 a14a348bff
			
		
	
	
	a14a348bff
	
	
	
		
			
			Remove the XFS_LOG_FORCE argument which was always set, and the XFS_LOG_URGE define, which was never used. Split xfs_log_force into a two helpers - xfs_log_force which forces the whole log, and xfs_log_force_lsn which forces up to the specified LSN. The underlying implementations already were entirely separate, as were the users. Also re-indent the new _xfs_log_force/_xfs_log_force which previously had a weird coding style. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
		
			
				
	
	
		
			4013 lines
		
	
	
	
		
			107 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4013 lines
		
	
	
	
		
			107 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_types.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_dmapi.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_alloc_btree.h"
 | |
| #include "xfs_ialloc_btree.h"
 | |
| #include "xfs_dir2_sf.h"
 | |
| #include "xfs_attr_sf.h"
 | |
| #include "xfs_dinode.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_log_priv.h"
 | |
| #include "xfs_buf_item.h"
 | |
| #include "xfs_log_recover.h"
 | |
| #include "xfs_extfree_item.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_rw.h"
 | |
| #include "xfs_utils.h"
 | |
| #include "xfs_trace.h"
 | |
| 
 | |
| STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
 | |
| STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
 | |
| #if defined(DEBUG)
 | |
| STATIC void	xlog_recover_check_summary(xlog_t *);
 | |
| #else
 | |
| #define	xlog_recover_check_summary(log)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Sector aligned buffer routines for buffer create/read/write/access
 | |
|  */
 | |
| 
 | |
| #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
 | |
| 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
 | |
| 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
 | |
| #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
 | |
| 
 | |
| STATIC xfs_buf_t *
 | |
| xlog_get_bp(
 | |
| 	xlog_t		*log,
 | |
| 	int		nbblks)
 | |
| {
 | |
| 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
 | |
| 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
 | |
| 		XFS_ERROR_REPORT("xlog_get_bp(1)",
 | |
| 				 XFS_ERRLEVEL_HIGH, log->l_mp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (log->l_sectbb_log) {
 | |
| 		if (nbblks > 1)
 | |
| 			nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
 | |
| 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
 | |
| 	}
 | |
| 	return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xlog_put_bp(
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	xfs_buf_free(bp);
 | |
| }
 | |
| 
 | |
| STATIC xfs_caddr_t
 | |
| xlog_align(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_daddr_t	blk_no,
 | |
| 	int		nbblks,
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	xfs_caddr_t	ptr;
 | |
| 
 | |
| 	if (!log->l_sectbb_log)
 | |
| 		return XFS_BUF_PTR(bp);
 | |
| 
 | |
| 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
 | |
| 	ASSERT(XFS_BUF_SIZE(bp) >=
 | |
| 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_bread_noalign(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_daddr_t	blk_no,
 | |
| 	int		nbblks,
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	int		error;
 | |
| 
 | |
| 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
 | |
| 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
 | |
| 		XFS_ERROR_REPORT("xlog_bread(1)",
 | |
| 				 XFS_ERRLEVEL_HIGH, log->l_mp);
 | |
| 		return EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	if (log->l_sectbb_log) {
 | |
| 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
 | |
| 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(nbblks > 0);
 | |
| 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 | |
| 	ASSERT(bp);
 | |
| 
 | |
| 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 | |
| 	XFS_BUF_READ(bp);
 | |
| 	XFS_BUF_BUSY(bp);
 | |
| 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 | |
| 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
 | |
| 
 | |
| 	xfsbdstrat(log->l_mp, bp);
 | |
| 	error = xfs_iowait(bp);
 | |
| 	if (error)
 | |
| 		xfs_ioerror_alert("xlog_bread", log->l_mp,
 | |
| 				  bp, XFS_BUF_ADDR(bp));
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xlog_bread(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_daddr_t	blk_no,
 | |
| 	int		nbblks,
 | |
| 	xfs_buf_t	*bp,
 | |
| 	xfs_caddr_t	*offset)
 | |
| {
 | |
| 	int		error;
 | |
| 
 | |
| 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	*offset = xlog_align(log, blk_no, nbblks, bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out the buffer at the given block for the given number of blocks.
 | |
|  * The buffer is kept locked across the write and is returned locked.
 | |
|  * This can only be used for synchronous log writes.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_bwrite(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_daddr_t	blk_no,
 | |
| 	int		nbblks,
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	int		error;
 | |
| 
 | |
| 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
 | |
| 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
 | |
| 		XFS_ERROR_REPORT("xlog_bwrite(1)",
 | |
| 				 XFS_ERRLEVEL_HIGH, log->l_mp);
 | |
| 		return EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	if (log->l_sectbb_log) {
 | |
| 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
 | |
| 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(nbblks > 0);
 | |
| 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 | |
| 
 | |
| 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 | |
| 	XFS_BUF_ZEROFLAGS(bp);
 | |
| 	XFS_BUF_BUSY(bp);
 | |
| 	XFS_BUF_HOLD(bp);
 | |
| 	XFS_BUF_PSEMA(bp, PRIBIO);
 | |
| 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 | |
| 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
 | |
| 
 | |
| 	if ((error = xfs_bwrite(log->l_mp, bp)))
 | |
| 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
 | |
| 				  bp, XFS_BUF_ADDR(bp));
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG
 | |
| /*
 | |
|  * dump debug superblock and log record information
 | |
|  */
 | |
| STATIC void
 | |
| xlog_header_check_dump(
 | |
| 	xfs_mount_t		*mp,
 | |
| 	xlog_rec_header_t	*head)
 | |
| {
 | |
| 	cmn_err(CE_DEBUG, "%s:  SB : uuid = %pU, fmt = %d\n",
 | |
| 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 | |
| 	cmn_err(CE_DEBUG, "    log : uuid = %pU, fmt = %d\n",
 | |
| 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 | |
| }
 | |
| #else
 | |
| #define xlog_header_check_dump(mp, head)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * check log record header for recovery
 | |
|  */
 | |
| STATIC int
 | |
| xlog_header_check_recover(
 | |
| 	xfs_mount_t		*mp,
 | |
| 	xlog_rec_header_t	*head)
 | |
| {
 | |
| 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
 | |
| 
 | |
| 	/*
 | |
| 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
 | |
| 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 | |
| 	 * a dirty log created in IRIX.
 | |
| 	 */
 | |
| 	if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
 | |
| 		xlog_warn(
 | |
| 	"XFS: dirty log written in incompatible format - can't recover");
 | |
| 		xlog_header_check_dump(mp, head);
 | |
| 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 | |
| 				 XFS_ERRLEVEL_HIGH, mp);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 | |
| 		xlog_warn(
 | |
| 	"XFS: dirty log entry has mismatched uuid - can't recover");
 | |
| 		xlog_header_check_dump(mp, head);
 | |
| 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 | |
| 				 XFS_ERRLEVEL_HIGH, mp);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read the head block of the log and check the header
 | |
|  */
 | |
| STATIC int
 | |
| xlog_header_check_mount(
 | |
| 	xfs_mount_t		*mp,
 | |
| 	xlog_rec_header_t	*head)
 | |
| {
 | |
| 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
 | |
| 
 | |
| 	if (uuid_is_nil(&head->h_fs_uuid)) {
 | |
| 		/*
 | |
| 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 | |
| 		 * h_fs_uuid is nil, we assume this log was last mounted
 | |
| 		 * by IRIX and continue.
 | |
| 		 */
 | |
| 		xlog_warn("XFS: nil uuid in log - IRIX style log");
 | |
| 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 | |
| 		xlog_warn("XFS: log has mismatched uuid - can't recover");
 | |
| 		xlog_header_check_dump(mp, head);
 | |
| 		XFS_ERROR_REPORT("xlog_header_check_mount",
 | |
| 				 XFS_ERRLEVEL_HIGH, mp);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xlog_recover_iodone(
 | |
| 	struct xfs_buf	*bp)
 | |
| {
 | |
| 	if (XFS_BUF_GETERROR(bp)) {
 | |
| 		/*
 | |
| 		 * We're not going to bother about retrying
 | |
| 		 * this during recovery. One strike!
 | |
| 		 */
 | |
| 		xfs_ioerror_alert("xlog_recover_iodone",
 | |
| 				  bp->b_mount, bp, XFS_BUF_ADDR(bp));
 | |
| 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
 | |
| 	}
 | |
| 	bp->b_mount = NULL;
 | |
| 	XFS_BUF_CLR_IODONE_FUNC(bp);
 | |
| 	xfs_biodone(bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine finds (to an approximation) the first block in the physical
 | |
|  * log which contains the given cycle.  It uses a binary search algorithm.
 | |
|  * Note that the algorithm can not be perfect because the disk will not
 | |
|  * necessarily be perfect.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_find_cycle_start(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_buf_t	*bp,
 | |
| 	xfs_daddr_t	first_blk,
 | |
| 	xfs_daddr_t	*last_blk,
 | |
| 	uint		cycle)
 | |
| {
 | |
| 	xfs_caddr_t	offset;
 | |
| 	xfs_daddr_t	mid_blk;
 | |
| 	uint		mid_cycle;
 | |
| 	int		error;
 | |
| 
 | |
| 	mid_blk = BLK_AVG(first_blk, *last_blk);
 | |
| 	while (mid_blk != first_blk && mid_blk != *last_blk) {
 | |
| 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		mid_cycle = xlog_get_cycle(offset);
 | |
| 		if (mid_cycle == cycle) {
 | |
| 			*last_blk = mid_blk;
 | |
| 			/* last_half_cycle == mid_cycle */
 | |
| 		} else {
 | |
| 			first_blk = mid_blk;
 | |
| 			/* first_half_cycle == mid_cycle */
 | |
| 		}
 | |
| 		mid_blk = BLK_AVG(first_blk, *last_blk);
 | |
| 	}
 | |
| 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
 | |
| 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the range of blocks does not contain the cycle number
 | |
|  * given.  The scan needs to occur from front to back and the ptr into the
 | |
|  * region must be updated since a later routine will need to perform another
 | |
|  * test.  If the region is completely good, we end up returning the same
 | |
|  * last block number.
 | |
|  *
 | |
|  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
 | |
|  * since we don't ever expect logs to get this large.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_find_verify_cycle(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_daddr_t	start_blk,
 | |
| 	int		nbblks,
 | |
| 	uint		stop_on_cycle_no,
 | |
| 	xfs_daddr_t	*new_blk)
 | |
| {
 | |
| 	xfs_daddr_t	i, j;
 | |
| 	uint		cycle;
 | |
| 	xfs_buf_t	*bp;
 | |
| 	xfs_daddr_t	bufblks;
 | |
| 	xfs_caddr_t	buf = NULL;
 | |
| 	int		error = 0;
 | |
| 
 | |
| 	bufblks = 1 << ffs(nbblks);
 | |
| 
 | |
| 	while (!(bp = xlog_get_bp(log, bufblks))) {
 | |
| 		/* can't get enough memory to do everything in one big buffer */
 | |
| 		bufblks >>= 1;
 | |
| 		if (bufblks <= log->l_sectbb_log)
 | |
| 			return ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 | |
| 		int	bcount;
 | |
| 
 | |
| 		bcount = min(bufblks, (start_blk + nbblks - i));
 | |
| 
 | |
| 		error = xlog_bread(log, i, bcount, bp, &buf);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 
 | |
| 		for (j = 0; j < bcount; j++) {
 | |
| 			cycle = xlog_get_cycle(buf);
 | |
| 			if (cycle == stop_on_cycle_no) {
 | |
| 				*new_blk = i+j;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			buf += BBSIZE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*new_blk = -1;
 | |
| 
 | |
| out:
 | |
| 	xlog_put_bp(bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Potentially backup over partial log record write.
 | |
|  *
 | |
|  * In the typical case, last_blk is the number of the block directly after
 | |
|  * a good log record.  Therefore, we subtract one to get the block number
 | |
|  * of the last block in the given buffer.  extra_bblks contains the number
 | |
|  * of blocks we would have read on a previous read.  This happens when the
 | |
|  * last log record is split over the end of the physical log.
 | |
|  *
 | |
|  * extra_bblks is the number of blocks potentially verified on a previous
 | |
|  * call to this routine.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_find_verify_log_record(
 | |
| 	xlog_t			*log,
 | |
| 	xfs_daddr_t		start_blk,
 | |
| 	xfs_daddr_t		*last_blk,
 | |
| 	int			extra_bblks)
 | |
| {
 | |
| 	xfs_daddr_t		i;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	xfs_caddr_t		offset = NULL;
 | |
| 	xlog_rec_header_t	*head = NULL;
 | |
| 	int			error = 0;
 | |
| 	int			smallmem = 0;
 | |
| 	int			num_blks = *last_blk - start_blk;
 | |
| 	int			xhdrs;
 | |
| 
 | |
| 	ASSERT(start_blk != 0 || *last_blk != start_blk);
 | |
| 
 | |
| 	if (!(bp = xlog_get_bp(log, num_blks))) {
 | |
| 		if (!(bp = xlog_get_bp(log, 1)))
 | |
| 			return ENOMEM;
 | |
| 		smallmem = 1;
 | |
| 	} else {
 | |
| 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 		offset += ((num_blks - 1) << BBSHIFT);
 | |
| 	}
 | |
| 
 | |
| 	for (i = (*last_blk) - 1; i >= 0; i--) {
 | |
| 		if (i < start_blk) {
 | |
| 			/* valid log record not found */
 | |
| 			xlog_warn(
 | |
| 		"XFS: Log inconsistent (didn't find previous header)");
 | |
| 			ASSERT(0);
 | |
| 			error = XFS_ERROR(EIO);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (smallmem) {
 | |
| 			error = xlog_bread(log, i, 1, bp, &offset);
 | |
| 			if (error)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		head = (xlog_rec_header_t *)offset;
 | |
| 
 | |
| 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
 | |
| 			break;
 | |
| 
 | |
| 		if (!smallmem)
 | |
| 			offset -= BBSIZE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We hit the beginning of the physical log & still no header.  Return
 | |
| 	 * to caller.  If caller can handle a return of -1, then this routine
 | |
| 	 * will be called again for the end of the physical log.
 | |
| 	 */
 | |
| 	if (i == -1) {
 | |
| 		error = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have the final block of the good log (the first block
 | |
| 	 * of the log record _before_ the head. So we check the uuid.
 | |
| 	 */
 | |
| 	if ((error = xlog_header_check_mount(log->l_mp, head)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have found a log record header before we expected one.
 | |
| 	 * last_blk will be the 1st block # with a given cycle #.  We may end
 | |
| 	 * up reading an entire log record.  In this case, we don't want to
 | |
| 	 * reset last_blk.  Only when last_blk points in the middle of a log
 | |
| 	 * record do we update last_blk.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | |
| 		uint	h_size = be32_to_cpu(head->h_size);
 | |
| 
 | |
| 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 | |
| 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
 | |
| 			xhdrs++;
 | |
| 	} else {
 | |
| 		xhdrs = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (*last_blk - i + extra_bblks !=
 | |
| 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 | |
| 		*last_blk = i;
 | |
| 
 | |
| out:
 | |
| 	xlog_put_bp(bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Head is defined to be the point of the log where the next log write
 | |
|  * write could go.  This means that incomplete LR writes at the end are
 | |
|  * eliminated when calculating the head.  We aren't guaranteed that previous
 | |
|  * LR have complete transactions.  We only know that a cycle number of
 | |
|  * current cycle number -1 won't be present in the log if we start writing
 | |
|  * from our current block number.
 | |
|  *
 | |
|  * last_blk contains the block number of the first block with a given
 | |
|  * cycle number.
 | |
|  *
 | |
|  * Return: zero if normal, non-zero if error.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_find_head(
 | |
| 	xlog_t 		*log,
 | |
| 	xfs_daddr_t	*return_head_blk)
 | |
| {
 | |
| 	xfs_buf_t	*bp;
 | |
| 	xfs_caddr_t	offset;
 | |
| 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
 | |
| 	int		num_scan_bblks;
 | |
| 	uint		first_half_cycle, last_half_cycle;
 | |
| 	uint		stop_on_cycle;
 | |
| 	int		error, log_bbnum = log->l_logBBsize;
 | |
| 
 | |
| 	/* Is the end of the log device zeroed? */
 | |
| 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 | |
| 		*return_head_blk = first_blk;
 | |
| 
 | |
| 		/* Is the whole lot zeroed? */
 | |
| 		if (!first_blk) {
 | |
| 			/* Linux XFS shouldn't generate totally zeroed logs -
 | |
| 			 * mkfs etc write a dummy unmount record to a fresh
 | |
| 			 * log so we can store the uuid in there
 | |
| 			 */
 | |
| 			xlog_warn("XFS: totally zeroed log");
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	} else if (error) {
 | |
| 		xlog_warn("XFS: empty log check failed");
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	first_blk = 0;			/* get cycle # of 1st block */
 | |
| 	bp = xlog_get_bp(log, 1);
 | |
| 	if (!bp)
 | |
| 		return ENOMEM;
 | |
| 
 | |
| 	error = xlog_bread(log, 0, 1, bp, &offset);
 | |
| 	if (error)
 | |
| 		goto bp_err;
 | |
| 
 | |
| 	first_half_cycle = xlog_get_cycle(offset);
 | |
| 
 | |
| 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
 | |
| 	error = xlog_bread(log, last_blk, 1, bp, &offset);
 | |
| 	if (error)
 | |
| 		goto bp_err;
 | |
| 
 | |
| 	last_half_cycle = xlog_get_cycle(offset);
 | |
| 	ASSERT(last_half_cycle != 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the 1st half cycle number is equal to the last half cycle number,
 | |
| 	 * then the entire log is stamped with the same cycle number.  In this
 | |
| 	 * case, head_blk can't be set to zero (which makes sense).  The below
 | |
| 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
 | |
| 	 * we set it to log_bbnum which is an invalid block number, but this
 | |
| 	 * value makes the math correct.  If head_blk doesn't changed through
 | |
| 	 * all the tests below, *head_blk is set to zero at the very end rather
 | |
| 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 | |
| 	 * in a circular file.
