 cfac4b47c6
			
		
	
	
	cfac4b47c6
	
	
	
		
			
			Removed vmtruncate Signed-off-by: Marco Stornelli <marco.stornelli@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
			
				
	
	
		
			2930 lines
		
	
	
	
		
			117 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2930 lines
		
	
	
	
		
			117 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
 | |
|  */
 | |
| 
 | |
| #include <linux/reiserfs_fs.h>
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/buffer_head.h>
 | |
| 
 | |
| /* the 32 bit compat definitions with int argument */
 | |
| #define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
 | |
| #define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
 | |
| #define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
 | |
| #define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
 | |
| #define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
 | |
| 
 | |
| struct reiserfs_journal_list;
 | |
| 
 | |
| /** bitmasks for i_flags field in reiserfs-specific part of inode */
 | |
| typedef enum {
 | |
|     /** this says what format of key do all items (but stat data) of
 | |
|       an object have.  If this is set, that format is 3.6 otherwise
 | |
|       - 3.5 */
 | |
| 	i_item_key_version_mask = 0x0001,
 | |
|     /** If this is unset, object has 3.5 stat data, otherwise, it has
 | |
|       3.6 stat data with 64bit size, 32bit nlink etc. */
 | |
| 	i_stat_data_version_mask = 0x0002,
 | |
|     /** file might need tail packing on close */
 | |
| 	i_pack_on_close_mask = 0x0004,
 | |
|     /** don't pack tail of file */
 | |
| 	i_nopack_mask = 0x0008,
 | |
|     /** If those is set, "safe link" was created for this file during
 | |
|       truncate or unlink. Safe link is used to avoid leakage of disk
 | |
|       space on crash with some files open, but unlinked. */
 | |
| 	i_link_saved_unlink_mask = 0x0010,
 | |
| 	i_link_saved_truncate_mask = 0x0020,
 | |
| 	i_has_xattr_dir = 0x0040,
 | |
| 	i_data_log = 0x0080,
 | |
| } reiserfs_inode_flags;
 | |
| 
 | |
| struct reiserfs_inode_info {
 | |
| 	__u32 i_key[4];		/* key is still 4 32 bit integers */
 | |
|     /** transient inode flags that are never stored on disk. Bitmasks
 | |
|       for this field are defined above. */
 | |
| 	__u32 i_flags;
 | |
| 
 | |
| 	__u32 i_first_direct_byte;	// offset of first byte stored in direct item.
 | |
| 
 | |
| 	/* copy of persistent inode flags read from sd_attrs. */
 | |
| 	__u32 i_attrs;
 | |
| 
 | |
| 	int i_prealloc_block;	/* first unused block of a sequence of unused blocks */
 | |
| 	int i_prealloc_count;	/* length of that sequence */
 | |
| 	struct list_head i_prealloc_list;	/* per-transaction list of inodes which
 | |
| 						 * have preallocated blocks */
 | |
| 
 | |
| 	unsigned new_packing_locality:1;	/* new_packig_locality is created; new blocks
 | |
| 						 * for the contents of this directory should be
 | |
| 						 * displaced */
 | |
| 
 | |
| 	/* we use these for fsync or O_SYNC to decide which transaction
 | |
| 	 ** needs to be committed in order for this inode to be properly
 | |
| 	 ** flushed */
 | |
| 	unsigned int i_trans_id;
 | |
| 	struct reiserfs_journal_list *i_jl;
 | |
| 	atomic_t openers;
 | |
| 	struct mutex tailpack;
 | |
| #ifdef CONFIG_REISERFS_FS_XATTR
 | |
| 	struct rw_semaphore i_xattr_sem;
 | |
| #endif
 | |
| 	struct inode vfs_inode;
 | |
| };
 | |
| 
 | |
| typedef enum {
 | |
| 	reiserfs_attrs_cleared = 0x00000001,
 | |
| } reiserfs_super_block_flags;
 | |
| 
 | |
| /* struct reiserfs_super_block accessors/mutators
 | |
|  * since this is a disk structure, it will always be in
 | |
|  * little endian format. */
 | |
| #define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
 | |
| #define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
 | |
| #define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
 | |
| #define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
 | |
| #define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
 | |
| #define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
 | |
| 
 | |
| #define sb_jp_journal_1st_block(sbp)  \
 | |
|               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
 | |
| #define set_sb_jp_journal_1st_block(sbp,v) \
 | |
|               ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
 | |
| #define sb_jp_journal_dev(sbp) \
 | |
|               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
 | |
| #define set_sb_jp_journal_dev(sbp,v) \
 | |
|               ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
 | |
| #define sb_jp_journal_size(sbp) \
 | |
|               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
 | |
| #define set_sb_jp_journal_size(sbp,v) \
 | |
|               ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
 | |
| #define sb_jp_journal_trans_max(sbp) \
 | |
|               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
 | |
| #define set_sb_jp_journal_trans_max(sbp,v) \
 | |
|               ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
 | |
| #define sb_jp_journal_magic(sbp) \
 | |
|               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
 | |
| #define set_sb_jp_journal_magic(sbp,v) \
 | |
|               ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
 | |
| #define sb_jp_journal_max_batch(sbp) \
 | |
|               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
 | |
| #define set_sb_jp_journal_max_batch(sbp,v) \
 | |
|               ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
 | |
| #define sb_jp_jourmal_max_commit_age(sbp) \
 | |
|               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
 | |
| #define set_sb_jp_journal_max_commit_age(sbp,v) \
 | |
|               ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
 | |
| 
 | |
| #define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
 | |
| #define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
 | |
| #define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
 | |
| #define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
 | |
| #define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
 | |
| #define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
 | |
| #define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
 | |
| #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
 | |
| #define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
 | |
| #define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
 | |
| #define sb_hash_function_code(sbp) \
 | |
|               (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
 | |
| #define set_sb_hash_function_code(sbp,v) \
 | |
|               ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
 | |
| #define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
 | |
| #define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
 | |
| #define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
 | |
| #define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
 | |
| #define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
 | |
| #define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
 | |
| 
 | |
| #define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count))
 | |
| #define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
 | |
| 
 | |
| #define sb_reserved_for_journal(sbp) \
 | |
|               (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
 | |
| #define set_sb_reserved_for_journal(sbp,v) \
 | |
|               ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
 | |
| 
 | |
| /* LOGGING -- */
 | |
| 
 | |
| /* These all interelate for performance.
 | |
| **
 | |
| ** If the journal block count is smaller than n transactions, you lose speed.
 | |
| ** I don't know what n is yet, I'm guessing 8-16.
 | |
| **
 | |
| ** typical transaction size depends on the application, how often fsync is
 | |
| ** called, and how many metadata blocks you dirty in a 30 second period.
 | |
| ** The more small files (<16k) you use, the larger your transactions will
 | |
| ** be.
 | |
| **
 | |
| ** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal
 | |
| ** to wrap, which slows things down.  If you need high speed meta data updates, the journal should be big enough
 | |
| ** to prevent wrapping before dirty meta blocks get to disk.
 | |
| **
 | |
| ** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal
 | |
| ** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping.
 | |
| **
 | |
| ** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash.
 | |
| **
 | |
| */
 | |
| 
 | |
| /* don't mess with these for a while */
 | |
| 				/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
 | |
| #define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */
 | |
| #define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */
 | |
| #define JOURNAL_HASH_SIZE 8192
 | |
| #define JOURNAL_NUM_BITMAPS 5	/* number of copies of the bitmaps to have floating.  Must be >= 2 */
 | |
| 
 | |
| /* One of these for every block in every transaction
 | |
| ** Each one is in two hash tables.  First, a hash of the current transaction, and after journal_end, a
 | |
| ** hash of all the in memory transactions.
 | |
| ** next and prev are used by the current transaction (journal_hash).
 | |
| ** hnext and hprev are used by journal_list_hash.  If a block is in more than one transaction, the journal_list_hash
 | |
| ** links it in multiple times.  This allows flush_journal_list to remove just the cnode belonging
 | |
| ** to a given transaction.
 | |
| */
 | |
| struct reiserfs_journal_cnode {
 | |
| 	struct buffer_head *bh;	/* real buffer head */
 | |
| 	struct super_block *sb;	/* dev of real buffer head */
 | |
| 	__u32 blocknr;		/* block number of real buffer head, == 0 when buffer on disk */
 | |
| 	unsigned long state;
 | |
| 	struct reiserfs_journal_list *jlist;	/* journal list this cnode lives in */
 | |
| 	struct reiserfs_journal_cnode *next;	/* next in transaction list */
 | |
| 	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */
 | |
| 	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */
 | |
| 	struct reiserfs_journal_cnode *hnext;	/* next in hash list */
 | |
| };
 | |
| 
 | |
| struct reiserfs_bitmap_node {
 | |
| 	int id;
 | |
| 	char *data;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| struct reiserfs_list_bitmap {
 | |
| 	struct reiserfs_journal_list *journal_list;
 | |
| 	struct reiserfs_bitmap_node **bitmaps;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** one of these for each transaction.  The most important part here is the j_realblock.
 | |
| ** this list of cnodes is used to hash all the blocks in all the commits, to mark all the
 | |
| ** real buffer heads dirty once all the commits hit the disk,
 | |
| ** and to make sure every real block in a transaction is on disk before allowing the log area
 | |
| ** to be overwritten */
 | |
| struct reiserfs_journal_list {
 | |
| 	unsigned long j_start;
 | |
| 	unsigned long j_state;
 | |
| 	unsigned long j_len;
 | |
| 	atomic_t j_nonzerolen;
 | |
| 	atomic_t j_commit_left;
 | |
| 	atomic_t j_older_commits_done;	/* all commits older than this on disk */
 | |
| 	struct mutex j_commit_mutex;
 | |
| 	unsigned int j_trans_id;
 | |
| 	time_t j_timestamp;
 | |
| 	struct reiserfs_list_bitmap *j_list_bitmap;
 | |
| 	struct buffer_head *j_commit_bh;	/* commit buffer head */
 | |
| 	struct reiserfs_journal_cnode *j_realblock;
 | |
| 	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */
 | |
| 	/* time ordered list of all active transactions */
 | |
| 	struct list_head j_list;
 | |
| 
 | |
| 	/* time ordered list of all transactions we haven't tried to flush yet */
 | |
| 	struct list_head j_working_list;
 | |
| 
 | |
| 	/* list of tail conversion targets in need of flush before commit */
 | |
| 	struct list_head j_tail_bh_list;
 | |
| 	/* list of data=ordered buffers in need of flush before commit */
 | |
| 	struct list_head j_bh_list;
 | |
| 	int j_refcount;
 | |
| };
 | |
| 
 | |
| struct reiserfs_journal {
 | |
| 	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */
 | |
| 	struct reiserfs_journal_cnode *j_last;	/* newest journal block */
 | |
| 	struct reiserfs_journal_cnode *j_first;	/*  oldest journal block.  start here for traverse */
 | |
| 
 | |
| 	struct block_device *j_dev_bd;
 | |
| 	fmode_t j_dev_mode;
 | |
| 	int j_1st_reserved_block;	/* first block on s_dev of reserved area journal */
 | |
| 
 | |
| 	unsigned long j_state;
 | |
| 	unsigned int j_trans_id;
 | |
| 	unsigned long j_mount_id;
 | |
| 	unsigned long j_start;	/* start of current waiting commit (index into j_ap_blocks) */
 | |
| 	unsigned long j_len;	/* length of current waiting commit */
 | |
| 	unsigned long j_len_alloc;	/* number of buffers requested by journal_begin() */
 | |
| 	atomic_t j_wcount;	/* count of writers for current commit */
 | |
| 	unsigned long j_bcount;	/* batch count. allows turning X transactions into 1 */
 | |
| 	unsigned long j_first_unflushed_offset;	/* first unflushed transactions offset */
 | |
| 	unsigned j_last_flush_trans_id;	/* last fully flushed journal timestamp */
 | |
| 	struct buffer_head *j_header_bh;
 | |
| 
 | |
| 	time_t j_trans_start_time;	/* time this transaction started */
 | |
| 	struct mutex j_mutex;
 | |
| 	struct mutex j_flush_mutex;
 | |
| 	wait_queue_head_t j_join_wait;	/* wait for current transaction to finish before starting new one */
 | |
| 	atomic_t j_jlock;	/* lock for j_join_wait */
 | |
| 	int j_list_bitmap_index;	/* number of next list bitmap to use */
 | |
| 	int j_must_wait;	/* no more journal begins allowed. MUST sleep on j_join_wait */
 | |
| 	int j_next_full_flush;	/* next journal_end will flush all journal list */
 | |
| 	int j_next_async_flush;	/* next journal_end will flush all async commits */
 | |
| 
 | |
| 	int j_cnode_used;	/* number of cnodes on the used list */
 | |
| 	int j_cnode_free;	/* number of cnodes on the free list */
 | |
| 
 | |
| 	unsigned int j_trans_max;	/* max number of blocks in a transaction.  */
 | |
| 	unsigned int j_max_batch;	/* max number of blocks to batch into a trans */
 | |
| 	unsigned int j_max_commit_age;	/* in seconds, how old can an async commit be */
 | |
| 	unsigned int j_max_trans_age;	/* in seconds, how old can a transaction be */
 | |
| 	unsigned int j_default_max_commit_age;	/* the default for the max commit age */
 | |
| 
 | |
| 	struct reiserfs_journal_cnode *j_cnode_free_list;
 | |
| 	struct reiserfs_journal_cnode *j_cnode_free_orig;	/* orig pointer returned from vmalloc */
 | |
| 
 | |
| 	struct reiserfs_journal_list *j_current_jl;
 | |
| 	int j_free_bitmap_nodes;
 | |
| 	int j_used_bitmap_nodes;
 | |
| 
 | |
| 	int j_num_lists;	/* total number of active transactions */
 | |
| 	int j_num_work_lists;	/* number that need attention from kreiserfsd */
 | |
| 
 | |
| 	/* debugging to make sure things are flushed in order */
 | |
| 	unsigned int j_last_flush_id;
 | |
| 
 | |
| 	/* debugging to make sure things are committed in order */
 | |
| 	unsigned int j_last_commit_id;
 | |
| 
 | |
| 	struct list_head j_bitmap_nodes;
 | |
| 	struct list_head j_dirty_buffers;
 | |
