Having a RAM device does not make sense for chips like GK20A which have no dedicated video memory. The dummy RAM device that we used so far works as a temporary band-aid, but in the longer term it is desirable for the driver to be able to work without any kind of VRAM. This patch adds a few conditionals in places where a RAM device was assumed to be present and allows some more objects to be allocated from the TT domain, allowing Nouveau to handle GPUs for which pfb->ram == NULL. Signed-off-by: Alexandre Courbot <acourbot@nvidia.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
244 lines
6.5 KiB
C
244 lines
6.5 KiB
C
/*
|
|
* Copyright 2012 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Ben Skeggs
|
|
*/
|
|
#include "priv.h"
|
|
|
|
#include <core/enum.h>
|
|
#include <subdev/fb.h>
|
|
#include <subdev/timer.h>
|
|
|
|
void
|
|
gf100_ltc_cbc_clear(struct nvkm_ltc_priv *priv, u32 start, u32 limit)
|
|
{
|
|
nv_wr32(priv, 0x17e8cc, start);
|
|
nv_wr32(priv, 0x17e8d0, limit);
|
|
nv_wr32(priv, 0x17e8c8, 0x00000004);
|
|
}
|
|
|
|
void
|
|
gf100_ltc_cbc_wait(struct nvkm_ltc_priv *priv)
|
|
{
|
|
int c, s;
|
|
for (c = 0; c < priv->ltc_nr; c++) {
|
|
for (s = 0; s < priv->lts_nr; s++)
|
|
nv_wait(priv, 0x1410c8 + c * 0x2000 + s * 0x400, ~0, 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
gf100_ltc_zbc_clear_color(struct nvkm_ltc_priv *priv, int i, const u32 color[4])
|
|
{
|
|
nv_mask(priv, 0x17ea44, 0x0000000f, i);
|
|
nv_wr32(priv, 0x17ea48, color[0]);
|
|
nv_wr32(priv, 0x17ea4c, color[1]);
|
|
nv_wr32(priv, 0x17ea50, color[2]);
|
|
nv_wr32(priv, 0x17ea54, color[3]);
|
|
}
|
|
|
|
void
|
|
gf100_ltc_zbc_clear_depth(struct nvkm_ltc_priv *priv, int i, const u32 depth)
|
|
{
|
|
nv_mask(priv, 0x17ea44, 0x0000000f, i);
|
|
nv_wr32(priv, 0x17ea58, depth);
|
|
}
|
|
|
|
static const struct nvkm_bitfield
|
|
gf100_ltc_lts_intr_name[] = {
|
|
{ 0x00000001, "IDLE_ERROR_IQ" },
|
|
{ 0x00000002, "IDLE_ERROR_CBC" },
|
|
{ 0x00000004, "IDLE_ERROR_TSTG" },
|
|
{ 0x00000008, "IDLE_ERROR_DSTG" },
|
|
{ 0x00000010, "EVICTED_CB" },
|
|
{ 0x00000020, "ILLEGAL_COMPSTAT" },
|
|
{ 0x00000040, "BLOCKLINEAR_CB" },
|
|
{ 0x00000100, "ECC_SEC_ERROR" },
|
|
{ 0x00000200, "ECC_DED_ERROR" },
|
|
{ 0x00000400, "DEBUG" },
|
|
{ 0x00000800, "ATOMIC_TO_Z" },
|
|
{ 0x00001000, "ILLEGAL_ATOMIC" },
|
|
{ 0x00002000, "BLKACTIVITY_ERR" },
|
|
{}
|
|
};
|
|
|
|
static void
|
|
gf100_ltc_lts_intr(struct nvkm_ltc_priv *priv, int ltc, int lts)
|
|
{
|
|
u32 base = 0x141000 + (ltc * 0x2000) + (lts * 0x400);
|
|
u32 intr = nv_rd32(priv, base + 0x020);
|
|
u32 stat = intr & 0x0000ffff;
|
|
|
|
if (stat) {
|
|
nv_info(priv, "LTC%d_LTS%d:", ltc, lts);
|
|
nvkm_bitfield_print(gf100_ltc_lts_intr_name, stat);
|
|
pr_cont("\n");
|
|
}
|
|
|
|
nv_wr32(priv, base + 0x020, intr);
|
|
}
|
|
|
|
void
|
|
gf100_ltc_intr(struct nvkm_subdev *subdev)
|
|
{
|
|
struct nvkm_ltc_priv *priv = (void *)subdev;
|
|
u32 mask;
|
|
|
|
mask = nv_rd32(priv, 0x00017c);
|
|
while (mask) {
|
|
u32 lts, ltc = __ffs(mask);
|
|
for (lts = 0; lts < priv->lts_nr; lts++)
|
|
gf100_ltc_lts_intr(priv, ltc, lts);
|
|
mask &= ~(1 << ltc);
|
|
}
|
|
}
|
|
|
|
static int
|
|
gf100_ltc_init(struct nvkm_object *object)
|
|
{
|
|
struct nvkm_ltc_priv *priv = (void *)object;
|
|
u32 lpg128 = !(nv_rd32(priv, 0x100c80) & 0x00000001);
|
|
int ret;
|
|
|
|
ret = nvkm_ltc_init(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nv_mask(priv, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
|
|
nv_wr32(priv, 0x17e8d8, priv->ltc_nr);
|
|
nv_wr32(priv, 0x17e8d4, priv->tag_base);
|
|
nv_mask(priv, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
gf100_ltc_dtor(struct nvkm_object *object)
|
|
{
|
|
struct nvkm_fb *pfb = nvkm_fb(object);
|
|
struct nvkm_ltc_priv *priv = (void *)object;
|
|
|
|
nvkm_mm_fini(&priv->tags);
|
|
if (pfb->ram)
|
|
nvkm_mm_free(&pfb->vram, &priv->tag_ram);
|
|
|
|
nvkm_ltc_destroy(priv);
|
|
}
|
|
|
|
/* TODO: Figure out tag memory details and drop the over-cautious allocation.