 | |
| 	 */
 | |
| 	if (first_half_cycle == last_half_cycle) {
 | |
| 		/*
 | |
| 		 * In this case we believe that the entire log should have
 | |
| 		 * cycle number last_half_cycle.  We need to scan backwards
 | |
| 		 * from the end verifying that there are no holes still
 | |
| 		 * containing last_half_cycle - 1.  If we find such a hole,
 | |
| 		 * then the start of that hole will be the new head.  The
 | |
| 		 * simple case looks like
 | |
| 		 *        x | x ... | x - 1 | x
 | |
| 		 * Another case that fits this picture would be
 | |
| 		 *        x | x + 1 | x ... | x
 | |
| 		 * In this case the head really is somewhere at the end of the
 | |
| 		 * log, as one of the latest writes at the beginning was
 | |
| 		 * incomplete.
 | |
| 		 * One more case is
 | |
| 		 *        x | x + 1 | x ... | x - 1 | x
 | |
| 		 * This is really the combination of the above two cases, and
 | |
| 		 * the head has to end up at the start of the x-1 hole at the
 | |
| 		 * end of the log.
 | |
| 		 *
 | |
| 		 * In the 256k log case, we will read from the beginning to the
 | |
| 		 * end of the log and search for cycle numbers equal to x-1.
 | |
| 		 * We don't worry about the x+1 blocks that we encounter,
 | |
| 		 * because we know that they cannot be the head since the log
 | |
| 		 * started with x.
 | |
| 		 */
 | |
| 		head_blk = log_bbnum;
 | |
| 		stop_on_cycle = last_half_cycle - 1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * In this case we want to find the first block with cycle
 | |
| 		 * number matching last_half_cycle.  We expect the log to be
 | |
| 		 * some variation on
 | |
| 		 *        x + 1 ... | x ...
 | |
| 		 * The first block with cycle number x (last_half_cycle) will
 | |
| 		 * be where the new head belongs.  First we do a binary search
 | |
| 		 * for the first occurrence of last_half_cycle.  The binary
 | |
| 		 * search may not be totally accurate, so then we scan back
 | |
| 		 * from there looking for occurrences of last_half_cycle before
 | |
| 		 * us.  If that backwards scan wraps around the beginning of
 | |
| 		 * the log, then we look for occurrences of last_half_cycle - 1
 | |
| 		 * at the end of the log.  The cases we're looking for look
 | |
| 		 * like
 | |
| 		 *        x + 1 ... | x | x + 1 | x ...
 | |
| 		 *                               ^ binary search stopped here
 | |
| 		 * or
 | |
| 		 *        x + 1 ... | x ... | x - 1 | x
 | |
| 		 *        <---------> less than scan distance
 | |
| 		 */
 | |
| 		stop_on_cycle = last_half_cycle;
 | |
| 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
 | |
| 						&head_blk, last_half_cycle)))
 | |
| 			goto bp_err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now validate the answer.  Scan back some number of maximum possible
 | |
| 	 * blocks and make sure each one has the expected cycle number.  The
 | |
| 	 * maximum is determined by the total possible amount of buffering
 | |
| 	 * in the in-core log.  The following number can be made tighter if
 | |
| 	 * we actually look at the block size of the filesystem.
 | |
| 	 */
 | |
| 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 | |
| 	if (head_blk >= num_scan_bblks) {
 | |
| 		/*
 | |
| 		 * We are guaranteed that the entire check can be performed
 | |
| 		 * in one buffer.
 | |
| 		 */
 | |
| 		start_blk = head_blk - num_scan_bblks;
 | |
| 		if ((error = xlog_find_verify_cycle(log,
 | |
| 						start_blk, num_scan_bblks,
 | |
| 						stop_on_cycle, &new_blk)))
 | |
| 			goto bp_err;
 | |
| 		if (new_blk != -1)
 | |
| 			head_blk = new_blk;
 | |
| 	} else {		/* need to read 2 parts of log */
 | |
| 		/*
 | |
| 		 * We are going to scan backwards in the log in two parts.
 | |
| 		 * First we scan the physical end of the log.  In this part
 | |
| 		 * of the log, we are looking for blocks with cycle number
 | |
| 		 * last_half_cycle - 1.
 | |
| 		 * If we find one, then we know that the log starts there, as
 | |
| 		 * we've found a hole that didn't get written in going around
 | |
| 		 * the end of the physical log.  The simple case for this is
 | |
| 		 *        x + 1 ... | x ... | x - 1 | x
 | |
| 		 *        <---------> less than scan distance
 | |
| 		 * If all of the blocks at the end of the log have cycle number
 | |
| 		 * last_half_cycle, then we check the blocks at the start of
 | |
| 		 * the log looking for occurrences of last_half_cycle.  If we
 | |
| 		 * find one, then our current estimate for the location of the
 | |
| 		 * first occurrence of last_half_cycle is wrong and we move
 | |
| 		 * back to the hole we've found.  This case looks like
 | |
| 		 *        x + 1 ... | x | x + 1 | x ...
 | |
| 		 *                               ^ binary search stopped here
 | |
| 		 * Another case we need to handle that only occurs in 256k
 | |
| 		 * logs is
 | |
| 		 *        x + 1 ... | x ... | x+1 | x ...
 | |
| 		 *                   ^ binary search stops here
 | |
| 		 * In a 256k log, the scan at the end of the log will see the
 | |
| 		 * x + 1 blocks.  We need to skip past those since that is
 | |
| 		 * certainly not the head of the log.  By searching for
 | |
| 		 * last_half_cycle-1 we accomplish that.
 | |
| 		 */
 | |
| 		start_blk = log_bbnum - num_scan_bblks + head_blk;
 | |
| 		ASSERT(head_blk <= INT_MAX &&
 | |
| 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
 | |
| 		if ((error = xlog_find_verify_cycle(log, start_blk,
 | |
| 					num_scan_bblks - (int)head_blk,
 | |
| 					(stop_on_cycle - 1), &new_blk)))
 | |
| 			goto bp_err;
 | |
| 		if (new_blk != -1) {
 | |
| 			head_blk = new_blk;
 | |
| 			goto bad_blk;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Scan beginning of log now.  The last part of the physical
 | |
| 		 * log is good.  This scan needs to verify that it doesn't find
 | |
| 		 * the last_half_cycle.
 | |
| 		 */
 | |
| 		start_blk = 0;
 | |
| 		ASSERT(head_blk <= INT_MAX);
 | |
| 		if ((error = xlog_find_verify_cycle(log,
 | |
| 					start_blk, (int)head_blk,
 | |
| 					stop_on_cycle, &new_blk)))
 | |
| 			goto bp_err;
 | |
| 		if (new_blk != -1)
 | |
| 			head_blk = new_blk;
 | |
| 	}
 | |
| 
 | |
|  bad_blk:
 | |
| 	/*
 | |
| 	 * Now we need to make sure head_blk is not pointing to a block in
 | |
| 	 * the middle of a log record.
 | |
| 	 */
 | |
| 	num_scan_bblks = XLOG_REC_SHIFT(log);
 | |
| 	if (head_blk >= num_scan_bblks) {
 | |
| 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 | |
| 
 | |
| 		/* start ptr at last block ptr before head_blk */
 | |
| 		if ((error = xlog_find_verify_log_record(log, start_blk,
 | |
| 							&head_blk, 0)) == -1) {
 | |
| 			error = XFS_ERROR(EIO);
 | |
| 			goto bp_err;
 | |
| 		} else if (error)
 | |
| 			goto bp_err;
 | |
| 	} else {
 | |
| 		start_blk = 0;
 | |
| 		ASSERT(head_blk <= INT_MAX);
 | |
| 		if ((error = xlog_find_verify_log_record(log, start_blk,
 | |
| 							&head_blk, 0)) == -1) {
 | |
| 			/* We hit the beginning of the log during our search */
 | |
| 			start_blk = log_bbnum - num_scan_bblks + head_blk;
 | |
| 			new_blk = log_bbnum;
 | |
| 			ASSERT(start_blk <= INT_MAX &&
 | |
| 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
 | |
| 			ASSERT(head_blk <= INT_MAX);
 | |
| 			if ((error = xlog_find_verify_log_record(log,
 | |
| 							start_blk, &new_blk,
 | |
| 							(int)head_blk)) == -1) {
 | |
| 				error = XFS_ERROR(EIO);
 | |
| 				goto bp_err;
 | |
| 			} else if (error)
 | |
| 				goto bp_err;
 | |
| 			if (new_blk != log_bbnum)
 | |
| 				head_blk = new_blk;
 | |
| 		} else if (error)
 | |
| 			goto bp_err;
 | |
| 	}
 | |
| 
 | |
| 	xlog_put_bp(bp);
 | |
| 	if (head_blk == log_bbnum)
 | |
| 		*return_head_blk = 0;
 | |
| 	else
 | |
| 		*return_head_blk = head_blk;
 | |
| 	/*
 | |
| 	 * When returning here, we have a good block number.  Bad block
 | |
| 	 * means that during a previous crash, we didn't have a clean break
 | |
| 	 * from cycle number N to cycle number N-1.  In this case, we need
 | |
| 	 * to find the first block with cycle number N-1.
 | |
| 	 */
 | |
| 	return 0;
 | |
| 
 | |
|  bp_err:
 | |
| 	xlog_put_bp(bp);
 | |
| 
 | |
| 	if (error)
 | |
| 	    xlog_warn("XFS: failed to find log head");
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the sync block number or the tail of the log.
 | |
|  *
 | |
|  * This will be the block number of the last record to have its
 | |
|  * associated buffers synced to disk.  Every log record header has
 | |
|  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 | |
|  * to get a sync block number.  The only concern is to figure out which
 | |
|  * log record header to believe.
 | |
|  *
 | |
|  * The following algorithm uses the log record header with the largest
 | |
|  * lsn.  The entire log record does not need to be valid.  We only care
 | |
|  * that the header is valid.
 | |
|  *
 | |
|  * We could speed up search by using current head_blk buffer, but it is not
 | |
|  * available.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_find_tail(
 | |
| 	xlog_t			*log,
 | |
| 	xfs_daddr_t		*head_blk,
 | |
| 	xfs_daddr_t		*tail_blk)
 | |
| {
 | |
| 	xlog_rec_header_t	*rhead;
 | |
| 	xlog_op_header_t	*op_head;
 | |
| 	xfs_caddr_t		offset = NULL;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	int			error, i, found;
 | |
| 	xfs_daddr_t		umount_data_blk;
 | |
| 	xfs_daddr_t		after_umount_blk;
 | |
| 	xfs_lsn_t		tail_lsn;
 | |
| 	int			hblks;
 | |
| 
 | |
| 	found = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find previous log record
 | |
| 	 */
 | |
| 	if ((error = xlog_find_head(log, head_blk)))
 | |
| 		return error;
 | |
| 
 | |
| 	bp = xlog_get_bp(log, 1);
 | |
| 	if (!bp)
 | |
| 		return ENOMEM;
 | |
| 	if (*head_blk == 0) {				/* special case */
 | |
| 		error = xlog_bread(log, 0, 1, bp, &offset);
 | |
| 		if (error)
 | |
| 			goto bread_err;
 | |
| 
 | |
| 		if (xlog_get_cycle(offset) == 0) {
 | |
| 			*tail_blk = 0;
 | |
| 			/* leave all other log inited values alone */
 | |
| 			goto exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search backwards looking for log record header block
 | |
| 	 */
 | |
| 	ASSERT(*head_blk < INT_MAX);
 | |
| 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 | |
| 		error = xlog_bread(log, i, 1, bp, &offset);
 | |
| 		if (error)
 | |
| 			goto bread_err;
 | |
| 
 | |
| 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If we haven't found the log record header block, start looking
 | |
| 	 * again from the end of the physical log.  XXXmiken: There should be
 | |
| 	 * a check here to make sure we didn't search more than N blocks in
 | |
| 	 * the previous code.
 | |
| 	 */
 | |
| 	if (!found) {
 | |
| 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 | |
| 			error = xlog_bread(log, i, 1, bp, &offset);
 | |
| 			if (error)
 | |
| 				goto bread_err;
 | |
| 
 | |
| 			if (XLOG_HEADER_MAGIC_NUM ==
 | |
| 			    be32_to_cpu(*(__be32 *)offset)) {
 | |
| 				found = 2;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!found) {
 | |
| 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
 | |
| 		ASSERT(0);
 | |
| 		return XFS_ERROR(EIO);
 | |
| 	}
 | |
| 
 | |
| 	/* find blk_no of tail of log */
 | |
| 	rhead = (xlog_rec_header_t *)offset;
 | |
| 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset log values according to the state of the log when we
 | |
| 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
 | |
| 	 * one because the next write starts a new cycle rather than
 | |
| 	 * continuing the cycle of the last good log record.  At this
 | |
| 	 * point we have guaranteed that all partial log records have been
 | |
| 	 * accounted for.  Therefore, we know that the last good log record
 | |
| 	 * written was complete and ended exactly on the end boundary
 | |
| 	 * of the physical log.
 | |
| 	 */
 | |
| 	log->l_prev_block = i;
 | |
| 	log->l_curr_block = (int)*head_blk;
 | |
| 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 | |
| 	if (found == 2)
 | |
| 		log->l_curr_cycle++;
 | |
| 	log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
 | |
| 	log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
 | |
| 	log->l_grant_reserve_cycle = log->l_curr_cycle;
 | |
| 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
 | |
| 	log->l_grant_write_cycle = log->l_curr_cycle;
 | |
| 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
 | |
| 
 | |
| 	/*
 | |
| 	 * Look for unmount record.  If we find it, then we know there
 | |
| 	 * was a clean unmount.  Since 'i' could be the last block in
 | |
| 	 * the physical log, we convert to a log block before comparing
 | |
| 	 * to the head_blk.
 | |
| 	 *
 | |
| 	 * Save the current tail lsn to use to pass to
 | |
| 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
 | |
| 	 * unmount record if there is one, so we pass the lsn of the
 | |
| 	 * unmount record rather than the block after it.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | |
| 		int	h_size = be32_to_cpu(rhead->h_size);
 | |
| 		int	h_version = be32_to_cpu(rhead->h_version);
 | |
| 
 | |
| 		if ((h_version & XLOG_VERSION_2) &&
 | |
| 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 | |
| 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 | |
| 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
 | |
| 				hblks++;
 | |
| 		} else {
 | |
| 			hblks = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		hblks = 1;
 | |
| 	}
 | |
| 	after_umount_blk = (i + hblks + (int)
 | |
| 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
 | |
| 	tail_lsn = log->l_tail_lsn;
 | |
| 	if (*head_blk == after_umount_blk &&
 | |
| 	    be32_to_cpu(rhead->h_num_logops) == 1) {
 | |
| 		umount_data_blk = (i + hblks) % log->l_logBBsize;
 | |
| 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
 | |
| 		if (error)
 | |
| 			goto bread_err;
 | |
| 
 | |
| 		op_head = (xlog_op_header_t *)offset;
 | |
| 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
 | |
| 			/*
 | |
| 			 * Set tail and last sync so that newly written
 | |
| 			 * log records will point recovery to after the
 | |
| 			 * current unmount record.
 | |
| 			 */
 | |
| 			log->l_tail_lsn =
 | |
| 				xlog_assign_lsn(log->l_curr_cycle,
 | |
| 						after_umount_blk);
 | |
| 			log->l_last_sync_lsn =
 | |
| 				xlog_assign_lsn(log->l_curr_cycle,
 | |
| 						after_umount_blk);
 | |
| 			*tail_blk = after_umount_blk;
 | |
| 
 | |
| 			/*
 | |
| 			 * Note that the unmount was clean. If the unmount
 | |
| 			 * was not clean, we need to know this to rebuild the
 | |
| 			 * superblock counters from the perag headers if we
 | |
| 			 * have a filesystem using non-persistent counters.
 | |
| 			 */
 | |
| 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that there are no blocks in front of the head
 | |
| 	 * with the same cycle number as the head.  This can happen
 | |
| 	 * because we allow multiple outstanding log writes concurrently,
 | |
| 	 * and the later writes might make it out before earlier ones.
 | |
| 	 *
 | |
| 	 * We use the lsn from before modifying it so that we'll never
 | |
| 	 * overwrite the unmount record after a clean unmount.
 | |
| 	 *
 | |
| 	 * Do this only if we are going to recover the filesystem
 | |
| 	 *
 | |
| 	 * NOTE: This used to say "if (!readonly)"
 | |
| 	 * However on Linux, we can & do recover a read-only filesystem.
 | |
| 	 * We only skip recovery if NORECOVERY is specified on mount,
 | |
| 	 * in which case we would not be here.
 | |
| 	 *
 | |
| 	 * But... if the -device- itself is readonly, just skip this.
 | |
| 	 * We can't recover this device anyway, so it won't matter.
 | |
| 	 */
 | |
| 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
 | |
| 		error = xlog_clear_stale_blocks(log, tail_lsn);
 | |
| 	}
 | |
| 
 | |
| bread_err:
 | |
| exit:
 | |
| 	xlog_put_bp(bp);
 | |
| 
 | |
| 	if (error)
 | |
| 		xlog_warn("XFS: failed to locate log tail");
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the log zeroed at all?
 | |
|  *
 | |
|  * The last binary search should be changed to perform an X block read
 | |
|  * once X becomes small enough.  You can then search linearly through
 | |
|  * the X blocks.  This will cut down on the number of reads we need to do.
 | |
|  *
 | |
|  * If the log is partially zeroed, this routine will pass back the blkno
 | |
|  * of the first block with cycle number 0.  It won't have a complete LR
 | |
|  * preceding it.