| 	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */
 | |
| 
 | |
| 	/* list of all active transactions */
 | |
| 	struct list_head j_journal_list;
 | |
| 	/* lists that haven't been touched by writeback attempts */
 | |
| 	struct list_head j_working_list;
 | |
| 
 | |
| 	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];	/* array of bitmaps to record the deleted blocks */
 | |
| 	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];	/* hash table for real buffer heads in current trans */
 | |
| 	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];	/* hash table for all the real buffer heads in all
 | |
| 										   the transactions */
 | |
| 	struct list_head j_prealloc_list;	/* list of inodes which have preallocated blocks */
 | |
| 	int j_persistent_trans;
 | |
| 	unsigned long j_max_trans_size;
 | |
| 	unsigned long j_max_batch_size;
 | |
| 
 | |
| 	int j_errno;
 | |
| 
 | |
| 	/* when flushing ordered buffers, throttle new ordered writers */
 | |
| 	struct delayed_work j_work;
 | |
| 	struct super_block *j_work_sb;
 | |
| 	atomic_t j_async_throttle;
 | |
| };
 | |
| 
 | |
| enum journal_state_bits {
 | |
| 	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */
 | |
| 	J_WRITERS_QUEUED,	/* set when log is full due to too many writers */
 | |
| 	J_ABORTED,		/* set when log is aborted */
 | |
| };
 | |
| 
 | |
| #define JOURNAL_DESC_MAGIC "ReIsErLB"	/* ick.  magic string to find desc blocks in the journal */
 | |
| 
 | |
| typedef __u32(*hashf_t) (const signed char *, int);
 | |
| 
 | |
| struct reiserfs_bitmap_info {
 | |
| 	__u32 free_count;
 | |
| };
 | |
| 
 | |
| struct proc_dir_entry;
 | |
| 
 | |
| #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
 | |
| typedef unsigned long int stat_cnt_t;
 | |
| typedef struct reiserfs_proc_info_data {
 | |
| 	spinlock_t lock;
 | |
| 	int exiting;
 | |
| 	int max_hash_collisions;
 | |
| 
 | |
| 	stat_cnt_t breads;
 | |
| 	stat_cnt_t bread_miss;
 | |
| 	stat_cnt_t search_by_key;
 | |
| 	stat_cnt_t search_by_key_fs_changed;
 | |
| 	stat_cnt_t search_by_key_restarted;
 | |
| 
 | |
| 	stat_cnt_t insert_item_restarted;
 | |
| 	stat_cnt_t paste_into_item_restarted;
 | |
| 	stat_cnt_t cut_from_item_restarted;
 | |
| 	stat_cnt_t delete_solid_item_restarted;
 | |
| 	stat_cnt_t delete_item_restarted;
 | |
| 
 | |
| 	stat_cnt_t leaked_oid;
 | |
| 	stat_cnt_t leaves_removable;
 | |
| 
 | |
| 	/* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */
 | |
| 	stat_cnt_t balance_at[5];	/* XXX */
 | |
| 	/* sbk == search_by_key */
 | |
| 	stat_cnt_t sbk_read_at[5];	/* XXX */
 | |
| 	stat_cnt_t sbk_fs_changed[5];
 | |
| 	stat_cnt_t sbk_restarted[5];
 | |
| 	stat_cnt_t items_at[5];	/* XXX */
 | |
| 	stat_cnt_t free_at[5];	/* XXX */
 | |
| 	stat_cnt_t can_node_be_removed[5];	/* XXX */
 | |
| 	long int lnum[5];	/* XXX */
 | |
| 	long int rnum[5];	/* XXX */
 | |
| 	long int lbytes[5];	/* XXX */
 | |
| 	long int rbytes[5];	/* XXX */
 | |
| 	stat_cnt_t get_neighbors[5];
 | |
| 	stat_cnt_t get_neighbors_restart[5];
 | |
| 	stat_cnt_t need_l_neighbor[5];
 | |
| 	stat_cnt_t need_r_neighbor[5];
 | |
| 
 | |
| 	stat_cnt_t free_block;
 | |
| 	struct __scan_bitmap_stats {
 | |
| 		stat_cnt_t call;
 | |
| 		stat_cnt_t wait;
 | |
| 		stat_cnt_t bmap;
 | |
| 		stat_cnt_t retry;
 | |
| 		stat_cnt_t in_journal_hint;
 | |
| 		stat_cnt_t in_journal_nohint;
 | |
| 		stat_cnt_t stolen;
 | |
| 	} scan_bitmap;
 | |
| 	struct __journal_stats {
 | |
| 		stat_cnt_t in_journal;
 | |
| 		stat_cnt_t in_journal_bitmap;
 | |
| 		stat_cnt_t in_journal_reusable;
 | |
| 		stat_cnt_t lock_journal;
 | |
| 		stat_cnt_t lock_journal_wait;
 | |
| 		stat_cnt_t journal_being;
 | |
| 		stat_cnt_t journal_relock_writers;
 | |
| 		stat_cnt_t journal_relock_wcount;
 | |
| 		stat_cnt_t mark_dirty;
 | |
| 		stat_cnt_t mark_dirty_already;
 | |
| 		stat_cnt_t mark_dirty_notjournal;
 | |
| 		stat_cnt_t restore_prepared;
 | |
| 		stat_cnt_t prepare;
 | |
| 		stat_cnt_t prepare_retry;
 | |
| 	} journal;
 | |
| } reiserfs_proc_info_data_t;
 | |
| #else
 | |
| typedef struct reiserfs_proc_info_data {
 | |
| } reiserfs_proc_info_data_t;
 | |
| #endif
 | |
| 
 | |
| /* reiserfs union of in-core super block data */
 | |
| struct reiserfs_sb_info {
 | |
| 	struct buffer_head *s_sbh;	/* Buffer containing the super block */
 | |
| 	/* both the comment and the choice of
 | |
| 	   name are unclear for s_rs -Hans */
 | |
| 	struct reiserfs_super_block *s_rs;	/* Pointer to the super block in the buffer */
 | |
| 	struct reiserfs_bitmap_info *s_ap_bitmap;
 | |
| 	struct reiserfs_journal *s_journal;	/* pointer to journal information */
 | |
| 	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */
 | |
| 
 | |
| 	/* Serialize writers access, replace the old bkl */
 | |
| 	struct mutex lock;
 | |
| 	/* Owner of the lock (can be recursive) */
 | |
| 	struct task_struct *lock_owner;
 | |
| 	/* Depth of the lock, start from -1 like the bkl */
 | |
| 	int lock_depth;
 | |
| 
 | |
| 	/* Comment? -Hans */
 | |
| 	void (*end_io_handler) (struct buffer_head *, int);
 | |
| 	hashf_t s_hash_function;	/* pointer to function which is used
 | |
| 					   to sort names in directory. Set on
 | |
| 					   mount */
 | |
| 	unsigned long s_mount_opt;	/* reiserfs's mount options are set
 | |
| 					   here (currently - NOTAIL, NOLOG,
 | |
| 					   REPLAYONLY) */
 | |
| 
 | |
| 	struct {		/* This is a structure that describes block allocator options */
 | |
| 		unsigned long bits;	/* Bitfield for enable/disable kind of options */
 | |
| 		unsigned long large_file_size;	/* size started from which we consider file to be a large one(in blocks) */
 | |
| 		int border;	/* percentage of disk, border takes */
 | |
| 		int preallocmin;	/* Minimal file size (in blocks) starting from which we do preallocations */
 | |
| 		int preallocsize;	/* Number of blocks we try to prealloc when file
 | |
| 					   reaches preallocmin size (in blocks) or
 | |
| 					   prealloc_list is empty. */
 | |
| 	} s_alloc_options;
 | |
| 
 | |
| 	/* Comment? -Hans */
 | |
| 	wait_queue_head_t s_wait;
 | |
| 	/* To be obsoleted soon by per buffer seals.. -Hans */
 | |
| 	atomic_t s_generation_counter;	// increased by one every time the
 | |
| 	// tree gets re-balanced
 | |
| 	unsigned long s_properties;	/* File system properties. Currently holds
 | |
| 					   on-disk FS format */
 | |
| 
 | |
| 	/* session statistics */
 | |
| 	int s_disk_reads;
 | |
| 	int s_disk_writes;
 | |
| 	int s_fix_nodes;
 | |
| 	int s_do_balance;
 | |
| 	int s_unneeded_left_neighbor;
 | |
| 	int s_good_search_by_key_reada;
 | |
| 	int s_bmaps;
 | |
| 	int s_bmaps_without_search;
 | |
| 	int s_direct2indirect;
 | |
| 	int s_indirect2direct;
 | |
| 	/* set up when it's ok for reiserfs_read_inode2() to read from
 | |
| 	   disk inode with nlink==0. Currently this is only used during
 | |
| 	   finish_unfinished() processing at mount time */
 | |
| 	int s_is_unlinked_ok;
 | |
| 	reiserfs_proc_info_data_t s_proc_info_data;
 | |
| 	struct proc_dir_entry *procdir;
 | |
| 	int reserved_blocks;	/* amount of blocks reserved for further allocations */
 | |
| 	spinlock_t bitmap_lock;	/* this lock on now only used to protect reserved_blocks variable */
 | |
| 	struct dentry *priv_root;	/* root of /.reiserfs_priv */
 | |
| 	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */
 | |
| 	int j_errno;
 | |
| 
 | |
| 	int work_queued;              /* non-zero delayed work is queued */
 | |
| 	struct delayed_work old_work; /* old transactions flush delayed work */
 | |
| 	spinlock_t old_work_lock;     /* protects old_work and work_queued */
 | |
| 
 | |
| #ifdef CONFIG_QUOTA
 | |
| 	char *s_qf_names[MAXQUOTAS];
 | |
| 	int s_jquota_fmt;
 | |
| #endif
 | |
| 	char *s_jdev;		/* Stored jdev for mount option showing */
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| 
 | |
| 	struct tree_balance *cur_tb;	/*
 | |
| 					 * Detects whether more than one
 | |
| 					 * copy of tb exists per superblock
 | |
| 					 * as a means of checking whether
 | |
| 					 * do_balance is executing concurrently
 | |
| 					 * against another tree reader/writer
 | |
| 					 * on a same mount point.
 | |
| 					 */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* Definitions of reiserfs on-disk properties: */
 | |
| #define REISERFS_3_5 0
 | |
| #define REISERFS_3_6 1
 | |
| #define REISERFS_OLD_FORMAT 2
 | |
| 
 | |
| enum reiserfs_mount_options {
 | |
| /* Mount options */
 | |
| 	REISERFS_LARGETAIL,	/* large tails will be created in a session */
 | |
| 	REISERFS_SMALLTAIL,	/* small (for files less than block size) tails will be created in a session */
 | |
| 	REPLAYONLY,		/* replay journal and return 0. Use by fsck */
 | |
| 	REISERFS_CONVERT,	/* -o conv: causes conversion of old
 | |
| 				   format super block to the new
 | |
| 				   format. If not specified - old
 | |
| 				   partition will be dealt with in a
 | |
| 				   manner of 3.5.x */
 | |
| 
 | |
| /* -o hash={tea, rupasov, r5, detect} is meant for properly mounting
 | |
| ** reiserfs disks from 3.5.19 or earlier.  99% of the time, this option
 | |
| ** is not required.  If the normal autodection code can't determine which
 | |
| ** hash to use (because both hashes had the same value for a file)
 | |
| ** use this option to force a specific hash.  It won't allow you to override
 | |
| ** the existing hash on the FS, so if you have a tea hash disk, and mount
 | |
| ** with -o hash=rupasov, the mount will fail.
 | |
| */
 | |
| 	FORCE_TEA_HASH,		/* try to force tea hash on mount */
 | |
| 	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */
 | |
| 	FORCE_R5_HASH,		/* try to force rupasov hash on mount */
 | |
| 	FORCE_HASH_DETECT,	/* try to detect hash function on mount */
 | |
| 
 | |
| 	REISERFS_DATA_LOG,
 | |
| 	REISERFS_DATA_ORDERED,
 | |
| 	REISERFS_DATA_WRITEBACK,
 | |
| 
 | |
| /* used for testing experimental features, makes benchmarking new
 | |
|    features with and without more convenient, should never be used by
 | |
|    users in any code shipped to users (ideally) */
 | |
| 
 | |
| 	REISERFS_NO_BORDER,
 | |
| 	REISERFS_NO_UNHASHED_RELOCATION,
 | |
| 	REISERFS_HASHED_RELOCATION,
 | |
| 	REISERFS_ATTRS,
 | |
| 	REISERFS_XATTRS_USER,
 | |
| 	REISERFS_POSIXACL,
 | |
| 	REISERFS_EXPOSE_PRIVROOT,
 | |
| 	REISERFS_BARRIER_NONE,
 | |
| 	REISERFS_BARRIER_FLUSH,
 | |
| 
 | |
| 	/* Actions on error */
 | |
| 	REISERFS_ERROR_PANIC,
 | |
| 	REISERFS_ERROR_RO,
 | |
| 	REISERFS_ERROR_CONTINUE,
 | |
| 
 | |
| 	REISERFS_USRQUOTA,	/* User quota option specified */
 | |
| 	REISERFS_GRPQUOTA,	/* Group quota option specified */
 | |
| 
 | |
| 	REISERFS_TEST1,
 | |
| 	REISERFS_TEST2,
 | |
| 	REISERFS_TEST3,
 | |
| 	REISERFS_TEST4,
 | |
| 	REISERFS_UNSUPPORTED_OPT,
 | |
| };
 | |
| 
 | |
| #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
 | |
| #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
 | |
| #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
 | |
| #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
 | |
| #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
 | |
| #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
 | |
| #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
 | |
| #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
 | |
| 
 | |
| #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
 | |
| #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
 | |
| #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
 | |
| #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
 | |
| #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
 | |
| #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
 | |
| #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
 | |
| #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
 | |
| #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
 | |
| #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
 | |
| #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
 | |
| #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
 | |
| #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
 | |
| #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
 | |
| #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
 | |
| 
 | |
| #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
 | |
| #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
 | |
| 
 | |
| void reiserfs_file_buffer(struct buffer_head *bh, int list);
 | |
| extern struct file_system_type reiserfs_fs_type;
 | |
| int reiserfs_resize(struct super_block *, unsigned long);
 | |
| 
 | |
| #define CARRY_ON                0
 | |
| #define SCHEDULE_OCCURRED       1
 | |
| 
 | |
| #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
 | |
| #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
 | |
| #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
 | |
| #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
 | |
| #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
 | |
| 
 | |
| #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
 | |
| 
 | |
| /* A safe version of the "bdevname", which returns the "s_id" field of
 | |
|  * a superblock or else "Null superblock" if the super block is NULL.
 | |
|  */
 | |
| static inline char *reiserfs_bdevname(struct super_block *s)
 | |
| {
 | |
| 	return (s == NULL) ? "Null superblock" : s->s_id;
 | |
| }
 | |
| 
 | |
| #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
 | |
| static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
 | |
| 						*journal)
 | |
| {
 | |
| 	return test_bit(J_ABORTED, &journal->j_state);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locking primitives. The write lock is a per superblock
 | |
|  * special mutex that has properties close to the Big Kernel Lock
 | |
|  * which was used in the previous locking scheme.
 | |
|  */
 | |
| void reiserfs_write_lock(struct super_block *s);
 | |
| void reiserfs_write_unlock(struct super_block *s);
 | |
| int reiserfs_write_lock_once(struct super_block *s);
 | |
| void reiserfs_write_unlock_once(struct super_block *s, int lock_depth);
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| void reiserfs_lock_check_recursive(struct super_block *s);
 | |
| #else
 | |
| static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Several mutexes depend on the write lock.
 | |
|  * However sometimes we want to relax the write lock while we hold
 | |
|  * these mutexes, according to the release/reacquire on schedule()
 | |
|  * properties of the Bkl that were used.
 | |
|  * Reiserfs performances and locking were based on this scheme.
 | |
|  * Now that the write lock is a mutex and not the bkl anymore, doing so
 | |
|  * may result in a deadlock:
 | |
|  *
 | |
|  * A acquire write_lock
 | |
|  * A acquire j_commit_mutex
 | |
|  * A release write_lock and wait for something
 | |
|  * B acquire write_lock
 | |
|  * B can't acquire j_commit_mutex and sleep
 | |
|  * A can't acquire write lock anymore
 | |
|  * deadlock
 | |
|  *
 | |
|  * What we do here is avoiding such deadlock by playing the same game
 | |
|  * than the Bkl: if we can't acquire a mutex that depends on the write lock,
 | |
|  * we release the write lock, wait a bit and then retry.
