 38df7a3949
			
		
	
	
	38df7a3949
	
	
	
		
			
			Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Acked-by: Jesse Brandeburg <jesse.brandeburg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			4849 lines
		
	
	
	
		
			133 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4849 lines
		
	
	
	
		
			133 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*******************************************************************************
 | |
| 
 | |
|   Intel PRO/1000 Linux driver
 | |
|   Copyright(c) 1999 - 2006 Intel Corporation.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify it
 | |
|   under the terms and conditions of the GNU General Public License,
 | |
|   version 2, as published by the Free Software Foundation.
 | |
| 
 | |
|   This program is distributed in the hope it will be useful, but WITHOUT
 | |
|   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|   more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License along with
 | |
|   this program; if not, write to the Free Software Foundation, Inc.,
 | |
|   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 | |
| 
 | |
|   The full GNU General Public License is included in this distribution in
 | |
|   the file called "COPYING".
 | |
| 
 | |
|   Contact Information:
 | |
|   Linux NICS <linux.nics@intel.com>
 | |
|   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 | |
|   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
| 
 | |
| *******************************************************************************/
 | |
| 
 | |
| #include "e1000.h"
 | |
| #include <net/ip6_checksum.h>
 | |
| 
 | |
| char e1000_driver_name[] = "e1000";
 | |
| static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 | |
| #define DRV_VERSION "7.3.21-k6-NAPI"
 | |
| const char e1000_driver_version[] = DRV_VERSION;
 | |
| static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
 | |
| 
 | |
| /* e1000_pci_tbl - PCI Device ID Table
 | |
|  *
 | |
|  * Last entry must be all 0s
 | |
|  *
 | |
|  * Macro expands to...
 | |
|  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
 | |
|  */
 | |
| static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
 | |
| 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
 | |
| 	/* required last entry */
 | |
| 	{0,}
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
 | |
| 
 | |
| int e1000_up(struct e1000_adapter *adapter);
 | |
| void e1000_down(struct e1000_adapter *adapter);
 | |
| void e1000_reinit_locked(struct e1000_adapter *adapter);
 | |
| void e1000_reset(struct e1000_adapter *adapter);
 | |
| int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
 | |
| int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
 | |
| int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
 | |
| void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 | |
| void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 | |
| static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 | |
|                              struct e1000_tx_ring *txdr);
 | |
| static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 | |
|                              struct e1000_rx_ring *rxdr);
 | |
| static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 | |
|                              struct e1000_tx_ring *tx_ring);
 | |
| static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 | |
|                              struct e1000_rx_ring *rx_ring);
 | |
| void e1000_update_stats(struct e1000_adapter *adapter);
 | |
| 
 | |
| static int e1000_init_module(void);
 | |
| static void e1000_exit_module(void);
 | |
| static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 | |
| static void __devexit e1000_remove(struct pci_dev *pdev);
 | |
| static int e1000_alloc_queues(struct e1000_adapter *adapter);
 | |
| static int e1000_sw_init(struct e1000_adapter *adapter);
 | |
| static int e1000_open(struct net_device *netdev);
 | |
| static int e1000_close(struct net_device *netdev);
 | |
| static void e1000_configure_tx(struct e1000_adapter *adapter);
 | |
| static void e1000_configure_rx(struct e1000_adapter *adapter);
 | |
| static void e1000_setup_rctl(struct e1000_adapter *adapter);
 | |
| static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 | |
| static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 | |
| static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 | |
|                                 struct e1000_tx_ring *tx_ring);
 | |
| static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 | |
|                                 struct e1000_rx_ring *rx_ring);
 | |
| static void e1000_set_rx_mode(struct net_device *netdev);
 | |
| static void e1000_update_phy_info(unsigned long data);
 | |
| static void e1000_update_phy_info_task(struct work_struct *work);
 | |
| static void e1000_watchdog(unsigned long data);
 | |
| static void e1000_82547_tx_fifo_stall(unsigned long data);
 | |
| static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 | |
| static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 | |
| 				    struct net_device *netdev);
 | |
| static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 | |
| static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 | |
| static int e1000_set_mac(struct net_device *netdev, void *p);
 | |
| static irqreturn_t e1000_intr(int irq, void *data);
 | |
| static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 | |
| 			       struct e1000_tx_ring *tx_ring);
 | |
| static int e1000_clean(struct napi_struct *napi, int budget);
 | |
| static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 | |
| 			       struct e1000_rx_ring *rx_ring,
 | |
| 			       int *work_done, int work_to_do);
 | |
| static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 | |
| 				     struct e1000_rx_ring *rx_ring,
 | |
| 				     int *work_done, int work_to_do);
 | |
| static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 | |
| 				   struct e1000_rx_ring *rx_ring,
 | |
| 				   int cleaned_count);
 | |
| static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 | |
| 					 struct e1000_rx_ring *rx_ring,
 | |
| 					 int cleaned_count);
 | |
| static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 | |
| static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 | |
| 			   int cmd);
 | |
| static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 | |
| static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 | |
| static void e1000_tx_timeout(struct net_device *dev);
 | |
| static void e1000_reset_task(struct work_struct *work);
 | |
| static void e1000_smartspeed(struct e1000_adapter *adapter);
 | |
| static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 | |
|                                        struct sk_buff *skb);
 | |
| 
 | |
| static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
 | |
| static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
 | |
| static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
 | |
| static void e1000_restore_vlan(struct e1000_adapter *adapter);
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 | |
| static int e1000_resume(struct pci_dev *pdev);
 | |
| #endif
 | |
| static void e1000_shutdown(struct pci_dev *pdev);
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| /* for netdump / net console */
 | |
| static void e1000_netpoll (struct net_device *netdev);
 | |
| #endif
 | |
| 
 | |
| #define COPYBREAK_DEFAULT 256
 | |
| static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 | |
| module_param(copybreak, uint, 0644);
 | |
| MODULE_PARM_DESC(copybreak,
 | |
| 	"Maximum size of packet that is copied to a new buffer on receive");
 | |
| 
 | |
| static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 | |
|                      pci_channel_state_t state);
 | |
| static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 | |
| static void e1000_io_resume(struct pci_dev *pdev);
 | |
| 
 | |
| static struct pci_error_handlers e1000_err_handler = {
 | |
| 	.error_detected = e1000_io_error_detected,
 | |
| 	.slot_reset = e1000_io_slot_reset,
 | |
| 	.resume = e1000_io_resume,
 | |
| };
 | |
| 
 | |
| static struct pci_driver e1000_driver = {
 | |
| 	.name     = e1000_driver_name,
 | |
| 	.id_table = e1000_pci_tbl,
 | |
| 	.probe    = e1000_probe,
 | |
| 	.remove   = __devexit_p(e1000_remove),
 | |
| #ifdef CONFIG_PM
 | |
| 	/* Power Managment Hooks */
 | |
| 	.suspend  = e1000_suspend,
 | |
| 	.resume   = e1000_resume,
 | |
| #endif
 | |
| 	.shutdown = e1000_shutdown,
 | |
| 	.err_handler = &e1000_err_handler
 | |
| };
 | |
| 
 | |
| MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 | |
| MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| 
 | |
| static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
 | |
| module_param(debug, int, 0);
 | |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 | |
| 
 | |
| /**
 | |
|  * e1000_get_hw_dev - return device
 | |
|  * used by hardware layer to print debugging information
 | |
|  *
 | |
|  **/
 | |
| struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = hw->back;
 | |
| 	return adapter->netdev;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_init_module - Driver Registration Routine
 | |
|  *
 | |
|  * e1000_init_module is the first routine called when the driver is
 | |
|  * loaded. All it does is register with the PCI subsystem.
 | |
|  **/
 | |
| 
 | |
| static int __init e1000_init_module(void)
 | |
| {
 | |
| 	int ret;
 | |
| 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 | |
| 
 | |
| 	pr_info("%s\n", e1000_copyright);
 | |
| 
 | |
| 	ret = pci_register_driver(&e1000_driver);
 | |
| 	if (copybreak != COPYBREAK_DEFAULT) {
 | |
| 		if (copybreak == 0)
 | |
| 			pr_info("copybreak disabled\n");
 | |
| 		else
 | |
| 			pr_info("copybreak enabled for "
 | |
| 				   "packets <= %u bytes\n", copybreak);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| module_init(e1000_init_module);
 | |
| 
 | |
| /**
 | |
|  * e1000_exit_module - Driver Exit Cleanup Routine
 | |
|  *
 | |
|  * e1000_exit_module is called just before the driver is removed
 | |
|  * from memory.
 | |
|  **/
 | |
| 
 | |
| static void __exit e1000_exit_module(void)
 | |
| {
 | |
| 	pci_unregister_driver(&e1000_driver);
 | |
| }
 | |
| 
 | |
| module_exit(e1000_exit_module);
 | |
| 
 | |
| static int e1000_request_irq(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	irq_handler_t handler = e1000_intr;
 | |
| 	int irq_flags = IRQF_SHARED;
 | |
| 	int err;
 | |
| 
 | |
| 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 | |
| 	                  netdev);
 | |
| 	if (err) {
 | |
| 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void e1000_free_irq(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 
 | |
| 	free_irq(adapter->pdev->irq, netdev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_irq_disable - Mask off interrupt generation on the NIC
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| 
 | |
| static void e1000_irq_disable(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	ew32(IMC, ~0);
 | |
| 	E1000_WRITE_FLUSH();
 | |
| 	synchronize_irq(adapter->pdev->irq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_irq_enable - Enable default interrupt generation settings
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| 
 | |
| static void e1000_irq_enable(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	ew32(IMS, IMS_ENABLE_MASK);
 | |
| 	E1000_WRITE_FLUSH();
 | |
| }
 | |
| 
 | |
| static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	u16 vid = hw->mng_cookie.vlan_id;
 | |
| 	u16 old_vid = adapter->mng_vlan_id;
 | |
| 	if (adapter->vlgrp) {
 | |
| 		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
 | |
| 			if (hw->mng_cookie.status &
 | |
| 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 | |
| 				e1000_vlan_rx_add_vid(netdev, vid);
 | |
| 				adapter->mng_vlan_id = vid;
 | |
| 			} else
 | |
| 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 | |
| 
 | |
| 			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 | |
| 					(vid != old_vid) &&
 | |
| 			    !vlan_group_get_device(adapter->vlgrp, old_vid))
 | |
| 				e1000_vlan_rx_kill_vid(netdev, old_vid);
 | |
| 		} else
 | |
| 			adapter->mng_vlan_id = vid;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void e1000_init_manageability(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	if (adapter->en_mng_pt) {
 | |
| 		u32 manc = er32(MANC);
 | |
| 
 | |
| 		/* disable hardware interception of ARP */
 | |
| 		manc &= ~(E1000_MANC_ARP_EN);
 | |
| 
 | |
| 		ew32(MANC, manc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void e1000_release_manageability(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	if (adapter->en_mng_pt) {
 | |
| 		u32 manc = er32(MANC);
 | |
| 
 | |
| 		/* re-enable hardware interception of ARP */
 | |
| 		manc |= E1000_MANC_ARP_EN;
 | |
| 
 | |
| 		ew32(MANC, manc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_configure - configure the hardware for RX and TX
 | |
|  * @adapter = private board structure
 | |
|  **/
 | |
| static void e1000_configure(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	int i;
 | |
| 
 | |
| 	e1000_set_rx_mode(netdev);
 | |
| 
 | |
| 	e1000_restore_vlan(adapter);
 | |
| 	e1000_init_manageability(adapter);
 | |
| 
 | |
| 	e1000_configure_tx(adapter);
 | |
| 	e1000_setup_rctl(adapter);
 | |
| 	e1000_configure_rx(adapter);
 | |
| 	/* call E1000_DESC_UNUSED which always leaves
 | |
| 	 * at least 1 descriptor unused to make sure
 | |
| 	 * next_to_use != next_to_clean */
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++) {
 | |
| 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 | |
| 		adapter->alloc_rx_buf(adapter, ring,
 | |
| 		                      E1000_DESC_UNUSED(ring));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int e1000_up(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	/* hardware has been reset, we need to reload some things */
 | |
| 	e1000_configure(adapter);
 | |
| 
 | |
| 	clear_bit(__E1000_DOWN, &adapter->flags);
 | |
| 
 | |
| 	napi_enable(&adapter->napi);
 | |
| 
 | |
| 	e1000_irq_enable(adapter);
 | |
| 
 | |
| 	netif_wake_queue(adapter->netdev);
 | |
| 
 | |
| 	/* fire a link change interrupt to start the watchdog */
 | |
| 	ew32(ICS, E1000_ICS_LSC);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_power_up_phy - restore link in case the phy was powered down
 | |
|  * @adapter: address of board private structure
 | |
|  *
 | |
|  * The phy may be powered down to save power and turn off link when the
 | |
|  * driver is unloaded and wake on lan is not enabled (among others)
 | |
|  * *** this routine MUST be followed by a call to e1000_reset ***
 | |
|  *
 | |
|  **/
 | |
| 
 | |
| void e1000_power_up_phy(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u16 mii_reg = 0;
 | |
| 
 | |
| 	/* Just clear the power down bit to wake the phy back up */
 | |
| 	if (hw->media_type == e1000_media_type_copper) {
 | |
| 		/* according to the manual, the phy will retain its
 | |
| 		 * settings across a power-down/up cycle */
 | |
| 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 | |
| 		mii_reg &= ~MII_CR_POWER_DOWN;
 | |
| 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void e1000_power_down_phy(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	/* Power down the PHY so no link is implied when interface is down *
 | |
| 	 * The PHY cannot be powered down if any of the following is true *
 | |
| 	 * (a) WoL is enabled
 | |
| 	 * (b) AMT is active
 | |
| 	 * (c) SoL/IDER session is active */
 | |
| 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 | |
| 	   hw->media_type == e1000_media_type_copper) {
 | |
| 		u16 mii_reg = 0;
 | |
| 
 | |
| 		switch (hw->mac_type) {
 | |
| 		case e1000_82540:
 | |
| 		case e1000_82545:
 | |
| 		case e1000_82545_rev_3:
 | |
| 		case e1000_82546:
 | |
| 		case e1000_82546_rev_3:
 | |
| 		case e1000_82541:
 | |
| 		case e1000_82541_rev_2:
 | |
| 		case e1000_82547:
 | |
| 		case e1000_82547_rev_2:
 | |
| 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 | |
| 				goto out;
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto out;
 | |
| 		}
 | |
| 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 | |
| 		mii_reg |= MII_CR_POWER_DOWN;
 | |
| 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 | |
| 		mdelay(1);
 | |
| 	}
 | |
| out:
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void e1000_down(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	u32 rctl, tctl;
 | |
| 
 | |
| 	/* signal that we're down so the interrupt handler does not
 | |
| 	 * reschedule our watchdog timer */
 | |
| 	set_bit(__E1000_DOWN, &adapter->flags);
 | |
| 
 | |
| 	/* disable receives in the hardware */
 | |
| 	rctl = er32(RCTL);
 | |
| 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 | |
| 	/* flush and sleep below */
 | |
| 
 | |
| 	netif_tx_disable(netdev);
 | |
| 
 | |
| 	/* disable transmits in the hardware */
 | |
| 	tctl = er32(TCTL);
 | |
| 	tctl &= ~E1000_TCTL_EN;
 | |
| 	ew32(TCTL, tctl);
 | |
| 	/* flush both disables and wait for them to finish */
 | |
| 	E1000_WRITE_FLUSH();
 | |
| 	msleep(10);
 | |
| 
 | |
| 	napi_disable(&adapter->napi);
 | |
| 
 | |
| 	e1000_irq_disable(adapter);
 | |
| 
 | |
| 	del_timer_sync(&adapter->tx_fifo_stall_timer);
 | |
| 	del_timer_sync(&adapter->watchdog_timer);
 | |
| 	del_timer_sync(&adapter->phy_info_timer);
 | |
| 
 | |
| 	adapter->link_speed = 0;
 | |
| 	adapter->link_duplex = 0;
 | |
| 	netif_carrier_off(netdev);
 | |
| 
 | |
| 	e1000_reset(adapter);
 | |
| 	e1000_clean_all_tx_rings(adapter);
 | |
| 	e1000_clean_all_rx_rings(adapter);
 | |
| }
 | |
| 
 | |
| static void e1000_reinit_safe(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 | |
| 		msleep(1);
 | |
| 	rtnl_lock();
 | |
| 	e1000_down(adapter);
 | |
| 	e1000_up(adapter);
 | |
| 	rtnl_unlock();
 | |
| 	clear_bit(__E1000_RESETTING, &adapter->flags);
 | |
| }
 | |
| 
 | |
| void e1000_reinit_locked(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	/* if rtnl_lock is not held the call path is bogus */
 | |
| 	ASSERT_RTNL();
 | |
| 	WARN_ON(in_interrupt());
 | |
| 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 | |
| 		msleep(1);
 | |
| 	e1000_down(adapter);
 | |
| 	e1000_up(adapter);
 | |
| 	clear_bit(__E1000_RESETTING, &adapter->flags);
 | |
| }
 | |
| 
 | |
| void e1000_reset(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 | |
| 	bool legacy_pba_adjust = false;
 | |
| 	u16 hwm;
 | |
| 
 | |
| 	/* Repartition Pba for greater than 9k mtu
 | |
| 	 * To take effect CTRL.RST is required.
 | |
| 	 */
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82542_rev2_0:
 | |
| 	case e1000_82542_rev2_1:
 | |
| 	case e1000_82543:
 | |
| 	case e1000_82544:
 | |
| 	case e1000_82540:
 | |
| 	case e1000_82541:
 | |
| 	case e1000_82541_rev_2:
 | |
| 		legacy_pba_adjust = true;
 | |
| 		pba = E1000_PBA_48K;
 | |
| 		break;
 | |
| 	case e1000_82545:
 | |
| 	case e1000_82545_rev_3:
 | |
| 	case e1000_82546:
 | |
| 	case e1000_82546_rev_3:
 | |
| 		pba = E1000_PBA_48K;
 | |
| 		break;
 | |
| 	case e1000_82547:
 | |
| 	case e1000_82547_rev_2:
 | |
| 		legacy_pba_adjust = true;
 | |
| 		pba = E1000_PBA_30K;
 | |
| 		break;
 | |
| 	case e1000_undefined:
 | |
| 	case e1000_num_macs:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (legacy_pba_adjust) {
 | |
| 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 | |
| 			pba -= 8; /* allocate more FIFO for Tx */
 | |
| 
 | |
| 		if (hw->mac_type == e1000_82547) {
 | |
| 			adapter->tx_fifo_head = 0;
 | |
| 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 | |
| 			adapter->tx_fifo_size =
 | |
| 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 | |
| 			atomic_set(&adapter->tx_fifo_stall, 0);
 | |
| 		}
 | |
| 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 | |
| 		/* adjust PBA for jumbo frames */
 | |
| 		ew32(PBA, pba);
 | |
| 
 | |
| 		/* To maintain wire speed transmits, the Tx FIFO should be
 | |
| 		 * large enough to accommodate two full transmit packets,
 | |
| 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 | |
| 		 * the Rx FIFO should be large enough to accommodate at least
 | |
| 		 * one full receive packet and is similarly rounded up and
 | |
| 		 * expressed in KB. */
 | |
| 		pba = er32(PBA);
 | |
| 		/* upper 16 bits has Tx packet buffer allocation size in KB */
 | |
| 		tx_space = pba >> 16;
 | |
| 		/* lower 16 bits has Rx packet buffer allocation size in KB */
 | |
| 		pba &= 0xffff;
 | |
| 		/*
 | |
| 		 * the tx fifo also stores 16 bytes of information about the tx
 | |
| 		 * but don't include ethernet FCS because hardware appends it
 | |
| 		 */
 | |
| 		min_tx_space = (hw->max_frame_size +
 | |
| 		                sizeof(struct e1000_tx_desc) -
 | |
| 		                ETH_FCS_LEN) * 2;
 | |
| 		min_tx_space = ALIGN(min_tx_space, 1024);
 | |
| 		min_tx_space >>= 10;
 | |
| 		/* software strips receive CRC, so leave room for it */
 | |
| 		min_rx_space = hw->max_frame_size;
 | |
| 		min_rx_space = ALIGN(min_rx_space, 1024);
 | |
| 		min_rx_space >>= 10;
 | |
| 
 | |
| 		/* If current Tx allocation is less than the min Tx FIFO size,
 | |
| 		 * and the min Tx FIFO size is less than the current Rx FIFO
 | |
| 		 * allocation, take space away from current Rx allocation */
 | |
| 		if (tx_space < min_tx_space &&
 | |
| 		    ((min_tx_space - tx_space) < pba)) {
 | |
| 			pba = pba - (min_tx_space - tx_space);
 | |
| 
 | |
| 			/* PCI/PCIx hardware has PBA alignment constraints */
 | |
| 			switch (hw->mac_type) {
 | |
| 			case e1000_82545 ... e1000_82546_rev_3:
 | |
| 				pba &= ~(E1000_PBA_8K - 1);
 | |
| 				break;
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* if short on rx space, rx wins and must trump tx
 | |
| 			 * adjustment or use Early Receive if available */
 | |
| 			if (pba < min_rx_space)
 | |
| 				pba = min_rx_space;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ew32(PBA, pba);
 | |
| 
 | |
| 	/*
 | |
| 	 * flow control settings:
 | |
| 	 * The high water mark must be low enough to fit one full frame
 | |
| 	 * (or the size used for early receive) above it in the Rx FIFO.