 | |
|  *
 | |
|  * Return:
 | |
|  *	0  => the log is completely written to
 | |
|  *	-1 => use *blk_no as the first block of the log
 | |
|  *	>0 => error has occurred
 | |
|  */
 | |
| STATIC int
 | |
| xlog_find_zeroed(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_daddr_t	*blk_no)
 | |
| {
 | |
| 	xfs_buf_t	*bp;
 | |
| 	xfs_caddr_t	offset;
 | |
| 	uint	        first_cycle, last_cycle;
 | |
| 	xfs_daddr_t	new_blk, last_blk, start_blk;
 | |
| 	xfs_daddr_t     num_scan_bblks;
 | |
| 	int	        error, log_bbnum = log->l_logBBsize;
 | |
| 
 | |
| 	*blk_no = 0;
 | |
| 
 | |
| 	/* check totally zeroed log */
 | |
| 	bp = xlog_get_bp(log, 1);
 | |
| 	if (!bp)
 | |
| 		return ENOMEM;
 | |
| 	error = xlog_bread(log, 0, 1, bp, &offset);
 | |
| 	if (error)
 | |
| 		goto bp_err;
 | |
| 
 | |
| 	first_cycle = xlog_get_cycle(offset);
 | |
| 	if (first_cycle == 0) {		/* completely zeroed log */
 | |
| 		*blk_no = 0;
 | |
| 		xlog_put_bp(bp);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* check partially zeroed log */
 | |
| 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
 | |
| 	if (error)
 | |
| 		goto bp_err;
 | |
| 
 | |
| 	last_cycle = xlog_get_cycle(offset);
 | |
| 	if (last_cycle != 0) {		/* log completely written to */
 | |
| 		xlog_put_bp(bp);
 | |
| 		return 0;
 | |
| 	} else if (first_cycle != 1) {
 | |
| 		/*
 | |
| 		 * If the cycle of the last block is zero, the cycle of
 | |
| 		 * the first block must be 1. If it's not, maybe we're
 | |
| 		 * not looking at a log... Bail out.
 | |
| 		 */
 | |
| 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
 | |
| 		return XFS_ERROR(EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	/* we have a partially zeroed log */
 | |
| 	last_blk = log_bbnum-1;
 | |
| 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
 | |
| 		goto bp_err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the answer.  Because there is no way to guarantee that
 | |
| 	 * the entire log is made up of log records which are the same size,
 | |
| 	 * we scan over the defined maximum blocks.  At this point, the maximum
 | |
| 	 * is not chosen to mean anything special.   XXXmiken
 | |
| 	 */
 | |
| 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 | |
| 	ASSERT(num_scan_bblks <= INT_MAX);
 | |
| 
 | |
| 	if (last_blk < num_scan_bblks)
 | |
| 		num_scan_bblks = last_blk;
 | |
| 	start_blk = last_blk - num_scan_bblks;
 | |
| 
 | |
| 	/*
 | |
| 	 * We search for any instances of cycle number 0 that occur before
 | |
| 	 * our current estimate of the head.  What we're trying to detect is
 | |
| 	 *        1 ... | 0 | 1 | 0...
 | |
| 	 *                       ^ binary search ends here
 | |
| 	 */
 | |
| 	if ((error = xlog_find_verify_cycle(log, start_blk,
 | |
| 					 (int)num_scan_bblks, 0, &new_blk)))
 | |
| 		goto bp_err;
 | |
| 	if (new_blk != -1)
 | |
| 		last_blk = new_blk;
 | |
| 
 | |
| 	/*
 | |
| 	 * Potentially backup over partial log record write.  We don't need
 | |
| 	 * to search the end of the log because we know it is zero.
 | |
| 	 */
 | |
| 	if ((error = xlog_find_verify_log_record(log, start_blk,
 | |
| 				&last_blk, 0)) == -1) {
 | |
| 	    error = XFS_ERROR(EIO);
 | |
| 	    goto bp_err;
 | |
| 	} else if (error)
 | |
| 	    goto bp_err;
 | |
| 
 | |
| 	*blk_no = last_blk;
 | |
| bp_err:
 | |
| 	xlog_put_bp(bp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are simple subroutines used by xlog_clear_stale_blocks() below
 | |
|  * to initialize a buffer full of empty log record headers and write
 | |
|  * them into the log.
 | |
|  */
 | |
| STATIC void
 | |
| xlog_add_record(
 | |
| 	xlog_t			*log,
 | |
| 	xfs_caddr_t		buf,
 | |
| 	int			cycle,
 | |
| 	int			block,
 | |
| 	int			tail_cycle,
 | |
| 	int			tail_block)
 | |
| {
 | |
| 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
 | |
| 
 | |
| 	memset(buf, 0, BBSIZE);
 | |
| 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
 | |
| 	recp->h_cycle = cpu_to_be32(cycle);
 | |
| 	recp->h_version = cpu_to_be32(
 | |
| 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
 | |
| 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
 | |
| 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
 | |
| 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
 | |
| 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xlog_write_log_records(
 | |
| 	xlog_t		*log,
 | |
| 	int		cycle,
 | |
| 	int		start_block,
 | |
| 	int		blocks,
 | |
| 	int		tail_cycle,
 | |
| 	int		tail_block)
 | |
| {
 | |
| 	xfs_caddr_t	offset;
 | |
| 	xfs_buf_t	*bp;
 | |
| 	int		balign, ealign;
 | |
| 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
 | |
| 	int		end_block = start_block + blocks;
 | |
| 	int		bufblks;
 | |
| 	int		error = 0;
 | |
| 	int		i, j = 0;
 | |
| 
 | |
| 	bufblks = 1 << ffs(blocks);
 | |
| 	while (!(bp = xlog_get_bp(log, bufblks))) {
 | |
| 		bufblks >>= 1;
 | |
| 		if (bufblks <= log->l_sectbb_log)
 | |
| 			return ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* We may need to do a read at the start to fill in part of
 | |
| 	 * the buffer in the starting sector not covered by the first
 | |
| 	 * write below.
 | |
| 	 */
 | |
| 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
 | |
| 	if (balign != start_block) {
 | |
| 		error = xlog_bread_noalign(log, start_block, 1, bp);
 | |
| 		if (error)
 | |
| 			goto out_put_bp;
 | |
| 
 | |
| 		j = start_block - balign;
 | |
| 	}
 | |
| 
 | |
| 	for (i = start_block; i < end_block; i += bufblks) {
 | |
| 		int		bcount, endcount;
 | |
| 
 | |
| 		bcount = min(bufblks, end_block - start_block);
 | |
| 		endcount = bcount - j;
 | |
| 
 | |
| 		/* We may need to do a read at the end to fill in part of
 | |
| 		 * the buffer in the final sector not covered by the write.
 | |
| 		 * If this is the same sector as the above read, skip it.
 | |
| 		 */
 | |
| 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
 | |
| 		if (j == 0 && (start_block + endcount > ealign)) {
 | |
| 			offset = XFS_BUF_PTR(bp);
 | |
| 			balign = BBTOB(ealign - start_block);
 | |
| 			error = XFS_BUF_SET_PTR(bp, offset + balign,
 | |
| 						BBTOB(sectbb));
 | |
| 			if (error)
 | |
| 				break;
 | |
| 
 | |
| 			error = xlog_bread_noalign(log, ealign, sectbb, bp);
 | |
| 			if (error)
 | |
| 				break;
 | |
| 
 | |
| 			error = XFS_BUF_SET_PTR(bp, offset, bufblks);
 | |
| 			if (error)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		offset = xlog_align(log, start_block, endcount, bp);
 | |
| 		for (; j < endcount; j++) {
 | |
| 			xlog_add_record(log, offset, cycle, i+j,
 | |
| 					tail_cycle, tail_block);
 | |
| 			offset += BBSIZE;
 | |
| 		}
 | |
| 		error = xlog_bwrite(log, start_block, endcount, bp);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 		start_block += endcount;
 | |
| 		j = 0;
 | |
| 	}
 | |
| 
 | |
|  out_put_bp:
 | |
| 	xlog_put_bp(bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine is called to blow away any incomplete log writes out
 | |
|  * in front of the log head.  We do this so that we won't become confused
 | |
|  * if we come up, write only a little bit more, and then crash again.
 | |
|  * If we leave the partial log records out there, this situation could
 | |
|  * cause us to think those partial writes are valid blocks since they
 | |
|  * have the current cycle number.  We get rid of them by overwriting them
 | |
|  * with empty log records with the old cycle number rather than the
 | |
|  * current one.
 | |
|  *
 | |
|  * The tail lsn is passed in rather than taken from
 | |
|  * the log so that we will not write over the unmount record after a
 | |
|  * clean unmount in a 512 block log.  Doing so would leave the log without
 | |
|  * any valid log records in it until a new one was written.  If we crashed
 | |
|  * during that time we would not be able to recover.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_clear_stale_blocks(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_lsn_t	tail_lsn)
 | |
| {
 | |
| 	int		tail_cycle, head_cycle;
 | |
| 	int		tail_block, head_block;
 | |
| 	int		tail_distance, max_distance;
 | |
| 	int		distance;
 | |
| 	int		error;
 | |
| 
 | |
| 	tail_cycle = CYCLE_LSN(tail_lsn);
 | |
| 	tail_block = BLOCK_LSN(tail_lsn);
 | |
| 	head_cycle = log->l_curr_cycle;
 | |
| 	head_block = log->l_curr_block;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out the distance between the new head of the log
 | |
| 	 * and the tail.  We want to write over any blocks beyond the
 | |
| 	 * head that we may have written just before the crash, but
 | |
| 	 * we don't want to overwrite the tail of the log.
 | |
| 	 */
 | |
| 	if (head_cycle == tail_cycle) {
 | |
| 		/*
 | |
| 		 * The tail is behind the head in the physical log,
 | |
| 		 * so the distance from the head to the tail is the
 | |
| 		 * distance from the head to the end of the log plus
 | |
| 		 * the distance from the beginning of the log to the
 | |
| 		 * tail.
 | |
| 		 */
 | |
| 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
 | |
| 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
 | |
| 					 XFS_ERRLEVEL_LOW, log->l_mp);
 | |
| 			return XFS_ERROR(EFSCORRUPTED);
 | |
| 		}
 | |
| 		tail_distance = tail_block + (log->l_logBBsize - head_block);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The head is behind the tail in the physical log,
 | |
| 		 * so the distance from the head to the tail is just
 | |
| 		 * the tail block minus the head block.
 | |
| 		 */
 | |
| 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
 | |
| 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
 | |
| 					 XFS_ERRLEVEL_LOW, log->l_mp);
 | |
| 			return XFS_ERROR(EFSCORRUPTED);
 | |
| 		}
 | |
| 		tail_distance = tail_block - head_block;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the head is right up against the tail, we can't clear
 | |
| 	 * anything.
 | |
| 	 */
 | |
| 	if (tail_distance <= 0) {
 | |
| 		ASSERT(tail_distance == 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
 | |
| 	/*
 | |
| 	 * Take the smaller of the maximum amount of outstanding I/O
 | |
| 	 * we could have and the distance to the tail to clear out.
 | |
| 	 * We take the smaller so that we don't overwrite the tail and
 | |
| 	 * we don't waste all day writing from the head to the tail
 | |
| 	 * for no reason.
 | |
| 	 */
 | |
| 	max_distance = MIN(max_distance, tail_distance);
 | |
| 
 | |
| 	if ((head_block + max_distance) <= log->l_logBBsize) {
 | |
| 		/*
 | |
| 		 * We can stomp all the blocks we need to without
 | |
| 		 * wrapping around the end of the log.  Just do it
 | |
| 		 * in a single write.  Use the cycle number of the
 | |
| 		 * current cycle minus one so that the log will look like:
 | |
| 		 *     n ... | n - 1 ...
 | |
| 		 */
 | |
| 		error = xlog_write_log_records(log, (head_cycle - 1),
 | |
| 				head_block, max_distance, tail_cycle,
 | |
| 				tail_block);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We need to wrap around the end of the physical log in
 | |
| 		 * order to clear all the blocks.  Do it in two separate
 | |
| 		 * I/Os.  The first write should be from the head to the
 | |
| 		 * end of the physical log, and it should use the current
 | |
| 		 * cycle number minus one just like above.
 | |
| 		 */
 | |
| 		distance = log->l_logBBsize - head_block;
 | |
| 		error = xlog_write_log_records(log, (head_cycle - 1),
 | |
| 				head_block, distance, tail_cycle,
 | |
| 				tail_block);
 | |
| 
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		/*
 | |
| 		 * Now write the blocks at the start of the physical log.
 | |
| 		 * This writes the remainder of the blocks we want to clear.
 | |
| 		 * It uses the current cycle number since we're now on the
 | |
| 		 * same cycle as the head so that we get:
 | |
| 		 *    n ... n ... | n - 1 ...
 | |
| 		 *    ^^^^^ blocks we're writing
 | |
| 		 */
 | |
| 		distance = max_distance - (log->l_logBBsize - head_block);
 | |
| 		error = xlog_write_log_records(log, head_cycle, 0, distance,
 | |
| 				tail_cycle, tail_block);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  *		Log recover routines
 | |
|  *
 | |
|  ******************************************************************************
 | |
|  */
 | |
| 
 | |
| STATIC xlog_recover_t *
 | |
| xlog_recover_find_tid(
 | |
| 	struct hlist_head	*head,
 | |
| 	xlog_tid_t		tid)
 | |
| {
 | |
| 	xlog_recover_t		*trans;
 | |
| 	struct hlist_node	*n;
 | |
| 
 | |
| 	hlist_for_each_entry(trans, n, head, r_list) {
 | |
| 		if (trans->r_log_tid == tid)
 | |
| 			return trans;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xlog_recover_new_tid(
 | |
| 	struct hlist_head	*head,
 | |
| 	xlog_tid_t		tid,
 | |
| 	xfs_lsn_t		lsn)
 | |
| {
 | |
| 	xlog_recover_t		*trans;
 | |
| 
 | |
| 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
 | |
| 	trans->r_log_tid   = tid;
 | |
| 	trans->r_lsn	   = lsn;
 | |
| 	INIT_LIST_HEAD(&trans->r_itemq);
 | |
| 
 | |
| 	INIT_HLIST_NODE(&trans->r_list);
 | |
| 	hlist_add_head(&trans->r_list, head);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xlog_recover_add_item(
 | |
| 	struct list_head	*head)
 | |
| {
 | |
| 	xlog_recover_item_t	*item;
 | |
| 
 | |
| 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
 | |
| 	INIT_LIST_HEAD(&item->ri_list);
 | |
| 	list_add_tail(&item->ri_list, head);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xlog_recover_add_to_cont_trans(
 | |
| 	xlog_recover_t		*trans,
 | |
| 	xfs_caddr_t		dp,
 | |
| 	int			len)
 | |
| {
 | |
| 	xlog_recover_item_t	*item;
 | |
| 	xfs_caddr_t		ptr, old_ptr;
 | |
| 	int			old_len;
 | |
| 
 | |
| 	if (list_empty(&trans->r_itemq)) {
 | |
| 		/* finish copying rest of trans header */
 | |
| 		xlog_recover_add_item(&trans->r_itemq);
 | |
| 		ptr = (xfs_caddr_t) &trans->r_theader +
 | |
| 				sizeof(xfs_trans_header_t) - len;
 | |
| 		memcpy(ptr, dp, len); /* d, s, l */
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* take the tail entry */
 | |
| 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
 | |
| 
 | |
| 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
 | |
| 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
 | |
| 
 | |
| 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
 | |
| 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
 | |
| 	item->ri_buf[item->ri_cnt-1].i_len += len;
 | |
| 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The next region to add is the start of a new region.  It could be
 | |
|  * a whole region or it could be the first part of a new region.  Because
 | |
|  * of this, the assumption here is that the type and size fields of all
 | |
|  * format structures fit into the first 32 bits of the structure.