 | |
|  *
 | |
|  * The mutexes concerned by this hack are:
 | |
|  * - The commit mutex of a journal list
 | |
|  * - The flush mutex
 | |
|  * - The journal lock
 | |
|  * - The inode mutex
 | |
|  */
 | |
| static inline void reiserfs_mutex_lock_safe(struct mutex *m,
 | |
| 			       struct super_block *s)
 | |
| {
 | |
| 	reiserfs_lock_check_recursive(s);
 | |
| 	reiserfs_write_unlock(s);
 | |
| 	mutex_lock(m);
 | |
| 	reiserfs_write_lock(s);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
 | |
| 			       struct super_block *s)
 | |
| {
 | |
| 	reiserfs_lock_check_recursive(s);
 | |
| 	reiserfs_write_unlock(s);
 | |
| 	mutex_lock_nested(m, subclass);
 | |
| 	reiserfs_write_lock(s);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
 | |
| {
 | |
| 	reiserfs_lock_check_recursive(s);
 | |
| 	reiserfs_write_unlock(s);
 | |
| 	down_read(sem);
 | |
| 	reiserfs_write_lock(s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we schedule, we usually want to also release the write lock,
 | |
|  * according to the previous bkl based locking scheme of reiserfs.
 | |
|  */
 | |
| static inline void reiserfs_cond_resched(struct super_block *s)
 | |
| {
 | |
| 	if (need_resched()) {
 | |
| 		reiserfs_write_unlock(s);
 | |
| 		schedule();
 | |
| 		reiserfs_write_lock(s);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct fid;
 | |
| 
 | |
| /* in reading the #defines, it may help to understand that they employ
 | |
|    the following abbreviations:
 | |
| 
 | |
|    B = Buffer
 | |
|    I = Item header
 | |
|    H = Height within the tree (should be changed to LEV)
 | |
|    N = Number of the item in the node
 | |
|    STAT = stat data
 | |
|    DEH = Directory Entry Header
 | |
|    EC = Entry Count
 | |
|    E = Entry number
 | |
|    UL = Unsigned Long
 | |
|    BLKH = BLocK Header
 | |
|    UNFM = UNForMatted node
 | |
|    DC = Disk Child
 | |
|    P = Path
 | |
| 
 | |
|    These #defines are named by concatenating these abbreviations,
 | |
|    where first comes the arguments, and last comes the return value,
 | |
|    of the macro.
 | |
| 
 | |
| */
 | |
| 
 | |
| #define USE_INODE_GENERATION_COUNTER
 | |
| 
 | |
| #define REISERFS_PREALLOCATE
 | |
| #define DISPLACE_NEW_PACKING_LOCALITIES
 | |
| #define PREALLOCATION_SIZE 9
 | |
| 
 | |
| /* n must be power of 2 */
 | |
| #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
 | |
| 
 | |
| // to be ok for alpha and others we have to align structures to 8 byte
 | |
| // boundary.
 | |
| // FIXME: do not change 4 by anything else: there is code which relies on that
 | |
| #define ROUND_UP(x) _ROUND_UP(x,8LL)
 | |
| 
 | |
| /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
 | |
| ** messages.
 | |
| */
 | |
| #define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
 | |
| 
 | |
| void __reiserfs_warning(struct super_block *s, const char *id,
 | |
| 			 const char *func, const char *fmt, ...);
 | |
| #define reiserfs_warning(s, id, fmt, args...) \
 | |
| 	 __reiserfs_warning(s, id, __func__, fmt, ##args)
 | |
| /* assertions handling */
 | |
| 
 | |
| /** always check a condition and panic if it's false. */
 | |
| #define __RASSERT(cond, scond, format, args...)			\
 | |
| do {									\
 | |
| 	if (!(cond))							\
 | |
| 		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
 | |
| 			       __FILE__ ":%i:%s: " format "\n",		\
 | |
| 			       in_interrupt() ? -1 : task_pid_nr(current), \
 | |
| 			       __LINE__, __func__ , ##args);		\
 | |
| } while (0)
 | |
| 
 | |
| #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
 | |
| 
 | |
| #if defined( CONFIG_REISERFS_CHECK )
 | |
| #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
 | |
| #else
 | |
| #define RFALSE( cond, format, args... ) do {;} while( 0 )
 | |
| #endif
 | |
| 
 | |
| #define CONSTF __attribute_const__
 | |
| /*
 | |
|  * Disk Data Structures
 | |
|  */
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                             SUPER BLOCK                                 */
 | |
| /***************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
 | |
|  * the version in RAM is part of a larger structure containing fields never written to disk.
 | |
|  */
 | |
| #define UNSET_HASH 0		// read_super will guess about, what hash names
 | |
| 		     // in directories were sorted with
 | |
| #define TEA_HASH  1
 | |
| #define YURA_HASH 2
 | |
| #define R5_HASH   3
 | |
| #define DEFAULT_HASH R5_HASH
 | |
| 
 | |
| struct journal_params {
 | |
| 	__le32 jp_journal_1st_block;	/* where does journal start from on its
 | |
| 					 * device */
 | |
| 	__le32 jp_journal_dev;	/* journal device st_rdev */
 | |
| 	__le32 jp_journal_size;	/* size of the journal */
 | |
| 	__le32 jp_journal_trans_max;	/* max number of blocks in a transaction. */
 | |
| 	__le32 jp_journal_magic;	/* random value made on fs creation (this
 | |
| 					 * was sb_journal_block_count) */
 | |
| 	__le32 jp_journal_max_batch;	/* max number of blocks to batch into a
 | |
| 					 * trans */
 | |
| 	__le32 jp_journal_max_commit_age;	/* in seconds, how old can an async
 | |
| 						 * commit be */
 | |
| 	__le32 jp_journal_max_trans_age;	/* in seconds, how old can a transaction
 | |
| 						 * be */
 | |
| };
 | |
| 
 | |
| /* this is the super from 3.5.X, where X >= 10 */
 | |
| struct reiserfs_super_block_v1 {
 | |
| 	__le32 s_block_count;	/* blocks count         */
 | |
| 	__le32 s_free_blocks;	/* free blocks count    */
 | |
| 	__le32 s_root_block;	/* root block number    */
 | |
| 	struct journal_params s_journal;
 | |
| 	__le16 s_blocksize;	/* block size */
 | |
| 	__le16 s_oid_maxsize;	/* max size of object id array, see
 | |
| 				 * get_objectid() commentary  */
 | |
| 	__le16 s_oid_cursize;	/* current size of object id array */
 | |
| 	__le16 s_umount_state;	/* this is set to 1 when filesystem was
 | |
| 				 * umounted, to 2 - when not */
 | |
| 	char s_magic[10];	/* reiserfs magic string indicates that
 | |
| 				 * file system is reiserfs:
 | |
| 				 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
 | |
| 	__le16 s_fs_state;	/* it is set to used by fsck to mark which
 | |
| 				 * phase of rebuilding is done */
 | |
| 	__le32 s_hash_function_code;	/* indicate, what hash function is being use
 | |
| 					 * to sort names in a directory*/
 | |
| 	__le16 s_tree_height;	/* height of disk tree */
 | |
| 	__le16 s_bmap_nr;	/* amount of bitmap blocks needed to address
 | |
| 				 * each block of file system */
 | |
| 	__le16 s_version;	/* this field is only reliable on filesystem
 | |
| 				 * with non-standard journal */
 | |
| 	__le16 s_reserved_for_journal;	/* size in blocks of journal area on main
 | |
| 					 * device, we need to keep after
 | |
| 					 * making fs with non-standard journal */
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
 | |
| 
 | |
| /* this is the on disk super block */
 | |
| struct reiserfs_super_block {
 | |
| 	struct reiserfs_super_block_v1 s_v1;
 | |
| 	__le32 s_inode_generation;
 | |
| 	__le32 s_flags;		/* Right now used only by inode-attributes, if enabled */
 | |
| 	unsigned char s_uuid[16];	/* filesystem unique identifier */
 | |
| 	unsigned char s_label[16];	/* filesystem volume label */
 | |
| 	__le16 s_mnt_count;		/* Count of mounts since last fsck */
 | |
| 	__le16 s_max_mnt_count;		/* Maximum mounts before check */
 | |
| 	__le32 s_lastcheck;		/* Timestamp of last fsck */
 | |
| 	__le32 s_check_interval;	/* Interval between checks */
 | |
| 	char s_unused[76];	/* zero filled by mkreiserfs and
 | |
| 				 * reiserfs_convert_objectid_map_v1()
 | |
| 				 * so any additions must be updated
 | |
| 				 * there as well. */
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| #define SB_SIZE (sizeof(struct reiserfs_super_block))
 | |
| 
 | |
| #define REISERFS_VERSION_1 0
 | |
| #define REISERFS_VERSION_2 2
 | |
| 
 | |
| // on-disk super block fields converted to cpu form
 | |
| #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
 | |
| #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
 | |
| #define SB_BLOCKSIZE(s) \
 | |
|         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
 | |
| #define SB_BLOCK_COUNT(s) \
 | |
|         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
 | |
| #define SB_FREE_BLOCKS(s) \
 | |
|         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
 | |
| #define SB_REISERFS_MAGIC(s) \
 | |
|         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
 | |
| #define SB_ROOT_BLOCK(s) \
 | |
|         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
 | |
| #define SB_TREE_HEIGHT(s) \
 | |
|         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
 | |
| #define SB_REISERFS_STATE(s) \
 | |
|         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
 | |
| #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
 | |
| #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
 | |
| 
 | |
| #define PUT_SB_BLOCK_COUNT(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
 | |
| #define PUT_SB_FREE_BLOCKS(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
 | |
| #define PUT_SB_ROOT_BLOCK(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
 | |
| #define PUT_SB_TREE_HEIGHT(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
 | |
| #define PUT_SB_REISERFS_STATE(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
 | |
| #define PUT_SB_VERSION(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
 | |
| #define PUT_SB_BMAP_NR(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
 | |
| 
 | |
| #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
 | |
| #define SB_ONDISK_JOURNAL_SIZE(s) \
 | |
|          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
 | |
| #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
 | |
|          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
 | |
| #define SB_ONDISK_JOURNAL_DEVICE(s) \
 | |
|          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
 | |
| #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
 | |
|          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
 | |
| 
 | |
| #define is_block_in_log_or_reserved_area(s, block) \
 | |
|          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
 | |
|          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
 | |
|          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
 | |
|          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
 | |
| 
 | |
| int is_reiserfs_3_5(struct reiserfs_super_block *rs);
 | |
| int is_reiserfs_3_6(struct reiserfs_super_block *rs);
 | |
| int is_reiserfs_jr(struct reiserfs_super_block *rs);
 | |
| 
 | |
| /* ReiserFS leaves the first 64k unused, so that partition labels have
 | |
|    enough space.  If someone wants to write a fancy bootloader that
 | |
|    needs more than 64k, let us know, and this will be increased in size.
 | |
|    This number must be larger than than the largest block size on any
 | |
|    platform, or code will break.  -Hans */
 | |
| #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
 | |
| #define REISERFS_FIRST_BLOCK unused_define
 | |
| #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
 | |
| 
 | |
| /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
 | |
| #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
 | |
| 
 | |
| /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
 | |
| #define CARRY_ON      0
 | |
| #define REPEAT_SEARCH -1
 | |
| #define IO_ERROR      -2
 | |
| #define NO_DISK_SPACE -3
 | |
| #define NO_BALANCING_NEEDED  (-4)
 | |
| #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
 | |
| #define QUOTA_EXCEEDED -6
 | |
| 
 | |
| typedef __u32 b_blocknr_t;
 | |
| typedef __le32 unp_t;
 | |
| 
 | |
| struct unfm_nodeinfo {
 | |
| 	unp_t unfm_nodenum;
 | |
| 	unsigned short unfm_freespace;
 | |
| };
 | |
| 
 | |
| /* there are two formats of keys: 3.5 and 3.6
 | |
|  */
 | |
| #define KEY_FORMAT_3_5 0
 | |
| #define KEY_FORMAT_3_6 1
 | |
| 
 | |
| /* there are two stat datas */
 | |
| #define STAT_DATA_V1 0
 | |
| #define STAT_DATA_V2 1
 | |
| 
 | |
| static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
 | |
| {
 | |
| 	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
 | |
| }
 | |
| 
 | |
| static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
 | |
| {
 | |
| 	return sb->s_fs_info;
 | |
| }
 | |
| 
 | |
| /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
 | |
|  * which overflows on large file systems. */
 | |
| static inline __u32 reiserfs_bmap_count(struct super_block *sb)
 | |
| {
 | |
| 	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
 | |
| }
 | |
| 
 | |
| static inline int bmap_would_wrap(unsigned bmap_nr)
 | |
| {
 | |
| 	return bmap_nr > ((1LL << 16) - 1);
 | |
| }
 | |
| 
 | |
| /** this says about version of key of all items (but stat data) the
 | |
|     object consists of */
 | |
| #define get_inode_item_key_version( inode )                                    \
 | |
|     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
 | |
| 
 | |
| #define set_inode_item_key_version( inode, version )                           \
 | |
|          ({ if((version)==KEY_FORMAT_3_6)                                      \
 | |
|                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
 | |
|             else                                                               \
 | |
|                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
 | |
| 
 | |
| #define get_inode_sd_version(inode)                                            \
 | |
|     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
 | |
| 
 | |
| #define set_inode_sd_version(inode, version)                                   \
 | |
|          ({ if((version)==STAT_DATA_V2)                                        \
 | |
|                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
 | |
|             else                                                               \
 | |
|                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
 | |
| 
 | |
| /* This is an aggressive tail suppression policy, I am hoping it
 | |
|    improves our benchmarks. The principle behind it is that percentage
 | |
|    space saving is what matters, not absolute space saving.  This is
 | |
|    non-intuitive, but it helps to understand it if you consider that the
 | |
|    cost to access 4 blocks is not much more than the cost to access 1
 | |
|    block, if you have to do a seek and rotate.  A tail risks a
 | |
|    non-linear disk access that is significant as a percentage of total
 | |
|    time cost for a 4 block file and saves an amount of space that is
 | |
|    less significant as a percentage of space, or so goes the hypothesis.
 | |
|    -Hans */
 | |
| #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
 | |
| (\
 | |
|   (!(n_tail_size)) || \
 | |
|   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
 | |
|    ( (n_file_size) >= (n_block_size) * 4 ) || \
 | |
|    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
 | |
|      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
 | |
|    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
 | |
|      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
 | |
|    ( ( (n_file_size) >= (n_block_size) ) && \
 | |
|      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
 | |
| )
 | |
| 
 | |
| /* Another strategy for tails, this one means only create a tail if all the
 | |
|    file would fit into one DIRECT item.
 | |
|    Primary intention for this one is to increase performance by decreasing
 | |
|    seeking.