 | |
| 	 * Set it to the lower of:
 | |
| 	 * - 90% of the Rx FIFO size, and
 | |
| 	 * - the full Rx FIFO size minus the early receive size (for parts
 | |
| 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 | |
| 	 * - the full Rx FIFO size minus one full frame
 | |
| 	 */
 | |
| 	hwm = min(((pba << 10) * 9 / 10),
 | |
| 		  ((pba << 10) - hw->max_frame_size));
 | |
| 
 | |
| 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 | |
| 	hw->fc_low_water = hw->fc_high_water - 8;
 | |
| 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 | |
| 	hw->fc_send_xon = 1;
 | |
| 	hw->fc = hw->original_fc;
 | |
| 
 | |
| 	/* Allow time for pending master requests to run */
 | |
| 	e1000_reset_hw(hw);
 | |
| 	if (hw->mac_type >= e1000_82544)
 | |
| 		ew32(WUC, 0);
 | |
| 
 | |
| 	if (e1000_init_hw(hw))
 | |
| 		e_dev_err("Hardware Error\n");
 | |
| 	e1000_update_mng_vlan(adapter);
 | |
| 
 | |
| 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 | |
| 	if (hw->mac_type >= e1000_82544 &&
 | |
| 	    hw->autoneg == 1 &&
 | |
| 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 | |
| 		u32 ctrl = er32(CTRL);
 | |
| 		/* clear phy power management bit if we are in gig only mode,
 | |
| 		 * which if enabled will attempt negotiation to 100Mb, which
 | |
| 		 * can cause a loss of link at power off or driver unload */
 | |
| 		ctrl &= ~E1000_CTRL_SWDPIN3;
 | |
| 		ew32(CTRL, ctrl);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 | |
| 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 | |
| 
 | |
| 	e1000_reset_adaptive(hw);
 | |
| 	e1000_phy_get_info(hw, &adapter->phy_info);
 | |
| 
 | |
| 	e1000_release_manageability(adapter);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  Dump the eeprom for users having checksum issues
 | |
|  **/
 | |
| static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct ethtool_eeprom eeprom;
 | |
| 	const struct ethtool_ops *ops = netdev->ethtool_ops;
 | |
| 	u8 *data;
 | |
| 	int i;
 | |
| 	u16 csum_old, csum_new = 0;
 | |
| 
 | |
| 	eeprom.len = ops->get_eeprom_len(netdev);
 | |
| 	eeprom.offset = 0;
 | |
| 
 | |
| 	data = kmalloc(eeprom.len, GFP_KERNEL);
 | |
| 	if (!data) {
 | |
| 		pr_err("Unable to allocate memory to dump EEPROM data\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ops->get_eeprom(netdev, &eeprom, data);
 | |
| 
 | |
| 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 | |
| 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 | |
| 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 | |
| 		csum_new += data[i] + (data[i + 1] << 8);
 | |
| 	csum_new = EEPROM_SUM - csum_new;
 | |
| 
 | |
| 	pr_err("/*********************/\n");
 | |
| 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 | |
| 	pr_err("Calculated              : 0x%04x\n", csum_new);
 | |
| 
 | |
| 	pr_err("Offset    Values\n");
 | |
| 	pr_err("========  ======\n");
 | |
| 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 | |
| 
 | |
| 	pr_err("Include this output when contacting your support provider.\n");
 | |
| 	pr_err("This is not a software error! Something bad happened to\n");
 | |
| 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 | |
| 	pr_err("result in further problems, possibly loss of data,\n");
 | |
| 	pr_err("corruption or system hangs!\n");
 | |
| 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 | |
| 	pr_err("which is invalid and requires you to set the proper MAC\n");
 | |
| 	pr_err("address manually before continuing to enable this network\n");
 | |
| 	pr_err("device. Please inspect the EEPROM dump and report the\n");
 | |
| 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 | |
| 	pr_err("/*********************/\n");
 | |
| 
 | |
| 	kfree(data);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 | |
|  * @pdev: PCI device information struct
 | |
|  *
 | |
|  * Return true if an adapter needs ioport resources
 | |
|  **/
 | |
| static int e1000_is_need_ioport(struct pci_dev *pdev)
 | |
| {
 | |
| 	switch (pdev->device) {
 | |
| 	case E1000_DEV_ID_82540EM:
 | |
| 	case E1000_DEV_ID_82540EM_LOM:
 | |
| 	case E1000_DEV_ID_82540EP:
 | |
| 	case E1000_DEV_ID_82540EP_LOM:
 | |
| 	case E1000_DEV_ID_82540EP_LP:
 | |
| 	case E1000_DEV_ID_82541EI:
 | |
| 	case E1000_DEV_ID_82541EI_MOBILE:
 | |
| 	case E1000_DEV_ID_82541ER:
 | |
| 	case E1000_DEV_ID_82541ER_LOM:
 | |
| 	case E1000_DEV_ID_82541GI:
 | |
| 	case E1000_DEV_ID_82541GI_LF:
 | |
| 	case E1000_DEV_ID_82541GI_MOBILE:
 | |
| 	case E1000_DEV_ID_82544EI_COPPER:
 | |
| 	case E1000_DEV_ID_82544EI_FIBER:
 | |
| 	case E1000_DEV_ID_82544GC_COPPER:
 | |
| 	case E1000_DEV_ID_82544GC_LOM:
 | |
| 	case E1000_DEV_ID_82545EM_COPPER:
 | |
| 	case E1000_DEV_ID_82545EM_FIBER:
 | |
| 	case E1000_DEV_ID_82546EB_COPPER:
 | |
| 	case E1000_DEV_ID_82546EB_FIBER:
 | |
| 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct net_device_ops e1000_netdev_ops = {
 | |
| 	.ndo_open		= e1000_open,
 | |
| 	.ndo_stop		= e1000_close,
 | |
| 	.ndo_start_xmit		= e1000_xmit_frame,
 | |
| 	.ndo_get_stats		= e1000_get_stats,
 | |
| 	.ndo_set_rx_mode	= e1000_set_rx_mode,
 | |
| 	.ndo_set_mac_address	= e1000_set_mac,
 | |
| 	.ndo_tx_timeout 	= e1000_tx_timeout,
 | |
| 	.ndo_change_mtu		= e1000_change_mtu,
 | |
| 	.ndo_do_ioctl		= e1000_ioctl,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 
 | |
| 	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
 | |
| 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 | |
| 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| 	.ndo_poll_controller	= e1000_netpoll,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * e1000_init_hw_struct - initialize members of hw struct
 | |
|  * @adapter: board private struct
 | |
|  * @hw: structure used by e1000_hw.c
 | |
|  *
 | |
|  * Factors out initialization of the e1000_hw struct to its own function
 | |
|  * that can be called very early at init (just after struct allocation).
 | |
|  * Fields are initialized based on PCI device information and
 | |
|  * OS network device settings (MTU size).
 | |
|  * Returns negative error codes if MAC type setup fails.
 | |
|  */
 | |
| static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 | |
| 				struct e1000_hw *hw)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 
 | |
| 	/* PCI config space info */
 | |
| 	hw->vendor_id = pdev->vendor;
 | |
| 	hw->device_id = pdev->device;
 | |
| 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 | |
| 	hw->subsystem_id = pdev->subsystem_device;
 | |
| 	hw->revision_id = pdev->revision;
 | |
| 
 | |
| 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 | |
| 
 | |
| 	hw->max_frame_size = adapter->netdev->mtu +
 | |
| 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 | |
| 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 | |
| 
 | |
| 	/* identify the MAC */
 | |
| 	if (e1000_set_mac_type(hw)) {
 | |
| 		e_err(probe, "Unknown MAC Type\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	default:
 | |
| 		break;
 | |
| 	case e1000_82541:
 | |
| 	case e1000_82547:
 | |
| 	case e1000_82541_rev_2:
 | |
| 	case e1000_82547_rev_2:
 | |
| 		hw->phy_init_script = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	e1000_set_media_type(hw);
 | |
| 	e1000_get_bus_info(hw);
 | |
| 
 | |
| 	hw->wait_autoneg_complete = false;
 | |
| 	hw->tbi_compatibility_en = true;
 | |
| 	hw->adaptive_ifs = true;
 | |
| 
 | |
| 	/* Copper options */
 | |
| 
 | |
| 	if (hw->media_type == e1000_media_type_copper) {
 | |
| 		hw->mdix = AUTO_ALL_MODES;
 | |
| 		hw->disable_polarity_correction = false;
 | |
| 		hw->master_slave = E1000_MASTER_SLAVE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_probe - Device Initialization Routine
 | |
|  * @pdev: PCI device information struct
 | |
|  * @ent: entry in e1000_pci_tbl
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  *
 | |
|  * e1000_probe initializes an adapter identified by a pci_dev structure.
 | |
|  * The OS initialization, configuring of the adapter private structure,
 | |
|  * and a hardware reset occur.
 | |
|  **/
 | |
| static int __devinit e1000_probe(struct pci_dev *pdev,
 | |
| 				 const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct net_device *netdev;
 | |
| 	struct e1000_adapter *adapter;
 | |
| 	struct e1000_hw *hw;
 | |
| 
 | |
| 	static int cards_found = 0;
 | |
| 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
 | |
| 	int i, err, pci_using_dac;
 | |
| 	u16 eeprom_data = 0;
 | |
| 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 | |
| 	int bars, need_ioport;
 | |
| 
 | |
| 	/* do not allocate ioport bars when not needed */
 | |
| 	need_ioport = e1000_is_need_ioport(pdev);
 | |
| 	if (need_ioport) {
 | |
| 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 | |
| 		err = pci_enable_device(pdev);
 | |
| 	} else {
 | |
| 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 | |
| 		err = pci_enable_device_mem(pdev);
 | |
| 	}
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 | |
| 	if (err)
 | |
| 		goto err_pci_reg;
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 	err = pci_save_state(pdev);
 | |
| 	if (err)
 | |
| 		goto err_alloc_etherdev;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 | |
| 	if (!netdev)
 | |
| 		goto err_alloc_etherdev;
 | |
| 
 | |
| 	SET_NETDEV_DEV(netdev, &pdev->dev);
 | |
| 
 | |
| 	pci_set_drvdata(pdev, netdev);
 | |
| 	adapter = netdev_priv(netdev);
 | |
| 	adapter->netdev = netdev;
 | |
| 	adapter->pdev = pdev;
 | |
| 	adapter->msg_enable = (1 << debug) - 1;
 | |
| 	adapter->bars = bars;
 | |
| 	adapter->need_ioport = need_ioport;
 | |
| 
 | |
| 	hw = &adapter->hw;
 | |
| 	hw->back = adapter;
 | |
| 
 | |
| 	err = -EIO;
 | |
| 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 | |
| 	if (!hw->hw_addr)
 | |
| 		goto err_ioremap;
 | |
| 
 | |
| 	if (adapter->need_ioport) {
 | |
| 		for (i = BAR_1; i <= BAR_5; i++) {
 | |
| 			if (pci_resource_len(pdev, i) == 0)
 | |
| 				continue;
 | |
| 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 | |
| 				hw->io_base = pci_resource_start(pdev, i);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* make ready for any if (hw->...) below */
 | |
| 	err = e1000_init_hw_struct(adapter, hw);
 | |
| 	if (err)
 | |
| 		goto err_sw_init;
 | |
| 
 | |
| 	/*
 | |
| 	 * there is a workaround being applied below that limits
 | |
| 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 | |
| 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 | |
| 	 */
 | |
| 	pci_using_dac = 0;
 | |
| 	if ((hw->bus_type == e1000_bus_type_pcix) &&
 | |
| 	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
 | |
| 		/*
 | |
| 		 * according to DMA-API-HOWTO, coherent calls will always
 | |
| 		 * succeed if the set call did
 | |
| 		 */
 | |
| 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
 | |
| 		pci_using_dac = 1;
 | |
| 	} else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
 | |
| 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
 | |
| 	} else {
 | |
| 		pr_err("No usable DMA config, aborting\n");
 | |
| 		goto err_dma;
 | |
| 	}
 | |
| 
 | |
| 	netdev->netdev_ops = &e1000_netdev_ops;
 | |
| 	e1000_set_ethtool_ops(netdev);
 | |
| 	netdev->watchdog_timeo = 5 * HZ;
 | |
| 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
 | |
| 
 | |
| 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
 | |
| 
 | |
| 	adapter->bd_number = cards_found;
 | |
| 
 | |
| 	/* setup the private structure */
 | |
| 
 | |
| 	err = e1000_sw_init(adapter);
 | |
| 	if (err)
 | |
| 		goto err_sw_init;
 | |
| 
 | |
| 	err = -EIO;
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		netdev->features = NETIF_F_SG |
 | |
| 				   NETIF_F_HW_CSUM |
 | |
| 				   NETIF_F_HW_VLAN_TX |
 | |
| 				   NETIF_F_HW_VLAN_RX |
 | |
| 				   NETIF_F_HW_VLAN_FILTER;
 | |
| 	}
 | |
| 
 | |
| 	if ((hw->mac_type >= e1000_82544) &&
 | |
| 	   (hw->mac_type != e1000_82547))
 | |
| 		netdev->features |= NETIF_F_TSO;
 | |
| 
 | |
| 	if (pci_using_dac) {
 | |
| 		netdev->features |= NETIF_F_HIGHDMA;
 | |
| 		netdev->vlan_features |= NETIF_F_HIGHDMA;
 | |
| 	}
 | |
| 
 | |
| 	netdev->vlan_features |= NETIF_F_TSO;
 | |
| 	netdev->vlan_features |= NETIF_F_HW_CSUM;
 | |
| 	netdev->vlan_features |= NETIF_F_SG;
 | |
| 
 | |
| 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
 | |
| 
 | |
| 	/* initialize eeprom parameters */
 | |
| 	if (e1000_init_eeprom_params(hw)) {
 | |
| 		e_err(probe, "EEPROM initialization failed\n");
 | |
| 		goto err_eeprom;
 | |
| 	}
 | |
| 
 | |
| 	/* before reading the EEPROM, reset the controller to
 | |
| 	 * put the device in a known good starting state */
 | |
| 
 | |
| 	e1000_reset_hw(hw);
 | |
| 
 | |
| 	/* make sure the EEPROM is good */
 | |
| 	if (e1000_validate_eeprom_checksum(hw) < 0) {
 | |
| 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
 | |
| 		e1000_dump_eeprom(adapter);
 | |
| 		/*
 | |
| 		 * set MAC address to all zeroes to invalidate and temporary
 | |
| 		 * disable this device for the user. This blocks regular
 | |
| 		 * traffic while still permitting ethtool ioctls from reaching
 | |
| 		 * the hardware as well as allowing the user to run the
 | |
| 		 * interface after manually setting a hw addr using
 | |
| 		 * `ip set address`
 | |
| 		 */
 | |
| 		memset(hw->mac_addr, 0, netdev->addr_len);
 | |
| 	} else {
 | |
| 		/* copy the MAC address out of the EEPROM */
 | |
| 		if (e1000_read_mac_addr(hw))
 | |
| 			e_err(probe, "EEPROM Read Error\n");
 | |
| 	}
 | |
| 	/* don't block initalization here due to bad MAC address */
 | |
| 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
 | |
| 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
 | |
| 
 | |
| 	if (!is_valid_ether_addr(netdev->perm_addr))
 | |
| 		e_err(probe, "Invalid MAC Address\n");
 | |
| 
 | |
| 	init_timer(&adapter->tx_fifo_stall_timer);
 | |
| 	adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
 | |
| 	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
 | |
| 
 | |
| 	init_timer(&adapter->watchdog_timer);
 | |
| 	adapter->watchdog_timer.function = e1000_watchdog;
 | |
| 	adapter->watchdog_timer.data = (unsigned long) adapter;
 | |
| 
 | |
| 	init_timer(&adapter->phy_info_timer);
 | |
| 	adapter->phy_info_timer.function = e1000_update_phy_info;
 | |
| 	adapter->phy_info_timer.data = (unsigned long)adapter;
 | |
| 
 | |
| 	INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
 | |
| 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
 | |
| 	INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
 | |
| 
 | |
| 	e1000_check_options(adapter);
 | |
| 
 | |
| 	/* Initial Wake on LAN setting
 | |
| 	 * If APM wake is enabled in the EEPROM,
 | |
| 	 * enable the ACPI Magic Packet filter
 | |
| 	 */
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82542_rev2_0:
 | |
| 	case e1000_82542_rev2_1:
 | |
| 	case e1000_82543:
 | |
| 		break;
 | |
| 	case e1000_82544:
 | |
| 		e1000_read_eeprom(hw,
 | |
| 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
 | |
| 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
 | |
| 		break;
 | |
| 	case e1000_82546:
 | |
| 	case e1000_82546_rev_3:
 | |
| 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
 | |
| 			e1000_read_eeprom(hw,
 | |
| 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Fall Through */
 | |
| 	default:
 | |
| 		e1000_read_eeprom(hw,
 | |
| 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (eeprom_data & eeprom_apme_mask)
 | |
| 		adapter->eeprom_wol |= E1000_WUFC_MAG;
 | |
| 
 | |
| 	/* now that we have the eeprom settings, apply the special cases
 | |
| 	 * where the eeprom may be wrong or the board simply won't support
 | |
| 	 * wake on lan on a particular port */
 | |
| 	switch (pdev->device) {
 | |
| 	case E1000_DEV_ID_82546GB_PCIE:
 | |
| 		adapter->eeprom_wol = 0;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82546EB_FIBER:
 | |
| 	case E1000_DEV_ID_82546GB_FIBER:
 | |
| 		/* Wake events only supported on port A for dual fiber
 | |
| 		 * regardless of eeprom setting */
 | |
| 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
 | |
| 			adapter->eeprom_wol = 0;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 | |
| 		/* if quad port adapter, disable WoL on all but port A */
 | |
| 		if (global_quad_port_a != 0)
 | |
| 			adapter->eeprom_wol = 0;
 | |
| 		else
 | |
| 			adapter->quad_port_a = 1;
 | |
| 		/* Reset for multiple quad port adapters */
 | |
| 		if (++global_quad_port_a == 4)
 | |
| 			global_quad_port_a = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* initialize the wol settings based on the eeprom settings */
 | |
| 	adapter->wol = adapter->eeprom_wol;
 | |
| 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
 | |
| 
 | |
| 	/* reset the hardware with the new settings */
 | |
| 	e1000_reset(adapter);
 | |
| 
 | |
| 	strcpy(netdev->name, "eth%d");
 | |
| 	err = register_netdev(netdev);
 | |
| 	if (err)
 | |
| 		goto err_register;
 | |
| 
 | |
| 	/* print bus type/speed/width info */
 | |
| 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
 | |
| 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
 | |
| 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
 | |
| 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
 | |
| 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
 | |
| 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
 | |
| 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
 | |
| 	       netdev->dev_addr);
 | |
| 
 | |
| 	/* carrier off reporting is important to ethtool even BEFORE open */
 | |
| 	netif_carrier_off(netdev);
 | |
| 
 | |
| 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
 | |
| 
 | |
| 	cards_found++;
 | |
| 	return 0;
 | |
| 
 | |
| err_register:
 | |
| err_eeprom:
 | |
| 	e1000_phy_hw_reset(hw);
 | |
| 
 | |
| 	if (hw->flash_address)
 | |
| 		iounmap(hw->flash_address);
 | |
| 	kfree(adapter->tx_ring);
 | |
| 	kfree(adapter->rx_ring);
 | |
| err_dma:
 | |
| err_sw_init:
 | |
| 	iounmap(hw->hw_addr);
 | |
| err_ioremap:
 | |
| 	free_netdev(netdev);
 | |
| err_alloc_etherdev:
 | |
| 	pci_release_selected_regions(pdev, bars);
 | |
| err_pci_reg:
 | |
| 	pci_disable_device(pdev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_remove - Device Removal Routine
 | |
|  * @pdev: PCI device information struct
 | |
|  *
 | |
|  * e1000_remove is called by the PCI subsystem to alert the driver
 | |
|  * that it should release a PCI device.  The could be caused by a
 | |
|  * Hot-Plug event, or because the driver is going to be removed from
 | |
|  * memory.