 | |
|  *
 | |
|  * This works because all regions must be 32 bit aligned.  Therefore, we
 | |
|  * either have both fields or we have neither field.  In the case we have
 | |
|  * neither field, the data part of the region is zero length.  We only have
 | |
|  * a log_op_header and can throw away the header since a new one will appear
 | |
|  * later.  If we have at least 4 bytes, then we can determine how many regions
 | |
|  * will appear in the current log item.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_add_to_trans(
 | |
| 	xlog_recover_t		*trans,
 | |
| 	xfs_caddr_t		dp,
 | |
| 	int			len)
 | |
| {
 | |
| 	xfs_inode_log_format_t	*in_f;			/* any will do */
 | |
| 	xlog_recover_item_t	*item;
 | |
| 	xfs_caddr_t		ptr;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 	if (list_empty(&trans->r_itemq)) {
 | |
| 		/* we need to catch log corruptions here */
 | |
| 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
 | |
| 			xlog_warn("XFS: xlog_recover_add_to_trans: "
 | |
| 				  "bad header magic number");
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EIO);
 | |
| 		}
 | |
| 		if (len == sizeof(xfs_trans_header_t))
 | |
| 			xlog_recover_add_item(&trans->r_itemq);
 | |
| 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ptr = kmem_alloc(len, KM_SLEEP);
 | |
| 	memcpy(ptr, dp, len);
 | |
| 	in_f = (xfs_inode_log_format_t *)ptr;
 | |
| 
 | |
| 	/* take the tail entry */
 | |
| 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
 | |
| 	if (item->ri_total != 0 &&
 | |
| 	     item->ri_total == item->ri_cnt) {
 | |
| 		/* tail item is in use, get a new one */
 | |
| 		xlog_recover_add_item(&trans->r_itemq);
 | |
| 		item = list_entry(trans->r_itemq.prev,
 | |
| 					xlog_recover_item_t, ri_list);
 | |
| 	}
 | |
| 
 | |
| 	if (item->ri_total == 0) {		/* first region to be added */
 | |
| 		if (in_f->ilf_size == 0 ||
 | |
| 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
 | |
| 			xlog_warn(
 | |
| 	"XFS: bad number of regions (%d) in inode log format",
 | |
| 				  in_f->ilf_size);
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EIO);
 | |
| 		}
 | |
| 
 | |
| 		item->ri_total = in_f->ilf_size;
 | |
| 		item->ri_buf =
 | |
| 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
 | |
| 				    KM_SLEEP);
 | |
| 	}
 | |
| 	ASSERT(item->ri_total > item->ri_cnt);
 | |
| 	/* Description region is ri_buf[0] */
 | |
| 	item->ri_buf[item->ri_cnt].i_addr = ptr;
 | |
| 	item->ri_buf[item->ri_cnt].i_len  = len;
 | |
| 	item->ri_cnt++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sort the log items in the transaction. Cancelled buffers need
 | |
|  * to be put first so they are processed before any items that might
 | |
|  * modify the buffers. If they are cancelled, then the modifications
 | |
|  * don't need to be replayed.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_reorder_trans(
 | |
| 	xlog_recover_t		*trans)
 | |
| {
 | |
| 	xlog_recover_item_t	*item, *n;
 | |
| 	LIST_HEAD(sort_list);
 | |
| 
 | |
| 	list_splice_init(&trans->r_itemq, &sort_list);
 | |
| 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
 | |
| 		xfs_buf_log_format_t	*buf_f;
 | |
| 
 | |
| 		buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
 | |
| 
 | |
| 		switch (ITEM_TYPE(item)) {
 | |
| 		case XFS_LI_BUF:
 | |
| 			if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
 | |
| 				list_move(&item->ri_list, &trans->r_itemq);
 | |
| 				break;
 | |
| 			}
 | |
| 		case XFS_LI_INODE:
 | |
| 		case XFS_LI_DQUOT:
 | |
| 		case XFS_LI_QUOTAOFF:
 | |
| 		case XFS_LI_EFD:
 | |
| 		case XFS_LI_EFI:
 | |
| 			list_move_tail(&item->ri_list, &trans->r_itemq);
 | |
| 			break;
 | |
| 		default:
 | |
| 			xlog_warn(
 | |
| 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
 | |
| 			ASSERT(0);
 | |
| 			return XFS_ERROR(EIO);
 | |
| 		}
 | |
| 	}
 | |
| 	ASSERT(list_empty(&sort_list));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build up the table of buf cancel records so that we don't replay
 | |
|  * cancelled data in the second pass.  For buffer records that are
 | |
|  * not cancel records, there is nothing to do here so we just return.
 | |
|  *
 | |
|  * If we get a cancel record which is already in the table, this indicates
 | |
|  * that the buffer was cancelled multiple times.  In order to ensure
 | |
|  * that during pass 2 we keep the record in the table until we reach its
 | |
|  * last occurrence in the log, we keep a reference count in the cancel
 | |
|  * record in the table to tell us how many times we expect to see this
 | |
|  * record during the second pass.
 | |
|  */
 | |
| STATIC void
 | |
| xlog_recover_do_buffer_pass1(
 | |
| 	xlog_t			*log,
 | |
| 	xfs_buf_log_format_t	*buf_f)
 | |
| {
 | |
| 	xfs_buf_cancel_t	*bcp;
 | |
| 	xfs_buf_cancel_t	*nextp;
 | |
| 	xfs_buf_cancel_t	*prevp;
 | |
| 	xfs_buf_cancel_t	**bucket;
 | |
| 	xfs_daddr_t		blkno = 0;
 | |
| 	uint			len = 0;
 | |
| 	ushort			flags = 0;
 | |
| 
 | |
| 	switch (buf_f->blf_type) {
 | |
| 	case XFS_LI_BUF:
 | |
| 		blkno = buf_f->blf_blkno;
 | |
| 		len = buf_f->blf_len;
 | |
| 		flags = buf_f->blf_flags;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this isn't a cancel buffer item, then just return.
 | |
| 	 */
 | |
| 	if (!(flags & XFS_BLI_CANCEL))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert an xfs_buf_cancel record into the hash table of
 | |
| 	 * them.  If there is already an identical record, bump
 | |
| 	 * its reference count.
 | |
| 	 */
 | |
| 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
 | |
| 					  XLOG_BC_TABLE_SIZE];
 | |
| 	/*
 | |
| 	 * If the hash bucket is empty then just insert a new record into
 | |
| 	 * the bucket.
 | |
| 	 */
 | |
| 	if (*bucket == NULL) {
 | |
| 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
 | |
| 						     KM_SLEEP);
 | |
| 		bcp->bc_blkno = blkno;
 | |
| 		bcp->bc_len = len;
 | |
| 		bcp->bc_refcount = 1;
 | |
| 		bcp->bc_next = NULL;
 | |
| 		*bucket = bcp;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The hash bucket is not empty, so search for duplicates of our
 | |
| 	 * record.  If we find one them just bump its refcount.  If not
 | |
| 	 * then add us at the end of the list.
 | |
| 	 */
 | |
| 	prevp = NULL;
 | |
| 	nextp = *bucket;
 | |
| 	while (nextp != NULL) {
 | |
| 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
 | |
| 			nextp->bc_refcount++;
 | |
| 			return;
 | |
| 		}
 | |
| 		prevp = nextp;
 | |
| 		nextp = nextp->bc_next;
 | |
| 	}
 | |
| 	ASSERT(prevp != NULL);
 | |
| 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
 | |
| 					     KM_SLEEP);
 | |
| 	bcp->bc_blkno = blkno;
 | |
| 	bcp->bc_len = len;
 | |
| 	bcp->bc_refcount = 1;
 | |
| 	bcp->bc_next = NULL;
 | |
| 	prevp->bc_next = bcp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see whether the buffer being recovered has a corresponding
 | |
|  * entry in the buffer cancel record table.  If it does then return 1
 | |
|  * so that it will be cancelled, otherwise return 0.  If the buffer is
 | |
|  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
 | |
|  * the refcount on the entry in the table and remove it from the table
 | |
|  * if this is the last reference.
 | |
|  *
 | |
|  * We remove the cancel record from the table when we encounter its
 | |
|  * last occurrence in the log so that if the same buffer is re-used
 | |
|  * again after its last cancellation we actually replay the changes
 | |
|  * made at that point.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_check_buffer_cancelled(
 | |
| 	xlog_t			*log,
 | |
| 	xfs_daddr_t		blkno,
 | |
| 	uint			len,
 | |
| 	ushort			flags)
 | |
| {
 | |
| 	xfs_buf_cancel_t	*bcp;
 | |
| 	xfs_buf_cancel_t	*prevp;
 | |
| 	xfs_buf_cancel_t	**bucket;
 | |
| 
 | |
| 	if (log->l_buf_cancel_table == NULL) {
 | |
| 		/*
 | |
| 		 * There is nothing in the table built in pass one,
 | |
| 		 * so this buffer must not be cancelled.
 | |
| 		 */
 | |
| 		ASSERT(!(flags & XFS_BLI_CANCEL));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
 | |
| 					  XLOG_BC_TABLE_SIZE];
 | |
| 	bcp = *bucket;
 | |
| 	if (bcp == NULL) {
 | |
| 		/*
 | |
| 		 * There is no corresponding entry in the table built
 | |
| 		 * in pass one, so this buffer has not been cancelled.
 | |
| 		 */
 | |
| 		ASSERT(!(flags & XFS_BLI_CANCEL));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search for an entry in the buffer cancel table that
 | |
| 	 * matches our buffer.
 | |
| 	 */
 | |
| 	prevp = NULL;
 | |
| 	while (bcp != NULL) {
 | |
| 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
 | |
| 			/*
 | |
| 			 * We've go a match, so return 1 so that the
 | |
| 			 * recovery of this buffer is cancelled.
 | |
| 			 * If this buffer is actually a buffer cancel
 | |
| 			 * log item, then decrement the refcount on the
 | |
| 			 * one in the table and remove it if this is the
 | |
| 			 * last reference.
 | |
| 			 */
 | |
| 			if (flags & XFS_BLI_CANCEL) {
 | |
| 				bcp->bc_refcount--;
 | |
| 				if (bcp->bc_refcount == 0) {
 | |
| 					if (prevp == NULL) {
 | |
| 						*bucket = bcp->bc_next;
 | |
| 					} else {
 | |
| 						prevp->bc_next = bcp->bc_next;
 | |
| 					}
 | |
| 					kmem_free(bcp);
 | |
| 				}
 | |
| 			}
 | |
| 			return 1;
 | |
| 		}
 | |
| 		prevp = bcp;
 | |
| 		bcp = bcp->bc_next;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We didn't find a corresponding entry in the table, so
 | |
| 	 * return 0 so that the buffer is NOT cancelled.
 | |
| 	 */
 | |
| 	ASSERT(!(flags & XFS_BLI_CANCEL));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xlog_recover_do_buffer_pass2(
 | |
| 	xlog_t			*log,
 | |
| 	xfs_buf_log_format_t	*buf_f)
 | |
| {
 | |
| 	xfs_daddr_t		blkno = 0;
 | |
| 	ushort			flags = 0;
 | |
| 	uint			len = 0;
 | |
| 
 | |
| 	switch (buf_f->blf_type) {
 | |
| 	case XFS_LI_BUF:
 | |
| 		blkno = buf_f->blf_blkno;
 | |
| 		flags = buf_f->blf_flags;
 | |
| 		len = buf_f->blf_len;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform recovery for a buffer full of inodes.  In these buffers,
 | |
|  * the only data which should be recovered is that which corresponds
 | |
|  * to the di_next_unlinked pointers in the on disk inode structures.
 | |
|  * The rest of the data for the inodes is always logged through the
 | |
|  * inodes themselves rather than the inode buffer and is recovered
 | |
|  * in xlog_recover_do_inode_trans().
 | |
|  *
 | |
|  * The only time when buffers full of inodes are fully recovered is
 | |
|  * when the buffer is full of newly allocated inodes.  In this case
 | |
|  * the buffer will not be marked as an inode buffer and so will be
 | |
|  * sent to xlog_recover_do_reg_buffer() below during recovery.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_do_inode_buffer(
 | |
| 	xfs_mount_t		*mp,
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	xfs_buf_t		*bp,
 | |
| 	xfs_buf_log_format_t	*buf_f)
 | |
| {
 | |
| 	int			i;
 | |
| 	int			item_index;
 | |
| 	int			bit;
 | |
| 	int			nbits;
 | |
| 	int			reg_buf_offset;
 | |
| 	int			reg_buf_bytes;
 | |
| 	int			next_unlinked_offset;
 | |
| 	int			inodes_per_buf;
 | |
| 	xfs_agino_t		*logged_nextp;
 | |
| 	xfs_agino_t		*buffer_nextp;
 | |
| 	unsigned int		*data_map = NULL;
 | |
| 	unsigned int		map_size = 0;
 | |
| 
 | |
| 	switch (buf_f->blf_type) {
 | |
| 	case XFS_LI_BUF:
 | |
| 		data_map = buf_f->blf_data_map;
 | |
| 		map_size = buf_f->blf_map_size;
 | |
| 		break;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Set the variables corresponding to the current region to
 | |
| 	 * 0 so that we'll initialize them on the first pass through
 | |
| 	 * the loop.
 | |
| 	 */
 | |
| 	reg_buf_offset = 0;
 | |
| 	reg_buf_bytes = 0;
 | |
| 	bit = 0;
 | |
| 	nbits = 0;
 | |
| 	item_index = 0;
 | |
| 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
 | |
| 	for (i = 0; i < inodes_per_buf; i++) {
 | |
| 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
 | |
| 			offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 
 | |
| 		while (next_unlinked_offset >=
 | |
| 		       (reg_buf_offset + reg_buf_bytes)) {
 | |
| 			/*
 | |
| 			 * The next di_next_unlinked field is beyond
 | |
| 			 * the current logged region.  Find the next
 | |
| 			 * logged region that contains or is beyond
 | |
| 			 * the current di_next_unlinked field.
 | |
| 			 */
 | |
| 			bit += nbits;
 | |
| 			bit = xfs_next_bit(data_map, map_size, bit);
 | |
| 
 | |
| 			/*
 | |
| 			 * If there are no more logged regions in the
 | |
| 			 * buffer, then we're done.
 | |
| 			 */
 | |
| 			if (bit == -1) {
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			nbits = xfs_contig_bits(data_map, map_size,
 | |
| 							 bit);
 | |
| 			ASSERT(nbits > 0);
 | |
| 			reg_buf_offset = bit << XFS_BLI_SHIFT;
 | |
| 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
 | |
| 			item_index++;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the current logged region starts after the current
 | |
| 		 * di_next_unlinked field, then move on to the next
 | |
| 		 * di_next_unlinked field.
 | |
| 		 */
 | |
| 		if (next_unlinked_offset < reg_buf_offset) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
 | |
| 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
 | |
| 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
 | |
| 
 | |
| 		/*
 | |
| 		 * The current logged region contains a copy of the
 | |
| 		 * current di_next_unlinked field.  Extract its value
 | |
| 		 * and copy it to the buffer copy.
 | |
| 		 */
 | |
| 		logged_nextp = (xfs_agino_t *)
 | |
| 			       ((char *)(item->ri_buf[item_index].i_addr) +
 | |
| 				(next_unlinked_offset - reg_buf_offset));
 | |
| 		if (unlikely(*logged_nextp == 0)) {
 | |
| 			xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
 | |
| 				item, bp);
 | |
| 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
 | |
| 					 XFS_ERRLEVEL_LOW, mp);
 | |
| 			return XFS_ERROR(EFSCORRUPTED);
 | |
| 		}
 | |
| 
 | |
| 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
 | |
| 					      next_unlinked_offset);
 | |
| 		*buffer_nextp = *logged_nextp;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a 'normal' buffer recovery.  Each logged region of the
 | |
|  * buffer should be copied over the corresponding region in the
 | |
|  * given buffer.  The bitmap in the buf log format structure indicates
 | |
|  * where to place the logged data.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xlog_recover_do_reg_buffer(
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	xfs_buf_t		*bp,
 | |
| 	xfs_buf_log_format_t	*buf_f)
 | |
| {
 | |
| 	int			i;
 | |
| 	int			bit;
 | |
| 	int			nbits;
 | |
| 	unsigned int		*data_map = NULL;
 | |
| 	unsigned int		map_size = 0;
 | |
| 	int                     error;
 | |
| 
 | |
| 	switch (buf_f->blf_type) {
 | |
| 	case XFS_LI_BUF:
 | |
| 		data_map = buf_f->blf_data_map;
 | |
| 		map_size = buf_f->blf_map_size;
 | |
| 		break;
 | |
| 	}
 | |
| 	bit = 0;
 | |
| 	i = 1;  /* 0 is the buf format structure */
 | |
| 	while (1) {
 | |
| 		bit = xfs_next_bit(data_map, map_size, bit);
 | |
| 		if (bit == -1)
 | |
| 			break;
 | |
| 		nbits = xfs_contig_bits(data_map, map_size, bit);
 | |
| 		ASSERT(nbits > 0);
 | |
| 		ASSERT(item->ri_buf[i].i_addr != NULL);
 | |
| 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
 | |
| 		ASSERT(XFS_BUF_COUNT(bp) >=
 | |
| 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
 | |
| 
 | |
| 		/*
 | |
| 		 * Do a sanity check if this is a dquot buffer. Just checking
 | |
| 		 * the first dquot in the buffer should do. XXXThis is
 | |
| 		 * probably a good thing to do for other buf types also.
 | |
| 		 */
 | |
| 		error = 0;
 | |
| 		if (buf_f->blf_flags &
 | |
| 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
 | |
| 			if (item->ri_buf[i].i_addr == NULL) {
 | |
| 				cmn_err(CE_ALERT,
 | |
| 					"XFS: NULL dquot in %s.", __func__);
 | |
| 				goto next;
 | |
| 			}
 | |
| 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
 | |
| 				cmn_err(CE_ALERT,
 | |
| 					"XFS: dquot too small (%d) in %s.",
 | |
| 					item->ri_buf[i].i_len, __func__);
 | |
| 				goto next;
 | |
| 			}
 | |
| 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
 | |
| 					       item->ri_buf[i].i_addr,
 | |
| 					       -1, 0, XFS_QMOPT_DOWARN,
 | |
| 					       "dquot_buf_recover");
 | |
| 			if (error)
 | |
| 				goto next;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(xfs_buf_offset(bp,
 | |
| 			(uint)bit << XFS_BLI_SHIFT),	/* dest */
 | |
| 			item->ri_buf[i].i_addr,		/* source */
 | |
| 			nbits<<XFS_BLI_SHIFT);		/* length */
 | |
|  next:
 | |
| 		i++;
 | |
| 		bit += nbits;
 | |
| 	}
 | |
| 
 | |
| 	/* Shouldn't be any more regions */
 | |
| 	ASSERT(i == item->ri_total);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do some primitive error checking on ondisk dquot data structures.
 | |
|  */
 | |
| int
 | |
| xfs_qm_dqcheck(
 | |
| 	xfs_disk_dquot_t *ddq,
 | |
| 	xfs_dqid_t	 id,
 | |
| 	uint		 type,	  /* used only when IO_dorepair is true */
 | |
| 	uint		 flags,
 | |
| 	char		 *str)
 | |
| {
 | |
| 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
 | |
| 	int		errs = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
 | |
| 	 * 1. If we crash while deleting the quotainode(s), and those blks got
 | |
| 	 *    used for user data. This is because we take the path of regular
 | |
| 	 *    file deletion; however, the size field of quotainodes is never
 | |
| 	 *    updated, so all the tricks that we play in itruncate_finish
 | |
| 	 *    don't quite matter.