 | |
| */
 | |
| #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
 | |
| (\
 | |
|   (!(n_tail_size)) || \
 | |
|   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
 | |
| )
 | |
| 
 | |
| /*
 | |
|  * values for s_umount_state field
 | |
|  */
 | |
| #define REISERFS_VALID_FS    1
 | |
| #define REISERFS_ERROR_FS    2
 | |
| 
 | |
| //
 | |
| // there are 5 item types currently
 | |
| //
 | |
| #define TYPE_STAT_DATA 0
 | |
| #define TYPE_INDIRECT 1
 | |
| #define TYPE_DIRECT 2
 | |
| #define TYPE_DIRENTRY 3
 | |
| #define TYPE_MAXTYPE 3
 | |
| #define TYPE_ANY 15		// FIXME: comment is required
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                       KEY & ITEM HEAD                                   */
 | |
| /***************************************************************************/
 | |
| 
 | |
| //
 | |
| // directories use this key as well as old files
 | |
| //
 | |
| struct offset_v1 {
 | |
| 	__le32 k_offset;
 | |
| 	__le32 k_uniqueness;
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| struct offset_v2 {
 | |
| 	__le64 v;
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
 | |
| {
 | |
| 	__u8 type = le64_to_cpu(v2->v) >> 60;
 | |
| 	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
 | |
| }
 | |
| 
 | |
| static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
 | |
| {
 | |
| 	v2->v =
 | |
| 	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
 | |
| }
 | |
| 
 | |
| static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
 | |
| {
 | |
| 	return le64_to_cpu(v2->v) & (~0ULL >> 4);
 | |
| }
 | |
| 
 | |
| static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
 | |
| {
 | |
| 	offset &= (~0ULL >> 4);
 | |
| 	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
 | |
| }
 | |
| 
 | |
| /* Key of an item determines its location in the S+tree, and
 | |
|    is composed of 4 components */
 | |
| struct reiserfs_key {
 | |
| 	__le32 k_dir_id;	/* packing locality: by default parent
 | |
| 				   directory object id */
 | |
| 	__le32 k_objectid;	/* object identifier */
 | |
| 	union {
 | |
| 		struct offset_v1 k_offset_v1;
 | |
| 		struct offset_v2 k_offset_v2;
 | |
| 	} __attribute__ ((__packed__)) u;
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| struct in_core_key {
 | |
| 	__u32 k_dir_id;		/* packing locality: by default parent
 | |
| 				   directory object id */
 | |
| 	__u32 k_objectid;	/* object identifier */
 | |
| 	__u64 k_offset;
 | |
| 	__u8 k_type;
 | |
| };
 | |
| 
 | |
| struct cpu_key {
 | |
| 	struct in_core_key on_disk_key;
 | |
| 	int version;
 | |
| 	int key_length;		/* 3 in all cases but direct2indirect and
 | |
| 				   indirect2direct conversion */
 | |
| };
 | |
| 
 | |
| /* Our function for comparing keys can compare keys of different
 | |
|    lengths.  It takes as a parameter the length of the keys it is to
 | |
|    compare.  These defines are used in determining what is to be passed
 | |
|    to it as that parameter. */
 | |
| #define REISERFS_FULL_KEY_LEN     4
 | |
| #define REISERFS_SHORT_KEY_LEN    2
 | |
| 
 | |
| /* The result of the key compare */
 | |
| #define FIRST_GREATER 1
 | |
| #define SECOND_GREATER -1
 | |
| #define KEYS_IDENTICAL 0
 | |
| #define KEY_FOUND 1
 | |
| #define KEY_NOT_FOUND 0
 | |
| 
 | |
| #define KEY_SIZE (sizeof(struct reiserfs_key))
 | |
| #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
 | |
| 
 | |
| /* return values for search_by_key and clones */
 | |
| #define ITEM_FOUND 1
 | |
| #define ITEM_NOT_FOUND 0
 | |
| #define ENTRY_FOUND 1
 | |
| #define ENTRY_NOT_FOUND 0
 | |
| #define DIRECTORY_NOT_FOUND -1
 | |
| #define REGULAR_FILE_FOUND -2
 | |
| #define DIRECTORY_FOUND -3
 | |
| #define BYTE_FOUND 1
 | |
| #define BYTE_NOT_FOUND 0
 | |
| #define FILE_NOT_FOUND -1
 | |
| 
 | |
| #define POSITION_FOUND 1
 | |
| #define POSITION_NOT_FOUND 0
 | |
| 
 | |
| // return values for reiserfs_find_entry and search_by_entry_key
 | |
| #define NAME_FOUND 1
 | |
| #define NAME_NOT_FOUND 0
 | |
| #define GOTO_PREVIOUS_ITEM 2
 | |
| #define NAME_FOUND_INVISIBLE 3
 | |
| 
 | |
| /*  Everything in the filesystem is stored as a set of items.  The
 | |
|     item head contains the key of the item, its free space (for
 | |
|     indirect items) and specifies the location of the item itself
 | |
|     within the block.  */
 | |
| 
 | |
| struct item_head {
 | |
| 	/* Everything in the tree is found by searching for it based on
 | |
| 	 * its key.*/
 | |
| 	struct reiserfs_key ih_key;
 | |
| 	union {
 | |
| 		/* The free space in the last unformatted node of an
 | |
| 		   indirect item if this is an indirect item.  This
 | |
| 		   equals 0xFFFF iff this is a direct item or stat data
 | |
| 		   item. Note that the key, not this field, is used to
 | |
| 		   determine the item type, and thus which field this
 | |
| 		   union contains. */
 | |
| 		__le16 ih_free_space_reserved;
 | |
| 		/* Iff this is a directory item, this field equals the
 | |
| 		   number of directory entries in the directory item. */
 | |
| 		__le16 ih_entry_count;
 | |
| 	} __attribute__ ((__packed__)) u;
 | |
| 	__le16 ih_item_len;	/* total size of the item body */
 | |
| 	__le16 ih_item_location;	/* an offset to the item body
 | |
| 					 * within the block */
 | |
| 	__le16 ih_version;	/* 0 for all old items, 2 for new
 | |
| 				   ones. Highest bit is set by fsck
 | |
| 				   temporary, cleaned after all
 | |
| 				   done */
 | |
| } __attribute__ ((__packed__));
 | |
| /* size of item header     */
 | |
| #define IH_SIZE (sizeof(struct item_head))
 | |
| 
 | |
| #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
 | |
| #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
 | |
| #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
 | |
| #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
 | |
| #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
 | |
| 
 | |
| #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
 | |
| #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
 | |
| #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
 | |
| #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
 | |
| #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
 | |
| 
 | |
| #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
 | |
| 
 | |
| #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
 | |
| #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
 | |
| 
 | |
| /* these operate on indirect items, where you've got an array of ints
 | |
| ** at a possibly unaligned location.  These are a noop on ia32
 | |
| ** 
 | |
| ** p is the array of __u32, i is the index into the array, v is the value
 | |
| ** to store there.
 | |
| */
 | |
| #define get_block_num(p, i) get_unaligned_le32((p) + (i))
 | |
| #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
 | |
| 
 | |
| //
 | |
| // in old version uniqueness field shows key type
 | |
| //
 | |
| #define V1_SD_UNIQUENESS 0
 | |
| #define V1_INDIRECT_UNIQUENESS 0xfffffffe
 | |
| #define V1_DIRECT_UNIQUENESS 0xffffffff
 | |
| #define V1_DIRENTRY_UNIQUENESS 500
 | |
| #define V1_ANY_UNIQUENESS 555	// FIXME: comment is required
 | |
| 
 | |
| //
 | |
| // here are conversion routines
 | |
| //
 | |
| static inline int uniqueness2type(__u32 uniqueness) CONSTF;
 | |
| static inline int uniqueness2type(__u32 uniqueness)
 | |
| {
 | |
| 	switch ((int)uniqueness) {
 | |
| 	case V1_SD_UNIQUENESS:
 | |
| 		return TYPE_STAT_DATA;
 | |
| 	case V1_INDIRECT_UNIQUENESS:
 | |
| 		return TYPE_INDIRECT;
 | |
| 	case V1_DIRECT_UNIQUENESS:
 | |
| 		return TYPE_DIRECT;
 | |
| 	case V1_DIRENTRY_UNIQUENESS:
 | |
| 		return TYPE_DIRENTRY;
 | |
| 	case V1_ANY_UNIQUENESS:
 | |
| 	default:
 | |
| 		return TYPE_ANY;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline __u32 type2uniqueness(int type) CONSTF;
 | |
| static inline __u32 type2uniqueness(int type)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case TYPE_STAT_DATA:
 | |
| 		return V1_SD_UNIQUENESS;
 | |
| 	case TYPE_INDIRECT:
 | |
| 		return V1_INDIRECT_UNIQUENESS;
 | |
| 	case TYPE_DIRECT:
 | |
| 		return V1_DIRECT_UNIQUENESS;
 | |
| 	case TYPE_DIRENTRY:
 | |
| 		return V1_DIRENTRY_UNIQUENESS;
 | |
| 	case TYPE_ANY:
 | |
| 	default:
 | |
| 		return V1_ANY_UNIQUENESS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //
 | |
| // key is pointer to on disk key which is stored in le, result is cpu,
 | |
| // there is no way to get version of object from key, so, provide
 | |
| // version to these defines
 | |
| //
 | |
| static inline loff_t le_key_k_offset(int version,
 | |
| 				     const struct reiserfs_key *key)
 | |
| {
 | |
| 	return (version == KEY_FORMAT_3_5) ?
 | |
| 	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
 | |
| 	    offset_v2_k_offset(&(key->u.k_offset_v2));
 | |
| }
 | |
| 
 | |
| static inline loff_t le_ih_k_offset(const struct item_head *ih)
 | |
| {
 | |
| 	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
 | |
| }
 | |
| 
 | |
| static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
 | |
| {
 | |
| 	return (version == KEY_FORMAT_3_5) ?
 | |
| 	    uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
 | |
| 	    offset_v2_k_type(&(key->u.k_offset_v2));
 | |
| }
 | |
| 
 | |
| static inline loff_t le_ih_k_type(const struct item_head *ih)
 | |
| {
 | |
| 	return le_key_k_type(ih_version(ih), &(ih->ih_key));
 | |
| }
 | |
| 
 | |
| static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
 | |
| 				       loff_t offset)
 | |
| {
 | |
| 	(version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :	/* jdm check */
 | |
| 	    (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
 | |
| }
 | |
| 
 | |
| static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
 | |
| {
 | |
| 	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
 | |
| }
 | |
| 
 | |
| static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
 | |
| 				     int type)
 | |
| {
 | |
| 	(version == KEY_FORMAT_3_5) ?
 | |
| 	    (void)(key->u.k_offset_v1.k_uniqueness =
 | |
| 		   cpu_to_le32(type2uniqueness(type)))
 | |
| 	    : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
 | |
| }
 | |
| 
 | |
| static inline void set_le_ih_k_type(struct item_head *ih, int type)
 | |
| {
 | |
| 	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
 | |
| }
 | |
| 
 | |
| static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
 | |
| {
 | |
| 	return le_key_k_type(version, key) == TYPE_DIRENTRY;
 | |
| }
 | |
| 
 | |
| static inline int is_direct_le_key(int version, struct reiserfs_key *key)
 | |
| {
 | |
| 	return le_key_k_type(version, key) == TYPE_DIRECT;
 | |
| }
 | |
| 
 | |
| static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
 | |
| {
 | |
| 	return le_key_k_type(version, key) == TYPE_INDIRECT;
 | |
| }
 | |
| 
 | |
| static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
 | |
| {
 | |
| 	return le_key_k_type(version, key) == TYPE_STAT_DATA;
 | |
| }
 | |
| 
 | |
| //
 | |
| // item header has version.