 | |
|  **/
 | |
| 
 | |
| static void __devexit e1000_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	set_bit(__E1000_DOWN, &adapter->flags);
 | |
| 	del_timer_sync(&adapter->tx_fifo_stall_timer);
 | |
| 	del_timer_sync(&adapter->watchdog_timer);
 | |
| 	del_timer_sync(&adapter->phy_info_timer);
 | |
| 
 | |
| 	cancel_work_sync(&adapter->reset_task);
 | |
| 
 | |
| 	e1000_release_manageability(adapter);
 | |
| 
 | |
| 	unregister_netdev(netdev);
 | |
| 
 | |
| 	e1000_phy_hw_reset(hw);
 | |
| 
 | |
| 	kfree(adapter->tx_ring);
 | |
| 	kfree(adapter->rx_ring);
 | |
| 
 | |
| 	iounmap(hw->hw_addr);
 | |
| 	if (hw->flash_address)
 | |
| 		iounmap(hw->flash_address);
 | |
| 	pci_release_selected_regions(pdev, adapter->bars);
 | |
| 
 | |
| 	free_netdev(netdev);
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 | |
|  * @adapter: board private structure to initialize
 | |
|  *
 | |
|  * e1000_sw_init initializes the Adapter private data structure.
 | |
|  * e1000_init_hw_struct MUST be called before this function
 | |
|  **/
 | |
| 
 | |
| static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
 | |
| 
 | |
| 	adapter->num_tx_queues = 1;
 | |
| 	adapter->num_rx_queues = 1;
 | |
| 
 | |
| 	if (e1000_alloc_queues(adapter)) {
 | |
| 		e_err(probe, "Unable to allocate memory for queues\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Explicitly disable IRQ since the NIC can be in any state. */
 | |
| 	e1000_irq_disable(adapter);
 | |
| 
 | |
| 	spin_lock_init(&adapter->stats_lock);
 | |
| 
 | |
| 	set_bit(__E1000_DOWN, &adapter->flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_alloc_queues - Allocate memory for all rings
 | |
|  * @adapter: board private structure to initialize
 | |
|  *
 | |
|  * We allocate one ring per queue at run-time since we don't know the
 | |
|  * number of queues at compile-time.
 | |
|  **/
 | |
| 
 | |
| static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
 | |
| 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
 | |
| 	if (!adapter->tx_ring)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
 | |
| 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
 | |
| 	if (!adapter->rx_ring) {
 | |
| 		kfree(adapter->tx_ring);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_open - Called when a network interface is made active
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Returns 0 on success, negative value on failure
 | |
|  *
 | |
|  * The open entry point is called when a network interface is made
 | |
|  * active by the system (IFF_UP).  At this point all resources needed
 | |
|  * for transmit and receive operations are allocated, the interrupt
 | |
|  * handler is registered with the OS, the watchdog timer is started,
 | |
|  * and the stack is notified that the interface is ready.
 | |
|  **/
 | |
| 
 | |
| static int e1000_open(struct net_device *netdev)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int err;
 | |
| 
 | |
| 	/* disallow open during test */
 | |
| 	if (test_bit(__E1000_TESTING, &adapter->flags))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	netif_carrier_off(netdev);
 | |
| 
 | |
| 	/* allocate transmit descriptors */
 | |
| 	err = e1000_setup_all_tx_resources(adapter);
 | |
| 	if (err)
 | |
| 		goto err_setup_tx;
 | |
| 
 | |
| 	/* allocate receive descriptors */
 | |
| 	err = e1000_setup_all_rx_resources(adapter);
 | |
| 	if (err)
 | |
| 		goto err_setup_rx;
 | |
| 
 | |
| 	e1000_power_up_phy(adapter);
 | |
| 
 | |
| 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 | |
| 	if ((hw->mng_cookie.status &
 | |
| 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
 | |
| 		e1000_update_mng_vlan(adapter);
 | |
| 	}
 | |
| 
 | |
| 	/* before we allocate an interrupt, we must be ready to handle it.
 | |
| 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
 | |
| 	 * as soon as we call pci_request_irq, so we have to setup our
 | |
| 	 * clean_rx handler before we do so.  */
 | |
| 	e1000_configure(adapter);
 | |
| 
 | |
| 	err = e1000_request_irq(adapter);
 | |
| 	if (err)
 | |
| 		goto err_req_irq;
 | |
| 
 | |
| 	/* From here on the code is the same as e1000_up() */
 | |
| 	clear_bit(__E1000_DOWN, &adapter->flags);
 | |
| 
 | |
| 	napi_enable(&adapter->napi);
 | |
| 
 | |
| 	e1000_irq_enable(adapter);
 | |
| 
 | |
| 	netif_start_queue(netdev);
 | |
| 
 | |
| 	/* fire a link status change interrupt to start the watchdog */
 | |
| 	ew32(ICS, E1000_ICS_LSC);
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| 
 | |
| err_req_irq:
 | |
| 	e1000_power_down_phy(adapter);
 | |
| 	e1000_free_all_rx_resources(adapter);
 | |
| err_setup_rx:
 | |
| 	e1000_free_all_tx_resources(adapter);
 | |
| err_setup_tx:
 | |
| 	e1000_reset(adapter);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_close - Disables a network interface
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Returns 0, this is not allowed to fail
 | |
|  *
 | |
|  * The close entry point is called when an interface is de-activated
 | |
|  * by the OS.  The hardware is still under the drivers control, but
 | |
|  * needs to be disabled.  A global MAC reset is issued to stop the
 | |
|  * hardware, and all transmit and receive resources are freed.
 | |
|  **/
 | |
| 
 | |
| static int e1000_close(struct net_device *netdev)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 | |
| 	e1000_down(adapter);
 | |
| 	e1000_power_down_phy(adapter);
 | |
| 	e1000_free_irq(adapter);
 | |
| 
 | |
| 	e1000_free_all_tx_resources(adapter);
 | |
| 	e1000_free_all_rx_resources(adapter);
 | |
| 
 | |
| 	/* kill manageability vlan ID if supported, but not if a vlan with
 | |
| 	 * the same ID is registered on the host OS (let 8021q kill it) */
 | |
| 	if ((hw->mng_cookie.status &
 | |
| 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
 | |
| 	     !(adapter->vlgrp &&
 | |
| 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
 | |
| 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
 | |
|  * @adapter: address of board private structure
 | |
|  * @start: address of beginning of memory
 | |
|  * @len: length of memory
 | |
|  **/
 | |
| static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
 | |
| 				  unsigned long len)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	unsigned long begin = (unsigned long)start;
 | |
| 	unsigned long end = begin + len;
 | |
| 
 | |
| 	/* First rev 82545 and 82546 need to not allow any memory
 | |
| 	 * write location to cross 64k boundary due to errata 23 */
 | |
| 	if (hw->mac_type == e1000_82545 ||
 | |
| 	    hw->mac_type == e1000_82546) {
 | |
| 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
 | |
|  * @adapter: board private structure
 | |
|  * @txdr:    tx descriptor ring (for a specific queue) to setup
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| 
 | |
| static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 | |
| 				    struct e1000_tx_ring *txdr)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	int size;
 | |
| 
 | |
| 	size = sizeof(struct e1000_buffer) * txdr->count;
 | |
| 	txdr->buffer_info = vmalloc(size);
 | |
| 	if (!txdr->buffer_info) {
 | |
| 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
 | |
| 		      "ring\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memset(txdr->buffer_info, 0, size);
 | |
| 
 | |
| 	/* round up to nearest 4K */
 | |
| 
 | |
| 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
 | |
| 	txdr->size = ALIGN(txdr->size, 4096);
 | |
| 
 | |
| 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
 | |
| 					GFP_KERNEL);
 | |
| 	if (!txdr->desc) {
 | |
| setup_tx_desc_die:
 | |
| 		vfree(txdr->buffer_info);
 | |
| 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
 | |
| 		      "ring\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Fix for errata 23, can't cross 64kB boundary */
 | |
| 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
 | |
| 		void *olddesc = txdr->desc;
 | |
| 		dma_addr_t olddma = txdr->dma;
 | |
| 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
 | |
| 		      txdr->size, txdr->desc);
 | |
| 		/* Try again, without freeing the previous */
 | |
| 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
 | |
| 						&txdr->dma, GFP_KERNEL);
 | |
| 		/* Failed allocation, critical failure */
 | |
| 		if (!txdr->desc) {
 | |
| 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
 | |
| 					  olddma);
 | |
| 			goto setup_tx_desc_die;
 | |
| 		}
 | |
| 
 | |
| 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
 | |
| 			/* give up */
 | |
| 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 | |
| 					  txdr->dma);
 | |
| 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
 | |
| 					  olddma);
 | |
| 			e_err(probe, "Unable to allocate aligned memory "
 | |
| 			      "for the transmit descriptor ring\n");
 | |
| 			vfree(txdr->buffer_info);
 | |
| 			return -ENOMEM;
 | |
| 		} else {
 | |
| 			/* Free old allocation, new allocation was successful */
 | |
| 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
 | |
| 					  olddma);
 | |
| 		}
 | |
| 	}
 | |
| 	memset(txdr->desc, 0, txdr->size);
 | |
| 
 | |
| 	txdr->next_to_use = 0;
 | |
| 	txdr->next_to_clean = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
 | |
|  * 				  (Descriptors) for all queues
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| 
 | |
| int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++) {
 | |
| 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
 | |
| 		if (err) {
 | |
| 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
 | |
| 			for (i-- ; i >= 0; i--)
 | |
| 				e1000_free_tx_resources(adapter,
 | |
| 							&adapter->tx_ring[i]);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure the Tx unit of the MAC after a reset.
 | |
|  **/
 | |
| 
 | |
| static void e1000_configure_tx(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	u64 tdba;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 tdlen, tctl, tipg;
 | |
| 	u32 ipgr1, ipgr2;
 | |
| 
 | |
| 	/* Setup the HW Tx Head and Tail descriptor pointers */
 | |
| 
 | |
| 	switch (adapter->num_tx_queues) {
 | |
| 	case 1:
 | |
| 	default:
 | |
| 		tdba = adapter->tx_ring[0].dma;
 | |
| 		tdlen = adapter->tx_ring[0].count *
 | |
| 			sizeof(struct e1000_tx_desc);
 | |
| 		ew32(TDLEN, tdlen);
 | |
| 		ew32(TDBAH, (tdba >> 32));
 | |
| 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
 | |
| 		ew32(TDT, 0);
 | |
| 		ew32(TDH, 0);
 | |
| 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
 | |
| 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the default values for the Tx Inter Packet Gap timer */
 | |
| 	if ((hw->media_type == e1000_media_type_fiber ||
 | |
| 	     hw->media_type == e1000_media_type_internal_serdes))
 | |
| 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
 | |
| 	else
 | |
| 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82542_rev2_0:
 | |
| 	case e1000_82542_rev2_1:
 | |
| 		tipg = DEFAULT_82542_TIPG_IPGT;
 | |
| 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
 | |
| 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
 | |
| 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
 | |
| 		break;
 | |
| 	}
 | |
| 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
 | |
| 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
 | |
| 	ew32(TIPG, tipg);
 | |
| 
 | |
| 	/* Set the Tx Interrupt Delay register */
 | |
| 
 | |
| 	ew32(TIDV, adapter->tx_int_delay);
 | |
| 	if (hw->mac_type >= e1000_82540)
 | |
| 		ew32(TADV, adapter->tx_abs_int_delay);
 | |
| 
 | |
| 	/* Program the Transmit Control Register */
 | |
| 
 | |
| 	tctl = er32(TCTL);
 | |
| 	tctl &= ~E1000_TCTL_CT;
 | |
| 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
 | |
| 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 | |
| 
 | |
| 	e1000_config_collision_dist(hw);
 | |
| 
 | |
| 	/* Setup Transmit Descriptor Settings for eop descriptor */
 | |
| 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
 | |
| 
 | |
| 	/* only set IDE if we are delaying interrupts using the timers */
 | |
| 	if (adapter->tx_int_delay)
 | |
| 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
 | |
| 
 | |
| 	if (hw->mac_type < e1000_82543)
 | |
| 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
 | |
| 	else
 | |
| 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
 | |
| 
 | |
| 	/* Cache if we're 82544 running in PCI-X because we'll
 | |
| 	 * need this to apply a workaround later in the send path. */
 | |
| 	if (hw->mac_type == e1000_82544 &&
 | |
| 	    hw->bus_type == e1000_bus_type_pcix)
 | |
| 		adapter->pcix_82544 = 1;
 | |
| 
 | |
| 	ew32(TCTL, tctl);
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
 | |
|  * @adapter: board private structure
 | |
|  * @rxdr:    rx descriptor ring (for a specific queue) to setup
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  **/
 | |
| 
 | |
| static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 | |
| 				    struct e1000_rx_ring *rxdr)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	int size, desc_len;
 | |
| 
 | |
| 	size = sizeof(struct e1000_buffer) * rxdr->count;
 | |
| 	rxdr->buffer_info = vmalloc(size);
 | |
| 	if (!rxdr->buffer_info) {
 | |
| 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
 | |
| 		      "ring\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memset(rxdr->buffer_info, 0, size);
 | |
| 
 | |
| 	desc_len = sizeof(struct e1000_rx_desc);
 | |
| 
 | |
| 	/* Round up to nearest 4K */
 | |
| 
 | |
| 	rxdr->size = rxdr->count * desc_len;
 | |
| 	rxdr->size = ALIGN(rxdr->size, 4096);
 | |
| 
 | |
| 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
 | |
| 					GFP_KERNEL);
 | |
| 
 | |
| 	if (!rxdr->desc) {
 | |
| 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
 | |
| 		      "ring\n");
 | |
| setup_rx_desc_die:
 | |
| 		vfree(rxdr->buffer_info);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Fix for errata 23, can't cross 64kB boundary */
 | |
| 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
 | |
| 		void *olddesc = rxdr->desc;
 | |
| 		dma_addr_t olddma = rxdr->dma;
 | |
| 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
 | |
| 		      rxdr->size, rxdr->desc);
 | |
| 		/* Try again, without freeing the previous */
 | |
| 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
 | |
| 						&rxdr->dma, GFP_KERNEL);
 | |
| 		/* Failed allocation, critical failure */
 | |
| 		if (!rxdr->desc) {
 | |
| 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
 | |
| 					  olddma);
 | |
| 			e_err(probe, "Unable to allocate memory for the Rx "
 | |
| 			      "descriptor ring\n");
 | |
| 			goto setup_rx_desc_die;
 | |
| 		}
 | |
| 
 | |
| 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
 | |
| 			/* give up */
 | |
| 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 | |
| 					  rxdr->dma);
 | |
| 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
 | |
| 					  olddma);
 | |
| 			e_err(probe, "Unable to allocate aligned memory for "
 | |
| 			      "the Rx descriptor ring\n");
 | |
| 			goto setup_rx_desc_die;
 | |
| 		} else {
 | |
| 			/* Free old allocation, new allocation was successful */
 | |
| 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
 | |
| 					  olddma);
 | |
| 		}
 | |
| 	}
 | |
| 	memset(rxdr->desc, 0, rxdr->size);
 | |
| 
 | |
| 	rxdr->next_to_clean = 0;
 | |
| 	rxdr->next_to_use = 0;
 | |
| 	rxdr->rx_skb_top = NULL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
 | |
|  * 				  (Descriptors) for all queues
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| 
 | |
| int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++) {
 | |
| 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
 | |
| 		if (err) {
 | |
| 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
 | |
| 			for (i-- ; i >= 0; i--)
 | |
| 				e1000_free_rx_resources(adapter,
 | |
| 							&adapter->rx_ring[i]);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_setup_rctl - configure the receive control registers
 | |
|  * @adapter: Board private structure
 | |
|  **/
 | |
| static void e1000_setup_rctl(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 rctl;
 | |
| 
 | |
| 	rctl = er32(RCTL);
 | |
| 
 | |
| 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 | |
| 
 | |
| 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
 | |
| 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
 | |
| 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
 | |
| 
 | |
| 	if (hw->tbi_compatibility_on == 1)
 | |
| 		rctl |= E1000_RCTL_SBP;
 | |
| 	else
 | |
| 		rctl &= ~E1000_RCTL_SBP;
 | |
| 
 | |
| 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
 | |
| 		rctl &= ~E1000_RCTL_LPE;
 | |
| 	else
 | |
| 		rctl |= E1000_RCTL_LPE;
 | |
| 
 | |
| 	/* Setup buffer sizes */
 | |
| 	rctl &= ~E1000_RCTL_SZ_4096;
 | |
| 	rctl |= E1000_RCTL_BSEX;
 | |
| 	switch (adapter->rx_buffer_len) {
 | |
| 		case E1000_RXBUFFER_2048:
 | |
| 		default:
 | |
| 			rctl |= E1000_RCTL_SZ_2048;
 | |
| 			rctl &= ~E1000_RCTL_BSEX;
 | |
| 			break;
 | |
| 		case E1000_RXBUFFER_4096:
 | |
| 			rctl |= E1000_RCTL_SZ_4096;
 | |
| 			break;
 | |
| 		case E1000_RXBUFFER_8192:
 | |
| 			rctl |= E1000_RCTL_SZ_8192;
 | |
| 			break;
 | |
| 		case E1000_RXBUFFER_16384:
 | |
| 			rctl |= E1000_RCTL_SZ_16384;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	ew32(RCTL, rctl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure the Rx unit of the MAC after a reset.