 | |
| 	 *
 | |
| 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
 | |
| 	 *    But the allocation will be replayed so we'll end up with an
 | |
| 	 *    uninitialized quota block.
 | |
| 	 *
 | |
| 	 * This is all fine; things are still consistent, and we haven't lost
 | |
| 	 * any quota information. Just don't complain about bad dquot blks.
 | |
| 	 */
 | |
| 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
 | |
| 		if (flags & XFS_QMOPT_DOWARN)
 | |
| 			cmn_err(CE_ALERT,
 | |
| 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
 | |
| 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
 | |
| 		errs++;
 | |
| 	}
 | |
| 	if (ddq->d_version != XFS_DQUOT_VERSION) {
 | |
| 		if (flags & XFS_QMOPT_DOWARN)
 | |
| 			cmn_err(CE_ALERT,
 | |
| 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
 | |
| 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
 | |
| 		errs++;
 | |
| 	}
 | |
| 
 | |
| 	if (ddq->d_flags != XFS_DQ_USER &&
 | |
| 	    ddq->d_flags != XFS_DQ_PROJ &&
 | |
| 	    ddq->d_flags != XFS_DQ_GROUP) {
 | |
| 		if (flags & XFS_QMOPT_DOWARN)
 | |
| 			cmn_err(CE_ALERT,
 | |
| 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
 | |
| 			str, id, ddq->d_flags);
 | |
| 		errs++;
 | |
| 	}
 | |
| 
 | |
| 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
 | |
| 		if (flags & XFS_QMOPT_DOWARN)
 | |
| 			cmn_err(CE_ALERT,
 | |
| 			"%s : ondisk-dquot 0x%p, ID mismatch: "
 | |
| 			"0x%x expected, found id 0x%x",
 | |
| 			str, ddq, id, be32_to_cpu(ddq->d_id));
 | |
| 		errs++;
 | |
| 	}
 | |
| 
 | |
| 	if (!errs && ddq->d_id) {
 | |
| 		if (ddq->d_blk_softlimit &&
 | |
| 		    be64_to_cpu(ddq->d_bcount) >=
 | |
| 				be64_to_cpu(ddq->d_blk_softlimit)) {
 | |
| 			if (!ddq->d_btimer) {
 | |
| 				if (flags & XFS_QMOPT_DOWARN)
 | |
| 					cmn_err(CE_ALERT,
 | |
| 					"%s : Dquot ID 0x%x (0x%p) "
 | |
| 					"BLK TIMER NOT STARTED",
 | |
| 					str, (int)be32_to_cpu(ddq->d_id), ddq);
 | |
| 				errs++;
 | |
| 			}
 | |
| 		}
 | |
| 		if (ddq->d_ino_softlimit &&
 | |
| 		    be64_to_cpu(ddq->d_icount) >=
 | |
| 				be64_to_cpu(ddq->d_ino_softlimit)) {
 | |
| 			if (!ddq->d_itimer) {
 | |
| 				if (flags & XFS_QMOPT_DOWARN)
 | |
| 					cmn_err(CE_ALERT,
 | |
| 					"%s : Dquot ID 0x%x (0x%p) "
 | |
| 					"INODE TIMER NOT STARTED",
 | |
| 					str, (int)be32_to_cpu(ddq->d_id), ddq);
 | |
| 				errs++;
 | |
| 			}
 | |
| 		}
 | |
| 		if (ddq->d_rtb_softlimit &&
 | |
| 		    be64_to_cpu(ddq->d_rtbcount) >=
 | |
| 				be64_to_cpu(ddq->d_rtb_softlimit)) {
 | |
| 			if (!ddq->d_rtbtimer) {
 | |
| 				if (flags & XFS_QMOPT_DOWARN)
 | |
| 					cmn_err(CE_ALERT,
 | |
| 					"%s : Dquot ID 0x%x (0x%p) "
 | |
| 					"RTBLK TIMER NOT STARTED",
 | |
| 					str, (int)be32_to_cpu(ddq->d_id), ddq);
 | |
| 				errs++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
 | |
| 		return errs;
 | |
| 
 | |
| 	if (flags & XFS_QMOPT_DOWARN)
 | |
| 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
 | |
| 
 | |
| 	/*
 | |
| 	 * Typically, a repair is only requested by quotacheck.
 | |
| 	 */
 | |
| 	ASSERT(id != -1);
 | |
| 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
 | |
| 	memset(d, 0, sizeof(xfs_dqblk_t));
 | |
| 
 | |
| 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
 | |
| 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
 | |
| 	d->dd_diskdq.d_flags = type;
 | |
| 	d->dd_diskdq.d_id = cpu_to_be32(id);
 | |
| 
 | |
| 	return errs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a dquot buffer recovery.
 | |
|  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
 | |
|  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
 | |
|  * Else, treat it as a regular buffer and do recovery.
 | |
|  */
 | |
| STATIC void
 | |
| xlog_recover_do_dquot_buffer(
 | |
| 	xfs_mount_t		*mp,
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	xfs_buf_t		*bp,
 | |
| 	xfs_buf_log_format_t	*buf_f)
 | |
| {
 | |
| 	uint			type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Filesystems are required to send in quota flags at mount time.
 | |
| 	 */
 | |
| 	if (mp->m_qflags == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	type = 0;
 | |
| 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
 | |
| 		type |= XFS_DQ_USER;
 | |
| 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
 | |
| 		type |= XFS_DQ_PROJ;
 | |
| 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
 | |
| 		type |= XFS_DQ_GROUP;
 | |
| 	/*
 | |
| 	 * This type of quotas was turned off, so ignore this buffer
 | |
| 	 */
 | |
| 	if (log->l_quotaoffs_flag & type)
 | |
| 		return;
 | |
| 
 | |
| 	xlog_recover_do_reg_buffer(item, bp, buf_f);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine replays a modification made to a buffer at runtime.
 | |
|  * There are actually two types of buffer, regular and inode, which
 | |
|  * are handled differently.  Inode buffers are handled differently
 | |
|  * in that we only recover a specific set of data from them, namely
 | |
|  * the inode di_next_unlinked fields.  This is because all other inode
 | |
|  * data is actually logged via inode records and any data we replay
 | |
|  * here which overlaps that may be stale.
 | |
|  *
 | |
|  * When meta-data buffers are freed at run time we log a buffer item
 | |
|  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
 | |
|  * of the buffer in the log should not be replayed at recovery time.
 | |
|  * This is so that if the blocks covered by the buffer are reused for
 | |
|  * file data before we crash we don't end up replaying old, freed
 | |
|  * meta-data into a user's file.
 | |
|  *
 | |
|  * To handle the cancellation of buffer log items, we make two passes
 | |
|  * over the log during recovery.  During the first we build a table of
 | |
|  * those buffers which have been cancelled, and during the second we
 | |
|  * only replay those buffers which do not have corresponding cancel
 | |
|  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
 | |
|  * for more details on the implementation of the table of cancel records.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_do_buffer_trans(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	int			pass)
 | |
| {
 | |
| 	xfs_buf_log_format_t	*buf_f;
 | |
| 	xfs_mount_t		*mp;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	int			error;
 | |
| 	int			cancel;
 | |
| 	xfs_daddr_t		blkno;
 | |
| 	int			len;
 | |
| 	ushort			flags;
 | |
| 	uint			buf_flags;
 | |
| 
 | |
| 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
 | |
| 
 | |
| 	if (pass == XLOG_RECOVER_PASS1) {
 | |
| 		/*
 | |
| 		 * In this pass we're only looking for buf items
 | |
| 		 * with the XFS_BLI_CANCEL bit set.
 | |
| 		 */
 | |
| 		xlog_recover_do_buffer_pass1(log, buf_f);
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * In this pass we want to recover all the buffers
 | |
| 		 * which have not been cancelled and are not
 | |
| 		 * cancellation buffers themselves.  The routine
 | |
| 		 * we call here will tell us whether or not to
 | |
| 		 * continue with the replay of this buffer.
 | |
| 		 */
 | |
| 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
 | |
| 		if (cancel) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	switch (buf_f->blf_type) {
 | |
| 	case XFS_LI_BUF:
 | |
| 		blkno = buf_f->blf_blkno;
 | |
| 		len = buf_f->blf_len;
 | |
| 		flags = buf_f->blf_flags;
 | |
| 		break;
 | |
| 	default:
 | |
| 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
 | |
| 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
 | |
| 			buf_f->blf_type, log->l_mp->m_logname ?
 | |
| 			log->l_mp->m_logname : "internal");
 | |
| 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
 | |
| 				 XFS_ERRLEVEL_LOW, log->l_mp);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 
 | |
| 	mp = log->l_mp;
 | |
| 	buf_flags = XBF_LOCK;
 | |
| 	if (!(flags & XFS_BLI_INODE_BUF))
 | |
| 		buf_flags |= XBF_MAPPED;
 | |
| 
 | |
| 	bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
 | |
| 	if (XFS_BUF_ISERROR(bp)) {
 | |
| 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
 | |
| 				  bp, blkno);
 | |
| 		error = XFS_BUF_GETERROR(bp);
 | |
| 		xfs_buf_relse(bp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	error = 0;
 | |
| 	if (flags & XFS_BLI_INODE_BUF) {
 | |
| 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
 | |
| 	} else if (flags &
 | |
| 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
 | |
| 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
 | |
| 	} else {
 | |
| 		xlog_recover_do_reg_buffer(item, bp, buf_f);
 | |
| 	}
 | |
| 	if (error)
 | |
| 		return XFS_ERROR(error);
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform delayed write on the buffer.  Asynchronous writes will be
 | |
| 	 * slower when taking into account all the buffers to be flushed.
 | |
| 	 *
 | |
| 	 * Also make sure that only inode buffers with good sizes stay in
 | |
| 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
 | |
| 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
 | |
| 	 * buffers in the log can be a different size if the log was generated
 | |
| 	 * by an older kernel using unclustered inode buffers or a newer kernel
 | |
| 	 * running with a different inode cluster size.  Regardless, if the
 | |
| 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
 | |
| 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
 | |
| 	 * the buffer out of the buffer cache so that the buffer won't
 | |
| 	 * overlap with future reads of those inodes.
 | |
| 	 */
 | |
| 	if (XFS_DINODE_MAGIC ==
 | |
| 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
 | |
| 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
 | |
| 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
 | |
| 		XFS_BUF_STALE(bp);
 | |
| 		error = xfs_bwrite(mp, bp);
 | |
| 	} else {
 | |
| 		ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
 | |
| 		bp->b_mount = mp;
 | |
| 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
 | |
| 		xfs_bdwrite(mp, bp);
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xlog_recover_do_inode_trans(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	int			pass)
 | |
| {
 | |
| 	xfs_inode_log_format_t	*in_f;
 | |
| 	xfs_mount_t		*mp;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	xfs_dinode_t		*dip;
 | |
| 	xfs_ino_t		ino;
 | |
| 	int			len;
 | |
| 	xfs_caddr_t		src;
 | |
| 	xfs_caddr_t		dest;
 | |
| 	int			error;
 | |
| 	int			attr_index;
 | |
| 	uint			fields;
 | |
| 	xfs_icdinode_t		*dicp;
 | |
| 	int			need_free = 0;
 | |
| 
 | |
| 	if (pass == XLOG_RECOVER_PASS1) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
 | |
| 		in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
 | |
| 	} else {
 | |
| 		in_f = (xfs_inode_log_format_t *)kmem_alloc(
 | |
| 			sizeof(xfs_inode_log_format_t), KM_SLEEP);
 | |
| 		need_free = 1;
 | |
| 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
 | |
| 		if (error)
 | |
| 			goto error;
 | |
| 	}
 | |
| 	ino = in_f->ilf_ino;
 | |
| 	mp = log->l_mp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Inode buffers can be freed, look out for it,
 | |
| 	 * and do not replay the inode.
 | |
| 	 */
 | |
| 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
 | |
| 					in_f->ilf_len, 0)) {
 | |
| 		error = 0;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
 | |
| 			  XBF_LOCK);
 | |
| 	if (XFS_BUF_ISERROR(bp)) {
 | |
| 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
 | |
| 				  bp, in_f->ilf_blkno);
 | |
| 		error = XFS_BUF_GETERROR(bp);
 | |
| 		xfs_buf_relse(bp);
 | |
| 		goto error;
 | |
| 	}
 | |
| 	error = 0;
 | |
| 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
 | |
| 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the place we're flushing out to really looks
 | |
| 	 * like an inode!
 | |
| 	 */
 | |
| 	if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
 | |
| 		xfs_buf_relse(bp);
 | |
| 		xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
 | |
| 			dip, bp, ino);
 | |
| 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
 | |
| 				 XFS_ERRLEVEL_LOW, mp);
 | |
| 		error = EFSCORRUPTED;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
 | |
| 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
 | |
| 		xfs_buf_relse(bp);
 | |
| 		xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
 | |
| 			item, ino);
 | |
| 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
 | |
| 				 XFS_ERRLEVEL_LOW, mp);
 | |
| 		error = EFSCORRUPTED;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/* Skip replay when the on disk inode is newer than the log one */
 | |
| 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
 | |
| 		/*
 | |
| 		 * Deal with the wrap case, DI_MAX_FLUSH is less
 | |
| 		 * than smaller numbers
 | |
| 		 */
 | |
| 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
 | |
| 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
 | |
| 			/* do nothing */
 | |
| 		} else {
 | |
| 			xfs_buf_relse(bp);
 | |
| 			error = 0;
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Take the opportunity to reset the flush iteration count */
 | |
| 	dicp->di_flushiter = 0;
 | |
| 
 | |
| 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
 | |
| 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
 | |
| 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
 | |
| 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
 | |
| 					 XFS_ERRLEVEL_LOW, mp, dicp);
 | |
| 			xfs_buf_relse(bp);
 | |
| 			xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
 | |
| 				item, dip, bp, ino);
 | |
| 			error = EFSCORRUPTED;
 | |
| 			goto error;
 | |
| 		}
 | |
| 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
 | |
| 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
 | |
| 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
 | |
| 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
 | |
| 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
 | |
| 					     XFS_ERRLEVEL_LOW, mp, dicp);
 | |
| 			xfs_buf_relse(bp);
 | |
| 			xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
 | |
| 				item, dip, bp, ino);
 | |
| 			error = EFSCORRUPTED;
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
 | |
| 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
 | |
| 				     XFS_ERRLEVEL_LOW, mp, dicp);
 | |
| 		xfs_buf_relse(bp);
 | |
| 		xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
 | |
| 			item, dip, bp, ino,
 | |
| 			dicp->di_nextents + dicp->di_anextents,
 | |
| 			dicp->di_nblocks);
 | |
| 		error = EFSCORRUPTED;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
 | |
| 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
 | |
| 				     XFS_ERRLEVEL_LOW, mp, dicp);
 | |
| 		xfs_buf_relse(bp);
 | |
| 		xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
 | |
| 			item, dip, bp, ino, dicp->di_forkoff);
 | |
| 		error = EFSCORRUPTED;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
 | |
| 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
 | |
| 				     XFS_ERRLEVEL_LOW, mp, dicp);
 | |
| 		xfs_buf_relse(bp);
 | |
| 		xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
 | |
| 			item->ri_buf[1].i_len, item);
 | |
| 		error = EFSCORRUPTED;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/* The core is in in-core format */
 | |
| 	xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
 | |
| 
 | |
| 	/* the rest is in on-disk format */
 | |
| 	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
 | |
| 		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
 | |
| 			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
 | |
| 			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
 | |
| 	}
 | |
| 
 | |
| 	fields = in_f->ilf_fields;
 | |
| 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
 | |
| 	case XFS_ILOG_DEV:
 | |
| 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
 | |
| 		break;
 | |
| 	case XFS_ILOG_UUID:
 | |
| 		memcpy(XFS_DFORK_DPTR(dip),
 | |
| 		       &in_f->ilf_u.ilfu_uuid,
 | |
| 		       sizeof(uuid_t));
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (in_f->ilf_size == 2)
 | |
| 		goto write_inode_buffer;
 | |
| 	len = item->ri_buf[2].i_len;
 | |
| 	src = item->ri_buf[2].i_addr;
 | |
| 	ASSERT(in_f->ilf_size <= 4);
 | |
| 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
 | |
| 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
 | |
| 	       (len == in_f->ilf_dsize));
 | |
| 
 | |
| 	switch (fields & XFS_ILOG_DFORK) {
 | |
| 	case XFS_ILOG_DDATA:
 | |
| 	case XFS_ILOG_DEXT:
 | |
| 		memcpy(XFS_DFORK_DPTR(dip), src, len);
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_ILOG_DBROOT:
 | |
| 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
 | |
| 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
 | |
| 				 XFS_DFORK_DSIZE(dip, mp));
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * There are no data fork flags set.
 | |
| 		 */
 | |
| 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we logged any attribute data, recover it.  There may or
 | |
| 	 * may not have been any other non-core data logged in this
 | |
| 	 * transaction.