 | |
| //
 | |
| static inline int is_direntry_le_ih(struct item_head *ih)
 | |
| {
 | |
| 	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
 | |
| }
 | |
| 
 | |
| static inline int is_direct_le_ih(struct item_head *ih)
 | |
| {
 | |
| 	return is_direct_le_key(ih_version(ih), &ih->ih_key);
 | |
| }
 | |
| 
 | |
| static inline int is_indirect_le_ih(struct item_head *ih)
 | |
| {
 | |
| 	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
 | |
| }
 | |
| 
 | |
| static inline int is_statdata_le_ih(struct item_head *ih)
 | |
| {
 | |
| 	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
 | |
| }
 | |
| 
 | |
| //
 | |
| // key is pointer to cpu key, result is cpu
 | |
| //
 | |
| static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
 | |
| {
 | |
| 	return key->on_disk_key.k_offset;
 | |
| }
 | |
| 
 | |
| static inline loff_t cpu_key_k_type(const struct cpu_key *key)
 | |
| {
 | |
| 	return key->on_disk_key.k_type;
 | |
| }
 | |
| 
 | |
| static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
 | |
| {
 | |
| 	key->on_disk_key.k_offset = offset;
 | |
| }
 | |
| 
 | |
| static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
 | |
| {
 | |
| 	key->on_disk_key.k_type = type;
 | |
| }
 | |
| 
 | |
| static inline void cpu_key_k_offset_dec(struct cpu_key *key)
 | |
| {
 | |
| 	key->on_disk_key.k_offset--;
 | |
| }
 | |
| 
 | |
| #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
 | |
| #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
 | |
| #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
 | |
| #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
 | |
| 
 | |
| /* are these used ? */
 | |
| #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
 | |
| #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
 | |
| #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
 | |
| #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
 | |
| 
 | |
| #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
 | |
|     (!COMP_SHORT_KEYS(ih, key) && \
 | |
| 	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
 | |
| 
 | |
| /* maximal length of item */
 | |
| #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
 | |
| #define MIN_ITEM_LEN 1
 | |
| 
 | |
| /* object identifier for root dir */
 | |
| #define REISERFS_ROOT_OBJECTID 2
 | |
| #define REISERFS_ROOT_PARENT_OBJECTID 1
 | |
| 
 | |
| extern struct reiserfs_key root_key;
 | |
| 
 | |
| /* 
 | |
|  * Picture represents a leaf of the S+tree
 | |
|  *  ______________________________________________________
 | |
|  * |      |  Array of     |                   |           |
 | |
|  * |Block |  Object-Item  |      F r e e      |  Objects- |
 | |
|  * | head |  Headers      |     S p a c e     |   Items   |
 | |
|  * |______|_______________|___________________|___________|
 | |
|  */
 | |
| 
 | |
| /* Header of a disk block.  More precisely, header of a formatted leaf
 | |
|    or internal node, and not the header of an unformatted node. */
 | |
| struct block_head {
 | |
| 	__le16 blk_level;	/* Level of a block in the tree. */
 | |
| 	__le16 blk_nr_item;	/* Number of keys/items in a block. */
 | |
| 	__le16 blk_free_space;	/* Block free space in bytes. */
 | |
| 	__le16 blk_reserved;
 | |
| 	/* dump this in v4/planA */
 | |
| 	struct reiserfs_key blk_right_delim_key;	/* kept only for compatibility */
 | |
| };
 | |
| 
 | |
| #define BLKH_SIZE                     (sizeof(struct block_head))
 | |
| #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
 | |
| #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
 | |
| #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
 | |
| #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
 | |
| #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
 | |
| #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
 | |
| #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
 | |
| #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
 | |
| #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
 | |
| #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
 | |
| 
 | |
| /*
 | |
|  * values for blk_level field of the struct block_head
 | |
|  */
 | |
| 
 | |
| #define FREE_LEVEL 0		/* when node gets removed from the tree its
 | |
| 				   blk_level is set to FREE_LEVEL. It is then
 | |
| 				   used to see whether the node is still in the
 | |
| 				   tree */
 | |
| 
 | |
| #define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
 | |
| 
 | |
| /* Given the buffer head of a formatted node, resolve to the block head of that node. */
 | |
| #define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
 | |
| /* Number of items that are in buffer. */
 | |
| #define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
 | |
| #define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
 | |
| #define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
 | |
| 
 | |
| #define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
 | |
| #define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
 | |
| #define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
 | |
| 
 | |
| /* Get right delimiting key. -- little endian */
 | |
| #define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
 | |
| 
 | |
| /* Does the buffer contain a disk leaf. */
 | |
| #define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
 | |
| 
 | |
| /* Does the buffer contain a disk internal node */
 | |
| #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
 | |
| 					    && B_LEVEL(bh) <= MAX_HEIGHT)
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                             STAT DATA                                   */
 | |
| /***************************************************************************/
 | |
| 
 | |
| //
 | |
| // old stat data is 32 bytes long. We are going to distinguish new one by
 | |
| // different size
 | |
| //
 | |
| struct stat_data_v1 {
 | |
| 	__le16 sd_mode;		/* file type, permissions */
 | |
| 	__le16 sd_nlink;	/* number of hard links */
 | |
| 	__le16 sd_uid;		/* owner */
 | |
| 	__le16 sd_gid;		/* group */
 | |
| 	__le32 sd_size;		/* file size */
 | |
| 	__le32 sd_atime;	/* time of last access */
 | |
| 	__le32 sd_mtime;	/* time file was last modified  */
 | |
| 	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
 | |
| 	union {
 | |
| 		__le32 sd_rdev;
 | |
| 		__le32 sd_blocks;	/* number of blocks file uses */
 | |
| 	} __attribute__ ((__packed__)) u;
 | |
| 	__le32 sd_first_direct_byte;	/* first byte of file which is stored
 | |
| 					   in a direct item: except that if it
 | |
| 					   equals 1 it is a symlink and if it
 | |
| 					   equals ~(__u32)0 there is no
 | |
| 					   direct item.  The existence of this
 | |
| 					   field really grates on me. Let's
 | |
| 					   replace it with a macro based on
 | |
| 					   sd_size and our tail suppression
 | |
| 					   policy.  Someday.  -Hans */
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
 | |
| #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
 | |
| #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
 | |
| #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
 | |
| #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
 | |
| #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
 | |
| #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
 | |
| #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
 | |
| #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
 | |
| #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
 | |
| #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
 | |
| #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
 | |
| #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
 | |
| #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
 | |
| #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
 | |
| #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
 | |
| #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
 | |
| #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
 | |
| #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
 | |
| #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
 | |
| #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
 | |
| #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
 | |
| #define sd_v1_first_direct_byte(sdp) \
 | |
|                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
 | |
| #define set_sd_v1_first_direct_byte(sdp,v) \
 | |
|                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
 | |
| 
 | |
| /* inode flags stored in sd_attrs (nee sd_reserved) */
 | |
| 
 | |
| /* we want common flags to have the same values as in ext2,
 | |
|    so chattr(1) will work without problems */
 | |
| #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
 | |
| #define REISERFS_APPEND_FL    FS_APPEND_FL
 | |
| #define REISERFS_SYNC_FL      FS_SYNC_FL
 | |
| #define REISERFS_NOATIME_FL   FS_NOATIME_FL
 | |
| #define REISERFS_NODUMP_FL    FS_NODUMP_FL
 | |
| #define REISERFS_SECRM_FL     FS_SECRM_FL
 | |
| #define REISERFS_UNRM_FL      FS_UNRM_FL
 | |
| #define REISERFS_COMPR_FL     FS_COMPR_FL
 | |
| #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
 | |
| 
 | |
| /* persistent flags that file inherits from the parent directory */
 | |
| #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
 | |
| 				REISERFS_SYNC_FL |	\
 | |
| 				REISERFS_NOATIME_FL |	\
 | |
| 				REISERFS_NODUMP_FL |	\
 | |
| 				REISERFS_SECRM_FL |	\
 | |
| 				REISERFS_COMPR_FL |	\
 | |
| 				REISERFS_NOTAIL_FL )
 | |
| 
 | |
| /* Stat Data on disk (reiserfs version of UFS disk inode minus the
 | |
|    address blocks) */
 | |
| struct stat_data {
 | |
| 	__le16 sd_mode;		/* file type, permissions */
 | |
| 	__le16 sd_attrs;	/* persistent inode flags */
 | |
| 	__le32 sd_nlink;	/* number of hard links */
 | |
| 	__le64 sd_size;		/* file size */
 | |
| 	__le32 sd_uid;		/* owner */
 | |
| 	__le32 sd_gid;		/* group */
 | |
| 	__le32 sd_atime;	/* time of last access */
 | |
| 	__le32 sd_mtime;	/* time file was last modified  */
 | |
| 	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
 | |
| 	__le32 sd_blocks;
 | |
| 	union {
 | |
| 		__le32 sd_rdev;
 | |
| 		__le32 sd_generation;
 | |
| 		//__le32 sd_first_direct_byte;
 | |
| 		/* first byte of file which is stored in a
 | |
| 		   direct item: except that if it equals 1
 | |
| 		   it is a symlink and if it equals
 | |
| 		   ~(__u32)0 there is no direct item.  The
 | |
| 		   existence of this field really grates
 | |
| 		   on me. Let's replace it with a macro
 | |
| 		   based on sd_size and our tail
 | |
| 		   suppression policy? */
 | |
| 	} __attribute__ ((__packed__)) u;
 | |
| } __attribute__ ((__packed__));
 | |
| //
 | |
| // this is 44 bytes long
 | |
| //
 | |
| #define SD_SIZE (sizeof(struct stat_data))
 | |
| #define SD_V2_SIZE              SD_SIZE
 | |
| #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
 | |
| #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
 | |
| #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
 | |
| /* sd_reserved */
 | |
| /* set_sd_reserved */
 | |
| #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
 | |
| #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
 | |
| #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
 | |
| #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
 | |
| #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
 | |
| #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
 | |
| #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
 | |
| #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
 | |
| #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
 | |
| #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
 | |
| #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
 | |
| #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
 | |
| #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
 | |
| #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
 | |
| #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
 | |
| #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
 | |
| #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
 | |
| #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
 | |
| #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
 | |
| #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
 | |
| #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
 | |
| #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                      DIRECTORY STRUCTURE                                */
 | |
| /***************************************************************************/
 | |
| /* 
 | |
|    Picture represents the structure of directory items
 | |
|    ________________________________________________
 | |
|    |  Array of     |   |     |        |       |   |
 | |
|    | directory     |N-1| N-2 | ....   |   1st |0th|
 | |
|    | entry headers |   |     |        |       |   |
 | |
|    |_______________|___|_____|________|_______|___|
 | |
|                     <----   directory entries         ------>
 | |
| 
 | |
|  First directory item has k_offset component 1. We store "." and ".."
 | |
|  in one item, always, we never split "." and ".." into differing
 | |
|  items.  This makes, among other things, the code for removing
 | |
|  directories simpler. */
 | |
| #define SD_OFFSET  0
 | |
| #define SD_UNIQUENESS 0
 | |
| #define DOT_OFFSET 1
 | |
| #define DOT_DOT_OFFSET 2
 | |
| #define DIRENTRY_UNIQUENESS 500
 | |
| 
 | |
| /* */
 | |
| #define FIRST_ITEM_OFFSET 1
 | |
| 
 | |
| /*
 | |
|    Q: How to get key of object pointed to by entry from entry?  
 | |
| 
 | |
|    A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
 | |
|       of object, entry points to */
 | |
| 
 | |
| /* NOT IMPLEMENTED:   
 | |
|    Directory will someday contain stat data of object */
 | |
| 
 | |
| struct reiserfs_de_head {
 | |
| 	__le32 deh_offset;	/* third component of the directory entry key */
 | |
| 	__le32 deh_dir_id;	/* objectid of the parent directory of the object, that is referenced
 | |
| 				   by directory entry */
 | |
| 	__le32 deh_objectid;	/* objectid of the object, that is referenced by directory entry */
 | |
| 	__le16 deh_location;	/* offset of name in the whole item */
 | |
| 	__le16 deh_state;	/* whether 1) entry contains stat data (for future), and 2) whether
 | |
| 				   entry is hidden (unlinked) */
 | |
| } __attribute__ ((__packed__));
 | |
| #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
 | |
| #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
 | |
| #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
 | |
| #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
 | |
| #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
 | |
| #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
 | |
| 
 | |
| #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
 | |
| #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
 | |
| #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
 | |
| #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
 | |
| #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
 | |
| 
 | |
| /* empty directory contains two entries "." and ".." and their headers */
 | |
| #define EMPTY_DIR_SIZE \
 | |
| (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
 | |
| 
 | |
| /* old format directories have this size when empty */
 | |
| #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
 | |
| 
 | |
| #define DEH_Statdata 0		/* not used now */
 | |
| #define DEH_Visible 2
 | |
| 
 | |
| /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
 | |
| #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
 | |
| #   define ADDR_UNALIGNED_BITS  (3)
 | |
| #endif
 | |
| 
 | |
| /* These are only used to manipulate deh_state.
 | |
|  * Because of this, we'll use the ext2_ bit routines,
 | |
|  * since they are little endian */
 | |
| #ifdef ADDR_UNALIGNED_BITS
 | |
| 
 | |
| #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
 | |
| #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
 | |
| 
 | |
| #   define set_bit_unaligned(nr, addr)	\
 | |
| 	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
 | |
| #   define clear_bit_unaligned(nr, addr)	\
 | |
| 	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
 | |
| #   define test_bit_unaligned(nr, addr)	\
 | |
| 	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
 | |
| 
 | |
| #else
 | |
| 
 | |
| #   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
 | |
| #   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
 | |
| #   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
 | |
| #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
 | |
| #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
 | |
| #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
 | |
| 
 | |
| #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
 | |
| #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
 | |
| #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
 | |
| 
 | |
| extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
 | |
| 				   __le32 par_dirid, __le32 par_objid);
 | |
| extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
 | |
| 				__le32 par_dirid, __le32 par_objid);
 | |
| 
 | |
| /* array of the entry headers */
 | |
|  /* get item body */
 | |
| #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
 | |
| #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
 | |
| 
 | |
| /* length of the directory entry in directory item. This define
 | |
|    calculates length of i-th directory entry using directory entry
 | |
|    locations from dir entry head. When it calculates length of 0-th
 | |
|    directory entry, it uses length of whole item in place of entry
 | |
|    location of the non-existent following entry in the calculation.
 | |
|    See picture above.*/
 | |
| /*
 | |
| #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
 | |
| ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
 | |
| */
 | |
| static inline int entry_length(const struct buffer_head *bh,
 | |
| 			       const struct item_head *ih, int pos_in_item)
 | |
| {
 | |
| 	struct reiserfs_de_head *deh;
 | |
| 
 | |
| 	deh = B_I_DEH(bh, ih) + pos_in_item;
 | |
| 	if (pos_in_item)
 | |
| 		return deh_location(deh - 1) - deh_location(deh);
 | |
| 
 | |
| 	return ih_item_len(ih) - deh_location(deh);
 | |
| }
 | |
| 
 | |
| /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
 | |
| #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
 | |
| 
 | |
| /* name by bh, ih and entry_num */
 | |
| #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
 | |
| 
 | |
| // two entries per block (at least)
 | |
| #define REISERFS_MAX_NAME(block_size) 255
 | |
| 
 | |
| /* this structure is used for operations on directory entries. It is
 | |
|    not a disk structure. */
 | |
| /* When reiserfs_find_entry or search_by_entry_key find directory
 | |
|    entry, they return filled reiserfs_dir_entry structure */
 | |
| struct reiserfs_dir_entry {
 | |
| 	struct buffer_head *de_bh;
 | |
| 	int de_item_num;
 | |
| 	struct item_head *de_ih;
 | |
| 	int de_entry_num;
 | |
| 	struct reiserfs_de_head *de_deh;
 | |
| 	int de_entrylen;
 | |
| 	int de_namelen;
 | |
| 	char *de_name;
 | |
| 	unsigned long *de_gen_number_bit_string;
 | |
| 
 | |
| 	__u32 de_dir_id;
 | |
| 	__u32 de_objectid;
 | |
| 
 | |
| 	struct cpu_key de_entry_key;
 | |
| };
 | |
| 
 | |
| /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
 | |
| 
 | |
| /* pointer to file name, stored in entry */
 | |
| #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
 | |
| 
 | |
| /* length of name */
 | |
| #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
 | |
| (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
 | |
| 
 | |
| /* hash value occupies bits from 7 up to 30 */
 | |
| #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
 | |
| /* generation number occupies 7 bits starting from 0 up to 6 */
 | |
| #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
 | |
| #define MAX_GENERATION_NUMBER  127
 | |
| 
 | |
| #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
 | |
| 
 | |
| /*
 | |
|  * Picture represents an internal node of the reiserfs tree
 | |
|  *  ______________________________________________________
 | |
|  * |      |  Array of     |  Array of         |  Free     |
 | |
|  * |block |    keys       |  pointers         | space     |
 | |
|  * | head |      N        |      N+1          |           |
 | |
|  * |______|_______________|___________________|___________|
 | |
|  */
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                      DISK CHILD                                         */
 | |
| /***************************************************************************/
 | |
| /* Disk child pointer: The pointer from an internal node of the tree
 | |
|    to a node that is on disk. */
 | |
| struct disk_child {
 | |
| 	__le32 dc_block_number;	/* Disk child's block number. */
 | |
| 	__le16 dc_size;		/* Disk child's used space.   */
 | |
| 	__le16 dc_reserved;
 | |
| };
 | |
| 
 | |
| #define DC_SIZE (sizeof(struct disk_child))
 | |
| #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
 | |
| #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
 | |
| #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
 | |
| #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
 | |
| 
 | |
| /* Get disk child by buffer header and position in the tree node. */
 | |
| #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
 | |
| ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
 | |
| 
 | |
| /* Get disk child number by buffer header and position in the tree node. */
 | |
| #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
 | |
| #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
 | |
| 				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
 | |
| 
 | |
|  /* maximal value of field child_size in structure disk_child */
 | |
|  /* child size is the combined size of all items and their headers */
 | |
| #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
 | |
| 
 | |
| /* amount of used space in buffer (not including block head) */
 | |
| #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
 | |
| 
 | |
| /* max and min number of keys in internal node */
 | |
| #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
 | |
| #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                      PATH STRUCTURES AND DEFINES                        */
 | |
| /***************************************************************************/
 | |
| 
 | |
| /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
 | |
|    key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
 | |
|    does not find them in the cache it reads them from disk.  For each node search_by_key finds using
 | |
|    reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
 | |
|    position of the block_number of the next node if it is looking through an internal node.  If it
 | |
|    is looking through a leaf node bin_search will find the position of the item which has key either
 | |
|    equal to given key, or which is the maximal key less than the given key. */
 | |
| 
 | |
| struct path_element {
 | |
| 	struct buffer_head *pe_buffer;	/* Pointer to the buffer at the path in the tree. */
 | |
| 	int pe_position;	/* Position in the tree node which is placed in the */
 | |
| 	/* buffer above.                                  */
 | |
| };
 | |
| 
 | |
| #define MAX_HEIGHT 5		/* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
 | |
| #define EXTENDED_MAX_HEIGHT         7	/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
 | |
| #define FIRST_PATH_ELEMENT_OFFSET   2	/* Must be equal to at least 2. */
 | |
| 
 | |
| #define ILLEGAL_PATH_ELEMENT_OFFSET 1	/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
 | |
| #define MAX_FEB_SIZE 6		/* this MUST be MAX_HEIGHT + 1. See about FEB below */
 | |
| 
 | |
| /* We need to keep track of who the ancestors of nodes are.  When we
 | |
|    perform a search we record which nodes were visited while
 | |
|    descending the tree looking for the node we searched for. This list
 | |
|    of nodes is called the path.  This information is used while
 | |
|    performing balancing.  Note that this path information may become
 | |
|    invalid, and this means we must check it when using it to see if it
 | |
|    is still valid. You'll need to read search_by_key and the comments
 | |
|    in it, especially about decrement_counters_in_path(), to understand
 | |
|    this structure.  