 | |
|  **/
 | |
| 
 | |
| static void e1000_configure_rx(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	u64 rdba;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 rdlen, rctl, rxcsum;
 | |
| 
 | |
| 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
 | |
| 		rdlen = adapter->rx_ring[0].count *
 | |
| 		        sizeof(struct e1000_rx_desc);
 | |
| 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
 | |
| 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
 | |
| 	} else {
 | |
| 		rdlen = adapter->rx_ring[0].count *
 | |
| 		        sizeof(struct e1000_rx_desc);
 | |
| 		adapter->clean_rx = e1000_clean_rx_irq;
 | |
| 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
 | |
| 	}
 | |
| 
 | |
| 	/* disable receives while setting up the descriptors */
 | |
| 	rctl = er32(RCTL);
 | |
| 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 | |
| 
 | |
| 	/* set the Receive Delay Timer Register */
 | |
| 	ew32(RDTR, adapter->rx_int_delay);
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82540) {
 | |
| 		ew32(RADV, adapter->rx_abs_int_delay);
 | |
| 		if (adapter->itr_setting != 0)
 | |
| 			ew32(ITR, 1000000000 / (adapter->itr * 256));
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 | |
| 	 * the Base and Length of the Rx Descriptor Ring */
 | |
| 	switch (adapter->num_rx_queues) {
 | |
| 	case 1:
 | |
| 	default:
 | |
| 		rdba = adapter->rx_ring[0].dma;
 | |
| 		ew32(RDLEN, rdlen);
 | |
| 		ew32(RDBAH, (rdba >> 32));
 | |
| 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
 | |
| 		ew32(RDT, 0);
 | |
| 		ew32(RDH, 0);
 | |
| 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
 | |
| 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		rxcsum = er32(RXCSUM);
 | |
| 		if (adapter->rx_csum)
 | |
| 			rxcsum |= E1000_RXCSUM_TUOFL;
 | |
| 		else
 | |
| 			/* don't need to clear IPPCSE as it defaults to 0 */
 | |
| 			rxcsum &= ~E1000_RXCSUM_TUOFL;
 | |
| 		ew32(RXCSUM, rxcsum);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable Receives */
 | |
| 	ew32(RCTL, rctl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_free_tx_resources - Free Tx Resources per Queue
 | |
|  * @adapter: board private structure
 | |
|  * @tx_ring: Tx descriptor ring for a specific queue
 | |
|  *
 | |
|  * Free all transmit software resources
 | |
|  **/
 | |
| 
 | |
| static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 | |
| 				    struct e1000_tx_ring *tx_ring)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 
 | |
| 	e1000_clean_tx_ring(adapter, tx_ring);
 | |
| 
 | |
| 	vfree(tx_ring->buffer_info);
 | |
| 	tx_ring->buffer_info = NULL;
 | |
| 
 | |
| 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 | |
| 			  tx_ring->dma);
 | |
| 
 | |
| 	tx_ring->desc = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Free all transmit software resources
 | |
|  **/
 | |
| 
 | |
| void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++)
 | |
| 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
 | |
| }
 | |
| 
 | |
| static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
 | |
| 					     struct e1000_buffer *buffer_info)
 | |
| {
 | |
| 	if (buffer_info->dma) {
 | |
| 		if (buffer_info->mapped_as_page)
 | |
| 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
 | |
| 				       buffer_info->length, DMA_TO_DEVICE);
 | |
| 		else
 | |
| 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
 | |
| 					 buffer_info->length,
 | |
| 					 DMA_TO_DEVICE);
 | |
| 		buffer_info->dma = 0;
 | |
| 	}
 | |
| 	if (buffer_info->skb) {
 | |
| 		dev_kfree_skb_any(buffer_info->skb);
 | |
| 		buffer_info->skb = NULL;
 | |
| 	}
 | |
| 	buffer_info->time_stamp = 0;
 | |
| 	/* buffer_info must be completely set up in the transmit path */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_clean_tx_ring - Free Tx Buffers
 | |
|  * @adapter: board private structure
 | |
|  * @tx_ring: ring to be cleaned
 | |
|  **/
 | |
| 
 | |
| static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 | |
| 				struct e1000_tx_ring *tx_ring)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	unsigned long size;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Free all the Tx ring sk_buffs */
 | |
| 
 | |
| 	for (i = 0; i < tx_ring->count; i++) {
 | |
| 		buffer_info = &tx_ring->buffer_info[i];
 | |
| 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 | |
| 	}
 | |
| 
 | |
| 	size = sizeof(struct e1000_buffer) * tx_ring->count;
 | |
| 	memset(tx_ring->buffer_info, 0, size);
 | |
| 
 | |
| 	/* Zero out the descriptor ring */
 | |
| 
 | |
| 	memset(tx_ring->desc, 0, tx_ring->size);
 | |
| 
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| 	tx_ring->last_tx_tso = 0;
 | |
| 
 | |
| 	writel(0, hw->hw_addr + tx_ring->tdh);
 | |
| 	writel(0, hw->hw_addr + tx_ring->tdt);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| 
 | |
| static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_tx_queues; i++)
 | |
| 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_free_rx_resources - Free Rx Resources
 | |
|  * @adapter: board private structure
 | |
|  * @rx_ring: ring to clean the resources from
 | |
|  *
 | |
|  * Free all receive software resources
 | |
|  **/
 | |
| 
 | |
| static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 | |
| 				    struct e1000_rx_ring *rx_ring)
 | |
| {
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 
 | |
| 	e1000_clean_rx_ring(adapter, rx_ring);
 | |
| 
 | |
| 	vfree(rx_ring->buffer_info);
 | |
| 	rx_ring->buffer_info = NULL;
 | |
| 
 | |
| 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 | |
| 			  rx_ring->dma);
 | |
| 
 | |
| 	rx_ring->desc = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Free all receive software resources
 | |
|  **/
 | |
| 
 | |
| void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++)
 | |
| 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_clean_rx_ring - Free Rx Buffers per Queue
 | |
|  * @adapter: board private structure
 | |
|  * @rx_ring: ring to free buffers from
 | |
|  **/
 | |
| 
 | |
| static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 | |
| 				struct e1000_rx_ring *rx_ring)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	unsigned long size;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Free all the Rx ring sk_buffs */
 | |
| 	for (i = 0; i < rx_ring->count; i++) {
 | |
| 		buffer_info = &rx_ring->buffer_info[i];
 | |
| 		if (buffer_info->dma &&
 | |
| 		    adapter->clean_rx == e1000_clean_rx_irq) {
 | |
| 			dma_unmap_single(&pdev->dev, buffer_info->dma,
 | |
| 			                 buffer_info->length,
 | |
| 					 DMA_FROM_DEVICE);
 | |
| 		} else if (buffer_info->dma &&
 | |
| 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
 | |
| 			dma_unmap_page(&pdev->dev, buffer_info->dma,
 | |
| 				       buffer_info->length,
 | |
| 				       DMA_FROM_DEVICE);
 | |
| 		}
 | |
| 
 | |
| 		buffer_info->dma = 0;
 | |
| 		if (buffer_info->page) {
 | |
| 			put_page(buffer_info->page);
 | |
| 			buffer_info->page = NULL;
 | |
| 		}
 | |
| 		if (buffer_info->skb) {
 | |
| 			dev_kfree_skb(buffer_info->skb);
 | |
| 			buffer_info->skb = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* there also may be some cached data from a chained receive */
 | |
| 	if (rx_ring->rx_skb_top) {
 | |
| 		dev_kfree_skb(rx_ring->rx_skb_top);
 | |
| 		rx_ring->rx_skb_top = NULL;
 | |
| 	}
 | |
| 
 | |
| 	size = sizeof(struct e1000_buffer) * rx_ring->count;
 | |
| 	memset(rx_ring->buffer_info, 0, size);
 | |
| 
 | |
| 	/* Zero out the descriptor ring */
 | |
| 	memset(rx_ring->desc, 0, rx_ring->size);
 | |
| 
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 	rx_ring->next_to_use = 0;
 | |
| 
 | |
| 	writel(0, hw->hw_addr + rx_ring->rdh);
 | |
| 	writel(0, hw->hw_addr + rx_ring->rdt);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| 
 | |
| static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < adapter->num_rx_queues; i++)
 | |
| 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
 | |
| }
 | |
| 
 | |
| /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
 | |
|  * and memory write and invalidate disabled for certain operations
 | |
|  */
 | |
| static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	u32 rctl;
 | |
| 
 | |
| 	e1000_pci_clear_mwi(hw);
 | |
| 
 | |
| 	rctl = er32(RCTL);
 | |
| 	rctl |= E1000_RCTL_RST;
 | |
| 	ew32(RCTL, rctl);
 | |
| 	E1000_WRITE_FLUSH();
 | |
| 	mdelay(5);
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		e1000_clean_all_rx_rings(adapter);
 | |
| }
 | |
| 
 | |
| static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	u32 rctl;
 | |
| 
 | |
| 	rctl = er32(RCTL);
 | |
| 	rctl &= ~E1000_RCTL_RST;
 | |
| 	ew32(RCTL, rctl);
 | |
| 	E1000_WRITE_FLUSH();
 | |
| 	mdelay(5);
 | |
| 
 | |
| 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
 | |
| 		e1000_pci_set_mwi(hw);
 | |
| 
 | |
| 	if (netif_running(netdev)) {
 | |
| 		/* No need to loop, because 82542 supports only 1 queue */
 | |
| 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
 | |
| 		e1000_configure_rx(adapter);
 | |
| 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_set_mac - Change the Ethernet Address of the NIC
 | |
|  * @netdev: network interface device structure
 | |
|  * @p: pointer to an address structure
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  **/
 | |
| 
 | |
| static int e1000_set_mac(struct net_device *netdev, void *p)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct sockaddr *addr = p;
 | |
| 
 | |
| 	if (!is_valid_ether_addr(addr->sa_data))
 | |
| 		return -EADDRNOTAVAIL;
 | |
| 
 | |
| 	/* 82542 2.0 needs to be in reset to write receive address registers */
 | |
| 
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0)
 | |
| 		e1000_enter_82542_rst(adapter);
 | |
| 
 | |
| 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 | |
| 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
 | |
| 
 | |
| 	e1000_rar_set(hw, hw->mac_addr, 0);
 | |
| 
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0)
 | |
| 		e1000_leave_82542_rst(adapter);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * The set_rx_mode entry point is called whenever the unicast or multicast
 | |
|  * address lists or the network interface flags are updated. This routine is
 | |
|  * responsible for configuring the hardware for proper unicast, multicast,
 | |
|  * promiscuous mode, and all-multi behavior.
 | |
|  **/
 | |
| 
 | |
| static void e1000_set_rx_mode(struct net_device *netdev)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 	bool use_uc = false;
 | |
| 	u32 rctl;
 | |
| 	u32 hash_value;
 | |
| 	int i, rar_entries = E1000_RAR_ENTRIES;
 | |
| 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
 | |
| 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
 | |
| 
 | |
| 	if (!mcarray) {
 | |
| 		e_err(probe, "memory allocation failed\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for Promiscuous and All Multicast modes */
 | |
| 
 | |
| 	rctl = er32(RCTL);
 | |
| 
 | |
| 	if (netdev->flags & IFF_PROMISC) {
 | |
| 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
 | |
| 		rctl &= ~E1000_RCTL_VFE;
 | |
| 	} else {
 | |
| 		if (netdev->flags & IFF_ALLMULTI)
 | |
| 			rctl |= E1000_RCTL_MPE;
 | |
| 		else
 | |
| 			rctl &= ~E1000_RCTL_MPE;
 | |
| 		/* Enable VLAN filter if there is a VLAN */
 | |
| 		if (adapter->vlgrp)
 | |
| 			rctl |= E1000_RCTL_VFE;
 | |
| 	}
 | |
| 
 | |
| 	if (netdev_uc_count(netdev) > rar_entries - 1) {
 | |
| 		rctl |= E1000_RCTL_UPE;
 | |
| 	} else if (!(netdev->flags & IFF_PROMISC)) {
 | |
| 		rctl &= ~E1000_RCTL_UPE;
 | |
| 		use_uc = true;
 | |
| 	}
 | |
| 
 | |
| 	ew32(RCTL, rctl);
 | |
| 
 | |
| 	/* 82542 2.0 needs to be in reset to write receive address registers */
 | |
| 
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0)
 | |
| 		e1000_enter_82542_rst(adapter);
 | |
| 
 | |
| 	/* load the first 14 addresses into the exact filters 1-14. Unicast
 | |
| 	 * addresses take precedence to avoid disabling unicast filtering
 | |
| 	 * when possible.
 | |
| 	 *
 | |
| 	 * RAR 0 is used for the station MAC adddress
 | |
| 	 * if there are not 14 addresses, go ahead and clear the filters
 | |
| 	 */
 | |
| 	i = 1;
 | |
| 	if (use_uc)
 | |
| 		netdev_for_each_uc_addr(ha, netdev) {
 | |
| 			if (i == rar_entries)
 | |
| 				break;
 | |
| 			e1000_rar_set(hw, ha->addr, i++);
 | |
| 		}
 | |
| 
 | |
| 	netdev_for_each_mc_addr(ha, netdev) {
 | |
| 		if (i == rar_entries) {
 | |
| 			/* load any remaining addresses into the hash table */
 | |
| 			u32 hash_reg, hash_bit, mta;
 | |
| 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
 | |
| 			hash_reg = (hash_value >> 5) & 0x7F;
 | |
| 			hash_bit = hash_value & 0x1F;
 | |
| 			mta = (1 << hash_bit);
 | |
| 			mcarray[hash_reg] |= mta;
 | |
| 		} else {
 | |
| 			e1000_rar_set(hw, ha->addr, i++);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (; i < rar_entries; i++) {
 | |
| 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
 | |
| 		E1000_WRITE_FLUSH();
 | |
| 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
 | |
| 		E1000_WRITE_FLUSH();
 | |
| 	}
 | |
| 
 | |
| 	/* write the hash table completely, write from bottom to avoid
 | |
| 	 * both stupid write combining chipsets, and flushing each write */
 | |
| 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
 | |
| 		/*
 | |
| 		 * If we are on an 82544 has an errata where writing odd
 | |
| 		 * offsets overwrites the previous even offset, but writing
 | |
| 		 * backwards over the range solves the issue by always
 | |
| 		 * writing the odd offset first
 | |
| 		 */
 | |
| 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
 | |
| 	}
 | |
| 	E1000_WRITE_FLUSH();
 | |
| 
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0)
 | |
| 		e1000_leave_82542_rst(adapter);
 | |
| 
 | |
| 	kfree(mcarray);
 | |
| }
 | |
| 
 | |
| /* Need to wait a few seconds after link up to get diagnostic information from
 | |
|  * the phy */
 | |
| 
 | |
| static void e1000_update_phy_info(unsigned long data)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
 | |
| 	schedule_work(&adapter->phy_info_task);
 | |
| }
 | |
| 
 | |
| static void e1000_update_phy_info_task(struct work_struct *work)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = container_of(work,
 | |
| 	                                             struct e1000_adapter,
 | |
| 	                                             phy_info_task);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	e1000_phy_get_info(hw, &adapter->phy_info);
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_82547_tx_fifo_stall - Timer Call-back
 | |
|  * @data: pointer to adapter cast into an unsigned long
 | |
|  **/
 | |
| static void e1000_82547_tx_fifo_stall(unsigned long data)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
 | |
| 	schedule_work(&adapter->fifo_stall_task);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_82547_tx_fifo_stall_task - task to complete work
 | |
|  * @work: work struct contained inside adapter struct
 | |
|  **/
 | |
| static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = container_of(work,
 | |
| 	                                             struct e1000_adapter,
 | |
| 	                                             fifo_stall_task);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	u32 tctl;
 | |
| 
 | |
| 	rtnl_lock();
 | |
| 	if (atomic_read(&adapter->tx_fifo_stall)) {
 | |
| 		if ((er32(TDT) == er32(TDH)) &&
 | |
| 		   (er32(TDFT) == er32(TDFH)) &&
 | |
| 		   (er32(TDFTS) == er32(TDFHS))) {
 | |
| 			tctl = er32(TCTL);
 | |
| 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
 | |
| 			ew32(TDFT, adapter->tx_head_addr);
 | |
| 			ew32(TDFH, adapter->tx_head_addr);
 | |
| 			ew32(TDFTS, adapter->tx_head_addr);
 | |
| 			ew32(TDFHS, adapter->tx_head_addr);
 | |
| 			ew32(TCTL, tctl);
 | |
| 			E1000_WRITE_FLUSH();
 | |
| 
 | |
| 			adapter->tx_fifo_head = 0;
 | |
| 			atomic_set(&adapter->tx_fifo_stall, 0);
 | |
| 			netif_wake_queue(netdev);
 | |
| 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 | |
| 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
 | |
| 		}
 | |
| 	}
 | |
| 	rtnl_unlock();
 | |
| }
 | |
| 
 | |
| bool e1000_has_link(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	bool link_active = false;
 | |
| 
 | |
| 	/* get_link_status is set on LSC (link status) interrupt or
 | |
| 	 * rx sequence error interrupt.  get_link_status will stay
 | |
| 	 * false until the e1000_check_for_link establishes link
 | |
| 	 * for copper adapters ONLY
 | |
| 	 */
 | |
| 	switch (hw->media_type) {
 | |
| 	case e1000_media_type_copper:
 | |
| 		if (hw->get_link_status) {
 | |
| 			e1000_check_for_link(hw);
 | |
| 			link_active = !hw->get_link_status;
 | |
| 		} else {
 | |
| 			link_active = true;
 | |
| 		}
 | |
| 		break;
 | |
| 	case e1000_media_type_fiber:
 | |
| 		e1000_check_for_link(hw);
 | |
| 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
 | |
| 		break;
 | |
| 	case e1000_media_type_internal_serdes:
 | |
| 		e1000_check_for_link(hw);
 | |
| 		link_active = hw->serdes_has_link;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return link_active;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_watchdog - Timer Call-back
 | |
|  * @data: pointer to adapter cast into an unsigned long
 | |
|  **/
 | |
| static void e1000_watchdog(unsigned long data)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct e1000_tx_ring *txdr = adapter->tx_ring;
 | |
| 	u32 link, tctl;
 | |
| 
 | |
| 	link = e1000_has_link(adapter);
 | |
| 	if ((netif_carrier_ok(netdev)) && link)
 | |
| 		goto link_up;
 | |
| 
 | |
| 	if (link) {
 | |
| 		if (!netif_carrier_ok(netdev)) {
 | |
| 			u32 ctrl;
 | |
| 			bool txb2b = true;
 | |
| 			/* update snapshot of PHY registers on LSC */
 | |
| 			e1000_get_speed_and_duplex(hw,
 | |
| 			                           &adapter->link_speed,
 | |
| 			                           &adapter->link_duplex);
 | |
| 
 | |
| 			ctrl = er32(CTRL);
 | |
| 			pr_info("%s NIC Link is Up %d Mbps %s, "
 | |
| 				"Flow Control: %s\n",
 | |
| 				netdev->name,
 | |
| 				adapter->link_speed,
 | |
| 				adapter->link_duplex == FULL_DUPLEX ?
 | |
| 				"Full Duplex" : "Half Duplex",
 | |
| 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
 | |
| 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
 | |
| 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
 | |
| 				E1000_CTRL_TFCE) ? "TX" : "None")));
 | |
| 
 | |
| 			/* adjust timeout factor according to speed/duplex */
 | |
| 			adapter->tx_timeout_factor = 1;
 | |
| 			switch (adapter->link_speed) {
 | |
| 			case SPEED_10:
 | |
| 				txb2b = false;
 | |
| 				adapter->tx_timeout_factor = 16;
 | |
| 				break;
 | |
| 			case SPEED_100:
 | |
| 				txb2b = false;
 | |
| 				/* maybe add some timeout factor ? */
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* enable transmits in the hardware */
 | |
| 			tctl = er32(TCTL);
 | |
| 			tctl |= E1000_TCTL_EN;
 | |
| 			ew32(TCTL, tctl);
 | |
| 
 | |
| 			netif_carrier_on(netdev);
 | |
| 			if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 				mod_timer(&adapter->phy_info_timer,
 | |
| 				          round_jiffies(jiffies + 2 * HZ));
 | |
| 			adapter->smartspeed = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (netif_carrier_ok(netdev)) {
 | |
| 			adapter->link_speed = 0;
 | |
| 			adapter->link_duplex = 0;
 | |
| 			pr_info("%s NIC Link is Down\n",
 | |
| 				netdev->name);
 | |
| 			netif_carrier_off(netdev);
 | |
| 
 | |
| 			if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 				mod_timer(&adapter->phy_info_timer,
 | |
| 				          round_jiffies(jiffies + 2 * HZ));
 | |
| 		}
 | |
| 
 | |
| 		e1000_smartspeed(adapter);
 | |
| 	}
 | |
| 
 | |
| link_up:
 | |
| 	e1000_update_stats(adapter);
 | |
| 
 | |
| 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
 | |
| 	adapter->tpt_old = adapter->stats.tpt;
 | |
| 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
 | |
| 	adapter->colc_old = adapter->stats.colc;
 | |
| 
 | |
| 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
 | |
| 	adapter->gorcl_old = adapter->stats.gorcl;
 | |
| 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
 | |
| 	adapter->gotcl_old = adapter->stats.gotcl;
 | |
| 
 | |
| 	e1000_update_adaptive(hw);
 | |
| 
 | |
| 	if (!netif_carrier_ok(netdev)) {
 | |
| 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
 | |
| 			/* We've lost link, so the controller stops DMA,
 | |
| 			 * but we've got queued Tx work that's never going
 | |
| 			 * to get done, so reset controller to flush Tx.
 | |
| 			 * (Do the reset outside of interrupt context). */
 | |
| 			adapter->tx_timeout_count++;
 | |
| 			schedule_work(&adapter->reset_task);
 | |
| 			/* return immediately since reset is imminent */
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Simple mode for Interrupt Throttle Rate (ITR) */
 | |
| 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
 | |
| 		/*
 | |
| 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
 | |
| 		 * Total asymmetrical Tx or Rx gets ITR=8000;
 | |
| 		 * everyone else is between 2000-8000.
 | |
| 		 */
 | |
| 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
 | |
| 		u32 dif = (adapter->gotcl > adapter->gorcl ?
 | |
| 			    adapter->gotcl - adapter->gorcl :
 | |
| 			    adapter->gorcl - adapter->gotcl) / 10000;
 | |
| 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
 | |
| 
 | |
| 		ew32(ITR, 1000000000 / (itr * 256));
 | |
| 	}
 | |
| 
 | |
| 	/* Cause software interrupt to ensure rx ring is cleaned */
 | |
| 	ew32(ICS, E1000_ICS_RXDMT0);
 | |
| 
 | |
| 	/* Force detection of hung controller every watchdog period */
 | |
| 	adapter->detect_tx_hung = true;
 | |
| 
 | |
| 	/* Reset the timer */
 | |
| 	if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 		mod_timer(&adapter->watchdog_timer,
 | |
| 		          round_jiffies(jiffies + 2 * HZ));
 | |
| }
 | |
| 
 | |
| enum latency_range {
 | |
| 	lowest_latency = 0,
 | |
| 	low_latency = 1,
 | |
| 	bulk_latency = 2,
 | |
| 	latency_invalid = 255
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * e1000_update_itr - update the dynamic ITR value based on statistics
 | |
|  * @adapter: pointer to adapter
 | |
|  * @itr_setting: current adapter->itr
 | |
|  * @packets: the number of packets during this measurement interval
 | |
|  * @bytes: the number of bytes during this measurement interval
 | |
|  *
 | |
|  *      Stores a new ITR value based on packets and byte
 | |
|  *      counts during the last interrupt.  The advantage of per interrupt
 | |
|  *      computation is faster updates and more accurate ITR for the current
 | |
|  *      traffic pattern.  Constants in this function were computed
 | |
|  *      based on theoretical maximum wire speed and thresholds were set based
 | |
|  *      on testing data as well as attempting to minimize response time
 | |
|  *      while increasing bulk throughput.
