fec_enet_private *fep;
 | |
| 	struct fec_platform_data *pdata;
 | |
| 	struct net_device *ndev;
 | |
| 	int i, irq, ret = 0;
 | |
| 	struct resource *r;
 | |
| 
 | |
| 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	if (!r)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	r = request_mem_region(r->start, resource_size(r), pdev->name);
 | |
| 	if (!r)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Init network device */
 | |
| 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
 | |
| 	if (!ndev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	SET_NETDEV_DEV(ndev, &pdev->dev);
 | |
| 
 | |
| 	/* setup board info structure */
 | |
| 	fep = netdev_priv(ndev);
 | |
| 	memset(fep, 0, sizeof(*fep));
 | |
| 
 | |
| 	ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
 | |
| 	fep->pdev = pdev;
 | |
| 
 | |
| 	if (!ndev->base_addr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto failed_ioremap;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, ndev);
 | |
| 
 | |
| 	pdata = pdev->dev.platform_data;
 | |
| 	if (pdata)
 | |
| 		fep->phy_interface = pdata->phy;
 | |
| 
 | |
| 	/* This device has up to three irqs on some platforms */
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		irq = platform_get_irq(pdev, i);
 | |
| 		if (i && irq < 0)
 | |
| 			break;
 | |
| 		ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
 | |
| 		if (ret) {
 | |
| 			while (i >= 0) {
 | |
| 				irq = platform_get_irq(pdev, i);
 | |
| 				free_irq(irq, ndev);
 | |
| 				i--;
 | |
| 			}
 | |
| 			goto failed_irq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fep->clk = clk_get(&pdev->dev, "fec_clk");
 | |
| 	if (IS_ERR(fep->clk)) {
 | |
| 		ret = PTR_ERR(fep->clk);
 | |
| 		goto failed_clk;
 | |
| 	}
 | |
| 	clk_enable(fep->clk);
 | |
| 
 | |
| 	ret = fec_enet_init(ndev, 0);
 | |
| 	if (ret)
 | |
| 		goto failed_init;
 | |
| 
 | |
| 	ret = fec_enet_mii_init(pdev);
 | |
| 	if (ret)
 | |
| 		goto failed_mii_init;
 | |
| 
 | |
| 	/* Carrier starts down, phylib will bring it up */
 | |
| 	netif_carrier_off(ndev);
 | |
| 
 | |
| 	ret = register_netdev(ndev);
 | |
| 	if (ret)
 | |
| 		goto failed_register;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| failed_register:
 | |
| 	fec_enet_mii_remove(fep);
 | |
| failed_mii_init:
 | |
| failed_init:
 | |
| 	clk_disable(fep->clk);
 | |
| 	clk_put(fep->clk);
 | |
| failed_clk:
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		irq = platform_get_irq(pdev, i);
 | |
| 		if (irq > 0)
 | |
| 			free_irq(irq, ndev);
 | |
| 	}
 | |
| failed_irq:
 | |
| 	iounmap((void __iomem *)ndev->base_addr);
 | |
| failed_ioremap:
 | |
| 	free_netdev(ndev);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __devexit
 | |
| fec_drv_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct net_device *ndev = platform_get_drvdata(pdev);
 | |
| 	struct fec_enet_private *fep = netdev_priv(ndev);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, NULL);
 | |
| 
 | |
| 	fec_stop(ndev);
 | |
| 	fec_enet_mii_remove(fep);
 | |
| 	clk_disable(fep->clk);
 | |
| 	clk_put(fep->clk);
 | |
| 	iounmap((void __iomem *)ndev->base_addr);
 | |
| 	unregister_netdev(ndev);
 | |
| 	free_netdev(ndev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int
 | |
| fec_suspend(struct device *dev)
 | |
| {
 | |
| 	struct net_device *ndev = dev_get_drvdata(dev);
 | |
| 	struct fec_enet_private *fep;
 | |
| 
 | |
| 	if (ndev) {
 | |
| 		fep = netdev_priv(ndev);
 | |
| 		if (netif_running(ndev))
 | |
| 			fec_enet_close(ndev);
 | |
| 		clk_disable(fep->clk);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fec_resume(struct device *dev)
 | |
| {
 | |
| 	struct net_device *ndev = dev_get_drvdata(dev);
 | |
| 	struct fec_enet_private *fep;
 | |
| 
 | |
| 	if (ndev) {
 | |
| 		fep = netdev_priv(ndev);
 | |
| 		clk_enable(fep->clk);
 | |
| 		if (netif_running(ndev))
 | |
| 			fec_enet_open(ndev);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops fec_pm_ops = {
 | |
| 	.suspend	= fec_suspend,
 | |
| 	.resume		= fec_resume,
 | |
| 	.freeze		= fec_suspend,
 | |
| 	.thaw		= fec_resume,
 | |
| 	.poweroff	= fec_suspend,
 | |
| 	.restore	= fec_resume,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static struct platform_driver fec_driver = {
 | |
| 	.driver	= {
 | |
| 		.name	= "fec",
 | |
| 		.owner	= THIS_MODULE,
 | |
| #ifdef CONFIG_PM
 | |
| 		.pm	= &fec_pm_ops,
 | |
| #endif
 | |
| 	},
 | |
| 	.probe	= fec_probe,
 | |
| 	.remove	= __devexit_p(fec_drv_remove),
 | |
| };
 | |
| 
 | |
| static int __init
 | |
| fec_enet_module_init(void)
 | |
| {
 | |
| 	printk(KERN_INFO "FEC Ethernet Driver\n");
 | |
| 
 | |
| 	return platform_driver_register(&fec_driver);
 | |
| }
 | |
| 
 | |
| static void __exit
 | |
| fec_enet_cleanup(void)
 | |
| {
 | |
| 	platform_driver_unregister(&fec_driver);
 | |
| }
 | |
| 
 | |
| module_exit(fec_enet_cleanup);
 | |
| module_init(fec_enet_module_init);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 |