|
|
*/
|
|
int
|
|
gf100_ltc_init_tag_ram(struct nvkm_fb *pfb, struct nvkm_ltc_priv *priv)
|
|
{
|
|
u32 tag_size, tag_margin, tag_align;
|
|
int ret;
|
|
|
|
/* No VRAM, no tags for now. */
|
|
if (!pfb->ram) {
|
|
priv->num_tags = 0;
|
|
goto mm_init;
|
|
}
|
|
|
|
/* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
|
|
priv->num_tags = (pfb->ram->size >> 17) / 4;
|
|
if (priv->num_tags > (1 << 17))
|
|
priv->num_tags = 1 << 17; /* we have 17 bits in PTE */
|
|
priv->num_tags = (priv->num_tags + 63) & ~63; /* round up to 64 */
|
|
|
|
tag_align = priv->ltc_nr * 0x800;
|
|
tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
|
|
|
|
/* 4 part 4 sub: 0x2000 bytes for 56 tags */
|
|
/* 3 part 4 sub: 0x6000 bytes for 168 tags */
|
|
/*
|
|
* About 147 bytes per tag. Let's be safe and allocate x2, which makes
|
|
* 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
|
|
*
|
|
* For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
|
|
*/
|
|
tag_size = (priv->num_tags / 64) * 0x6000 + tag_margin;
|
|
tag_size += tag_align;
|
|
tag_size = (tag_size + 0xfff) >> 12; /* round up */
|
|
|
|
ret = nvkm_mm_tail(&pfb->vram, 1, 1, tag_size, tag_size, 1,
|
|
&priv->tag_ram);
|
|
if (ret) {
|
|
priv->num_tags = 0;
|
|
} else {
|
|
u64 tag_base = ((u64)priv->tag_ram->offset << 12) + tag_margin;
|
|
|
|
tag_base += tag_align - 1;
|
|
ret = do_div(tag_base, tag_align);
|
|
|
|
priv->tag_base = tag_base;
|
|
}
|
|
|
|
mm_init:
|
|
ret = nvkm_mm_init(&priv->tags, 0, priv->num_tags, 1);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
gf100_ltc_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
|
|
struct nvkm_oclass *oclass, void *data, u32 size,
|
|
struct nvkm_object **pobject)
|
|
{
|
|
struct nvkm_fb *pfb = nvkm_fb(parent);
|
|
struct nvkm_ltc_priv *priv;
|
|
u32 parts, mask;
|
|
int ret, i;
|
|
|
|
ret = nvkm_ltc_create(parent, engine, oclass, &priv);
|
|
*pobject = nv_object(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
parts = nv_rd32(priv, 0x022438);
|
|
mask = nv_rd32(priv, 0x022554);
|
|
for (i = 0; i < parts; i++) {
|
|
if (!(mask & (1 << i)))
|
|
priv->ltc_nr++;
|
|
}
|
|
priv->lts_nr = nv_rd32(priv, 0x17e8dc) >> 28;
|
|
|
|
ret = gf100_ltc_init_tag_ram(pfb, priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nv_subdev(priv)->intr = gf100_ltc_intr;
|
|
return 0;
|
|
}
|
|
|
|
struct nvkm_oclass *
|
|
gf100_ltc_oclass = &(struct nvkm_ltc_impl) {
|
|
.base.handle = NV_SUBDEV(LTC, 0xc0),
|
|
.base.ofuncs = &(struct nvkm_ofuncs) {
|
|
.ctor = gf100_ltc_ctor,
|
|
.dtor = gf100_ltc_dtor,
|
|
.init = gf100_ltc_init,
|
|
.fini = _nvkm_ltc_fini,
|
|
},
|
|
.intr = gf100_ltc_intr,
|
|
.cbc_clear = gf100_ltc_cbc_clear,
|
|
.cbc_wait = gf100_ltc_cbc_wait,
|
|
.zbc = 16,
|
|
.zbc_clear_color = gf100_ltc_zbc_clear_color,
|
|
.zbc_clear_depth = gf100_ltc_zbc_clear_depth,
|
|
}.base;
|