 | |
|  *      this functionality is controlled by the InterruptThrottleRate module
 | |
|  *      parameter (see e1000_param.c)
 | |
|  **/
 | |
| static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
 | |
| 				     u16 itr_setting, int packets, int bytes)
 | |
| {
 | |
| 	unsigned int retval = itr_setting;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	if (unlikely(hw->mac_type < e1000_82540))
 | |
| 		goto update_itr_done;
 | |
| 
 | |
| 	if (packets == 0)
 | |
| 		goto update_itr_done;
 | |
| 
 | |
| 	switch (itr_setting) {
 | |
| 	case lowest_latency:
 | |
| 		/* jumbo frames get bulk treatment*/
 | |
| 		if (bytes/packets > 8000)
 | |
| 			retval = bulk_latency;
 | |
| 		else if ((packets < 5) && (bytes > 512))
 | |
| 			retval = low_latency;
 | |
| 		break;
 | |
| 	case low_latency:  /* 50 usec aka 20000 ints/s */
 | |
| 		if (bytes > 10000) {
 | |
| 			/* jumbo frames need bulk latency setting */
 | |
| 			if (bytes/packets > 8000)
 | |
| 				retval = bulk_latency;
 | |
| 			else if ((packets < 10) || ((bytes/packets) > 1200))
 | |
| 				retval = bulk_latency;
 | |
| 			else if ((packets > 35))
 | |
| 				retval = lowest_latency;
 | |
| 		} else if (bytes/packets > 2000)
 | |
| 			retval = bulk_latency;
 | |
| 		else if (packets <= 2 && bytes < 512)
 | |
| 			retval = lowest_latency;
 | |
| 		break;
 | |
| 	case bulk_latency: /* 250 usec aka 4000 ints/s */
 | |
| 		if (bytes > 25000) {
 | |
| 			if (packets > 35)
 | |
| 				retval = low_latency;
 | |
| 		} else if (bytes < 6000) {
 | |
| 			retval = low_latency;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| update_itr_done:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void e1000_set_itr(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u16 current_itr;
 | |
| 	u32 new_itr = adapter->itr;
 | |
| 
 | |
| 	if (unlikely(hw->mac_type < e1000_82540))
 | |
| 		return;
 | |
| 
 | |
| 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
 | |
| 	if (unlikely(adapter->link_speed != SPEED_1000)) {
 | |
| 		current_itr = 0;
 | |
| 		new_itr = 4000;
 | |
| 		goto set_itr_now;
 | |
| 	}
 | |
| 
 | |
| 	adapter->tx_itr = e1000_update_itr(adapter,
 | |
| 	                            adapter->tx_itr,
 | |
| 	                            adapter->total_tx_packets,
 | |
| 	                            adapter->total_tx_bytes);
 | |
| 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 | |
| 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
 | |
| 		adapter->tx_itr = low_latency;
 | |
| 
 | |
| 	adapter->rx_itr = e1000_update_itr(adapter,
 | |
| 	                            adapter->rx_itr,
 | |
| 	                            adapter->total_rx_packets,
 | |
| 	                            adapter->total_rx_bytes);
 | |
| 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 | |
| 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
 | |
| 		adapter->rx_itr = low_latency;
 | |
| 
 | |
| 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
 | |
| 
 | |
| 	switch (current_itr) {
 | |
| 	/* counts and packets in update_itr are dependent on these numbers */
 | |
| 	case lowest_latency:
 | |
| 		new_itr = 70000;
 | |
| 		break;
 | |
| 	case low_latency:
 | |
| 		new_itr = 20000; /* aka hwitr = ~200 */
 | |
| 		break;
 | |
| 	case bulk_latency:
 | |
| 		new_itr = 4000;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| set_itr_now:
 | |
| 	if (new_itr != adapter->itr) {
 | |
| 		/* this attempts to bias the interrupt rate towards Bulk
 | |
| 		 * by adding intermediate steps when interrupt rate is
 | |
| 		 * increasing */
 | |
| 		new_itr = new_itr > adapter->itr ?
 | |
| 		             min(adapter->itr + (new_itr >> 2), new_itr) :
 | |
| 		             new_itr;
 | |
| 		adapter->itr = new_itr;
 | |
| 		ew32(ITR, 1000000000 / (new_itr * 256));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define E1000_TX_FLAGS_CSUM		0x00000001
 | |
| #define E1000_TX_FLAGS_VLAN		0x00000002
 | |
| #define E1000_TX_FLAGS_TSO		0x00000004
 | |
| #define E1000_TX_FLAGS_IPV4		0x00000008
 | |
| #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
 | |
| #define E1000_TX_FLAGS_VLAN_SHIFT	16
 | |
| 
 | |
| static int e1000_tso(struct e1000_adapter *adapter,
 | |
| 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 | |
| {
 | |
| 	struct e1000_context_desc *context_desc;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	unsigned int i;
 | |
| 	u32 cmd_length = 0;
 | |
| 	u16 ipcse = 0, tucse, mss;
 | |
| 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
 | |
| 	int err;
 | |
| 
 | |
| 	if (skb_is_gso(skb)) {
 | |
| 		if (skb_header_cloned(skb)) {
 | |
| 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 | |
| 		mss = skb_shinfo(skb)->gso_size;
 | |
| 		if (skb->protocol == htons(ETH_P_IP)) {
 | |
| 			struct iphdr *iph = ip_hdr(skb);
 | |
| 			iph->tot_len = 0;
 | |
| 			iph->check = 0;
 | |
| 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
 | |
| 								 iph->daddr, 0,
 | |
| 								 IPPROTO_TCP,
 | |
| 								 0);
 | |
| 			cmd_length = E1000_TXD_CMD_IP;
 | |
| 			ipcse = skb_transport_offset(skb) - 1;
 | |
| 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
 | |
| 			ipv6_hdr(skb)->payload_len = 0;
 | |
| 			tcp_hdr(skb)->check =
 | |
| 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 | |
| 						 &ipv6_hdr(skb)->daddr,
 | |
| 						 0, IPPROTO_TCP, 0);
 | |
| 			ipcse = 0;
 | |
| 		}
 | |
| 		ipcss = skb_network_offset(skb);
 | |
| 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
 | |
| 		tucss = skb_transport_offset(skb);
 | |
| 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
 | |
| 		tucse = 0;
 | |
| 
 | |
| 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
 | |
| 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
 | |
| 
 | |
| 		i = tx_ring->next_to_use;
 | |
| 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
 | |
| 		buffer_info = &tx_ring->buffer_info[i];
 | |
| 
 | |
| 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
 | |
| 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
 | |
| 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
 | |
| 		context_desc->upper_setup.tcp_fields.tucss = tucss;
 | |
| 		context_desc->upper_setup.tcp_fields.tucso = tucso;
 | |
| 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
 | |
| 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
 | |
| 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
 | |
| 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
 | |
| 
 | |
| 		buffer_info->time_stamp = jiffies;
 | |
| 		buffer_info->next_to_watch = i;
 | |
| 
 | |
| 		if (++i == tx_ring->count) i = 0;
 | |
| 		tx_ring->next_to_use = i;
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool e1000_tx_csum(struct e1000_adapter *adapter,
 | |
| 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 | |
| {
 | |
| 	struct e1000_context_desc *context_desc;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	unsigned int i;
 | |
| 	u8 css;
 | |
| 	u32 cmd_len = E1000_TXD_CMD_DEXT;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL)
 | |
| 		return false;
 | |
| 
 | |
| 	switch (skb->protocol) {
 | |
| 	case cpu_to_be16(ETH_P_IP):
 | |
| 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 | |
| 			cmd_len |= E1000_TXD_CMD_TCP;
 | |
| 		break;
 | |
| 	case cpu_to_be16(ETH_P_IPV6):
 | |
| 		/* XXX not handling all IPV6 headers */
 | |
| 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 | |
| 			cmd_len |= E1000_TXD_CMD_TCP;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (unlikely(net_ratelimit()))
 | |
| 			e_warn(drv, "checksum_partial proto=%x!\n",
 | |
| 			       skb->protocol);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	css = skb_transport_offset(skb);
 | |
| 
 | |
| 	i = tx_ring->next_to_use;
 | |
| 	buffer_info = &tx_ring->buffer_info[i];
 | |
| 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
 | |
| 
 | |
| 	context_desc->lower_setup.ip_config = 0;
 | |
| 	context_desc->upper_setup.tcp_fields.tucss = css;
 | |
| 	context_desc->upper_setup.tcp_fields.tucso =
 | |
| 		css + skb->csum_offset;
 | |
| 	context_desc->upper_setup.tcp_fields.tucse = 0;
 | |
| 	context_desc->tcp_seg_setup.data = 0;
 | |
| 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
 | |
| 
 | |
| 	buffer_info->time_stamp = jiffies;
 | |
| 	buffer_info->next_to_watch = i;
 | |
| 
 | |
| 	if (unlikely(++i == tx_ring->count)) i = 0;
 | |
| 	tx_ring->next_to_use = i;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define E1000_MAX_TXD_PWR	12
 | |
| #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
 | |
| 
 | |
| static int e1000_tx_map(struct e1000_adapter *adapter,
 | |
| 			struct e1000_tx_ring *tx_ring,
 | |
| 			struct sk_buff *skb, unsigned int first,
 | |
| 			unsigned int max_per_txd, unsigned int nr_frags,
 | |
| 			unsigned int mss)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	unsigned int len = skb_headlen(skb);
 | |
| 	unsigned int offset = 0, size, count = 0, i;
 | |
| 	unsigned int f;
 | |
| 
 | |
| 	i = tx_ring->next_to_use;
 | |
| 
 | |
| 	while (len) {
 | |
| 		buffer_info = &tx_ring->buffer_info[i];
 | |
| 		size = min(len, max_per_txd);
 | |
| 		/* Workaround for Controller erratum --
 | |
| 		 * descriptor for non-tso packet in a linear SKB that follows a
 | |
| 		 * tso gets written back prematurely before the data is fully
 | |
| 		 * DMA'd to the controller */
 | |
| 		if (!skb->data_len && tx_ring->last_tx_tso &&
 | |
| 		    !skb_is_gso(skb)) {
 | |
| 			tx_ring->last_tx_tso = 0;
 | |
| 			size -= 4;
 | |
| 		}
 | |
| 
 | |
| 		/* Workaround for premature desc write-backs
 | |
| 		 * in TSO mode.  Append 4-byte sentinel desc */
 | |
| 		if (unlikely(mss && !nr_frags && size == len && size > 8))
 | |
| 			size -= 4;
 | |
| 		/* work-around for errata 10 and it applies
 | |
| 		 * to all controllers in PCI-X mode
 | |
| 		 * The fix is to make sure that the first descriptor of a
 | |
| 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
 | |
| 		 */
 | |
| 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
 | |
| 		                (size > 2015) && count == 0))
 | |
| 		        size = 2015;
 | |
| 
 | |
| 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
 | |
| 		 * terminating buffers within evenly-aligned dwords. */
 | |
| 		if (unlikely(adapter->pcix_82544 &&
 | |
| 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
 | |
| 		   size > 4))
 | |
| 			size -= 4;
 | |
| 
 | |
| 		buffer_info->length = size;
 | |
| 		/* set time_stamp *before* dma to help avoid a possible race */
 | |
| 		buffer_info->time_stamp = jiffies;
 | |
| 		buffer_info->mapped_as_page = false;
 | |
| 		buffer_info->dma = dma_map_single(&pdev->dev,
 | |
| 						  skb->data + offset,
 | |
| 						  size,	DMA_TO_DEVICE);
 | |
| 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
 | |
| 			goto dma_error;
 | |
| 		buffer_info->next_to_watch = i;
 | |
| 
 | |
| 		len -= size;
 | |
| 		offset += size;
 | |
| 		count++;
 | |
| 		if (len) {
 | |
| 			i++;
 | |
| 			if (unlikely(i == tx_ring->count))
 | |
| 				i = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (f = 0; f < nr_frags; f++) {
 | |
| 		struct skb_frag_struct *frag;
 | |
| 
 | |
| 		frag = &skb_shinfo(skb)->frags[f];
 | |
| 		len = frag->size;
 | |
| 		offset = frag->page_offset;
 | |
| 
 | |
| 		while (len) {
 | |
| 			i++;
 | |
| 			if (unlikely(i == tx_ring->count))
 | |
| 				i = 0;
 | |
| 
 | |
| 			buffer_info = &tx_ring->buffer_info[i];
 | |
| 			size = min(len, max_per_txd);
 | |
| 			/* Workaround for premature desc write-backs
 | |
| 			 * in TSO mode.  Append 4-byte sentinel desc */
 | |
| 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
 | |
| 				size -= 4;
 | |
| 			/* Workaround for potential 82544 hang in PCI-X.
 | |
| 			 * Avoid terminating buffers within evenly-aligned
 | |
| 			 * dwords. */
 | |
| 			if (unlikely(adapter->pcix_82544 &&
 | |
| 			    !((unsigned long)(page_to_phys(frag->page) + offset
 | |
| 			                      + size - 1) & 4) &&
 | |
| 			    size > 4))
 | |
| 				size -= 4;
 | |
| 
 | |
| 			buffer_info->length = size;
 | |
| 			buffer_info->time_stamp = jiffies;
 | |
| 			buffer_info->mapped_as_page = true;
 | |
| 			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
 | |
| 							offset,	size,
 | |
| 							DMA_TO_DEVICE);
 | |
| 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
 | |
| 				goto dma_error;
 | |
| 			buffer_info->next_to_watch = i;
 | |
| 
 | |
| 			len -= size;
 | |
| 			offset += size;
 | |
| 			count++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tx_ring->buffer_info[i].skb = skb;
 | |
| 	tx_ring->buffer_info[first].next_to_watch = i;
 | |
| 
 | |
| 	return count;
 | |
| 
 | |
| dma_error:
 | |
| 	dev_err(&pdev->dev, "TX DMA map failed\n");
 | |
| 	buffer_info->dma = 0;
 | |
| 	if (count)
 | |
| 		count--;
 | |
| 
 | |
| 	while (count--) {
 | |
| 		if (i==0)
 | |
| 			i += tx_ring->count;
 | |
| 		i--;
 | |
| 		buffer_info = &tx_ring->buffer_info[i];
 | |
| 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void e1000_tx_queue(struct e1000_adapter *adapter,
 | |
| 			   struct e1000_tx_ring *tx_ring, int tx_flags,
 | |
| 			   int count)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct e1000_tx_desc *tx_desc = NULL;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
 | |
| 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
 | |
| 		             E1000_TXD_CMD_TSE;
 | |
| 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
 | |
| 
 | |
| 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
 | |
| 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
 | |
| 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
 | |
| 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
 | |
| 		txd_lower |= E1000_TXD_CMD_VLE;
 | |
| 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
 | |
| 	}
 | |
| 
 | |
| 	i = tx_ring->next_to_use;
 | |
| 
 | |
| 	while (count--) {
 | |
| 		buffer_info = &tx_ring->buffer_info[i];
 | |
| 		tx_desc = E1000_TX_DESC(*tx_ring, i);
 | |
| 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
 | |
| 		tx_desc->lower.data =
 | |
| 			cpu_to_le32(txd_lower | buffer_info->length);
 | |
| 		tx_desc->upper.data = cpu_to_le32(txd_upper);
 | |
| 		if (unlikely(++i == tx_ring->count)) i = 0;
 | |
| 	}
 | |
| 
 | |
| 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
 | |
| 
 | |
| 	/* Force memory writes to complete before letting h/w
 | |
| 	 * know there are new descriptors to fetch.  (Only
 | |
| 	 * applicable for weak-ordered memory model archs,
 | |
| 	 * such as IA-64). */
 | |
| 	wmb();
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| 	writel(i, hw->hw_addr + tx_ring->tdt);
 | |
| 	/* we need this if more than one processor can write to our tail
 | |
| 	 * at a time, it syncronizes IO on IA64/Altix systems */
 | |
| 	mmiowb();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 82547 workaround to avoid controller hang in half-duplex environment.
 | |
|  * The workaround is to avoid queuing a large packet that would span
 | |
|  * the internal Tx FIFO ring boundary by notifying the stack to resend
 | |
|  * the packet at a later time.  This gives the Tx FIFO an opportunity to
 | |
|  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
 | |
|  * to the beginning of the Tx FIFO.
 | |
|  **/
 | |
| 
 | |
| #define E1000_FIFO_HDR			0x10
 | |
| #define E1000_82547_PAD_LEN		0x3E0
 | |
| 
 | |
| static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 | |
| 				       struct sk_buff *skb)
 | |
| {
 | |
| 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
 | |
| 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
 | |
| 
 | |
| 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
 | |
| 
 | |
| 	if (adapter->link_duplex != HALF_DUPLEX)
 | |
| 		goto no_fifo_stall_required;
 | |
| 
 | |
| 	if (atomic_read(&adapter->tx_fifo_stall))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
 | |
| 		atomic_set(&adapter->tx_fifo_stall, 1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| no_fifo_stall_required:
 | |
| 	adapter->tx_fifo_head += skb_fifo_len;
 | |
| 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
 | |
| 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
 | |
| 
 | |
| 	netif_stop_queue(netdev);
 | |
| 	/* Herbert's original patch had:
 | |
| 	 *  smp_mb__after_netif_stop_queue();
 | |
| 	 * but since that doesn't exist yet, just open code it. */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* We need to check again in a case another CPU has just
 | |
| 	 * made room available. */
 | |
| 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* A reprieve! */
 | |
| 	netif_start_queue(netdev);
 | |
| 	++adapter->restart_queue;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int e1000_maybe_stop_tx(struct net_device *netdev,
 | |
|                                struct e1000_tx_ring *tx_ring, int size)
 | |
| {
 | |
| 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
 | |
| 		return 0;
 | |
| 	return __e1000_maybe_stop_tx(netdev, size);
 | |
| }
 | |
| 
 | |
| #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
 | |
| static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 | |
| 				    struct net_device *netdev)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct e1000_tx_ring *tx_ring;
 | |
| 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
 | |
| 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
 | |
| 	unsigned int tx_flags = 0;
 | |
| 	unsigned int len = skb_headlen(skb);
 | |
| 	unsigned int nr_frags;
 | |
| 	unsigned int mss;
 | |
| 	int count = 0;
 | |
| 	int tso;
 | |
| 	unsigned int f;
 | |
| 
 | |
| 	/* This goes back to the question of how to logically map a tx queue
 | |
| 	 * to a flow.  Right now, performance is impacted slightly negatively
 | |
| 	 * if using multiple tx queues.  If the stack breaks away from a
 | |
| 	 * single qdisc implementation, we can look at this again. */
 | |
| 	tx_ring = adapter->tx_ring;
 | |
| 
 | |
| 	if (unlikely(skb->len <= 0)) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	mss = skb_shinfo(skb)->gso_size;
 | |
| 	/* The controller does a simple calculation to
 | |
| 	 * make sure there is enough room in the FIFO before
 | |
| 	 * initiating the DMA for each buffer.  The calc is:
 | |
| 	 * 4 = ceil(buffer len/mss).  To make sure we don't
 | |
| 	 * overrun the FIFO, adjust the max buffer len if mss
 | |
| 	 * drops. */
 | |
| 	if (mss) {
 | |
| 		u8 hdr_len;
 | |
| 		max_per_txd = min(mss << 2, max_per_txd);
 | |
| 		max_txd_pwr = fls(max_per_txd) - 1;
 | |
| 
 | |
| 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 | |
| 		if (skb->data_len && hdr_len == len) {
 | |
| 			switch (hw->mac_type) {
 | |
| 				unsigned int pull_size;
 | |
| 			case e1000_82544:
 | |
| 				/* Make sure we have room to chop off 4 bytes,
 | |
| 				 * and that the end alignment will work out to
 | |
| 				 * this hardware's requirements
 | |
| 				 * NOTE: this is a TSO only workaround
 | |
| 				 * if end byte alignment not correct move us
 | |
| 				 * into the next dword */
 | |
| 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
 | |
| 					break;
 | |
| 				/* fall through */
 | |
| 				pull_size = min((unsigned int)4, skb->data_len);
 | |
| 				if (!__pskb_pull_tail(skb, pull_size)) {
 | |
| 					e_err(drv, "__pskb_pull_tail "
 | |
| 					      "failed.\n");
 | |
| 					dev_kfree_skb_any(skb);
 | |
| 					return NETDEV_TX_OK;
 | |
| 				}
 | |
| 				len = skb_headlen(skb);
 | |
| 				break;
 | |
| 			default:
 | |
| 				/* do nothing */
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* reserve a descriptor for the offload context */
 | |
| 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
 | |
| 		count++;
 | |
| 	count++;
 | |
| 
 | |
| 	/* Controller Erratum workaround */
 | |
| 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
 | |
| 		count++;
 | |
| 
 | |
| 	count += TXD_USE_COUNT(len, max_txd_pwr);
 | |
| 
 | |
| 	if (adapter->pcix_82544)
 | |
| 		count++;
 | |
| 
 | |
| 	/* work-around for errata 10 and it applies to all controllers
 | |
| 	 * in PCI-X mode, so add one more descriptor to the count
 | |
| 	 */
 | |
| 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
 | |
| 			(len > 2015)))
 | |
| 		count++;
 | |
| 
 | |
| 	nr_frags = skb_shinfo(skb)->nr_frags;
 | |
| 	for (f = 0; f < nr_frags; f++)
 | |
| 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
 | |
| 				       max_txd_pwr);
 | |
| 	if (adapter->pcix_82544)
 | |
| 		count += nr_frags;
 | |
| 
 | |
| 	/* need: count + 2 desc gap to keep tail from touching
 | |
| 	 * head, otherwise try next time */
 | |
| 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 
 | |
| 	if (unlikely(hw->mac_type == e1000_82547)) {
 | |
| 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
 | |
| 			netif_stop_queue(netdev);
 | |
| 			if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 				mod_timer(&adapter->tx_fifo_stall_timer,
 | |
| 				          jiffies + 1);
 | |
| 			return NETDEV_TX_BUSY;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vlan_tx_tag_present(skb))) {
 | |
| 		tx_flags |= E1000_TX_FLAGS_VLAN;
 | |
| 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	first = tx_ring->next_to_use;
 | |
| 
 | |
| 	tso = e1000_tso(adapter, tx_ring, skb);
 | |
| 	if (tso < 0) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(tso)) {
 | |
| 		if (likely(hw->mac_type != e1000_82544))
 | |
| 			tx_ring->last_tx_tso = 1;
 | |
| 		tx_flags |= E1000_TX_FLAGS_TSO;
 | |
| 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
 | |
| 		tx_flags |= E1000_TX_FLAGS_CSUM;
 | |
| 
 | |
| 	if (likely(skb->protocol == htons(ETH_P_IP)))
 | |
| 		tx_flags |= E1000_TX_FLAGS_IPV4;
 | |
| 
 | |
| 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
 | |
| 	                     nr_frags, mss);
 | |
| 
 | |
| 	if (count) {
 | |
| 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
 | |
| 		/* Make sure there is space in the ring for the next send. */
 | |
| 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
 | |
| 
 | |
| 	} else {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		tx_ring->buffer_info[first].time_stamp = 0;
 | |
| 		tx_ring->next_to_use = first;
 | |
| 	}
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_tx_timeout - Respond to a Tx Hang
 | |
|  * @netdev: network interface device structure
 | |
|  **/
 | |
| 
 | |
| static void e1000_tx_timeout(struct net_device *netdev)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	/* Do the reset outside of interrupt context */
 | |
| 	adapter->tx_timeout_count++;
 | |
| 	schedule_work(&adapter->reset_task);
 | |
| }
 | |
| 
 | |
| static void e1000_reset_task(struct work_struct *work)
 | |
| {
 | |
| 	struct e1000_adapter *adapter =
 | |
| 		container_of(work, struct e1000_adapter, reset_task);
 | |
| 
 | |
| 	e1000_reinit_safe(adapter);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_get_stats - Get System Network Statistics
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Returns the address of the device statistics structure.