 | |
| 
 | |
| Paths make the code so much harder to work with and debug.... An
 | |
| enormous number of bugs are due to them, and trying to write or modify
 | |
| code that uses them just makes my head hurt.  They are based on an
 | |
| excessive effort to avoid disturbing the precious VFS code.:-( The
 | |
| gods only know how we are going to SMP the code that uses them.
 | |
| znodes are the way! */
 | |
| 
 | |
| #define PATH_READA	0x1	/* do read ahead */
 | |
| #define PATH_READA_BACK 0x2	/* read backwards */
 | |
| 
 | |
| struct treepath {
 | |
| 	int path_length;	/* Length of the array above.   */
 | |
| 	int reada;
 | |
| 	struct path_element path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
 | |
| 	int pos_in_item;
 | |
| };
 | |
| 
 | |
| #define pos_in_item(path) ((path)->pos_in_item)
 | |
| 
 | |
| #define INITIALIZE_PATH(var) \
 | |
| struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
 | |
| 
 | |
| /* Get path element by path and path position. */
 | |
| #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
 | |
| 
 | |
| /* Get buffer header at the path by path and path position. */
 | |
| #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
 | |
| 
 | |
| /* Get position in the element at the path by path and path position. */
 | |
| #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
 | |
| 
 | |
| #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
 | |
| 				/* you know, to the person who didn't
 | |
| 				   write this the macro name does not
 | |
| 				   at first suggest what it does.
 | |
| 				   Maybe POSITION_FROM_PATH_END? Or
 | |
| 				   maybe we should just focus on
 | |
| 				   dumping paths... -Hans */
 | |
| #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
 | |
| 
 | |
| #define PATH_PITEM_HEAD(path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
 | |
| 
 | |
| /* in do_balance leaf has h == 0 in contrast with path structure,
 | |
|    where root has level == 0. That is why we need these defines */
 | |
| #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h))	/* tb->S[h] */
 | |
| #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)	/* tb->F[h] or tb->S[0]->b_parent */
 | |
| #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
 | |
| #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)	/* tb->S[h]->b_item_order */
 | |
| 
 | |
| #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
 | |
| 
 | |
| #define get_last_bh(path) PATH_PLAST_BUFFER(path)
 | |
| #define get_ih(path) PATH_PITEM_HEAD(path)
 | |
| #define get_item_pos(path) PATH_LAST_POSITION(path)
 | |
| #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
 | |
| #define item_moved(ih,path) comp_items(ih, path)
 | |
| #define path_changed(ih,path) comp_items (ih, path)
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                       MISC                                              */
 | |
| /***************************************************************************/
 | |
| 
 | |
| /* Size of pointer to the unformatted node. */
 | |
| #define UNFM_P_SIZE (sizeof(unp_t))
 | |
| #define UNFM_P_SHIFT 2
 | |
| 
 | |
| // in in-core inode key is stored on le form
 | |
| #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
 | |
| 
 | |
| #define MAX_UL_INT 0xffffffff
 | |
| #define MAX_INT    0x7ffffff
 | |
| #define MAX_US_INT 0xffff
 | |
| 
 | |
| // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
 | |
| #define U32_MAX (~(__u32)0)
 | |
| 
 | |
| static inline loff_t max_reiserfs_offset(struct inode *inode)
 | |
| {
 | |
| 	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
 | |
| 		return (loff_t) U32_MAX;
 | |
| 
 | |
| 	return (loff_t) ((~(__u64) 0) >> 4);
 | |
| }
 | |
| 
 | |
| /*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
 | |
| #define MAX_KEY_OBJECTID	MAX_UL_INT
 | |
| 
 | |
| #define MAX_B_NUM  MAX_UL_INT
 | |
| #define MAX_FC_NUM MAX_US_INT
 | |
| 
 | |
| /* the purpose is to detect overflow of an unsigned short */
 | |
| #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
 | |
| 
 | |
| /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
 | |
| #define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode  */
 | |
| #define REISERFS_USER_MEM		1	/* reiserfs user memory mode            */
 | |
| 
 | |
| #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
 | |
| #define get_generation(s) atomic_read (&fs_generation(s))
 | |
| #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
 | |
| #define __fs_changed(gen,s) (gen != get_generation (s))
 | |
| #define fs_changed(gen,s)		\
 | |
| ({					\
 | |
| 	reiserfs_cond_resched(s);	\
 | |
| 	__fs_changed(gen, s);		\
 | |
| })
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                  FIXATE NODES                                           */
 | |
| /***************************************************************************/
 | |
| 
 | |
| #define VI_TYPE_LEFT_MERGEABLE 1
 | |
| #define VI_TYPE_RIGHT_MERGEABLE 2
 | |
| 
 | |
| /* To make any changes in the tree we always first find node, that
 | |
|    contains item to be changed/deleted or place to insert a new
 | |
|    item. We call this node S. To do balancing we need to decide what
 | |
|    we will shift to left/right neighbor, or to a new node, where new
 | |
|    item will be etc. To make this analysis simpler we build virtual
 | |
|    node. Virtual node is an array of items, that will replace items of
 | |
|    node S. (For instance if we are going to delete an item, virtual
 | |
|    node does not contain it). Virtual node keeps information about
 | |
|    item sizes and types, mergeability of first and last items, sizes
 | |
|    of all entries in directory item. We use this array of items when
 | |
|    calculating what we can shift to neighbors and how many nodes we
 | |
|    have to have if we do not any shiftings, if we shift to left/right
 | |
|    neighbor or to both. */
 | |
| struct virtual_item {
 | |
| 	int vi_index;		// index in the array of item operations
 | |
| 	unsigned short vi_type;	// left/right mergeability
 | |
| 	unsigned short vi_item_len;	/* length of item that it will have after balancing */
 | |
| 	struct item_head *vi_ih;
 | |
| 	const char *vi_item;	// body of item (old or new)
 | |
| 	const void *vi_new_data;	// 0 always but paste mode
 | |
| 	void *vi_uarea;		// item specific area
 | |
| };
 | |
| 
 | |
| struct virtual_node {
 | |
| 	char *vn_free_ptr;	/* this is a pointer to the free space in the buffer */
 | |
| 	unsigned short vn_nr_item;	/* number of items in virtual node */
 | |
| 	short vn_size;		/* size of node , that node would have if it has unlimited size and no balancing is performed */
 | |
| 	short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
 | |
| 	short vn_affected_item_num;
 | |
| 	short vn_pos_in_item;
 | |
| 	struct item_head *vn_ins_ih;	/* item header of inserted item, 0 for other modes */
 | |
| 	const void *vn_data;
 | |
| 	struct virtual_item *vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
 | |
| };
 | |
| 
 | |
| /* used by directory items when creating virtual nodes */
 | |
| struct direntry_uarea {
 | |
| 	int flags;
 | |
| 	__u16 entry_count;
 | |
| 	__u16 entry_sizes[1];
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                  TREE BALANCE                                           */
 | |
| /***************************************************************************/
 | |
| 
 | |
| /* This temporary structure is used in tree balance algorithms, and
 | |
|    constructed as we go to the extent that its various parts are
 | |
|    needed.  It contains arrays of nodes that can potentially be
 | |
|    involved in the balancing of node S, and parameters that define how
 | |
|    each of the nodes must be balanced.  Note that in these algorithms
 | |
|    for balancing the worst case is to need to balance the current node
 | |
|    S and the left and right neighbors and all of their parents plus
 | |
|    create a new node.  We implement S1 balancing for the leaf nodes
 | |
|    and S0 balancing for the internal nodes (S1 and S0 are defined in
 | |
|    our papers.)*/
 | |
| 
 | |
| #define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
 | |
| 
 | |
| /* maximum number of FEB blocknrs on a single level */
 | |
| #define MAX_AMOUNT_NEEDED 2
 | |
| 
 | |
| /* someday somebody will prefix every field in this struct with tb_ */
 | |
| struct tree_balance {
 | |
| 	int tb_mode;
 | |
| 	int need_balance_dirty;
 | |
| 	struct super_block *tb_sb;
 | |
| 	struct reiserfs_transaction_handle *transaction_handle;
 | |
| 	struct treepath *tb_path;
 | |
| 	struct buffer_head *L[MAX_HEIGHT];	/* array of left neighbors of nodes in the path */
 | |
| 	struct buffer_head *R[MAX_HEIGHT];	/* array of right neighbors of nodes in the path */
 | |
| 	struct buffer_head *FL[MAX_HEIGHT];	/* array of fathers of the left  neighbors      */
 | |
| 	struct buffer_head *FR[MAX_HEIGHT];	/* array of fathers of the right neighbors      */
 | |
| 	struct buffer_head *CFL[MAX_HEIGHT];	/* array of common parents of center node and its left neighbor  */
 | |
| 	struct buffer_head *CFR[MAX_HEIGHT];	/* array of common parents of center node and its right neighbor */
 | |
| 
 | |
| 	struct buffer_head *FEB[MAX_FEB_SIZE];	/* array of empty buffers. Number of buffers in array equals
 | |
| 						   cur_blknum. */
 | |
| 	struct buffer_head *used[MAX_FEB_SIZE];
 | |
| 	struct buffer_head *thrown[MAX_FEB_SIZE];
 | |
| 	int lnum[MAX_HEIGHT];	/* array of number of items which must be
 | |
| 				   shifted to the left in order to balance the
 | |
| 				   current node; for leaves includes item that
 | |
| 				   will be partially shifted; for internal
 | |
| 				   nodes, it is the number of child pointers
 | |
| 				   rather than items. It includes the new item
 | |
| 				   being created. The code sometimes subtracts
 | |
| 				   one to get the number of wholly shifted
 | |
| 				   items for other purposes. */
 | |
| 	int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
 | |
| 	int lkey[MAX_HEIGHT];	/* array indexed by height h mapping the key delimiting L[h] and
 | |
| 				   S[h] to its item number within the node CFL[h] */
 | |
| 	int rkey[MAX_HEIGHT];	/* substitute r for l in comment above */
 | |
| 	int insert_size[MAX_HEIGHT];	/* the number of bytes by we are trying to add or remove from
 | |
| 					   S[h]. A negative value means removing.  */
 | |
| 	int blknum[MAX_HEIGHT];	/* number of nodes that will replace node S[h] after
 | |
| 				   balancing on the level h of the tree.  If 0 then S is
 | |
| 				   being deleted, if 1 then S is remaining and no new nodes
 | |
| 				   are being created, if 2 or 3 then 1 or 2 new nodes is
 | |
| 				   being created */
 | |
| 
 | |
| 	/* fields that are used only for balancing leaves of the tree */
 | |
| 	int cur_blknum;		/* number of empty blocks having been already allocated                 */
 | |
| 	int s0num;		/* number of items that fall into left most  node when S[0] splits     */
 | |
| 	int s1num;		/* number of items that fall into first  new node when S[0] splits     */
 | |
| 	int s2num;		/* number of items that fall into second new node when S[0] splits     */
 | |
| 	int lbytes;		/* number of bytes which can flow to the left neighbor from the        left    */
 | |
| 	/* most liquid item that cannot be shifted from S[0] entirely         */
 | |
| 	/* if -1 then nothing will be partially shifted */
 | |
| 	int rbytes;		/* number of bytes which will flow to the right neighbor from the right        */
 | |
| 	/* most liquid item that cannot be shifted from S[0] entirely         */
 | |
| 	/* if -1 then nothing will be partially shifted                           */
 | |
| 	int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits   */
 | |
| 	/* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
 | |
| 	int s2bytes;
 | |
| 	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];	/* buffers which are to be freed after do_balance finishes by unfix_nodes */
 | |
| 	char *vn_buf;		/* kmalloced memory. Used to create
 | |
| 				   virtual node and keep map of
 | |
| 				   dirtied bitmap blocks */
 | |
| 	int vn_buf_size;	/* size of the vn_buf */
 | |
| 	struct virtual_node *tb_vn;	/* VN starts after bitmap of bitmap blocks */
 | |
| 
 | |
| 	int fs_gen;		/* saved value of `reiserfs_generation' counter
 | |
| 				   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
 | |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES
 | |
| 	struct in_core_key key;	/* key pointer, to pass to block allocator or
 | |
| 				   another low-level subsystem */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* These are modes of balancing */
 | |
| 
 | |
| /* When inserting an item. */
 | |
| #define M_INSERT	'i'
 | |
| /* When inserting into (directories only) or appending onto an already
 | |
|    existent item. */
 | |
| #define M_PASTE		'p'
 | |
| /* When deleting an item. */
 | |
| #define M_DELETE	'd'
 | |
| /* When truncating an item or removing an entry from a (directory) item. */
 | |
| #define M_CUT 		'c'
 | |
| 
 | |
| /* used when balancing on leaf level skipped (in reiserfsck) */
 | |
| #define M_INTERNAL	'n'
 | |
| 
 | |
| /* When further balancing is not needed, then do_balance does not need
 | |
|    to be called. */
 | |
| #define M_SKIP_BALANCING 		's'
 | |
| #define M_CONVERT	'v'
 | |
| 
 | |
| /* modes of leaf_move_items */
 | |
| #define LEAF_FROM_S_TO_L 0
 | |
| #define LEAF_FROM_S_TO_R 1
 | |
| #define LEAF_FROM_R_TO_L 2
 | |
| #define LEAF_FROM_L_TO_R 3
 | |
| #define LEAF_FROM_S_TO_SNEW 4
 | |
| 
 | |
| #define FIRST_TO_LAST 0
 | |
| #define LAST_TO_FIRST 1
 | |
| 
 | |
| /* used in do_balance for passing parent of node information that has
 | |
|    been gotten from tb struct */
 | |
| struct buffer_info {
 | |
| 	struct tree_balance *tb;
 | |
| 	struct buffer_head *bi_bh;
 | |
| 	struct buffer_head *bi_parent;
 | |
| 	int bi_position;
 | |
| };
 | |
| 
 | |
| static inline struct super_block *sb_from_tb(struct tree_balance *tb)
 | |
| {
 | |
| 	return tb ? tb->tb_sb : NULL;
 | |
| }
 | |
| 
 | |
| static inline struct super_block *sb_from_bi(struct buffer_info *bi)
 | |
| {
 | |
| 	return bi ? sb_from_tb(bi->tb) : NULL;
 | |
| }
 | |
| 
 | |
| /* there are 4 types of items: stat data, directory item, indirect, direct.