 | |
| 	 */
 | |
| 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
 | |
| 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
 | |
| 			attr_index = 3;
 | |
| 		} else {
 | |
| 			attr_index = 2;
 | |
| 		}
 | |
| 		len = item->ri_buf[attr_index].i_len;
 | |
| 		src = item->ri_buf[attr_index].i_addr;
 | |
| 		ASSERT(len == in_f->ilf_asize);
 | |
| 
 | |
| 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
 | |
| 		case XFS_ILOG_ADATA:
 | |
| 		case XFS_ILOG_AEXT:
 | |
| 			dest = XFS_DFORK_APTR(dip);
 | |
| 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
 | |
| 			memcpy(dest, src, len);
 | |
| 			break;
 | |
| 
 | |
| 		case XFS_ILOG_ABROOT:
 | |
| 			dest = XFS_DFORK_APTR(dip);
 | |
| 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
 | |
| 					 len, (xfs_bmdr_block_t*)dest,
 | |
| 					 XFS_DFORK_ASIZE(dip, mp));
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
 | |
| 			ASSERT(0);
 | |
| 			xfs_buf_relse(bp);
 | |
| 			error = EIO;
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| write_inode_buffer:
 | |
| 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
 | |
| 	bp->b_mount = mp;
 | |
| 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
 | |
| 	xfs_bdwrite(mp, bp);
 | |
| error:
 | |
| 	if (need_free)
 | |
| 		kmem_free(in_f);
 | |
| 	return XFS_ERROR(error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
 | |
|  * structure, so that we know not to do any dquot item or dquot buffer recovery,
 | |
|  * of that type.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_do_quotaoff_trans(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	int			pass)
 | |
| {
 | |
| 	xfs_qoff_logformat_t	*qoff_f;
 | |
| 
 | |
| 	if (pass == XLOG_RECOVER_PASS2) {
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
 | |
| 	ASSERT(qoff_f);
 | |
| 
 | |
| 	/*
 | |
| 	 * The logitem format's flag tells us if this was user quotaoff,
 | |
| 	 * group/project quotaoff or both.
 | |
| 	 */
 | |
| 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
 | |
| 		log->l_quotaoffs_flag |= XFS_DQ_USER;
 | |
| 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
 | |
| 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
 | |
| 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
 | |
| 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recover a dquot record
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_do_dquot_trans(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	int			pass)
 | |
| {
 | |
| 	xfs_mount_t		*mp;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	struct xfs_disk_dquot	*ddq, *recddq;
 | |
| 	int			error;
 | |
| 	xfs_dq_logformat_t	*dq_f;
 | |
| 	uint			type;
 | |
| 
 | |
| 	if (pass == XLOG_RECOVER_PASS1) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	mp = log->l_mp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Filesystems are required to send in quota flags at mount time.
 | |
| 	 */
 | |
| 	if (mp->m_qflags == 0)
 | |
| 		return (0);
 | |
| 
 | |
| 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
 | |
| 
 | |
| 	if (item->ri_buf[1].i_addr == NULL) {
 | |
| 		cmn_err(CE_ALERT,
 | |
| 			"XFS: NULL dquot in %s.", __func__);
 | |
| 		return XFS_ERROR(EIO);
 | |
| 	}
 | |
| 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
 | |
| 		cmn_err(CE_ALERT,
 | |
| 			"XFS: dquot too small (%d) in %s.",
 | |
| 			item->ri_buf[1].i_len, __func__);
 | |
| 		return XFS_ERROR(EIO);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This type of quotas was turned off, so ignore this record.
 | |
| 	 */
 | |
| 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
 | |
| 	ASSERT(type);
 | |
| 	if (log->l_quotaoffs_flag & type)
 | |
| 		return (0);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we know that quota was _not_ turned off.
 | |
| 	 * Since the mount flags are not indicating to us otherwise, this
 | |
| 	 * must mean that quota is on, and the dquot needs to be replayed.
 | |
| 	 * Remember that we may not have fully recovered the superblock yet,
 | |
| 	 * so we can't do the usual trick of looking at the SB quota bits.
 | |
| 	 *
 | |
| 	 * The other possibility, of course, is that the quota subsystem was
 | |
| 	 * removed since the last mount - ENOSYS.
 | |
| 	 */
 | |
| 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
 | |
| 	ASSERT(dq_f);
 | |
| 	if ((error = xfs_qm_dqcheck(recddq,
 | |
| 			   dq_f->qlf_id,
 | |
| 			   0, XFS_QMOPT_DOWARN,
 | |
| 			   "xlog_recover_do_dquot_trans (log copy)"))) {
 | |
| 		return XFS_ERROR(EIO);
 | |
| 	}
 | |
| 	ASSERT(dq_f->qlf_len == 1);
 | |
| 
 | |
| 	error = xfs_read_buf(mp, mp->m_ddev_targp,
 | |
| 			     dq_f->qlf_blkno,
 | |
| 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
 | |
| 			     0, &bp);
 | |
| 	if (error) {
 | |
| 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
 | |
| 				  bp, dq_f->qlf_blkno);
 | |
| 		return error;
 | |
| 	}
 | |
| 	ASSERT(bp);
 | |
| 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
 | |
| 
 | |
| 	/*
 | |
| 	 * At least the magic num portion should be on disk because this
 | |
| 	 * was among a chunk of dquots created earlier, and we did some
 | |
| 	 * minimal initialization then.
 | |
| 	 */
 | |
| 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
 | |
| 			   "xlog_recover_do_dquot_trans")) {
 | |
| 		xfs_buf_relse(bp);
 | |
| 		return XFS_ERROR(EIO);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
 | |
| 
 | |
| 	ASSERT(dq_f->qlf_size == 2);
 | |
| 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
 | |
| 	bp->b_mount = mp;
 | |
| 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
 | |
| 	xfs_bdwrite(mp, bp);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine is called to create an in-core extent free intent
 | |
|  * item from the efi format structure which was logged on disk.
 | |
|  * It allocates an in-core efi, copies the extents from the format
 | |
|  * structure into it, and adds the efi to the AIL with the given
 | |
|  * LSN.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_do_efi_trans(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	xfs_lsn_t		lsn,
 | |
| 	int			pass)
 | |
| {
 | |
| 	int			error;
 | |
| 	xfs_mount_t		*mp;
 | |
| 	xfs_efi_log_item_t	*efip;
 | |
| 	xfs_efi_log_format_t	*efi_formatp;
 | |
| 
 | |
| 	if (pass == XLOG_RECOVER_PASS1) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
 | |
| 
 | |
| 	mp = log->l_mp;
 | |
| 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
 | |
| 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
 | |
| 					 &(efip->efi_format)))) {
 | |
| 		xfs_efi_item_free(efip);
 | |
| 		return error;
 | |
| 	}
 | |
| 	efip->efi_next_extent = efi_formatp->efi_nextents;
 | |
| 	efip->efi_flags |= XFS_EFI_COMMITTED;
 | |
| 
 | |
| 	spin_lock(&log->l_ailp->xa_lock);
 | |
| 	/*
 | |
| 	 * xfs_trans_ail_update() drops the AIL lock.
 | |
| 	 */
 | |
| 	xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This routine is called when an efd format structure is found in
 | |
|  * a committed transaction in the log.  It's purpose is to cancel
 | |
|  * the corresponding efi if it was still in the log.  To do this
 | |
|  * it searches the AIL for the efi with an id equal to that in the
 | |
|  * efd format structure.  If we find it, we remove the efi from the
 | |
|  * AIL and free it.
 | |
|  */
 | |
| STATIC void
 | |
| xlog_recover_do_efd_trans(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_item_t	*item,
 | |
| 	int			pass)
 | |
| {
 | |
| 	xfs_efd_log_format_t	*efd_formatp;
 | |
| 	xfs_efi_log_item_t	*efip = NULL;
 | |
| 	xfs_log_item_t		*lip;
 | |
| 	__uint64_t		efi_id;
 | |
| 	struct xfs_ail_cursor	cur;
 | |
| 	struct xfs_ail		*ailp = log->l_ailp;
 | |
| 
 | |
| 	if (pass == XLOG_RECOVER_PASS1) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
 | |
| 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
 | |
| 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
 | |
| 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
 | |
| 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
 | |
| 	efi_id = efd_formatp->efd_efi_id;
 | |
| 
 | |
| 	/*
 | |
| 	 * Search for the efi with the id in the efd format structure
 | |
| 	 * in the AIL.
 | |
| 	 */
 | |
| 	spin_lock(&ailp->xa_lock);
 | |
| 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
 | |
| 	while (lip != NULL) {
 | |
| 		if (lip->li_type == XFS_LI_EFI) {
 | |
| 			efip = (xfs_efi_log_item_t *)lip;
 | |
| 			if (efip->efi_format.efi_id == efi_id) {
 | |
| 				/*
 | |
| 				 * xfs_trans_ail_delete() drops the
 | |
| 				 * AIL lock.
 | |
| 				 */
 | |
| 				xfs_trans_ail_delete(ailp, lip);
 | |
| 				xfs_efi_item_free(efip);
 | |
| 				spin_lock(&ailp->xa_lock);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
 | |
| 	}
 | |
| 	xfs_trans_ail_cursor_done(ailp, &cur);
 | |
| 	spin_unlock(&ailp->xa_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform the transaction
 | |
|  *
 | |
|  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
 | |
|  * EFIs and EFDs get queued up by adding entries into the AIL for them.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_do_trans(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_t		*trans,
 | |
| 	int			pass)
 | |
| {
 | |
| 	int			error = 0;
 | |
| 	xlog_recover_item_t	*item;
 | |
| 
 | |
| 	error = xlog_recover_reorder_trans(trans);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	list_for_each_entry(item, &trans->r_itemq, ri_list) {
 | |
| 		switch (ITEM_TYPE(item)) {
 | |
| 		case XFS_LI_BUF:
 | |
| 			error = xlog_recover_do_buffer_trans(log, item, pass);
 | |
| 			break;
 | |
| 		case XFS_LI_INODE:
 | |
| 			error = xlog_recover_do_inode_trans(log, item, pass);
 | |
| 			break;
 | |
| 		case XFS_LI_EFI:
 | |
| 			error = xlog_recover_do_efi_trans(log, item,
 | |
| 							  trans->r_lsn, pass);
 | |
| 			break;
 | |
| 		case XFS_LI_EFD:
 | |
| 			xlog_recover_do_efd_trans(log, item, pass);
 | |
| 			error = 0;
 | |
| 			break;
 | |
| 		case XFS_LI_DQUOT:
 | |
| 			error = xlog_recover_do_dquot_trans(log, item, pass);
 | |
| 			break;
 | |
| 		case XFS_LI_QUOTAOFF:
 | |
| 			error = xlog_recover_do_quotaoff_trans(log, item,
 | |
| 							       pass);
 | |
| 			break;
 | |
| 		default:
 | |
| 			xlog_warn(
 | |
| 	"XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
 | |
| 			ASSERT(0);
 | |
| 			error = XFS_ERROR(EIO);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free up any resources allocated by the transaction
 | |
|  *
 | |
|  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
 | |
|  */
 | |
| STATIC void
 | |
| xlog_recover_free_trans(
 | |
| 	xlog_recover_t		*trans)
 | |
| {
 | |
| 	xlog_recover_item_t	*item, *n;
 | |
| 	int			i;
 | |
| 
 | |
| 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
 | |
| 		/* Free the regions in the item. */
 | |
| 		list_del(&item->ri_list);
 | |
| 		for (i = 0; i < item->ri_cnt; i++)
 | |
| 			kmem_free(item->ri_buf[i].i_addr);
 | |
| 		/* Free the item itself */
 | |
| 		kmem_free(item->ri_buf);
 | |
| 		kmem_free(item);
 | |
| 	}
 | |
| 	/* Free the transaction recover structure */
 | |
| 	kmem_free(trans);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xlog_recover_commit_trans(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_recover_t		*trans,
 | |
| 	int			pass)
 | |
| {
 | |
| 	int			error;
 | |
| 
 | |
| 	hlist_del(&trans->r_list);
 | |
| 	if ((error = xlog_recover_do_trans(log, trans, pass)))
 | |
| 		return error;
 | |
| 	xlog_recover_free_trans(trans);			/* no error */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xlog_recover_unmount_trans(
 | |
| 	xlog_recover_t		*trans)
 | |
| {
 | |
| 	/* Do nothing now */
 | |
| 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are two valid states of the r_state field.  0 indicates that the
 | |
|  * transaction structure is in a normal state.  We have either seen the
 | |
|  * start of the transaction or the last operation we added was not a partial
 | |
|  * operation.  If the last operation we added to the transaction was a
 | |
|  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
 | |
|  *
 | |
|  * NOTE: skip LRs with 0 data length.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_process_data(
 | |
| 	xlog_t			*log,
 | |
| 	struct hlist_head	rhash[],
 | |
| 	xlog_rec_header_t	*rhead,
 | |
| 	xfs_caddr_t		dp,
 | |
| 	int			pass)
 | |
| {
 | |
| 	xfs_caddr_t		lp;
 | |
| 	int			num_logops;
 | |
| 	xlog_op_header_t	*ohead;
 | |
| 	xlog_recover_t		*trans;
 | |
| 	xlog_tid_t		tid;
 | |
| 	int			error;
 | |
| 	unsigned long		hash;
 | |
| 	uint			flags;
 | |
| 
 | |
| 	lp = dp + be32_to_cpu(rhead->h_len);
 | |
| 	num_logops = be32_to_cpu(rhead->h_num_logops);
 | |
| 
 | |
| 	/* check the log format matches our own - else we can't recover */
 | |
| 	if (xlog_header_check_recover(log->l_mp, rhead))
 | |
| 		return (XFS_ERROR(EIO));
 | |
| 
 | |
| 	while ((dp < lp) && num_logops) {
 | |
| 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
 | |
| 		ohead = (xlog_op_header_t *)dp;
 | |
| 		dp += sizeof(xlog_op_header_t);
 | |
| 		if (ohead->oh_clientid != XFS_TRANSACTION &&
 | |
| 		    ohead->oh_clientid != XFS_LOG) {
 | |
| 			xlog_warn(
 | |
| 		"XFS: xlog_recover_process_data: bad clientid");
 | |
| 			ASSERT(0);
 | |
| 			return (XFS_ERROR(EIO));
 | |
| 		}
 | |
| 		tid = be32_to_cpu(ohead->oh_tid);
 | |
| 		hash = XLOG_RHASH(tid);
 | |
| 		trans = xlog_recover_find_tid(&rhash[hash], tid);
 | |
| 		if (trans == NULL) {		   /* not found; add new tid */
 | |
| 			if (ohead->oh_flags & XLOG_START_TRANS)
 | |
| 				xlog_recover_new_tid(&rhash[hash], tid,
 | |
| 					be64_to_cpu(rhead->h_lsn));
 | |
| 		} else {
 | |
| 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
 | |
| 				xlog_warn(
 | |
| 			"XFS: xlog_recover_process_data: bad length");
 | |
| 				WARN_ON(1);
 | |
| 				return (XFS_ERROR(EIO));
 | |
| 			}
 | |
| 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
 | |
| 			if (flags & XLOG_WAS_CONT_TRANS)
 | |
| 				flags &= ~XLOG_CONTINUE_TRANS;
 | |
| 			switch (flags) {
 | |
| 			case XLOG_COMMIT_TRANS:
 | |
| 				error = xlog_recover_commit_trans(log,
 | |
| 								trans, pass);
 | |
| 				break;
 | |
| 			case XLOG_UNMOUNT_TRANS:
 | |
| 				error = xlog_recover_unmount_trans(trans);
 | |
| 				break;
 | |
| 			case XLOG_WAS_CONT_TRANS:
 | |
| 				error = xlog_recover_add_to_cont_trans(trans,
 | |
| 						dp, be32_to_cpu(ohead->oh_len));
 | |
| 				break;
 | |
| 			case XLOG_START_TRANS:
 | |
| 				xlog_warn(
 | |
| 			"XFS: xlog_recover_process_data: bad transaction");
 | |
| 				ASSERT(0);
 | |
| 				error = XFS_ERROR(EIO);
 | |
| 				break;
 | |
| 			case 0:
 | |
| 			case XLOG_CONTINUE_TRANS:
 | |
| 				error = xlog_recover_add_to_trans(trans,
 | |
| 						dp, be32_to_cpu(ohead->oh_len));
 | |
| 				break;
 | |
| 			default:
 | |
| 				xlog_warn(
 | |
| 			"XFS: xlog_recover_process_data: bad flag");
 | |
| 				ASSERT(0);
 | |
| 				error = XFS_ERROR(EIO);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (error)
 | |
| 				return error;
 | |
| 		}
 | |
| 		dp += be32_to_cpu(ohead->oh_len);
 | |
| 		num_logops--;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process an extent free intent item that was recovered from
 | |
|  * the log.  We need to free the extents that it describes.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_process_efi(
 | |
| 	xfs_mount_t		*mp,
 | |
| 	xfs_efi_log_item_t	*efip)
 | |
| {
 | |
| 	xfs_efd_log_item_t	*efdp;
 | |
| 	xfs_trans_t		*tp;
 | |
| 	int			i;
 | |
| 	int			error = 0;
 | |
| 	xfs_extent_t		*extp;
 | |
| 	xfs_fsblock_t		startblock_fsb;
 | |
| 
 | |
| 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
 | |
| 
 | |
| 	/*
 | |
| 	 * First check the validity of the extents described by the
 | |
| 	 * EFI.  If any are bad, then assume that all are bad and
 | |
| 	 * just toss the EFI.
 | |
| 	 */
 | |
| 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 | |
| 		extp = &(efip->efi_format.efi_extents[i]);
 | |
| 		startblock_fsb = XFS_BB_TO_FSB(mp,
 | |
| 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
 | |
| 		if ((startblock_fsb == 0) ||
 | |
| 		    (extp->ext_len == 0) ||
 | |
| 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
 | |
| 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
 | |
| 			/*
 | |
| 			 * This will pull the EFI from the AIL and
 | |
| 			 * free the memory associated with it.
 | |
| 			 */
 | |
| 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
 | |
| 			return XFS_ERROR(EIO);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, 0);
 | |
| 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
 | |
| 	if (error)
 | |
| 		goto abort_error;
 | |
| 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
 | |
| 
 | |
| 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 | |
| 		extp = &(efip->efi_format.efi_extents[i]);
 | |
| 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
 | |
| 		if (error)
 | |
| 			goto abort_error;
 | |
| 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
 | |
| 					 extp->ext_len);
 | |
| 	}
 | |
| 
 | |
| 	efip->efi_flags |= XFS_EFI_RECOVERED;
 | |
| 	error = xfs_trans_commit(tp, 0);
 | |
| 	return error;
 | |
| 
 | |
| abort_error:
 | |
| 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When this is called, all of the EFIs which did not have
 | |
|  * corresponding EFDs should be in the AIL.  What we do now
 | |
|  * is free the extents associated with each one.