 | |
|  * The statistics are actually updated from the timer callback.
 | |
|  **/
 | |
| 
 | |
| static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
 | |
| {
 | |
| 	/* only return the current stats */
 | |
| 	return &netdev->stats;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_change_mtu - Change the Maximum Transfer Unit
 | |
|  * @netdev: network interface device structure
 | |
|  * @new_mtu: new value for maximum frame size
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  **/
 | |
| 
 | |
| static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 | |
| 
 | |
| 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
 | |
| 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
 | |
| 		e_err(probe, "Invalid MTU setting\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Adapter-specific max frame size limits. */
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_undefined ... e1000_82542_rev2_1:
 | |
| 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
 | |
| 			e_err(probe, "Jumbo Frames not supported.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 | |
| 		msleep(1);
 | |
| 	/* e1000_down has a dependency on max_frame_size */
 | |
| 	hw->max_frame_size = max_frame;
 | |
| 	if (netif_running(netdev))
 | |
| 		e1000_down(adapter);
 | |
| 
 | |
| 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
 | |
| 	 * means we reserve 2 more, this pushes us to allocate from the next
 | |
| 	 * larger slab size.
 | |
| 	 * i.e. RXBUFFER_2048 --> size-4096 slab
 | |
| 	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
 | |
| 	 *  fragmented skbs */
 | |
| 
 | |
| 	if (max_frame <= E1000_RXBUFFER_2048)
 | |
| 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
 | |
| 	else
 | |
| #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
 | |
| 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
 | |
| #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
 | |
| 		adapter->rx_buffer_len = PAGE_SIZE;
 | |
| #endif
 | |
| 
 | |
| 	/* adjust allocation if LPE protects us, and we aren't using SBP */
 | |
| 	if (!hw->tbi_compatibility_on &&
 | |
| 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
 | |
| 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
 | |
| 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
 | |
| 
 | |
| 	pr_info("%s changing MTU from %d to %d\n",
 | |
| 		netdev->name, netdev->mtu, new_mtu);
 | |
| 	netdev->mtu = new_mtu;
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		e1000_up(adapter);
 | |
| 	else
 | |
| 		e1000_reset(adapter);
 | |
| 
 | |
| 	clear_bit(__E1000_RESETTING, &adapter->flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_update_stats - Update the board statistics counters
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| 
 | |
| void e1000_update_stats(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	unsigned long flags;
 | |
| 	u16 phy_tmp;
 | |
| 
 | |
| #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent stats update while adapter is being reset, or if the pci
 | |
| 	 * connection is down.
 | |
| 	 */
 | |
| 	if (adapter->link_speed == 0)
 | |
| 		return;
 | |
| 	if (pci_channel_offline(pdev))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&adapter->stats_lock, flags);
 | |
| 
 | |
| 	/* these counters are modified from e1000_tbi_adjust_stats,
 | |
| 	 * called from the interrupt context, so they must only
 | |
| 	 * be written while holding adapter->stats_lock
 | |
| 	 */
 | |
| 
 | |
| 	adapter->stats.crcerrs += er32(CRCERRS);
 | |
| 	adapter->stats.gprc += er32(GPRC);
 | |
| 	adapter->stats.gorcl += er32(GORCL);
 | |
| 	adapter->stats.gorch += er32(GORCH);
 | |
| 	adapter->stats.bprc += er32(BPRC);
 | |
| 	adapter->stats.mprc += er32(MPRC);
 | |
| 	adapter->stats.roc += er32(ROC);
 | |
| 
 | |
| 	adapter->stats.prc64 += er32(PRC64);
 | |
| 	adapter->stats.prc127 += er32(PRC127);
 | |
| 	adapter->stats.prc255 += er32(PRC255);
 | |
| 	adapter->stats.prc511 += er32(PRC511);
 | |
| 	adapter->stats.prc1023 += er32(PRC1023);
 | |
| 	adapter->stats.prc1522 += er32(PRC1522);
 | |
| 
 | |
| 	adapter->stats.symerrs += er32(SYMERRS);
 | |
| 	adapter->stats.mpc += er32(MPC);
 | |
| 	adapter->stats.scc += er32(SCC);
 | |
| 	adapter->stats.ecol += er32(ECOL);
 | |
| 	adapter->stats.mcc += er32(MCC);
 | |
| 	adapter->stats.latecol += er32(LATECOL);
 | |
| 	adapter->stats.dc += er32(DC);
 | |
| 	adapter->stats.sec += er32(SEC);
 | |
| 	adapter->stats.rlec += er32(RLEC);
 | |
| 	adapter->stats.xonrxc += er32(XONRXC);
 | |
| 	adapter->stats.xontxc += er32(XONTXC);
 | |
| 	adapter->stats.xoffrxc += er32(XOFFRXC);
 | |
| 	adapter->stats.xofftxc += er32(XOFFTXC);
 | |
| 	adapter->stats.fcruc += er32(FCRUC);
 | |
| 	adapter->stats.gptc += er32(GPTC);
 | |
| 	adapter->stats.gotcl += er32(GOTCL);
 | |
| 	adapter->stats.gotch += er32(GOTCH);
 | |
| 	adapter->stats.rnbc += er32(RNBC);
 | |
| 	adapter->stats.ruc += er32(RUC);
 | |
| 	adapter->stats.rfc += er32(RFC);
 | |
| 	adapter->stats.rjc += er32(RJC);
 | |
| 	adapter->stats.torl += er32(TORL);
 | |
| 	adapter->stats.torh += er32(TORH);
 | |
| 	adapter->stats.totl += er32(TOTL);
 | |
| 	adapter->stats.toth += er32(TOTH);
 | |
| 	adapter->stats.tpr += er32(TPR);
 | |
| 
 | |
| 	adapter->stats.ptc64 += er32(PTC64);
 | |
| 	adapter->stats.ptc127 += er32(PTC127);
 | |
| 	adapter->stats.ptc255 += er32(PTC255);
 | |
| 	adapter->stats.ptc511 += er32(PTC511);
 | |
| 	adapter->stats.ptc1023 += er32(PTC1023);
 | |
| 	adapter->stats.ptc1522 += er32(PTC1522);
 | |
| 
 | |
| 	adapter->stats.mptc += er32(MPTC);
 | |
| 	adapter->stats.bptc += er32(BPTC);
 | |
| 
 | |
| 	/* used for adaptive IFS */
 | |
| 
 | |
| 	hw->tx_packet_delta = er32(TPT);
 | |
| 	adapter->stats.tpt += hw->tx_packet_delta;
 | |
| 	hw->collision_delta = er32(COLC);
 | |
| 	adapter->stats.colc += hw->collision_delta;
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		adapter->stats.algnerrc += er32(ALGNERRC);
 | |
| 		adapter->stats.rxerrc += er32(RXERRC);
 | |
| 		adapter->stats.tncrs += er32(TNCRS);
 | |
| 		adapter->stats.cexterr += er32(CEXTERR);
 | |
| 		adapter->stats.tsctc += er32(TSCTC);
 | |
| 		adapter->stats.tsctfc += er32(TSCTFC);
 | |
| 	}
 | |
| 
 | |
| 	/* Fill out the OS statistics structure */
 | |
| 	netdev->stats.multicast = adapter->stats.mprc;
 | |
| 	netdev->stats.collisions = adapter->stats.colc;
 | |
| 
 | |
| 	/* Rx Errors */
 | |
| 
 | |
| 	/* RLEC on some newer hardware can be incorrect so build
 | |
| 	* our own version based on RUC and ROC */
 | |
| 	netdev->stats.rx_errors = adapter->stats.rxerrc +
 | |
| 		adapter->stats.crcerrs + adapter->stats.algnerrc +
 | |
| 		adapter->stats.ruc + adapter->stats.roc +
 | |
| 		adapter->stats.cexterr;
 | |
| 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
 | |
| 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
 | |
| 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
 | |
| 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
 | |
| 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
 | |
| 
 | |
| 	/* Tx Errors */
 | |
| 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
 | |
| 	netdev->stats.tx_errors = adapter->stats.txerrc;
 | |
| 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
 | |
| 	netdev->stats.tx_window_errors = adapter->stats.latecol;
 | |
| 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
 | |
| 	if (hw->bad_tx_carr_stats_fd &&
 | |
| 	    adapter->link_duplex == FULL_DUPLEX) {
 | |
| 		netdev->stats.tx_carrier_errors = 0;
 | |
| 		adapter->stats.tncrs = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Tx Dropped needs to be maintained elsewhere */
 | |
| 
 | |
| 	/* Phy Stats */
 | |
| 	if (hw->media_type == e1000_media_type_copper) {
 | |
| 		if ((adapter->link_speed == SPEED_1000) &&
 | |
| 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
 | |
| 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
 | |
| 			adapter->phy_stats.idle_errors += phy_tmp;
 | |
| 		}
 | |
| 
 | |
| 		if ((hw->mac_type <= e1000_82546) &&
 | |
| 		   (hw->phy_type == e1000_phy_m88) &&
 | |
| 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
 | |
| 			adapter->phy_stats.receive_errors += phy_tmp;
 | |
| 	}
 | |
| 
 | |
| 	/* Management Stats */
 | |
| 	if (hw->has_smbus) {
 | |
| 		adapter->stats.mgptc += er32(MGTPTC);
 | |
| 		adapter->stats.mgprc += er32(MGTPRC);
 | |
| 		adapter->stats.mgpdc += er32(MGTPDC);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_intr - Interrupt Handler
 | |
|  * @irq: interrupt number
 | |
|  * @data: pointer to a network interface device structure
 | |
|  **/
 | |
| 
 | |
| static irqreturn_t e1000_intr(int irq, void *data)
 | |
| {
 | |
| 	struct net_device *netdev = data;
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 icr = er32(ICR);
 | |
| 
 | |
| 	if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
 | |
| 		return IRQ_NONE;  /* Not our interrupt */
 | |
| 
 | |
| 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
 | |
| 		hw->get_link_status = 1;
 | |
| 		/* guard against interrupt when we're going down */
 | |
| 		if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 | |
| 	}
 | |
| 
 | |
| 	/* disable interrupts, without the synchronize_irq bit */
 | |
| 	ew32(IMC, ~0);
 | |
| 	E1000_WRITE_FLUSH();
 | |
| 
 | |
| 	if (likely(napi_schedule_prep(&adapter->napi))) {
 | |
| 		adapter->total_tx_bytes = 0;
 | |
| 		adapter->total_tx_packets = 0;
 | |
| 		adapter->total_rx_bytes = 0;
 | |
| 		adapter->total_rx_packets = 0;
 | |
| 		__napi_schedule(&adapter->napi);
 | |
| 	} else {
 | |
| 		/* this really should not happen! if it does it is basically a
 | |
| 		 * bug, but not a hard error, so enable ints and continue */
 | |
| 		if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 			e1000_irq_enable(adapter);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_clean - NAPI Rx polling callback
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| static int e1000_clean(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
 | |
| 	int tx_clean_complete = 0, work_done = 0;
 | |
| 
 | |
| 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
 | |
| 
 | |
| 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
 | |
| 
 | |
| 	if (!tx_clean_complete)
 | |
| 		work_done = budget;
 | |
| 
 | |
| 	/* If budget not fully consumed, exit the polling mode */
 | |
| 	if (work_done < budget) {
 | |
| 		if (likely(adapter->itr_setting & 3))
 | |
| 			e1000_set_itr(adapter);
 | |
| 		napi_complete(napi);
 | |
| 		if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 			e1000_irq_enable(adapter);
 | |
| 	}
 | |
| 
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_clean_tx_irq - Reclaim resources after transmit completes
 | |
|  * @adapter: board private structure
 | |
|  **/
 | |
| static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 | |
| 			       struct e1000_tx_ring *tx_ring)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct e1000_tx_desc *tx_desc, *eop_desc;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	unsigned int i, eop;
 | |
| 	unsigned int count = 0;
 | |
| 	unsigned int total_tx_bytes=0, total_tx_packets=0;
 | |
| 
 | |
| 	i = tx_ring->next_to_clean;
 | |
| 	eop = tx_ring->buffer_info[i].next_to_watch;
 | |
| 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
 | |
| 
 | |
| 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
 | |
| 	       (count < tx_ring->count)) {
 | |
| 		bool cleaned = false;
 | |
| 		rmb();	/* read buffer_info after eop_desc */
 | |
| 		for ( ; !cleaned; count++) {
 | |
| 			tx_desc = E1000_TX_DESC(*tx_ring, i);
 | |
| 			buffer_info = &tx_ring->buffer_info[i];
 | |
| 			cleaned = (i == eop);
 | |
| 
 | |
| 			if (cleaned) {
 | |
| 				struct sk_buff *skb = buffer_info->skb;
 | |
| 				unsigned int segs, bytecount;
 | |
| 				segs = skb_shinfo(skb)->gso_segs ?: 1;
 | |
| 				/* multiply data chunks by size of headers */
 | |
| 				bytecount = ((segs - 1) * skb_headlen(skb)) +
 | |
| 				            skb->len;
 | |
| 				total_tx_packets += segs;
 | |
| 				total_tx_bytes += bytecount;
 | |
| 			}
 | |
| 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 | |
| 			tx_desc->upper.data = 0;
 | |
| 
 | |
| 			if (unlikely(++i == tx_ring->count)) i = 0;
 | |
| 		}
 | |
| 
 | |
| 		eop = tx_ring->buffer_info[i].next_to_watch;
 | |
| 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
 | |
| 	}
 | |
| 
 | |
| 	tx_ring->next_to_clean = i;
 | |
| 
 | |
| #define TX_WAKE_THRESHOLD 32
 | |
| 	if (unlikely(count && netif_carrier_ok(netdev) &&
 | |
| 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
 | |
| 		/* Make sure that anybody stopping the queue after this
 | |
| 		 * sees the new next_to_clean.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 
 | |
| 		if (netif_queue_stopped(netdev) &&
 | |
| 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
 | |
| 			netif_wake_queue(netdev);
 | |
| 			++adapter->restart_queue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (adapter->detect_tx_hung) {
 | |
| 		/* Detect a transmit hang in hardware, this serializes the
 | |
| 		 * check with the clearing of time_stamp and movement of i */
 | |
| 		adapter->detect_tx_hung = false;
 | |
| 		if (tx_ring->buffer_info[eop].time_stamp &&
 | |
| 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
 | |
| 		               (adapter->tx_timeout_factor * HZ)) &&
 | |
| 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
 | |
| 
 | |
| 			/* detected Tx unit hang */
 | |
| 			e_err(drv, "Detected Tx Unit Hang\n"
 | |
| 			      "  Tx Queue             <%lu>\n"
 | |
| 			      "  TDH                  <%x>\n"
 | |
| 			      "  TDT                  <%x>\n"
 | |
| 			      "  next_to_use          <%x>\n"
 | |
| 			      "  next_to_clean        <%x>\n"
 | |
| 			      "buffer_info[next_to_clean]\n"
 | |
| 			      "  time_stamp           <%lx>\n"
 | |
| 			      "  next_to_watch        <%x>\n"
 | |
| 			      "  jiffies              <%lx>\n"
 | |
| 			      "  next_to_watch.status <%x>\n",
 | |
| 				(unsigned long)((tx_ring - adapter->tx_ring) /
 | |
| 					sizeof(struct e1000_tx_ring)),
 | |
| 				readl(hw->hw_addr + tx_ring->tdh),
 | |
| 				readl(hw->hw_addr + tx_ring->tdt),
 | |
| 				tx_ring->next_to_use,
 | |
| 				tx_ring->next_to_clean,
 | |
| 				tx_ring->buffer_info[eop].time_stamp,
 | |
| 				eop,
 | |
| 				jiffies,
 | |
| 				eop_desc->upper.fields.status);
 | |
| 			netif_stop_queue(netdev);
 | |
| 		}
 | |
| 	}
 | |
| 	adapter->total_tx_bytes += total_tx_bytes;
 | |
| 	adapter->total_tx_packets += total_tx_packets;
 | |
| 	netdev->stats.tx_bytes += total_tx_bytes;
 | |
| 	netdev->stats.tx_packets += total_tx_packets;
 | |
| 	return count < tx_ring->count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_rx_checksum - Receive Checksum Offload for 82543
 | |
|  * @adapter:     board private structure
 | |
|  * @status_err:  receive descriptor status and error fields
 | |
|  * @csum:        receive descriptor csum field
 | |
|  * @sk_buff:     socket buffer with received data
 | |
|  **/
 | |
| 
 | |
| static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 | |
| 			      u32 csum, struct sk_buff *skb)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u16 status = (u16)status_err;
 | |
| 	u8 errors = (u8)(status_err >> 24);
 | |
| 
 | |
| 	skb_checksum_none_assert(skb);
 | |
| 
 | |
| 	/* 82543 or newer only */
 | |
| 	if (unlikely(hw->mac_type < e1000_82543)) return;
 | |
| 	/* Ignore Checksum bit is set */
 | |
| 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
 | |
| 	/* TCP/UDP checksum error bit is set */
 | |
| 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
 | |
| 		/* let the stack verify checksum errors */
 | |
| 		adapter->hw_csum_err++;
 | |
| 		return;
 | |
| 	}
 | |
| 	/* TCP/UDP Checksum has not been calculated */
 | |
| 	if (!(status & E1000_RXD_STAT_TCPCS))
 | |
| 		return;
 | |
| 
 | |
| 	/* It must be a TCP or UDP packet with a valid checksum */
 | |
| 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
 | |
| 		/* TCP checksum is good */
 | |
| 		skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 	}
 | |
| 	adapter->hw_csum_good++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_consume_page - helper function
 | |
|  **/
 | |
| static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
 | |
|                                u16 length)
 | |
| {
 | |
| 	bi->page = NULL;
 | |
| 	skb->len += length;
 | |
| 	skb->data_len += length;
 | |
| 	skb->truesize += length;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_receive_skb - helper function to handle rx indications
 | |
|  * @adapter: board private structure
 | |
|  * @status: descriptor status field as written by hardware
 | |
|  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 | |
|  * @skb: pointer to sk_buff to be indicated to stack
 | |
|  */
 | |
| static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
 | |
| 			      __le16 vlan, struct sk_buff *skb)
 | |
| {
 | |
| 	skb->protocol = eth_type_trans(skb, adapter->netdev);
 | |
| 
 | |
| 	if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
 | |
| 		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
 | |
| 				 le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
 | |
| 				 skb);
 | |
| 	else
 | |
| 		napi_gro_receive(&adapter->napi, skb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 | |
|  * @adapter: board private structure
 | |
|  * @rx_ring: ring to clean
 | |
|  * @work_done: amount of napi work completed this call
 | |
|  * @work_to_do: max amount of work allowed for this call to do
 | |
|  *
 | |
|  * the return value indicates whether actual cleaning was done, there
 | |
|  * is no guarantee that everything was cleaned
 | |
|  */
 | |
| static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 | |
| 				     struct e1000_rx_ring *rx_ring,
 | |