 | |
| +-------------------+------------+--------------+------------+
 | |
| |	            |  k_offset  | k_uniqueness | mergeable? |
 | |
| +-------------------+------------+--------------+------------+
 | |
| |     stat data     |	0        |      0       |   no       |
 | |
| +-------------------+------------+--------------+------------+
 | |
| | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       | 
 | |
| | non 1st directory | hash value |              |   yes      |
 | |
| |     item          |            |              |            |
 | |
| +-------------------+------------+--------------+------------+
 | |
| | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
 | |
| +-------------------+------------+--------------+------------+
 | |
| | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
 | |
| +-------------------+------------+--------------+------------+
 | |
| */
 | |
| 
 | |
| struct item_operations {
 | |
| 	int (*bytes_number) (struct item_head * ih, int block_size);
 | |
| 	void (*decrement_key) (struct cpu_key *);
 | |
| 	int (*is_left_mergeable) (struct reiserfs_key * ih,
 | |
| 				  unsigned long bsize);
 | |
| 	void (*print_item) (struct item_head *, char *item);
 | |
| 	void (*check_item) (struct item_head *, char *item);
 | |
| 
 | |
| 	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
 | |
| 			  int is_affected, int insert_size);
 | |
| 	int (*check_left) (struct virtual_item * vi, int free,
 | |
| 			   int start_skip, int end_skip);
 | |
| 	int (*check_right) (struct virtual_item * vi, int free);
 | |
| 	int (*part_size) (struct virtual_item * vi, int from, int to);
 | |
| 	int (*unit_num) (struct virtual_item * vi);
 | |
| 	void (*print_vi) (struct virtual_item * vi);
 | |
| };
 | |
| 
 | |
| extern struct item_operations *item_ops[TYPE_ANY + 1];
 | |
| 
 | |
| #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
 | |
| #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
 | |
| #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
 | |
| #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
 | |
| #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
 | |
| #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
 | |
| #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
 | |
| #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
 | |
| #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
 | |
| #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
 | |
| 
 | |
| #define COMP_SHORT_KEYS comp_short_keys
 | |
| 
 | |
| /* number of blocks pointed to by the indirect item */
 | |
| #define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
 | |
| 
 | |
| /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
 | |
| #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
 | |
| 
 | |
| /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
 | |
| 
 | |
| /* get the item header */
 | |
| #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
 | |
| 
 | |
| /* get key */
 | |
| #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
 | |
| 
 | |
| /* get the key */
 | |
| #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
 | |
| 
 | |
| /* get item body */
 | |
| #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
 | |
| 
 | |
| /* get the stat data by the buffer header and the item order */
 | |
| #define B_N_STAT_DATA(bh,nr) \
 | |
| ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
 | |
| 
 | |
|     /* following defines use reiserfs buffer header and item header */
 | |
| 
 | |
| /* get stat-data */
 | |
| #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
 | |
| 
 | |
| // this is 3976 for size==4096
 | |
| #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
 | |
| 
 | |
| /* indirect items consist of entries which contain blocknrs, pos
 | |
|    indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
 | |
|    blocknr contained by the entry pos points to */
 | |
| #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
 | |
| #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
 | |
| 
 | |
| struct reiserfs_iget_args {
 | |
| 	__u32 objectid;
 | |
| 	__u32 dirid;
 | |
| };
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                    FUNCTION DECLARATIONS                                */
 | |
| /***************************************************************************/
 | |
| 
 | |
| #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
 | |
| 
 | |
| #define journal_trans_half(blocksize) \
 | |
| 	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
 | |
| 
 | |
| /* journal.c see journal.c for all the comments here */
 | |
| 
 | |
| /* first block written in a commit.  */
 | |
| struct reiserfs_journal_desc {
 | |
| 	__le32 j_trans_id;	/* id of commit */
 | |
| 	__le32 j_len;		/* length of commit. len +1 is the commit block */
 | |
| 	__le32 j_mount_id;	/* mount id of this trans */
 | |
| 	__le32 j_realblock[1];	/* real locations for each block */
 | |
| };
 | |
| 
 | |
| #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
 | |
| #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
 | |
| #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
 | |
| 
 | |
| #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
 | |
| #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
 | |
| #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
 | |
| 
 | |
| /* last block written in a commit */
 | |
| struct reiserfs_journal_commit {
 | |
| 	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
 | |
| 	__le32 j_len;		/* ditto */
 | |
| 	__le32 j_realblock[1];	/* real locations for each block */
 | |
| };
 | |
| 
 | |
| #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
 | |
| #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
 | |
| #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
 | |
| 
 | |
| #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
 | |
| #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
 | |
| 
 | |
| /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
 | |
| ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
 | |
| ** and this transaction does not need to be replayed.
 | |
| */
 | |
| struct reiserfs_journal_header {
 | |
| 	__le32 j_last_flush_trans_id;	/* id of last fully flushed transaction */
 | |
| 	__le32 j_first_unflushed_offset;	/* offset in the log of where to start replay after a crash */
 | |
| 	__le32 j_mount_id;
 | |
| 	/* 12 */ struct journal_params jh_journal;
 | |
| };
 | |
| 
 | |
| /* biggest tunable defines are right here */
 | |
| #define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
 | |
| #define JOURNAL_TRANS_MAX_DEFAULT 1024	/* biggest possible single transaction, don't change for now (8/3/99) */
 | |
| #define JOURNAL_TRANS_MIN_DEFAULT 256
 | |
| #define JOURNAL_MAX_BATCH_DEFAULT   900	/* max blocks to batch into one transaction, don't make this any bigger than 900 */
 | |
| #define JOURNAL_MIN_RATIO 2
 | |
| #define JOURNAL_MAX_COMMIT_AGE 30
 | |
| #define JOURNAL_MAX_TRANS_AGE 30
 | |
| #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
 | |
| #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
 | |
| 					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
 | |
| 					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
 | |
| 
 | |
| #ifdef CONFIG_QUOTA
 | |
| #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
 | |
| /* We need to update data and inode (atime) */
 | |
| #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
 | |
| /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
 | |
| #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
 | |
| (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
 | |
| /* same as with INIT */
 | |
| #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
 | |
| (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
 | |
| #else
 | |
| #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
 | |
| #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
 | |
| #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
 | |
| #endif
 | |
| 
 | |
| /* both of these can be as low as 1, or as high as you want.  The min is the
 | |
| ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
 | |
| ** as needed, and released when transactions are committed.  On release, if 
 | |
| ** the current number of nodes is > max, the node is freed, otherwise, 
 | |
| ** it is put on a free list for faster use later.
 | |
| */
 | |
| #define REISERFS_MIN_BITMAP_NODES 10
 | |
| #define REISERFS_MAX_BITMAP_NODES 100
 | |
| 
 | |
| #define JBH_HASH_SHIFT 13	/* these are based on journal hash size of 8192 */
 | |
| #define JBH_HASH_MASK 8191
 | |
| 
 | |
| #define _jhashfn(sb,block)	\
 | |
| 	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
 | |
| 	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
 | |
| #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
 | |
| 
 | |
| // We need these to make journal.c code more readable
 | |
| #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
 | |
| #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
 | |
| #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
 | |
| 
 | |
| enum reiserfs_bh_state_bits {
 | |
| 	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
 | |
| 	BH_JDirty_wait,
 | |
| 	BH_JNew,		/* disk block was taken off free list before
 | |
| 				 * being in a finished transaction, or
 | |
| 				 * written to disk. Can be reused immed. */
 | |
| 	BH_JPrepared,
 | |
| 	BH_JRestore_dirty,
 | |
| 	BH_JTest,		// debugging only will go away
 | |
| };
 | |
| 
 | |
| BUFFER_FNS(JDirty, journaled);
 | |
| TAS_BUFFER_FNS(JDirty, journaled);
 | |
| BUFFER_FNS(JDirty_wait, journal_dirty);
 | |
| TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
 | |
| BUFFER_FNS(JNew, journal_new);
 | |
| TAS_BUFFER_FNS(JNew, journal_new);
 | |
| BUFFER_FNS(JPrepared, journal_prepared);
 | |
| TAS_BUFFER_FNS(JPrepared, journal_prepared);
 | |
| BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
 | |
| TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
 | |
| BUFFER_FNS(JTest, journal_test);
 | |
| TAS_BUFFER_FNS(JTest, journal_test);
 | |
| 
 | |
| /*
 | |
| ** transaction handle which is passed around for all journal calls
 | |
| */
 | |
| struct reiserfs_transaction_handle {
 | |
| 	struct super_block *t_super;	/* super for this FS when journal_begin was
 | |
| 					   called. saves calls to reiserfs_get_super
 | |
| 					   also used by nested transactions to make
 | |
| 					   sure they are nesting on the right FS
 | |
| 					   _must_ be first in the handle
 | |
| 					 */
 | |
| 	int t_refcount;
 | |
| 	int t_blocks_logged;	/* number of blocks this writer has logged */
 | |
| 	int t_blocks_allocated;	/* number of blocks this writer allocated */
 | |
| 	unsigned int t_trans_id;	/* sanity check, equals the current trans id */
 | |
| 	void *t_handle_save;	/* save existing current->journal_info */
 | |
| 	unsigned displace_new_blocks:1;	/* if new block allocation occurres, that block
 | |
| 					   should be displaced from others */
 | |
| 	struct list_head t_list;
 | |
| };
 | |
| 
 | |
| /* used to keep track of ordered and tail writes, attached to the buffer
 | |
|  * head through b_journal_head.
 | |
|  */
 | |
| struct reiserfs_jh {
 | |
| 	struct reiserfs_journal_list *jl;
 | |
| 	struct buffer_head *bh;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| void reiserfs_free_jh(struct buffer_head *bh);
 | |
| int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
 | |
| int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
 | |
| int journal_mark_dirty(struct reiserfs_transaction_handle *,
 | |
| 		       struct super_block *, struct buffer_head *bh);
 | |
| 
 | |
| static inline int reiserfs_file_data_log(struct inode *inode)
 | |
| {
 | |
| 	if (reiserfs_data_log(inode->i_sb) ||
 | |
| 	    (REISERFS_I(inode)->i_flags & i_data_log))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int reiserfs_transaction_running(struct super_block *s)
 | |
| {
 | |
| 	struct reiserfs_transaction_handle *th = current->journal_info;
 | |
| 	if (th && th->t_super == s)
 | |
| 		return 1;
 | |
| 	if (th && th->t_super == NULL)
 | |
| 		BUG();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
 | |
| {
 | |
| 	return th->t_blocks_allocated - th->t_blocks_logged;
 | |
| }
 | |
| 
 | |
| struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
 | |
| 								    super_block
 | |
| 								    *,
 | |
| 								    int count);
 | |
| int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
 | |
| void reiserfs_vfs_truncate_file(struct inode *inode);
 | |
| int reiserfs_commit_page(struct inode *inode, struct page *page,
 | |
| 			 unsigned from, unsigned to);
 | |
| void reiserfs_flush_old_commits(struct super_block *);
 | |
| int reiserfs_commit_for_inode(struct inode *);
 | |
| int reiserfs_inode_needs_commit(struct inode *);
 | |
| void reiserfs_update_inode_transaction(struct inode *);
 | |
| void reiserfs_wait_on_write_block(struct super_block *s);
 | |
| void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
 | |
| void reiserfs_allow_writes(struct super_block *s);
 | |
| void reiserfs_check_lock_depth(struct super_block *s, char *caller);
 | |
| int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
 | |
| 				 int wait);
 | |
| void reiserfs_restore_prepared_buffer(struct super_block *,
 | |
| 				      struct buffer_head *bh);
 | |
| int journal_init(struct super_block *, const char *j_dev_name, int old_format,
 | |
| 		 unsigned int);
 | |
| int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
 | |
| int journal_release_error(struct reiserfs_transaction_handle *,
 | |
| 			  struct super_block *);
 | |
| int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
 | |
| 		unsigned long);
 | |
| int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
 | |
| 		     unsigned long);
 | |
| int journal_mark_freed(struct reiserfs_transaction_handle *,
 | |
| 		       struct super_block *, b_blocknr_t blocknr);
 | |
| int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
 | |
| int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
 | |
| 			 int bit_nr, int searchall, b_blocknr_t *next);
 | |
| int journal_begin(struct reiserfs_transaction_handle *,
 | |
| 		  struct super_block *sb, unsigned long);
 | |
| int journal_join_abort(struct reiserfs_transaction_handle *,
 | |
| 		       struct super_block *sb, unsigned long);
 | |
| void reiserfs_abort_journal(struct super_block *sb, int errno);
 | |
| void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
 | |
| int reiserfs_allocate_list_bitmaps(struct super_block *s,
 | |
| 				   struct reiserfs_list_bitmap *, unsigned int);
 | |
| 
 | |
| void reiserfs_schedule_old_flush(struct super_block *s);
 | |
| void add_save_link(struct reiserfs_transaction_handle *th,
 | |
| 		   struct inode *inode, int truncate);
 | |
| int remove_save_link(struct inode *inode, int truncate);
 | |
| 
 | |
| /* objectid.c */
 | |
| __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
 | |
| void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
 | |
| 			       __u32 objectid_to_release);
 | |
| int reiserfs_convert_objectid_map_v1(struct super_block *);
 | |
| 
 | |
| /* stree.c */
 | |
| int B_IS_IN_TREE(const struct buffer_head *);
 | |
| extern void copy_item_head(struct item_head *to,
 | |
| 			   const struct item_head *from);
 | |
| 
 | |
| // first key is in cpu form, second - le
 | |
| extern int comp_short_keys(const struct reiserfs_key *le_key,
 | |
| 			   const struct cpu_key *cpu_key);
 | |
| extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
 | |
| 
 | |
| // both are in le form
 | |
| extern int comp_le_keys(const struct reiserfs_key *,
 | |
| 			const struct reiserfs_key *);
 | |
| extern int comp_short_le_keys(const struct reiserfs_key *,
 | |
| 			      const struct reiserfs_key *);
 | |
| 
 | |
| //
 | |
| // get key version from on disk key - kludge
 | |
| //
 | |
| static inline int le_key_version(const struct reiserfs_key *key)
 | |
| {
 | |
| 	int type;
 | |
| 
 | |
| 	type = offset_v2_k_type(&(key->u.k_offset_v2));
 | |
| 	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
 | |
| 	    && type != TYPE_DIRENTRY)
 | |
| 		return KEY_FORMAT_3_5;
 | |
| 
 | |
| 	return KEY_FORMAT_3_6;
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline void copy_key(struct reiserfs_key *to,
 | |
| 			    const struct reiserfs_key *from)
 | |
| {
 | |
| 	memcpy(to, from, KEY_SIZE);
 | |
| }
 | |
| 
 | |
| int comp_items(const struct item_head *stored_ih, const struct treepath *path);
 | |
| const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
 | |
| 				    const struct super_block *sb);
 | |
| int search_by_key(struct super_block *, const struct cpu_key *,
 | |
| 		  struct treepath *, int);
 | |
| #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
 | |
| int search_for_position_by_key(struct super_block *sb,
 | |
| 			       const struct cpu_key *cpu_key,
 | |
| 			       struct treepath *search_path);
 | |