 | |
|  *
 | |
|  * Since we process the EFIs in normal transactions, they
 | |
|  * will be removed at some point after the commit.  This prevents
 | |
|  * us from just walking down the list processing each one.
 | |
|  * We'll use a flag in the EFI to skip those that we've already
 | |
|  * processed and use the AIL iteration mechanism's generation
 | |
|  * count to try to speed this up at least a bit.
 | |
|  *
 | |
|  * When we start, we know that the EFIs are the only things in
 | |
|  * the AIL.  As we process them, however, other items are added
 | |
|  * to the AIL.  Since everything added to the AIL must come after
 | |
|  * everything already in the AIL, we stop processing as soon as
 | |
|  * we see something other than an EFI in the AIL.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_process_efis(
 | |
| 	xlog_t			*log)
 | |
| {
 | |
| 	xfs_log_item_t		*lip;
 | |
| 	xfs_efi_log_item_t	*efip;
 | |
| 	int			error = 0;
 | |
| 	struct xfs_ail_cursor	cur;
 | |
| 	struct xfs_ail		*ailp;
 | |
| 
 | |
| 	ailp = log->l_ailp;
 | |
| 	spin_lock(&ailp->xa_lock);
 | |
| 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
 | |
| 	while (lip != NULL) {
 | |
| 		/*
 | |
| 		 * We're done when we see something other than an EFI.
 | |
| 		 * There should be no EFIs left in the AIL now.
 | |
| 		 */
 | |
| 		if (lip->li_type != XFS_LI_EFI) {
 | |
| #ifdef DEBUG
 | |
| 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
 | |
| 				ASSERT(lip->li_type != XFS_LI_EFI);
 | |
| #endif
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Skip EFIs that we've already processed.
 | |
| 		 */
 | |
| 		efip = (xfs_efi_log_item_t *)lip;
 | |
| 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
 | |
| 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&ailp->xa_lock);
 | |
| 		error = xlog_recover_process_efi(log->l_mp, efip);
 | |
| 		spin_lock(&ailp->xa_lock);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
 | |
| 	}
 | |
| out:
 | |
| 	xfs_trans_ail_cursor_done(ailp, &cur);
 | |
| 	spin_unlock(&ailp->xa_lock);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine performs a transaction to null out a bad inode pointer
 | |
|  * in an agi unlinked inode hash bucket.
 | |
|  */
 | |
| STATIC void
 | |
| xlog_recover_clear_agi_bucket(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_agnumber_t	agno,
 | |
| 	int		bucket)
 | |
| {
 | |
| 	xfs_trans_t	*tp;
 | |
| 	xfs_agi_t	*agi;
 | |
| 	xfs_buf_t	*agibp;
 | |
| 	int		offset;
 | |
| 	int		error;
 | |
| 
 | |
| 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
 | |
| 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
 | |
| 				  0, 0, 0);
 | |
| 	if (error)
 | |
| 		goto out_abort;
 | |
| 
 | |
| 	error = xfs_read_agi(mp, tp, agno, &agibp);
 | |
| 	if (error)
 | |
| 		goto out_abort;
 | |
| 
 | |
| 	agi = XFS_BUF_TO_AGI(agibp);
 | |
| 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
 | |
| 	offset = offsetof(xfs_agi_t, agi_unlinked) +
 | |
| 		 (sizeof(xfs_agino_t) * bucket);
 | |
| 	xfs_trans_log_buf(tp, agibp, offset,
 | |
| 			  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 
 | |
| 	error = xfs_trans_commit(tp, 0);
 | |
| 	if (error)
 | |
| 		goto out_error;
 | |
| 	return;
 | |
| 
 | |
| out_abort:
 | |
| 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
 | |
| out_error:
 | |
| 	xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
 | |
| 			"failed to clear agi %d. Continuing.", agno);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| STATIC xfs_agino_t
 | |
| xlog_recover_process_one_iunlink(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	xfs_agnumber_t			agno,
 | |
| 	xfs_agino_t			agino,
 | |
| 	int				bucket)
 | |
| {
 | |
| 	struct xfs_buf			*ibp;
 | |
| 	struct xfs_dinode		*dip;
 | |
| 	struct xfs_inode		*ip;
 | |
| 	xfs_ino_t			ino;
 | |
| 	int				error;
 | |
| 
 | |
| 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
 | |
| 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
 | |
| 	if (error)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the on disk inode to find the next inode in the bucket.
 | |
| 	 */
 | |
| 	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
 | |
| 	if (error)
 | |
| 		goto fail_iput;
 | |
| 
 | |
| 	ASSERT(ip->i_d.di_nlink == 0);
 | |
| 	ASSERT(ip->i_d.di_mode != 0);
 | |
| 
 | |
| 	/* setup for the next pass */
 | |
| 	agino = be32_to_cpu(dip->di_next_unlinked);
 | |
| 	xfs_buf_relse(ibp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent any DMAPI event from being sent when the reference on
 | |
| 	 * the inode is dropped.
 | |
| 	 */
 | |
| 	ip->i_d.di_dmevmask = 0;
 | |
| 
 | |
| 	IRELE(ip);
 | |
| 	return agino;
 | |
| 
 | |
|  fail_iput:
 | |
| 	IRELE(ip);
 | |
|  fail:
 | |
| 	/*
 | |
| 	 * We can't read in the inode this bucket points to, or this inode
 | |
| 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
 | |
| 	 * some inodes and space, but at least we won't hang.
 | |
| 	 *
 | |
| 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
 | |
| 	 * clear the inode pointer in the bucket.
 | |
| 	 */
 | |
| 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
 | |
| 	return NULLAGINO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xlog_iunlink_recover
 | |
|  *
 | |
|  * This is called during recovery to process any inodes which
 | |
|  * we unlinked but not freed when the system crashed.  These
 | |
|  * inodes will be on the lists in the AGI blocks.  What we do
 | |
|  * here is scan all the AGIs and fully truncate and free any
 | |
|  * inodes found on the lists.  Each inode is removed from the
 | |
|  * lists when it has been fully truncated and is freed.  The
 | |
|  * freeing of the inode and its removal from the list must be
 | |
|  * atomic.
 | |
|  */
 | |
| STATIC void
 | |
| xlog_recover_process_iunlinks(
 | |
| 	xlog_t		*log)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_agnumber_t	agno;
 | |
| 	xfs_agi_t	*agi;
 | |
| 	xfs_buf_t	*agibp;
 | |
| 	xfs_agino_t	agino;
 | |
| 	int		bucket;
 | |
| 	int		error;
 | |
| 	uint		mp_dmevmask;
 | |
| 
 | |
| 	mp = log->l_mp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent any DMAPI event from being sent while in this function.
 | |
| 	 */
 | |
| 	mp_dmevmask = mp->m_dmevmask;
 | |
| 	mp->m_dmevmask = 0;
 | |
| 
 | |
| 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 | |
| 		/*
 | |
| 		 * Find the agi for this ag.
 | |
| 		 */
 | |
| 		error = xfs_read_agi(mp, NULL, agno, &agibp);
 | |
| 		if (error) {
 | |
| 			/*
 | |
| 			 * AGI is b0rked. Don't process it.
 | |
| 			 *
 | |
| 			 * We should probably mark the filesystem as corrupt
 | |
| 			 * after we've recovered all the ag's we can....
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 		agi = XFS_BUF_TO_AGI(agibp);
 | |
| 
 | |
| 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
 | |
| 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
 | |
| 			while (agino != NULLAGINO) {
 | |
| 				/*
 | |
| 				 * Release the agi buffer so that it can
 | |
| 				 * be acquired in the normal course of the
 | |
| 				 * transaction to truncate and free the inode.
 | |
| 				 */
 | |
| 				xfs_buf_relse(agibp);
 | |
| 
 | |
| 				agino = xlog_recover_process_one_iunlink(mp,
 | |
| 							agno, agino, bucket);
 | |
| 
 | |
| 				/*
 | |
| 				 * Reacquire the agibuffer and continue around
 | |
| 				 * the loop. This should never fail as we know
 | |
| 				 * the buffer was good earlier on.
 | |
| 				 */
 | |
| 				error = xfs_read_agi(mp, NULL, agno, &agibp);
 | |
| 				ASSERT(error == 0);
 | |
| 				agi = XFS_BUF_TO_AGI(agibp);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Release the buffer for the current agi so we can
 | |
| 		 * go on to the next one.
 | |
| 		 */
 | |
| 		xfs_buf_relse(agibp);
 | |
| 	}
 | |
| 
 | |
| 	mp->m_dmevmask = mp_dmevmask;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef DEBUG
 | |
| STATIC void
 | |
| xlog_pack_data_checksum(
 | |
| 	xlog_t		*log,
 | |
| 	xlog_in_core_t	*iclog,
 | |
| 	int		size)
 | |
| {
 | |
| 	int		i;
 | |
| 	__be32		*up;
 | |
| 	uint		chksum = 0;
 | |
| 
 | |
| 	up = (__be32 *)iclog->ic_datap;
 | |
| 	/* divide length by 4 to get # words */
 | |
| 	for (i = 0; i < (size >> 2); i++) {
 | |
| 		chksum ^= be32_to_cpu(*up);
 | |
| 		up++;
 | |
| 	}
 | |
| 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
 | |
| }
 | |
| #else
 | |
| #define xlog_pack_data_checksum(log, iclog, size)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Stamp cycle number in every block
 | |
|  */
 | |
| void
 | |
| xlog_pack_data(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_in_core_t		*iclog,
 | |
| 	int			roundoff)
 | |
| {
 | |
| 	int			i, j, k;
 | |
| 	int			size = iclog->ic_offset + roundoff;
 | |
| 	__be32			cycle_lsn;
 | |
| 	xfs_caddr_t		dp;
 | |
| 
 | |
| 	xlog_pack_data_checksum(log, iclog, size);
 | |
| 
 | |
| 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
 | |
| 
 | |
| 	dp = iclog->ic_datap;
 | |
| 	for (i = 0; i < BTOBB(size) &&
 | |
| 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
 | |
| 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
 | |
| 		*(__be32 *)dp = cycle_lsn;
 | |
| 		dp += BBSIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | |
| 		xlog_in_core_2_t *xhdr = iclog->ic_data;
 | |
| 
 | |
| 		for ( ; i < BTOBB(size); i++) {
 | |
| 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
 | |
| 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
 | |
| 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
 | |
| 			*(__be32 *)dp = cycle_lsn;
 | |
| 			dp += BBSIZE;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 1; i < log->l_iclog_heads; i++) {
 | |
| 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
 | |
| STATIC void
 | |
| xlog_unpack_data_checksum(
 | |
| 	xlog_rec_header_t	*rhead,
 | |
| 	xfs_caddr_t		dp,
 | |
| 	xlog_t			*log)
 | |
| {
 | |
| 	__be32			*up = (__be32 *)dp;
 | |
| 	uint			chksum = 0;
 | |
| 	int			i;
 | |
| 
 | |
| 	/* divide length by 4 to get # words */
 | |
| 	for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
 | |
| 		chksum ^= be32_to_cpu(*up);
 | |
| 		up++;
 | |
| 	}
 | |
| 	if (chksum != be32_to_cpu(rhead->h_chksum)) {
 | |
| 	    if (rhead->h_chksum ||
 | |
| 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
 | |
| 		    cmn_err(CE_DEBUG,
 | |
| 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
 | |
| 			    be32_to_cpu(rhead->h_chksum), chksum);
 | |
| 		    cmn_err(CE_DEBUG,
 | |
| "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
 | |
| 		    if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | |
| 			    cmn_err(CE_DEBUG,
 | |
| 				"XFS: LogR this is a LogV2 filesystem\n");
 | |
| 		    }
 | |
| 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
 | |
| 	    }
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define xlog_unpack_data_checksum(rhead, dp, log)
 | |
| #endif
 | |
| 
 | |
| STATIC void
 | |
| xlog_unpack_data(
 | |
| 	xlog_rec_header_t	*rhead,
 | |
| 	xfs_caddr_t		dp,
 | |
| 	xlog_t			*log)
 | |
| {
 | |
| 	int			i, j, k;
 | |
| 
 | |
| 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
 | |
| 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
 | |
| 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
 | |
| 		dp += BBSIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | |
| 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
 | |
| 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
 | |
| 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
 | |
| 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
 | |
| 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
 | |
| 			dp += BBSIZE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	xlog_unpack_data_checksum(rhead, dp, log);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xlog_valid_rec_header(
 | |
| 	xlog_t			*log,
 | |
| 	xlog_rec_header_t	*rhead,
 | |
| 	xfs_daddr_t		blkno)
 | |
| {
 | |
| 	int			hlen;
 | |
| 
 | |
| 	if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
 | |
| 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
 | |
| 				XFS_ERRLEVEL_LOW, log->l_mp);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 	if (unlikely(
 | |
| 	    (!rhead->h_version ||
 | |
| 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
 | |
| 		xlog_warn("XFS: %s: unrecognised log version (%d).",
 | |
| 			__func__, be32_to_cpu(rhead->h_version));
 | |
| 		return XFS_ERROR(EIO);
 | |
| 	}
 | |
| 
 | |
| 	/* LR body must have data or it wouldn't have been written */
 | |
| 	hlen = be32_to_cpu(rhead->h_len);
 | |
| 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
 | |
| 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
 | |
| 				XFS_ERRLEVEL_LOW, log->l_mp);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
 | |
| 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
 | |
| 				XFS_ERRLEVEL_LOW, log->l_mp);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the log from tail to head and process the log records found.
 | |
|  * Handle the two cases where the tail and head are in the same cycle
 | |
|  * and where the active portion of the log wraps around the end of
 | |
|  * the physical log separately.  The pass parameter is passed through
 | |
|  * to the routines called to process the data and is not looked at
 | |
|  * here.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_do_recovery_pass(
 | |
| 	xlog_t			*log,
 | |
| 	xfs_daddr_t		head_blk,
 | |
| 	xfs_daddr_t		tail_blk,
 | |
| 	int			pass)
 | |
| {
 | |
| 	xlog_rec_header_t	*rhead;
 | |
| 	xfs_daddr_t		blk_no;
 | |
| 	xfs_caddr_t		offset;
 | |
| 	xfs_buf_t		*hbp, *dbp;
 | |
| 	int			error = 0, h_size;
 | |
| 	int			bblks, split_bblks;
 | |
| 	int			hblks, split_hblks, wrapped_hblks;
 | |
| 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
 | |
| 
 | |
| 	ASSERT(head_blk != tail_blk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the header of the tail block and get the iclog buffer size from
 | |
| 	 * h_size.  Use this to tell how many sectors make up the log header.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 | |
| 		/*
 | |
| 		 * When using variable length iclogs, read first sector of
 | |
| 		 * iclog header and extract the header size from it.  Get a
 | |
| 		 * new hbp that is the correct size.
 | |
| 		 */
 | |
| 		hbp = xlog_get_bp(log, 1);
 | |
| 		if (!hbp)
 | |
| 			return ENOMEM;
 | |
| 
 | |
| 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
 | |
| 		if (error)
 | |
| 			goto bread_err1;
 | |
| 
 | |
| 		rhead = (xlog_rec_header_t *)offset;
 | |
| 		error = xlog_valid_rec_header(log, rhead, tail_blk);
 | |
| 		if (error)
 | |
| 			goto bread_err1;
 | |
| 		h_size = be32_to_cpu(rhead->h_size);
 | |
| 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
 | |
| 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 | |
| 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 | |
| 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
 | |
| 				hblks++;
 | |
| 			xlog_put_bp(hbp);
 | |
| 			hbp = xlog_get_bp(log, hblks);
 | |
| 		} else {
 | |
| 			hblks = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		ASSERT(log->l_sectbb_log == 0);
 | |
| 		hblks = 1;
 | |
| 		hbp = xlog_get_bp(log, 1);
 | |
| 		h_size = XLOG_BIG_RECORD_BSIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (!hbp)
 | |
| 		return ENOMEM;
 | |
| 	dbp = xlog_get_bp(log, BTOBB(h_size));
 | |
| 	if (!dbp) {
 | |
| 		xlog_put_bp(hbp);
 | |
| 		return ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	memset(rhash, 0, sizeof(rhash));
 | |
| 	if (tail_blk <= head_blk) {
 | |
| 		for (blk_no = tail_blk; blk_no < head_blk; ) {
 | |
| 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
 | |
| 			if (error)
 | |
| 				goto bread_err2;
 | |
| 
 | |
| 			rhead = (xlog_rec_header_t *)offset;
 | |
| 			error = xlog_valid_rec_header(log, rhead, blk_no);
 | |
| 			if (error)
 | |
| 				goto bread_err2;
 | |
| 
 | |
| 			/* blocks in data section */
 | |
| 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
 | |
| 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
 | |
| 					   &offset);
 | |
| 			if (error)
 | |
| 				goto bread_err2;
 | |
| 
 | |
| 			xlog_unpack_data(rhead, offset, log);
 | |
| 			if ((error = xlog_recover_process_data(log,
 | |
| 						rhash, rhead, offset, pass)))
 | |
| 				goto bread_err2;
 | |
| 			blk_no += bblks + hblks;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Perform recovery around the end of the physical log.
 | |
| 		 * When the head is not on the same cycle number as the tail,
 | |
| 		 * we can't do a sequential recovery as above.