| 				     int *work_done, int work_to_do)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_rx_desc *rx_desc, *next_rxd;
 | |
| 	struct e1000_buffer *buffer_info, *next_buffer;
 | |
| 	unsigned long irq_flags;
 | |
| 	u32 length;
 | |
| 	unsigned int i;
 | |
| 	int cleaned_count = 0;
 | |
| 	bool cleaned = false;
 | |
| 	unsigned int total_rx_bytes=0, total_rx_packets=0;
 | |
| 
 | |
| 	i = rx_ring->next_to_clean;
 | |
| 	rx_desc = E1000_RX_DESC(*rx_ring, i);
 | |
| 	buffer_info = &rx_ring->buffer_info[i];
 | |
| 
 | |
| 	while (rx_desc->status & E1000_RXD_STAT_DD) {
 | |
| 		struct sk_buff *skb;
 | |
| 		u8 status;
 | |
| 
 | |
| 		if (*work_done >= work_to_do)
 | |
| 			break;
 | |
| 		(*work_done)++;
 | |
| 		rmb(); /* read descriptor and rx_buffer_info after status DD */
 | |
| 
 | |
| 		status = rx_desc->status;
 | |
| 		skb = buffer_info->skb;
 | |
| 		buffer_info->skb = NULL;
 | |
| 
 | |
| 		if (++i == rx_ring->count) i = 0;
 | |
| 		next_rxd = E1000_RX_DESC(*rx_ring, i);
 | |
| 		prefetch(next_rxd);
 | |
| 
 | |
| 		next_buffer = &rx_ring->buffer_info[i];
 | |
| 
 | |
| 		cleaned = true;
 | |
| 		cleaned_count++;
 | |
| 		dma_unmap_page(&pdev->dev, buffer_info->dma,
 | |
| 			       buffer_info->length, DMA_FROM_DEVICE);
 | |
| 		buffer_info->dma = 0;
 | |
| 
 | |
| 		length = le16_to_cpu(rx_desc->length);
 | |
| 
 | |
| 		/* errors is only valid for DD + EOP descriptors */
 | |
| 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
 | |
| 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
 | |
| 			u8 last_byte = *(skb->data + length - 1);
 | |
| 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
 | |
| 				       last_byte)) {
 | |
| 				spin_lock_irqsave(&adapter->stats_lock,
 | |
| 				                  irq_flags);
 | |
| 				e1000_tbi_adjust_stats(hw, &adapter->stats,
 | |
| 				                       length, skb->data);
 | |
| 				spin_unlock_irqrestore(&adapter->stats_lock,
 | |
| 				                       irq_flags);
 | |
| 				length--;
 | |
| 			} else {
 | |
| 				/* recycle both page and skb */
 | |
| 				buffer_info->skb = skb;
 | |
| 				/* an error means any chain goes out the window
 | |
| 				 * too */
 | |
| 				if (rx_ring->rx_skb_top)
 | |
| 					dev_kfree_skb(rx_ring->rx_skb_top);
 | |
| 				rx_ring->rx_skb_top = NULL;
 | |
| 				goto next_desc;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #define rxtop rx_ring->rx_skb_top
 | |
| 		if (!(status & E1000_RXD_STAT_EOP)) {
 | |
| 			/* this descriptor is only the beginning (or middle) */
 | |
| 			if (!rxtop) {
 | |
| 				/* this is the beginning of a chain */
 | |
| 				rxtop = skb;
 | |
| 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
 | |
| 				                   0, length);
 | |
| 			} else {
 | |
| 				/* this is the middle of a chain */
 | |
| 				skb_fill_page_desc(rxtop,
 | |
| 				    skb_shinfo(rxtop)->nr_frags,
 | |
| 				    buffer_info->page, 0, length);
 | |
| 				/* re-use the skb, only consumed the page */
 | |
| 				buffer_info->skb = skb;
 | |
| 			}
 | |
| 			e1000_consume_page(buffer_info, rxtop, length);
 | |
| 			goto next_desc;
 | |
| 		} else {
 | |
| 			if (rxtop) {
 | |
| 				/* end of the chain */
 | |
| 				skb_fill_page_desc(rxtop,
 | |
| 				    skb_shinfo(rxtop)->nr_frags,
 | |
| 				    buffer_info->page, 0, length);
 | |
| 				/* re-use the current skb, we only consumed the
 | |
| 				 * page */
 | |
| 				buffer_info->skb = skb;
 | |
| 				skb = rxtop;
 | |
| 				rxtop = NULL;
 | |
| 				e1000_consume_page(buffer_info, skb, length);
 | |
| 			} else {
 | |
| 				/* no chain, got EOP, this buf is the packet
 | |
| 				 * copybreak to save the put_page/alloc_page */
 | |
| 				if (length <= copybreak &&
 | |
| 				    skb_tailroom(skb) >= length) {
 | |
| 					u8 *vaddr;
 | |
| 					vaddr = kmap_atomic(buffer_info->page,
 | |
| 					                    KM_SKB_DATA_SOFTIRQ);
 | |
| 					memcpy(skb_tail_pointer(skb), vaddr, length);
 | |
| 					kunmap_atomic(vaddr,
 | |
| 					              KM_SKB_DATA_SOFTIRQ);
 | |
| 					/* re-use the page, so don't erase
 | |
| 					 * buffer_info->page */
 | |
| 					skb_put(skb, length);
 | |
| 				} else {
 | |
| 					skb_fill_page_desc(skb, 0,
 | |
| 					                   buffer_info->page, 0,
 | |
| 				                           length);
 | |
| 					e1000_consume_page(buffer_info, skb,
 | |
| 					                   length);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
 | |
| 		e1000_rx_checksum(adapter,
 | |
| 		                  (u32)(status) |
 | |
| 		                  ((u32)(rx_desc->errors) << 24),
 | |
| 		                  le16_to_cpu(rx_desc->csum), skb);
 | |
| 
 | |
| 		pskb_trim(skb, skb->len - 4);
 | |
| 
 | |
| 		/* probably a little skewed due to removing CRC */
 | |
| 		total_rx_bytes += skb->len;
 | |
| 		total_rx_packets++;
 | |
| 
 | |
| 		/* eth type trans needs skb->data to point to something */
 | |
| 		if (!pskb_may_pull(skb, ETH_HLEN)) {
 | |
| 			e_err(drv, "pskb_may_pull failed.\n");
 | |
| 			dev_kfree_skb(skb);
 | |
| 			goto next_desc;
 | |
| 		}
 | |
| 
 | |
| 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
 | |
| 
 | |
| next_desc:
 | |
| 		rx_desc->status = 0;
 | |
| 
 | |
| 		/* return some buffers to hardware, one at a time is too slow */
 | |
| 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
 | |
| 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
 | |
| 			cleaned_count = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* use prefetched values */
 | |
| 		rx_desc = next_rxd;
 | |
| 		buffer_info = next_buffer;
 | |
| 	}
 | |
| 	rx_ring->next_to_clean = i;
 | |
| 
 | |
| 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
 | |
| 	if (cleaned_count)
 | |
| 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
 | |
| 
 | |
| 	adapter->total_rx_packets += total_rx_packets;
 | |
| 	adapter->total_rx_bytes += total_rx_bytes;
 | |
| 	netdev->stats.rx_bytes += total_rx_bytes;
 | |
| 	netdev->stats.rx_packets += total_rx_packets;
 | |
| 	return cleaned;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this should improve performance for small packets with large amounts
 | |
|  * of reassembly being done in the stack
 | |
|  */
 | |
| static void e1000_check_copybreak(struct net_device *netdev,
 | |
| 				 struct e1000_buffer *buffer_info,
 | |
| 				 u32 length, struct sk_buff **skb)
 | |
| {
 | |
| 	struct sk_buff *new_skb;
 | |
| 
 | |
| 	if (length > copybreak)
 | |
| 		return;
 | |
| 
 | |
| 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
 | |
| 	if (!new_skb)
 | |
| 		return;
 | |
| 
 | |
| 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
 | |
| 				       (*skb)->data - NET_IP_ALIGN,
 | |
| 				       length + NET_IP_ALIGN);
 | |
| 	/* save the skb in buffer_info as good */
 | |
| 	buffer_info->skb = *skb;
 | |
| 	*skb = new_skb;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_clean_rx_irq - Send received data up the network stack; legacy
 | |
|  * @adapter: board private structure
 | |
|  * @rx_ring: ring to clean
 | |
|  * @work_done: amount of napi work completed this call
 | |
|  * @work_to_do: max amount of work allowed for this call to do
 | |
|  */
 | |
| static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 | |
| 			       struct e1000_rx_ring *rx_ring,
 | |
| 			       int *work_done, int work_to_do)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_rx_desc *rx_desc, *next_rxd;
 | |
| 	struct e1000_buffer *buffer_info, *next_buffer;
 | |
| 	unsigned long flags;
 | |
| 	u32 length;
 | |
| 	unsigned int i;
 | |
| 	int cleaned_count = 0;
 | |
| 	bool cleaned = false;
 | |
| 	unsigned int total_rx_bytes=0, total_rx_packets=0;
 | |
| 
 | |
| 	i = rx_ring->next_to_clean;
 | |
| 	rx_desc = E1000_RX_DESC(*rx_ring, i);
 | |
| 	buffer_info = &rx_ring->buffer_info[i];
 | |
| 
 | |
| 	while (rx_desc->status & E1000_RXD_STAT_DD) {
 | |
| 		struct sk_buff *skb;
 | |
| 		u8 status;
 | |
| 
 | |
| 		if (*work_done >= work_to_do)
 | |
| 			break;
 | |
| 		(*work_done)++;
 | |
| 		rmb(); /* read descriptor and rx_buffer_info after status DD */
 | |
| 
 | |
| 		status = rx_desc->status;
 | |
| 		skb = buffer_info->skb;
 | |
| 		buffer_info->skb = NULL;
 | |
| 
 | |
| 		prefetch(skb->data - NET_IP_ALIGN);
 | |
| 
 | |
| 		if (++i == rx_ring->count) i = 0;
 | |
| 		next_rxd = E1000_RX_DESC(*rx_ring, i);
 | |
| 		prefetch(next_rxd);
 | |
| 
 | |
| 		next_buffer = &rx_ring->buffer_info[i];
 | |
| 
 | |
| 		cleaned = true;
 | |
| 		cleaned_count++;
 | |
| 		dma_unmap_single(&pdev->dev, buffer_info->dma,
 | |
| 				 buffer_info->length, DMA_FROM_DEVICE);
 | |
| 		buffer_info->dma = 0;
 | |
| 
 | |
| 		length = le16_to_cpu(rx_desc->length);
 | |
| 		/* !EOP means multiple descriptors were used to store a single
 | |
| 		 * packet, if thats the case we need to toss it.  In fact, we
 | |
| 		 * to toss every packet with the EOP bit clear and the next
 | |
| 		 * frame that _does_ have the EOP bit set, as it is by
 | |
| 		 * definition only a frame fragment
 | |
| 		 */
 | |
| 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
 | |
| 			adapter->discarding = true;
 | |
| 
 | |
| 		if (adapter->discarding) {
 | |
| 			/* All receives must fit into a single buffer */
 | |
| 			e_dbg("Receive packet consumed multiple buffers\n");
 | |
| 			/* recycle */
 | |
| 			buffer_info->skb = skb;
 | |
| 			if (status & E1000_RXD_STAT_EOP)
 | |
| 				adapter->discarding = false;
 | |
| 			goto next_desc;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
 | |
| 			u8 last_byte = *(skb->data + length - 1);
 | |
| 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
 | |
| 				       last_byte)) {
 | |
| 				spin_lock_irqsave(&adapter->stats_lock, flags);
 | |
| 				e1000_tbi_adjust_stats(hw, &adapter->stats,
 | |
| 				                       length, skb->data);
 | |
| 				spin_unlock_irqrestore(&adapter->stats_lock,
 | |
| 				                       flags);
 | |
| 				length--;
 | |
| 			} else {
 | |
| 				/* recycle */
 | |
| 				buffer_info->skb = skb;
 | |
| 				goto next_desc;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* adjust length to remove Ethernet CRC, this must be
 | |
| 		 * done after the TBI_ACCEPT workaround above */
 | |
| 		length -= 4;
 | |
| 
 | |
| 		/* probably a little skewed due to removing CRC */
 | |
| 		total_rx_bytes += length;
 | |
| 		total_rx_packets++;
 | |
| 
 | |
| 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
 | |
| 
 | |
| 		skb_put(skb, length);
 | |
| 
 | |
| 		/* Receive Checksum Offload */
 | |
| 		e1000_rx_checksum(adapter,
 | |
| 				  (u32)(status) |
 | |
| 				  ((u32)(rx_desc->errors) << 24),
 | |
| 				  le16_to_cpu(rx_desc->csum), skb);
 | |
| 
 | |
| 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
 | |
| 
 | |
| next_desc:
 | |
| 		rx_desc->status = 0;
 | |
| 
 | |
| 		/* return some buffers to hardware, one at a time is too slow */
 | |
| 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
 | |
| 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
 | |
| 			cleaned_count = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* use prefetched values */
 | |
| 		rx_desc = next_rxd;
 | |
| 		buffer_info = next_buffer;
 | |
| 	}
 | |
| 	rx_ring->next_to_clean = i;
 | |
| 
 | |
| 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
 | |
| 	if (cleaned_count)
 | |
| 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
 | |
| 
 | |
| 	adapter->total_rx_packets += total_rx_packets;
 | |
| 	adapter->total_rx_bytes += total_rx_bytes;
 | |
| 	netdev->stats.rx_bytes += total_rx_bytes;
 | |
| 	netdev->stats.rx_packets += total_rx_packets;
 | |
| 	return cleaned;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 | |
|  * @adapter: address of board private structure
 | |
|  * @rx_ring: pointer to receive ring structure
 | |
|  * @cleaned_count: number of buffers to allocate this pass
 | |
|  **/
 | |
| 
 | |
| static void
 | |
| e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 | |
|                              struct e1000_rx_ring *rx_ring, int cleaned_count)
 | |
| {
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_rx_desc *rx_desc;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int i;
 | |
| 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
 | |
| 
 | |
| 	i = rx_ring->next_to_use;
 | |
| 	buffer_info = &rx_ring->buffer_info[i];
 | |
| 
 | |
| 	while (cleaned_count--) {
 | |
| 		skb = buffer_info->skb;
 | |
| 		if (skb) {
 | |
| 			skb_trim(skb, 0);
 | |
| 			goto check_page;
 | |
| 		}
 | |
| 
 | |
| 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 | |
| 		if (unlikely(!skb)) {
 | |
| 			/* Better luck next round */
 | |
| 			adapter->alloc_rx_buff_failed++;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Fix for errata 23, can't cross 64kB boundary */
 | |
| 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
 | |
| 			struct sk_buff *oldskb = skb;
 | |
| 			e_err(rx_err, "skb align check failed: %u bytes at "
 | |
| 			      "%p\n", bufsz, skb->data);
 | |
| 			/* Try again, without freeing the previous */
 | |
| 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 | |
| 			/* Failed allocation, critical failure */
 | |
| 			if (!skb) {
 | |
| 				dev_kfree_skb(oldskb);
 | |
| 				adapter->alloc_rx_buff_failed++;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
 | |
| 				/* give up */
 | |
| 				dev_kfree_skb(skb);
 | |
| 				dev_kfree_skb(oldskb);
 | |
| 				break; /* while (cleaned_count--) */
 | |
| 			}
 | |
| 
 | |
| 			/* Use new allocation */
 | |
| 			dev_kfree_skb(oldskb);
 | |
| 		}
 | |
| 		buffer_info->skb = skb;
 | |
| 		buffer_info->length = adapter->rx_buffer_len;
 | |
| check_page:
 | |
| 		/* allocate a new page if necessary */
 | |
| 		if (!buffer_info->page) {
 | |
| 			buffer_info->page = alloc_page(GFP_ATOMIC);
 | |
| 			if (unlikely(!buffer_info->page)) {
 | |
| 				adapter->alloc_rx_buff_failed++;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!buffer_info->dma) {
 | |
| 			buffer_info->dma = dma_map_page(&pdev->dev,
 | |
| 			                                buffer_info->page, 0,
 | |
| 							buffer_info->length,
 | |
| 							DMA_FROM_DEVICE);
 | |
| 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 | |
| 				put_page(buffer_info->page);
 | |
| 				dev_kfree_skb(skb);
 | |
| 				buffer_info->page = NULL;
 | |
| 				buffer_info->skb = NULL;
 | |
| 				buffer_info->dma = 0;
 | |
| 				adapter->alloc_rx_buff_failed++;
 | |
| 				break; /* while !buffer_info->skb */
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		rx_desc = E1000_RX_DESC(*rx_ring, i);
 | |
| 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
 | |
| 
 | |
| 		if (unlikely(++i == rx_ring->count))
 | |
| 			i = 0;
 | |
| 		buffer_info = &rx_ring->buffer_info[i];
 | |
| 	}
 | |
| 
 | |
| 	if (likely(rx_ring->next_to_use != i)) {
 | |
| 		rx_ring->next_to_use = i;
 | |
| 		if (unlikely(i-- == 0))
 | |
| 			i = (rx_ring->count - 1);
 | |
| 
 | |
| 		/* Force memory writes to complete before letting h/w
 | |
| 		 * know there are new descriptors to fetch.  (Only
 | |
| 		 * applicable for weak-ordered memory model archs,
 | |
| 		 * such as IA-64). */
 | |
| 		wmb();
 | |
| 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 | |
|  * @adapter: address of board private structure
 | |
|  **/
 | |
| 
 | |
| static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 | |
| 				   struct e1000_rx_ring *rx_ring,
 | |
| 				   int cleaned_count)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct net_device *netdev = adapter->netdev;
 | |
| 	struct pci_dev *pdev = adapter->pdev;
 | |
| 	struct e1000_rx_desc *rx_desc;
 | |
| 	struct e1000_buffer *buffer_info;
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int i;
 | |
| 	unsigned int bufsz = adapter->rx_buffer_len;
 | |
| 
 | |
| 	i = rx_ring->next_to_use;
 | |
| 	buffer_info = &rx_ring->buffer_info[i];
 | |
| 
 | |
| 	while (cleaned_count--) {
 | |
| 		skb = buffer_info->skb;
 | |
| 		if (skb) {
 | |
| 			skb_trim(skb, 0);
 | |
| 			goto map_skb;
 | |
| 		}
 | |
| 
 | |
| 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 | |
| 		if (unlikely(!skb)) {
 | |
| 			/* Better luck next round */
 | |
| 			adapter->alloc_rx_buff_failed++;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Fix for errata 23, can't cross 64kB boundary */
 | |
| 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
 | |
| 			struct sk_buff *oldskb = skb;
 | |
| 			e_err(rx_err, "skb align check failed: %u bytes at "
 | |
| 			      "%p\n", bufsz, skb->data);
 | |
| 			/* Try again, without freeing the previous */
 | |
| 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 | |
| 			/* Failed allocation, critical failure */
 | |
| 			if (!skb) {
 | |
| 				dev_kfree_skb(oldskb);
 | |
| 				adapter->alloc_rx_buff_failed++;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
 | |
| 				/* give up */
 | |
| 				dev_kfree_skb(skb);
 | |
| 				dev_kfree_skb(oldskb);
 | |
| 				adapter->alloc_rx_buff_failed++;
 | |
| 				break; /* while !buffer_info->skb */
 | |
| 			}
 | |
| 
 | |
| 			/* Use new allocation */
 | |
| 			dev_kfree_skb(oldskb);
 | |
| 		}
 | |
| 		buffer_info->skb = skb;
 | |
| 		buffer_info->length = adapter->rx_buffer_len;
 | |
| map_skb:
 | |
| 		buffer_info->dma = dma_map_single(&pdev->dev,
 | |
| 						  skb->data,
 | |
| 						  buffer_info->length,
 | |
| 						  DMA_FROM_DEVICE);
 | |
| 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 | |
| 			dev_kfree_skb(skb);
 | |
| 			buffer_info->skb = NULL;
 | |
| 			buffer_info->dma = 0;
 | |
| 			adapter->alloc_rx_buff_failed++;
 | |
| 			break; /* while !buffer_info->skb */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * XXX if it was allocated cleanly it will never map to a
 | |
| 		 * boundary crossing
 | |
| 		 */
 | |
| 
 | |
| 		/* Fix for errata 23, can't cross 64kB boundary */
 | |
| 		if (!e1000_check_64k_bound(adapter,
 | |
| 					(void *)(unsigned long)buffer_info->dma,
 | |