| extern void decrement_bcount(struct buffer_head *bh);
 | |
| void decrement_counters_in_path(struct treepath *search_path);
 | |
| void pathrelse(struct treepath *search_path);
 | |
| int reiserfs_check_path(struct treepath *p);
 | |
| void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
 | |
| 
 | |
| int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
 | |
| 			 struct treepath *path,
 | |
| 			 const struct cpu_key *key,
 | |
| 			 struct item_head *ih,
 | |
| 			 struct inode *inode, const char *body);
 | |
| 
 | |
| int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
 | |
| 			     struct treepath *path,
 | |
| 			     const struct cpu_key *key,
 | |
| 			     struct inode *inode,
 | |
| 			     const char *body, int paste_size);
 | |
| 
 | |
| int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
 | |
| 			   struct treepath *path,
 | |
| 			   struct cpu_key *key,
 | |
| 			   struct inode *inode,
 | |
| 			   struct page *page, loff_t new_file_size);
 | |
| 
 | |
| int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
 | |
| 			 struct treepath *path,
 | |
| 			 const struct cpu_key *key,
 | |
| 			 struct inode *inode, struct buffer_head *un_bh);
 | |
| 
 | |
| void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
 | |
| 				struct inode *inode, struct reiserfs_key *key);
 | |
| int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
 | |
| 			   struct inode *inode);
 | |
| int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
 | |
| 			 struct inode *inode, struct page *,
 | |
| 			 int update_timestamps);
 | |
| 
 | |
| #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
 | |
| #define file_size(inode) ((inode)->i_size)
 | |
| #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
 | |
| 
 | |
| #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
 | |
| !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
 | |
| 
 | |
| void padd_item(char *item, int total_length, int length);
 | |
| 
 | |
| /* inode.c */
 | |
| /* args for the create parameter of reiserfs_get_block */
 | |
| #define GET_BLOCK_NO_CREATE 0	/* don't create new blocks or convert tails */
 | |
| #define GET_BLOCK_CREATE 1	/* add anything you need to find block */
 | |
| #define GET_BLOCK_NO_HOLE 2	/* return -ENOENT for file holes */
 | |
| #define GET_BLOCK_READ_DIRECT 4	/* read the tail if indirect item not found */
 | |
| #define GET_BLOCK_NO_IMUX     8	/* i_mutex is not held, don't preallocate */
 | |
| #define GET_BLOCK_NO_DANGLE   16	/* don't leave any transactions running */
 | |
| 
 | |
| void reiserfs_read_locked_inode(struct inode *inode,
 | |
| 				struct reiserfs_iget_args *args);
 | |
| int reiserfs_find_actor(struct inode *inode, void *p);
 | |
| int reiserfs_init_locked_inode(struct inode *inode, void *p);
 | |
| void reiserfs_evict_inode(struct inode *inode);
 | |
| int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
 | |
| int reiserfs_get_block(struct inode *inode, sector_t block,
 | |
| 		       struct buffer_head *bh_result, int create);
 | |
| struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
 | |
| 				     int fh_len, int fh_type);
 | |
| struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
 | |
| 				     int fh_len, int fh_type);
 | |
| int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
 | |
| 		       struct inode *parent);
 | |
| 
 | |
| int reiserfs_truncate_file(struct inode *, int update_timestamps);
 | |
| void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
 | |
| 		  int type, int key_length);
 | |
| void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
 | |
| 		       int version,
 | |
| 		       loff_t offset, int type, int length, int entry_count);
 | |
| struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
 | |
| 
 | |
| struct reiserfs_security_handle;
 | |
| int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
 | |
| 		       struct inode *dir, umode_t mode,
 | |
| 		       const char *symname, loff_t i_size,
 | |
| 		       struct dentry *dentry, struct inode *inode,
 | |
| 		       struct reiserfs_security_handle *security);
 | |
| 
 | |
| void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
 | |
| 			     struct inode *inode, loff_t size);
 | |
| 
 | |
| static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
 | |
| 				      struct inode *inode)
 | |
| {
 | |
| 	reiserfs_update_sd_size(th, inode, inode->i_size);
 | |
| }
 | |
| 
 | |
| void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
 | |
| void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
 | |
| int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
 | |
| 
 | |
| int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
 | |
| 
 | |
| /* namei.c */
 | |
| void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
 | |
| int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
 | |
| 			struct treepath *path, struct reiserfs_dir_entry *de);
 | |
| struct dentry *reiserfs_get_parent(struct dentry *);
 | |
| 
 | |
| #ifdef CONFIG_REISERFS_PROC_INFO
 | |
| int reiserfs_proc_info_init(struct super_block *sb);
 | |
| int reiserfs_proc_info_done(struct super_block *sb);
 | |
| int reiserfs_proc_info_global_init(void);
 | |
| int reiserfs_proc_info_global_done(void);
 | |
| 
 | |
| #define PROC_EXP( e )   e
 | |
| 
 | |
| #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
 | |
| #define PROC_INFO_MAX( sb, field, value )								\
 | |
|     __PINFO( sb ).field =												\
 | |
|         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
 | |
| #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
 | |
| #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
 | |
| #define PROC_INFO_BH_STAT( sb, bh, level )							\
 | |
|     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
 | |
|     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
 | |
|     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
 | |
| #else
 | |
| static inline int reiserfs_proc_info_init(struct super_block *sb)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int reiserfs_proc_info_done(struct super_block *sb)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int reiserfs_proc_info_global_init(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int reiserfs_proc_info_global_done(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define PROC_EXP( e )
 | |
| #define VOID_V ( ( void ) 0 )
 | |
| #define PROC_INFO_MAX( sb, field, value ) VOID_V
 | |
| #define PROC_INFO_INC( sb, field ) VOID_V
 | |
| #define PROC_INFO_ADD( sb, field, val ) VOID_V
 | |
| #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
 | |
| #endif
 | |
| 
 | |
| /* dir.c */
 | |
| extern const struct inode_operations reiserfs_dir_inode_operations;
 | |
| extern const struct inode_operations reiserfs_symlink_inode_operations;
 | |
| extern const struct inode_operations reiserfs_special_inode_operations;
 | |
| extern const struct file_operations reiserfs_dir_operations;
 | |
| int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
 | |
| 
 | |
| /* tail_conversion.c */
 | |
| int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
 | |
| 		    struct treepath *, struct buffer_head *, loff_t);
 | |
| int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
 | |
| 		    struct page *, struct treepath *, const struct cpu_key *,
 | |
| 		    loff_t, char *);
 | |
| void reiserfs_unmap_buffer(struct buffer_head *);
 | |
| 
 | |
| /* file.c */
 | |
| extern const struct inode_operations reiserfs_file_inode_operations;
 | |
| extern const struct file_operations reiserfs_file_operations;
 | |
| extern const struct address_space_operations reiserfs_address_space_operations;
 | |
| 
 | |
| /* fix_nodes.c */
 | |
| 
 | |
| int fix_nodes(int n_op_mode, struct tree_balance *tb,
 | |
| 	      struct item_head *ins_ih, const void *);
 | |
| void unfix_nodes(struct tree_balance *);
 | |
| 
 | |
| /* prints.c */
 | |
| void __reiserfs_panic(struct super_block *s, const char *id,
 | |
| 		      const char *function, const char *fmt, ...)
 | |
|     __attribute__ ((noreturn));
 | |
| #define reiserfs_panic(s, id, fmt, args...) \
 | |
| 	__reiserfs_panic(s, id, __func__, fmt, ##args)
 | |
| void __reiserfs_error(struct super_block *s, const char *id,
 | |
| 		      const char *function, const char *fmt, ...);
 | |
| #define reiserfs_error(s, id, fmt, args...) \
 | |
| 	 __reiserfs_error(s, id, __func__, fmt, ##args)
 | |
| void reiserfs_info(struct super_block *s, const char *fmt, ...);
 | |
| void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
 | |
| void print_indirect_item(struct buffer_head *bh, int item_num);
 | |
| void store_print_tb(struct tree_balance *tb);
 | |
| void print_cur_tb(char *mes);
 | |
| void print_de(struct reiserfs_dir_entry *de);
 | |
| void print_bi(struct buffer_info *bi, char *mes);
 | |
| #define PRINT_LEAF_ITEMS 1	/* print all items */
 | |
| #define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
 | |
| #define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
 | |
| void print_block(struct buffer_head *bh, ...);
 | |
| void print_bmap(struct super_block *s, int silent);
 | |
| void print_bmap_block(int i, char *data, int size, int silent);
 | |
| /*void print_super_block (struct super_block * s, char * mes);*/
 | |
| void print_objectid_map(struct super_block *s);
 | |
| void print_block_head(struct buffer_head *bh, char *mes);
 | |
| void check_leaf(struct buffer_head *bh);
 | |
| void check_internal(struct buffer_head *bh);
 | |
| void print_statistics(struct super_block *s);
 | |
| char *reiserfs_hashname(int code);
 | |
| 
 | |
| /* lbalance.c */
 | |
| int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
 | |
| 		    int mov_bytes, struct buffer_head *Snew);
 | |
| int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
 | |
| int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
 | |
| void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
 | |
| 		       int del_num, int del_bytes);
 | |
| void leaf_insert_into_buf(struct buffer_info *bi, int before,
 | |
| 			  struct item_head *inserted_item_ih,
 | |
| 			  const char *inserted_item_body, int zeros_number);
 | |
| void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
 | |
| 			  int pos_in_item, int paste_size, const char *body,
 | |
| 			  int zeros_number);
 | |
| void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
 | |
| 			  int pos_in_item, int cut_size);
 | |
| void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
 | |
| 			int new_entry_count, struct reiserfs_de_head *new_dehs,
 | |
| 			const char *records, int paste_size);
 | |
| /* ibalance.c */
 | |
| int balance_internal(struct tree_balance *, int, int, struct item_head *,
 | |
| 		     struct buffer_head **);
 | |
| 
 | |
| /* do_balance.c */
 | |
| void do_balance_mark_leaf_dirty(struct tree_balance *tb,
 | |
| 				struct buffer_head *bh, int flag);
 | |
| #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
 | |
| #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
 | |
| 
 | |
| void do_balance(struct tree_balance *tb, struct item_head *ih,
 | |
| 		const char *body, int flag);
 | |
| void reiserfs_invalidate_buffer(struct tree_balance *tb,
 | |
| 				struct buffer_head *bh);
 | |
| 
 | |
| int get_left_neighbor_position(struct tree_balance *tb, int h);
 | |
| int get_right_neighbor_position(struct tree_balance *tb, int h);
 | |
| void replace_key(struct tree_balance *tb, struct buffer_head *, int,
 | |
| 		 struct buffer_head *, int);
 | |
| void make_empty_node(struct buffer_info *);
 | |
| struct buffer_head *get_FEB(struct tree_balance *);
 | |
| 
 | |
| /* bitmap.c */
 | |
| 
 | |
| /* structure contains hints for block allocator, and it is a container for
 | |
|  * arguments, such as node, search path, transaction_handle, etc. */
 | |
| struct __reiserfs_blocknr_hint {
 | |
| 	struct inode *inode;	/* inode passed to allocator, if we allocate unf. nodes */
 | |
| 	sector_t block;		/* file offset, in blocks */
 | |
| 	struct in_core_key key;
 | |
| 	struct treepath *path;	/* search path, used by allocator to deternine search_start by
 | |
| 				 * various ways */
 | |
| 	struct reiserfs_transaction_handle *th;	/* transaction handle is needed to log super blocks and
 | |
| 						 * bitmap blocks changes  */
 | |
| 	b_blocknr_t beg, end;
 | |
| 	b_blocknr_t search_start;	/* a field used to transfer search start value (block number)
 | |
| 					 * between different block allocator procedures
 | |
| 					 * (determine_search_start() and others) */
 | |
| 	int prealloc_size;	/* is set in determine_prealloc_size() function, used by underlayed
 | |
| 				 * function that do actual allocation */
 | |
| 
 | |
| 	unsigned formatted_node:1;	/* the allocator uses different polices for getting disk space for
 | |
| 					 * formatted/unformatted blocks with/without preallocation */
 | |
| 	unsigned preallocate:1;
 | |
| };
 | |
| 
 | |
| typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
 | |
| 
 | |
| int reiserfs_parse_alloc_options(struct super_block *, char *);
 | |
| void reiserfs_init_alloc_options(struct super_block *s);
 | |
| 
 | |
| /*
 | |
|  * given a directory, this will tell you what packing locality
 | |
|  * to use for a new object underneat it.  The locality is returned
 | |
|  * in disk byte order (le).
 | |
|  */
 | |
| __le32 reiserfs_choose_packing(struct inode *dir);
 | |
| 
 | |
| int reiserfs_init_bitmap_cache(struct super_block *sb);
 | |
| void reiserfs_free_bitmap_cache(struct super_block *sb);
 | |
| void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
 | |
| struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
 | |
| int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
 | |
| void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
 | |
| 			 b_blocknr_t, int for_unformatted);
 | |
| int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
 | |
| 			       int);
 | |
| static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
 | |
| 					     b_blocknr_t * new_blocknrs,
 | |
| 					     int amount_needed)
 | |
| {
 | |
| 	reiserfs_blocknr_hint_t hint = {
 | |
| 		.th = tb->transaction_handle,
 | |
| 		.path = tb->tb_path,
 | |
| 		.inode = NULL,
 | |
| 		.key = tb->key,
 | |
| 		.block = 0,
 | |
| 		.formatted_node = 1
 | |
| 	};
 | |
| 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
 | |
| 					  0);
 | |
| }
 | |
| 
 | |
| static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
 | |
| 					    *th, struct inode *inode,
 | |
| 					    b_blocknr_t * new_blocknrs,
 | |
| 					    struct treepath *path,
 | |
| 					    sector_t block)
 | |
| {
 | |
| 	reiserfs_blocknr_hint_t hint = {
 | |
| 		.th = th,
 | |
| 		.path = path,
 | |
| 		.inode = inode,
 | |
| 		.block = block,
 | |
| 		.formatted_node = 0,
 | |
| 		.preallocate = 0
 | |
| 	};
 | |
| 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
 | |
| }
 | |
| 
 | |
| #ifdef REISERFS_PREALLOCATE
 | |
| static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
 | |
| 					     *th, struct inode *inode,
 | |
| 					     b_blocknr_t * new_blocknrs,
 | |
| 					     struct treepath *path,
 | |
| 					     sector_t block)
 | |
| {
 | |
| 	reiserfs_blocknr_hint_t hint = {
 | |
| 		.th = th,
 | |
| 		.path = path,
 | |
| 		.inode = inode,
 | |
| 		.block = block,
 | |
| 		.formatted_node = 0,
 | |
| 		.preallocate = 1
 | |
| 	};
 | |
| 	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
 | |
| }
 | |
| 
 | |
| void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
 | |
| 			       struct inode *inode);
 | |
| void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
 | |
| #endif
 | |
| 
 | |
| /* hashes.c */
 | |
| __u32 keyed_hash(const signed char *msg, int len);
 | |
| __u32 yura_hash(const signed char *msg, int len);
 | |
| __u32 r5_hash(const signed char *msg, int len);
 | |
| 
 | |
| #define reiserfs_set_le_bit		__set_bit_le
 | |
| #define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
 | |
| #define reiserfs_clear_le_bit		__clear_bit_le
 | |
| #define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
 | |
| #define reiserfs_test_le_bit		test_bit_le
 | |
| #define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
 | |
| 
 | |
| /* sometimes reiserfs_truncate may require to allocate few new blocks
 | |
|    to perform indirect2direct conversion. People probably used to
 | |
|    think, that truncate should work without problems on a filesystem
 | |
|    without free disk space. They may complain that they can not
 | |
|    truncate due to lack of free disk space. This spare space allows us
 | |
|    to not worry about it. 500 is probably too much, but it should be
 | |
|    absolutely safe */
 | |
| #define SPARE_SPACE 500
 | |
| 
 | |
| /* prototypes from ioctl.c */
 | |
| long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
 | |
| long reiserfs_compat_ioctl(struct file *filp,
 | |
| 		   unsigned int cmd, unsigned long arg);
 | |
| int reiserfs_unpack(struct inode *inode, struct file *filp);
 |