 | |
| 		 */
 | |
| 		blk_no = tail_blk;
 | |
| 		while (blk_no < log->l_logBBsize) {
 | |
| 			/*
 | |
| 			 * Check for header wrapping around physical end-of-log
 | |
| 			 */
 | |
| 			offset = XFS_BUF_PTR(hbp);
 | |
| 			split_hblks = 0;
 | |
| 			wrapped_hblks = 0;
 | |
| 			if (blk_no + hblks <= log->l_logBBsize) {
 | |
| 				/* Read header in one read */
 | |
| 				error = xlog_bread(log, blk_no, hblks, hbp,
 | |
| 						   &offset);
 | |
| 				if (error)
 | |
| 					goto bread_err2;
 | |
| 			} else {
 | |
| 				/* This LR is split across physical log end */
 | |
| 				if (blk_no != log->l_logBBsize) {
 | |
| 					/* some data before physical log end */
 | |
| 					ASSERT(blk_no <= INT_MAX);
 | |
| 					split_hblks = log->l_logBBsize - (int)blk_no;
 | |
| 					ASSERT(split_hblks > 0);
 | |
| 					error = xlog_bread(log, blk_no,
 | |
| 							   split_hblks, hbp,
 | |
| 							   &offset);
 | |
| 					if (error)
 | |
| 						goto bread_err2;
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Note: this black magic still works with
 | |
| 				 * large sector sizes (non-512) only because:
 | |
| 				 * - we increased the buffer size originally
 | |
| 				 *   by 1 sector giving us enough extra space
 | |
| 				 *   for the second read;
 | |
| 				 * - the log start is guaranteed to be sector
 | |
| 				 *   aligned;
 | |
| 				 * - we read the log end (LR header start)
 | |
| 				 *   _first_, then the log start (LR header end)
 | |
| 				 *   - order is important.
 | |
| 				 */
 | |
| 				wrapped_hblks = hblks - split_hblks;
 | |
| 				error = XFS_BUF_SET_PTR(hbp,
 | |
| 						offset + BBTOB(split_hblks),
 | |
| 						BBTOB(hblks - split_hblks));
 | |
| 				if (error)
 | |
| 					goto bread_err2;
 | |
| 
 | |
| 				error = xlog_bread_noalign(log, 0,
 | |
| 							   wrapped_hblks, hbp);
 | |
| 				if (error)
 | |
| 					goto bread_err2;
 | |
| 
 | |
| 				error = XFS_BUF_SET_PTR(hbp, offset,
 | |
| 							BBTOB(hblks));
 | |
| 				if (error)
 | |
| 					goto bread_err2;
 | |
| 			}
 | |
| 			rhead = (xlog_rec_header_t *)offset;
 | |
| 			error = xlog_valid_rec_header(log, rhead,
 | |
| 						split_hblks ? blk_no : 0);
 | |
| 			if (error)
 | |
| 				goto bread_err2;
 | |
| 
 | |
| 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
 | |
| 			blk_no += hblks;
 | |
| 
 | |
| 			/* Read in data for log record */
 | |
| 			if (blk_no + bblks <= log->l_logBBsize) {
 | |
| 				error = xlog_bread(log, blk_no, bblks, dbp,
 | |
| 						   &offset);
 | |
| 				if (error)
 | |
| 					goto bread_err2;
 | |
| 			} else {
 | |
| 				/* This log record is split across the
 | |
| 				 * physical end of log */
 | |
| 				offset = XFS_BUF_PTR(dbp);
 | |
| 				split_bblks = 0;
 | |
| 				if (blk_no != log->l_logBBsize) {
 | |
| 					/* some data is before the physical
 | |
| 					 * end of log */
 | |
| 					ASSERT(!wrapped_hblks);
 | |
| 					ASSERT(blk_no <= INT_MAX);
 | |
| 					split_bblks =
 | |
| 						log->l_logBBsize - (int)blk_no;
 | |
| 					ASSERT(split_bblks > 0);
 | |
| 					error = xlog_bread(log, blk_no,
 | |
| 							split_bblks, dbp,
 | |
| 							&offset);
 | |
| 					if (error)
 | |
| 						goto bread_err2;
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * Note: this black magic still works with
 | |
| 				 * large sector sizes (non-512) only because:
 | |
| 				 * - we increased the buffer size originally
 | |
| 				 *   by 1 sector giving us enough extra space
 | |
| 				 *   for the second read;
 | |
| 				 * - the log start is guaranteed to be sector
 | |
| 				 *   aligned;
 | |
| 				 * - we read the log end (LR header start)
 | |
| 				 *   _first_, then the log start (LR header end)
 | |
| 				 *   - order is important.
 | |
| 				 */
 | |
| 				error = XFS_BUF_SET_PTR(dbp,
 | |
| 						offset + BBTOB(split_bblks),
 | |
| 						BBTOB(bblks - split_bblks));
 | |
| 				if (error)
 | |
| 					goto bread_err2;
 | |
| 
 | |
| 				error = xlog_bread_noalign(log, wrapped_hblks,
 | |
| 						bblks - split_bblks,
 | |
| 						dbp);
 | |
| 				if (error)
 | |
| 					goto bread_err2;
 | |
| 
 | |
| 				error = XFS_BUF_SET_PTR(dbp, offset, h_size);
 | |
| 				if (error)
 | |
| 					goto bread_err2;
 | |
| 			}
 | |
| 			xlog_unpack_data(rhead, offset, log);
 | |
| 			if ((error = xlog_recover_process_data(log, rhash,
 | |
| 							rhead, offset, pass)))
 | |
| 				goto bread_err2;
 | |
| 			blk_no += bblks;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(blk_no >= log->l_logBBsize);
 | |
| 		blk_no -= log->l_logBBsize;
 | |
| 
 | |
| 		/* read first part of physical log */
 | |
| 		while (blk_no < head_blk) {
 | |
| 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
 | |
| 			if (error)
 | |
| 				goto bread_err2;
 | |
| 
 | |
| 			rhead = (xlog_rec_header_t *)offset;
 | |
| 			error = xlog_valid_rec_header(log, rhead, blk_no);
 | |
| 			if (error)
 | |
| 				goto bread_err2;
 | |
| 
 | |
| 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
 | |
| 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
 | |
| 					   &offset);
 | |
| 			if (error)
 | |
| 				goto bread_err2;
 | |
| 
 | |
| 			xlog_unpack_data(rhead, offset, log);
 | |
| 			if ((error = xlog_recover_process_data(log, rhash,
 | |
| 							rhead, offset, pass)))
 | |
| 				goto bread_err2;
 | |
| 			blk_no += bblks + hblks;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|  bread_err2:
 | |
| 	xlog_put_bp(dbp);
 | |
|  bread_err1:
 | |
| 	xlog_put_bp(hbp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the recovery of the log.  We actually do this in two phases.
 | |
|  * The two passes are necessary in order to implement the function
 | |
|  * of cancelling a record written into the log.  The first pass
 | |
|  * determines those things which have been cancelled, and the
 | |
|  * second pass replays log items normally except for those which
 | |
|  * have been cancelled.  The handling of the replay and cancellations
 | |
|  * takes place in the log item type specific routines.
 | |
|  *
 | |
|  * The table of items which have cancel records in the log is allocated
 | |
|  * and freed at this level, since only here do we know when all of
 | |
|  * the log recovery has been completed.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_do_log_recovery(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_daddr_t	head_blk,
 | |
| 	xfs_daddr_t	tail_blk)
 | |
| {
 | |
| 	int		error;
 | |
| 
 | |
| 	ASSERT(head_blk != tail_blk);
 | |
| 
 | |
| 	/*
 | |
| 	 * First do a pass to find all of the cancelled buf log items.
 | |
| 	 * Store them in the buf_cancel_table for use in the second pass.
 | |
| 	 */
 | |
| 	log->l_buf_cancel_table =
 | |
| 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
 | |
| 						 sizeof(xfs_buf_cancel_t*),
 | |
| 						 KM_SLEEP);
 | |
| 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
 | |
| 				      XLOG_RECOVER_PASS1);
 | |
| 	if (error != 0) {
 | |
| 		kmem_free(log->l_buf_cancel_table);
 | |
| 		log->l_buf_cancel_table = NULL;
 | |
| 		return error;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Then do a second pass to actually recover the items in the log.
 | |
| 	 * When it is complete free the table of buf cancel items.
 | |
| 	 */
 | |
| 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
 | |
| 				      XLOG_RECOVER_PASS2);
 | |
| #ifdef DEBUG
 | |
| 	if (!error) {
 | |
| 		int	i;
 | |
| 
 | |
| 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
 | |
| 			ASSERT(log->l_buf_cancel_table[i] == NULL);
 | |
| 	}
 | |
| #endif	/* DEBUG */
 | |
| 
 | |
| 	kmem_free(log->l_buf_cancel_table);
 | |
| 	log->l_buf_cancel_table = NULL;
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the actual recovery
 | |
|  */
 | |
| STATIC int
 | |
| xlog_do_recover(
 | |
| 	xlog_t		*log,
 | |
| 	xfs_daddr_t	head_blk,
 | |
| 	xfs_daddr_t	tail_blk)
 | |
| {
 | |
| 	int		error;
 | |
| 	xfs_buf_t	*bp;
 | |
| 	xfs_sb_t	*sbp;
 | |
| 
 | |
| 	/*
 | |
| 	 * First replay the images in the log.
 | |
| 	 */
 | |
| 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
 | |
| 	if (error) {
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	XFS_bflush(log->l_mp->m_ddev_targp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If IO errors happened during recovery, bail out.
 | |
| 	 */
 | |
| 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
 | |
| 		return (EIO);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We now update the tail_lsn since much of the recovery has completed
 | |
| 	 * and there may be space available to use.  If there were no extent
 | |
| 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
 | |
| 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
 | |
| 	 * lsn of the last known good LR on disk.  If there are extent frees
 | |
| 	 * or iunlinks they will have some entries in the AIL; so we look at
 | |
| 	 * the AIL to determine how to set the tail_lsn.
 | |
| 	 */
 | |
| 	xlog_assign_tail_lsn(log->l_mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we've finished replaying all buffer and inode
 | |
| 	 * updates, re-read in the superblock.
 | |
| 	 */
 | |
| 	bp = xfs_getsb(log->l_mp, 0);
 | |
| 	XFS_BUF_UNDONE(bp);
 | |
| 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
 | |
| 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
 | |
| 	XFS_BUF_READ(bp);
 | |
| 	XFS_BUF_UNASYNC(bp);
 | |
| 	xfsbdstrat(log->l_mp, bp);
 | |
| 	error = xfs_iowait(bp);
 | |
| 	if (error) {
 | |
| 		xfs_ioerror_alert("xlog_do_recover",
 | |
| 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
 | |
| 		ASSERT(0);
 | |
| 		xfs_buf_relse(bp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/* Convert superblock from on-disk format */
 | |
| 	sbp = &log->l_mp->m_sb;
 | |
| 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 | |
| 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
 | |
| 	ASSERT(xfs_sb_good_version(sbp));
 | |
| 	xfs_buf_relse(bp);
 | |
| 
 | |
| 	/* We've re-read the superblock so re-initialize per-cpu counters */
 | |
| 	xfs_icsb_reinit_counters(log->l_mp);
 | |
| 
 | |
| 	xlog_recover_check_summary(log);
 | |
| 
 | |
| 	/* Normal transactions can now occur */
 | |
| 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform recovery and re-initialize some log variables in xlog_find_tail.
 | |
|  *
 | |
|  * Return error or zero.
 | |
|  */
 | |
| int
 | |
| xlog_recover(
 | |
| 	xlog_t		*log)
 | |
| {
 | |
| 	xfs_daddr_t	head_blk, tail_blk;
 | |
| 	int		error;
 | |
| 
 | |
| 	/* find the tail of the log */
 | |
| 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
 | |
| 		return error;
 | |
| 
 | |
| 	if (tail_blk != head_blk) {
 | |
| 		/* There used to be a comment here:
 | |
| 		 *
 | |
| 		 * disallow recovery on read-only mounts.  note -- mount
 | |
| 		 * checks for ENOSPC and turns it into an intelligent
 | |
| 		 * error message.
 | |
| 		 * ...but this is no longer true.  Now, unless you specify
 | |
| 		 * NORECOVERY (in which case this function would never be
 | |
| 		 * called), we just go ahead and recover.  We do this all
 | |
| 		 * under the vfs layer, so we can get away with it unless
 | |
| 		 * the device itself is read-only, in which case we fail.
 | |
| 		 */
 | |
| 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		cmn_err(CE_NOTE,
 | |
| 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
 | |
| 			log->l_mp->m_fsname, log->l_mp->m_logname ?
 | |
| 			log->l_mp->m_logname : "internal");
 | |
| 
 | |
| 		error = xlog_do_recover(log, head_blk, tail_blk);
 | |
| 		log->l_flags |= XLOG_RECOVERY_NEEDED;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In the first part of recovery we replay inodes and buffers and build
 | |
|  * up the list of extent free items which need to be processed.  Here
 | |
|  * we process the extent free items and clean up the on disk unlinked
 | |
|  * inode lists.  This is separated from the first part of recovery so
 | |
|  * that the root and real-time bitmap inodes can be read in from disk in
 | |
|  * between the two stages.  This is necessary so that we can free space
 | |
|  * in the real-time portion of the file system.
 | |
|  */
 | |
| int
 | |
| xlog_recover_finish(
 | |
| 	xlog_t		*log)
 | |
| {
 | |
| 	/*
 | |
| 	 * Now we're ready to do the transactions needed for the
 | |
| 	 * rest of recovery.  Start with completing all the extent
 | |
| 	 * free intent records and then process the unlinked inode
 | |
| 	 * lists.  At this point, we essentially run in normal mode
 | |
| 	 * except that we're still performing recovery actions
 | |
| 	 * rather than accepting new requests.
 | |
| 	 */
 | |
| 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
 | |
| 		int	error;
 | |
| 		error = xlog_recover_process_efis(log);
 | |
| 		if (error) {
 | |
| 			cmn_err(CE_ALERT,
 | |
| 				"Failed to recover EFIs on filesystem: %s",
 | |
| 				log->l_mp->m_fsname);
 | |
| 			return error;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Sync the log to get all the EFIs out of the AIL.
 | |
| 		 * This isn't absolutely necessary, but it helps in
 | |
| 		 * case the unlink transactions would have problems
 | |
| 		 * pushing the EFIs out of the way.
 | |
| 		 */
 | |
| 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
 | |
| 
 | |
| 		xlog_recover_process_iunlinks(log);
 | |
| 
 | |
| 		xlog_recover_check_summary(log);
 | |
| 
 | |
| 		cmn_err(CE_NOTE,
 | |
| 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
 | |
| 			log->l_mp->m_fsname, log->l_mp->m_logname ?
 | |
| 			log->l_mp->m_logname : "internal");
 | |
| 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
 | |
| 	} else {
 | |
| 		cmn_err(CE_DEBUG,
 | |
| 			"!Ending clean XFS mount for filesystem: %s\n",
 | |
| 			log->l_mp->m_fsname);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(DEBUG)
 | |
| /*
 | |
|  * Read all of the agf and agi counters and check that they
 | |
|  * are consistent with the superblock counters.
 | |
|  */
 | |
| void
 | |
| xlog_recover_check_summary(
 | |
| 	xlog_t		*log)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_agf_t	*agfp;
 | |
| 	xfs_buf_t	*agfbp;
 | |
| 	xfs_buf_t	*agibp;
 | |
| 	xfs_buf_t	*sbbp;
 | |
| #ifdef XFS_LOUD_RECOVERY
 | |
| 	xfs_sb_t	*sbp;
 | |
| #endif
 | |
| 	xfs_agnumber_t	agno;
 | |
| 	__uint64_t	freeblks;
 | |
| 	__uint64_t	itotal;
 | |
| 	__uint64_t	ifree;
 | |
| 	int		error;
 | |
| 
 | |
| 	mp = log->l_mp;
 | |
| 
 | |
| 	freeblks = 0LL;
 | |
| 	itotal = 0LL;
 | |
| 	ifree = 0LL;
 | |
| 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 | |
| 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
 | |
| 		if (error) {
 | |
| 			xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 					"xlog_recover_check_summary(agf)"
 | |
| 					"agf read failed agno %d error %d",
 | |
| 							agno, error);
 | |
| 		} else {
 | |
| 			agfp = XFS_BUF_TO_AGF(agfbp);
 | |
| 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
 | |
| 				    be32_to_cpu(agfp->agf_flcount);
 | |
| 			xfs_buf_relse(agfbp);
 | |
| 		}
 | |
| 
 | |
| 		error = xfs_read_agi(mp, NULL, agno, &agibp);
 | |
| 		if (!error) {
 | |
| 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
 | |
| 
 | |
| 			itotal += be32_to_cpu(agi->agi_count);
 | |
| 			ifree += be32_to_cpu(agi->agi_freecount);
 | |
| 			xfs_buf_relse(agibp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sbbp = xfs_getsb(mp, 0);
 | |
| #ifdef XFS_LOUD_RECOVERY
 | |
| 	sbp = &mp->m_sb;
 | |
| 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
 | |
| 	cmn_err(CE_NOTE,
 | |
| 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
 | |
| 		sbp->sb_icount, itotal);
 | |
| 	cmn_err(CE_NOTE,
 | |
| 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
 | |
| 		sbp->sb_ifree, ifree);
 | |
| 	cmn_err(CE_NOTE,
 | |
| 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
 | |
| 		sbp->sb_fdblocks, freeblks);
 | |
| #if 0
 | |
| 	/*
 | |
| 	 * This is turned off until I account for the allocation
 | |
| 	 * btree blocks which live in free space.
 | |
| 	 */
 | |
| 	ASSERT(sbp->sb_icount == itotal);
 | |
| 	ASSERT(sbp->sb_ifree == ifree);
 | |
| 	ASSERT(sbp->sb_fdblocks == freeblks);
 | |
| #endif
 | |
| #endif
 | |
| 	xfs_buf_relse(sbbp);
 | |
| }
 | |
| #endif /* DEBUG */
 |