| 					adapter->rx_buffer_len)) {
 | |
| 			e_err(rx_err, "dma align check failed: %u bytes at "
 | |
| 			      "%p\n", adapter->rx_buffer_len,
 | |
| 			      (void *)(unsigned long)buffer_info->dma);
 | |
| 			dev_kfree_skb(skb);
 | |
| 			buffer_info->skb = NULL;
 | |
| 
 | |
| 			dma_unmap_single(&pdev->dev, buffer_info->dma,
 | |
| 					 adapter->rx_buffer_len,
 | |
| 					 DMA_FROM_DEVICE);
 | |
| 			buffer_info->dma = 0;
 | |
| 
 | |
| 			adapter->alloc_rx_buff_failed++;
 | |
| 			break; /* while !buffer_info->skb */
 | |
| 		}
 | |
| 		rx_desc = E1000_RX_DESC(*rx_ring, i);
 | |
| 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
 | |
| 
 | |
| 		if (unlikely(++i == rx_ring->count))
 | |
| 			i = 0;
 | |
| 		buffer_info = &rx_ring->buffer_info[i];
 | |
| 	}
 | |
| 
 | |
| 	if (likely(rx_ring->next_to_use != i)) {
 | |
| 		rx_ring->next_to_use = i;
 | |
| 		if (unlikely(i-- == 0))
 | |
| 			i = (rx_ring->count - 1);
 | |
| 
 | |
| 		/* Force memory writes to complete before letting h/w
 | |
| 		 * know there are new descriptors to fetch.  (Only
 | |
| 		 * applicable for weak-ordered memory model archs,
 | |
| 		 * such as IA-64). */
 | |
| 		wmb();
 | |
| 		writel(i, hw->hw_addr + rx_ring->rdt);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
 | |
|  * @adapter:
 | |
|  **/
 | |
| 
 | |
| static void e1000_smartspeed(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u16 phy_status;
 | |
| 	u16 phy_ctrl;
 | |
| 
 | |
| 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
 | |
| 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
 | |
| 		return;
 | |
| 
 | |
| 	if (adapter->smartspeed == 0) {
 | |
| 		/* If Master/Slave config fault is asserted twice,
 | |
| 		 * we assume back-to-back */
 | |
| 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
 | |
| 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 | |
| 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
 | |
| 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 | |
| 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
 | |
| 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
 | |
| 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
 | |
| 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
 | |
| 					    phy_ctrl);
 | |
| 			adapter->smartspeed++;
 | |
| 			if (!e1000_phy_setup_autoneg(hw) &&
 | |
| 			   !e1000_read_phy_reg(hw, PHY_CTRL,
 | |
| 				   	       &phy_ctrl)) {
 | |
| 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
 | |
| 					     MII_CR_RESTART_AUTO_NEG);
 | |
| 				e1000_write_phy_reg(hw, PHY_CTRL,
 | |
| 						    phy_ctrl);
 | |
| 			}
 | |
| 		}
 | |
| 		return;
 | |
| 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
 | |
| 		/* If still no link, perhaps using 2/3 pair cable */
 | |
| 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
 | |
| 		phy_ctrl |= CR_1000T_MS_ENABLE;
 | |
| 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
 | |
| 		if (!e1000_phy_setup_autoneg(hw) &&
 | |
| 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
 | |
| 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
 | |
| 				     MII_CR_RESTART_AUTO_NEG);
 | |
| 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
 | |
| 		}
 | |
| 	}
 | |
| 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
 | |
| 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
 | |
| 		adapter->smartspeed = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_ioctl -
 | |
|  * @netdev:
 | |
|  * @ifreq:
 | |
|  * @cmd:
 | |
|  **/
 | |
| 
 | |
| static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case SIOCGMIIPHY:
 | |
| 	case SIOCGMIIREG:
 | |
| 	case SIOCSMIIREG:
 | |
| 		return e1000_mii_ioctl(netdev, ifr, cmd);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_mii_ioctl -
 | |
|  * @netdev:
 | |
|  * @ifreq:
 | |
|  * @cmd:
 | |
|  **/
 | |
| 
 | |
| static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 | |
| 			   int cmd)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	struct mii_ioctl_data *data = if_mii(ifr);
 | |
| 	int retval;
 | |
| 	u16 mii_reg;
 | |
| 	u16 spddplx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (hw->media_type != e1000_media_type_copper)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case SIOCGMIIPHY:
 | |
| 		data->phy_id = hw->phy_addr;
 | |
| 		break;
 | |
| 	case SIOCGMIIREG:
 | |
| 		spin_lock_irqsave(&adapter->stats_lock, flags);
 | |
| 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
 | |
| 				   &data->val_out)) {
 | |
| 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
 | |
| 		break;
 | |
| 	case SIOCSMIIREG:
 | |
| 		if (data->reg_num & ~(0x1F))
 | |
| 			return -EFAULT;
 | |
| 		mii_reg = data->val_in;
 | |
| 		spin_lock_irqsave(&adapter->stats_lock, flags);
 | |
| 		if (e1000_write_phy_reg(hw, data->reg_num,
 | |
| 					mii_reg)) {
 | |
| 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
 | |
| 		if (hw->media_type == e1000_media_type_copper) {
 | |
| 			switch (data->reg_num) {
 | |
| 			case PHY_CTRL:
 | |
| 				if (mii_reg & MII_CR_POWER_DOWN)
 | |
| 					break;
 | |
| 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
 | |
| 					hw->autoneg = 1;
 | |
| 					hw->autoneg_advertised = 0x2F;
 | |
| 				} else {
 | |
| 					if (mii_reg & 0x40)
 | |
| 						spddplx = SPEED_1000;
 | |
| 					else if (mii_reg & 0x2000)
 | |
| 						spddplx = SPEED_100;
 | |
| 					else
 | |
| 						spddplx = SPEED_10;
 | |
| 					spddplx += (mii_reg & 0x100)
 | |
| 						   ? DUPLEX_FULL :
 | |
| 						   DUPLEX_HALF;
 | |
| 					retval = e1000_set_spd_dplx(adapter,
 | |
| 								    spddplx);
 | |
| 					if (retval)
 | |
| 						return retval;
 | |
| 				}
 | |
| 				if (netif_running(adapter->netdev))
 | |
| 					e1000_reinit_locked(adapter);
 | |
| 				else
 | |
| 					e1000_reset(adapter);
 | |
| 				break;
 | |
| 			case M88E1000_PHY_SPEC_CTRL:
 | |
| 			case M88E1000_EXT_PHY_SPEC_CTRL:
 | |
| 				if (e1000_phy_reset(hw))
 | |
| 					return -EIO;
 | |
| 				break;
 | |
| 			}
 | |
| 		} else {
 | |
| 			switch (data->reg_num) {
 | |
| 			case PHY_CTRL:
 | |
| 				if (mii_reg & MII_CR_POWER_DOWN)
 | |
| 					break;
 | |
| 				if (netif_running(adapter->netdev))
 | |
| 					e1000_reinit_locked(adapter);
 | |
| 				else
 | |
| 					e1000_reset(adapter);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| void e1000_pci_set_mwi(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = hw->back;
 | |
| 	int ret_val = pci_set_mwi(adapter->pdev);
 | |
| 
 | |
| 	if (ret_val)
 | |
| 		e_err(probe, "Error in setting MWI\n");
 | |
| }
 | |
| 
 | |
| void e1000_pci_clear_mwi(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = hw->back;
 | |
| 
 | |
| 	pci_clear_mwi(adapter->pdev);
 | |
| }
 | |
| 
 | |
| int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = hw->back;
 | |
| 	return pcix_get_mmrbc(adapter->pdev);
 | |
| }
 | |
| 
 | |
| void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = hw->back;
 | |
| 	pcix_set_mmrbc(adapter->pdev, mmrbc);
 | |
| }
 | |
| 
 | |
| void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
 | |
| {
 | |
| 	outl(value, port);
 | |
| }
 | |
| 
 | |
| static void e1000_vlan_rx_register(struct net_device *netdev,
 | |
| 				   struct vlan_group *grp)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 ctrl, rctl;
 | |
| 
 | |
| 	if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 		e1000_irq_disable(adapter);
 | |
| 	adapter->vlgrp = grp;
 | |
| 
 | |
| 	if (grp) {
 | |
| 		/* enable VLAN tag insert/strip */
 | |
| 		ctrl = er32(CTRL);
 | |
| 		ctrl |= E1000_CTRL_VME;
 | |
| 		ew32(CTRL, ctrl);
 | |
| 
 | |
| 		/* enable VLAN receive filtering */
 | |
| 		rctl = er32(RCTL);
 | |
| 		rctl &= ~E1000_RCTL_CFIEN;
 | |
| 		if (!(netdev->flags & IFF_PROMISC))
 | |
| 			rctl |= E1000_RCTL_VFE;
 | |
| 		ew32(RCTL, rctl);
 | |
| 		e1000_update_mng_vlan(adapter);
 | |
| 	} else {
 | |
| 		/* disable VLAN tag insert/strip */
 | |
| 		ctrl = er32(CTRL);
 | |
| 		ctrl &= ~E1000_CTRL_VME;
 | |
| 		ew32(CTRL, ctrl);
 | |
| 
 | |
| 		/* disable VLAN receive filtering */
 | |
| 		rctl = er32(RCTL);
 | |
| 		rctl &= ~E1000_RCTL_VFE;
 | |
| 		ew32(RCTL, rctl);
 | |
| 
 | |
| 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
 | |
| 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
 | |
| 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 		e1000_irq_enable(adapter);
 | |
| }
 | |
| 
 | |
| static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 vfta, index;
 | |
| 
 | |
| 	if ((hw->mng_cookie.status &
 | |
| 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
 | |
| 	    (vid == adapter->mng_vlan_id))
 | |
| 		return;
 | |
| 	/* add VID to filter table */
 | |
| 	index = (vid >> 5) & 0x7F;
 | |
| 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
 | |
| 	vfta |= (1 << (vid & 0x1F));
 | |
| 	e1000_write_vfta(hw, index, vfta);
 | |
| }
 | |
| 
 | |
| static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 vfta, index;
 | |
| 
 | |
| 	if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 		e1000_irq_disable(adapter);
 | |
| 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
 | |
| 	if (!test_bit(__E1000_DOWN, &adapter->flags))
 | |
| 		e1000_irq_enable(adapter);
 | |
| 
 | |
| 	/* remove VID from filter table */
 | |
| 	index = (vid >> 5) & 0x7F;
 | |
| 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
 | |
| 	vfta &= ~(1 << (vid & 0x1F));
 | |
| 	e1000_write_vfta(hw, index, vfta);
 | |
| }
 | |
| 
 | |
| static void e1000_restore_vlan(struct e1000_adapter *adapter)
 | |
| {
 | |
| 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
 | |
| 
 | |
| 	if (adapter->vlgrp) {
 | |
| 		u16 vid;
 | |
| 		for (vid = 0; vid < VLAN_N_VID; vid++) {
 | |
| 			if (!vlan_group_get_device(adapter->vlgrp, vid))
 | |
| 				continue;
 | |
| 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
 | |
| {
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 
 | |
| 	hw->autoneg = 0;
 | |
| 
 | |
| 	/* Fiber NICs only allow 1000 gbps Full duplex */
 | |
| 	if ((hw->media_type == e1000_media_type_fiber) &&
 | |
| 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
 | |
| 		e_err(probe, "Unsupported Speed/Duplex configuration\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	switch (spddplx) {
 | |
| 	case SPEED_10 + DUPLEX_HALF:
 | |
| 		hw->forced_speed_duplex = e1000_10_half;
 | |
| 		break;
 | |
| 	case SPEED_10 + DUPLEX_FULL:
 | |
| 		hw->forced_speed_duplex = e1000_10_full;
 | |
| 		break;
 | |
| 	case SPEED_100 + DUPLEX_HALF:
 | |
| 		hw->forced_speed_duplex = e1000_100_half;
 | |
| 		break;
 | |
| 	case SPEED_100 + DUPLEX_FULL:
 | |
| 		hw->forced_speed_duplex = e1000_100_full;
 | |
| 		break;
 | |
| 	case SPEED_1000 + DUPLEX_FULL:
 | |
| 		hw->autoneg = 1;
 | |
| 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
 | |
| 		break;
 | |
| 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
 | |
| 	default:
 | |
| 		e_err(probe, "Unsupported Speed/Duplex configuration\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 ctrl, ctrl_ext, rctl, status;
 | |
| 	u32 wufc = adapter->wol;
 | |
| #ifdef CONFIG_PM
 | |
| 	int retval = 0;
 | |
| #endif
 | |
| 
 | |
| 	netif_device_detach(netdev);
 | |
| 
 | |
| 	if (netif_running(netdev)) {
 | |
| 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 | |
| 		e1000_down(adapter);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 	retval = pci_save_state(pdev);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| #endif
 | |
| 
 | |
| 	status = er32(STATUS);
 | |
| 	if (status & E1000_STATUS_LU)
 | |
| 		wufc &= ~E1000_WUFC_LNKC;
 | |
| 
 | |
| 	if (wufc) {
 | |
| 		e1000_setup_rctl(adapter);
 | |
| 		e1000_set_rx_mode(netdev);
 | |
| 
 | |
| 		/* turn on all-multi mode if wake on multicast is enabled */
 | |
| 		if (wufc & E1000_WUFC_MC) {
 | |
| 			rctl = er32(RCTL);
 | |
| 			rctl |= E1000_RCTL_MPE;
 | |
| 			ew32(RCTL, rctl);
 | |
| 		}
 | |
| 
 | |
| 		if (hw->mac_type >= e1000_82540) {
 | |
| 			ctrl = er32(CTRL);
 | |
| 			/* advertise wake from D3Cold */
 | |
| 			#define E1000_CTRL_ADVD3WUC 0x00100000
 | |
| 			/* phy power management enable */
 | |
| 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
 | |
| 			ctrl |= E1000_CTRL_ADVD3WUC |
 | |
| 				E1000_CTRL_EN_PHY_PWR_MGMT;
 | |
| 			ew32(CTRL, ctrl);
 | |
| 		}
 | |
| 
 | |
| 		if (hw->media_type == e1000_media_type_fiber ||
 | |
| 		    hw->media_type == e1000_media_type_internal_serdes) {
 | |
| 			/* keep the laser running in D3 */
 | |
| 			ctrl_ext = er32(CTRL_EXT);
 | |
| 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
 | |
| 			ew32(CTRL_EXT, ctrl_ext);
 | |
| 		}
 | |
| 
 | |
| 		ew32(WUC, E1000_WUC_PME_EN);
 | |
| 		ew32(WUFC, wufc);
 | |
| 	} else {
 | |
| 		ew32(WUC, 0);
 | |
| 		ew32(WUFC, 0);
 | |
| 	}
 | |
| 
 | |
| 	e1000_release_manageability(adapter);
 | |
| 
 | |
| 	*enable_wake = !!wufc;
 | |
| 
 | |
| 	/* make sure adapter isn't asleep if manageability is enabled */
 | |
| 	if (adapter->en_mng_pt)
 | |
| 		*enable_wake = true;
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		e1000_free_irq(adapter);
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
 | |
| {
 | |
| 	int retval;
 | |
| 	bool wake;
 | |
| 
 | |
| 	retval = __e1000_shutdown(pdev, &wake);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	if (wake) {
 | |
| 		pci_prepare_to_sleep(pdev);
 | |
| 	} else {
 | |
| 		pci_wake_from_d3(pdev, false);
 | |
| 		pci_set_power_state(pdev, PCI_D3hot);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int e1000_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	u32 err;
 | |
| 
 | |
| 	pci_set_power_state(pdev, PCI_D0);
 | |
| 	pci_restore_state(pdev);
 | |
| 	pci_save_state(pdev);
 | |
| 
 | |
| 	if (adapter->need_ioport)
 | |
| 		err = pci_enable_device(pdev);
 | |
| 	else
 | |
| 		err = pci_enable_device_mem(pdev);
 | |
| 	if (err) {
 | |
| 		pr_err("Cannot enable PCI device from suspend\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	pci_enable_wake(pdev, PCI_D3hot, 0);
 | |
| 	pci_enable_wake(pdev, PCI_D3cold, 0);
 | |
| 
 | |
| 	if (netif_running(netdev)) {
 | |
| 		err = e1000_request_irq(adapter);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	e1000_power_up_phy(adapter);
 | |
| 	e1000_reset(adapter);
 | |
| 	ew32(WUS, ~0);
 | |
| 
 | |
| 	e1000_init_manageability(adapter);
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		e1000_up(adapter);
 | |
| 
 | |
| 	netif_device_attach(netdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void e1000_shutdown(struct pci_dev *pdev)
 | |
| {
 | |
| 	bool wake;
 | |
| 
 | |
| 	__e1000_shutdown(pdev, &wake);
 | |
| 
 | |
| 	if (system_state == SYSTEM_POWER_OFF) {
 | |
| 		pci_wake_from_d3(pdev, wake);
 | |
| 		pci_set_power_state(pdev, PCI_D3hot);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET_POLL_CONTROLLER
 | |
| /*
 | |
|  * Polling 'interrupt' - used by things like netconsole to send skbs
 | |
|  * without having to re-enable interrupts. It's not called while
 | |
|  * the interrupt routine is executing.
 | |
|  */
 | |
| static void e1000_netpoll(struct net_device *netdev)
 | |
| {
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	disable_irq(adapter->pdev->irq);
 | |
| 	e1000_intr(adapter->pdev->irq, netdev);
 | |
| 	enable_irq(adapter->pdev->irq);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * e1000_io_error_detected - called when PCI error is detected
 | |
|  * @pdev: Pointer to PCI device
 | |
|  * @state: The current pci connection state
 | |
|  *
 | |
|  * This function is called after a PCI bus error affecting
 | |
|  * this device has been detected.
 | |
|  */
 | |
| static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 | |
| 						pci_channel_state_t state)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	netif_device_detach(netdev);
 | |
| 
 | |
| 	if (state == pci_channel_io_perm_failure)
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 
 | |
| 	if (netif_running(netdev))
 | |
| 		e1000_down(adapter);
 | |
| 	pci_disable_device(pdev);
 | |
| 
 | |
| 	/* Request a slot slot reset. */
 | |
| 	return PCI_ERS_RESULT_NEED_RESET;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_io_slot_reset - called after the pci bus has been reset.
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * Restart the card from scratch, as if from a cold-boot. Implementation
 | |
|  * resembles the first-half of the e1000_resume routine.
 | |
|  */
 | |
| static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 	struct e1000_hw *hw = &adapter->hw;
 | |
| 	int err;
 | |
| 
 | |
| 	if (adapter->need_ioport)
 | |
| 		err = pci_enable_device(pdev);
 | |
| 	else
 | |
| 		err = pci_enable_device_mem(pdev);
 | |
| 	if (err) {
 | |
| 		pr_err("Cannot re-enable PCI device after reset.\n");
 | |
| 		return PCI_ERS_RESULT_DISCONNECT;
 | |
| 	}
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	pci_enable_wake(pdev, PCI_D3hot, 0);
 | |
| 	pci_enable_wake(pdev, PCI_D3cold, 0);
 | |
| 
 | |
| 	e1000_reset(adapter);
 | |
| 	ew32(WUS, ~0);
 | |
| 
 | |
| 	return PCI_ERS_RESULT_RECOVERED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_io_resume - called when traffic can start flowing again.
 | |
|  * @pdev: Pointer to PCI device
 | |
|  *
 | |
|  * This callback is called when the error recovery driver tells us that
 | |
|  * its OK to resume normal operation. Implementation resembles the
 | |
|  * second-half of the e1000_resume routine.
 | |
|  */
 | |
| static void e1000_io_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *netdev = pci_get_drvdata(pdev);
 | |
| 	struct e1000_adapter *adapter = netdev_priv(netdev);
 | |
| 
 | |
| 	e1000_init_manageability(adapter);
 | |
| 
 | |
| 	if (netif_running(netdev)) {
 | |
| 		if (e1000_up(adapter)) {
 | |
| 			pr_info("can't bring device back up after reset\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	netif_device_attach(netdev);
 | |
| }
 | |
| 
 | |
| /* e1000_main.c */
 |