 1ac6466f25
			
		
	
	
	1ac6466f25
	
	
	
		
			
			Use a percpu counter rather than atomic types for shrinker accounting. There's no need for ultimate accuracy in the shrinker, so this should come a little more cheaply. The percpu struct is somewhat large, but there was a big gap before the cache-aligned s_es_lru_lock anyway, and it fits nicely in there. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
		
			
				
	
	
		
			790 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			790 lines
		
	
	
	
		
			21 KiB
			
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  fs/ext4/extents_status.c
 | |
|  *
 | |
|  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
 | |
|  * Modified by
 | |
|  *	Allison Henderson <achender@linux.vnet.ibm.com>
 | |
|  *	Hugh Dickins <hughd@google.com>
 | |
|  *	Zheng Liu <wenqing.lz@taobao.com>
 | |
|  *
 | |
|  * Ext4 extents status tree core functions.
 | |
|  */
 | |
| #include <linux/rbtree.h>
 | |
| #include "ext4.h"
 | |
| #include "extents_status.h"
 | |
| #include "ext4_extents.h"
 | |
| 
 | |
| #include <trace/events/ext4.h>
 | |
| 
 | |
| /*
 | |
|  * According to previous discussion in Ext4 Developer Workshop, we
 | |
|  * will introduce a new structure called io tree to track all extent
 | |
|  * status in order to solve some problems that we have met
 | |
|  * (e.g. Reservation space warning), and provide extent-level locking.
 | |
|  * Delay extent tree is the first step to achieve this goal.  It is
 | |
|  * original built by Yongqiang Yang.  At that time it is called delay
 | |
|  * extent tree, whose goal is only track delayed extents in memory to
 | |
|  * simplify the implementation of fiemap and bigalloc, and introduce
 | |
|  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
 | |
|  * delay extent tree at the first commit.  But for better understand
 | |
|  * what it does, it has been rename to extent status tree.
 | |
|  *
 | |
|  * Step1:
 | |
|  * Currently the first step has been done.  All delayed extents are
 | |
|  * tracked in the tree.  It maintains the delayed extent when a delayed
 | |
|  * allocation is issued, and the delayed extent is written out or
 | |
|  * invalidated.  Therefore the implementation of fiemap and bigalloc
 | |
|  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
 | |
|  *
 | |
|  * The following comment describes the implemenmtation of extent
 | |
|  * status tree and future works.
 | |
|  *
 | |
|  * Step2:
 | |
|  * In this step all extent status are tracked by extent status tree.
 | |
|  * Thus, we can first try to lookup a block mapping in this tree before
 | |
|  * finding it in extent tree.  Hence, single extent cache can be removed
 | |
|  * because extent status tree can do a better job.  Extents in status
 | |
|  * tree are loaded on-demand.  Therefore, the extent status tree may not
 | |
|  * contain all of the extents in a file.  Meanwhile we define a shrinker
 | |
|  * to reclaim memory from extent status tree because fragmented extent
 | |
|  * tree will make status tree cost too much memory.  written/unwritten/-
 | |
|  * hole extents in the tree will be reclaimed by this shrinker when we
 | |
|  * are under high memory pressure.  Delayed extents will not be
 | |
|  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Extent status tree implementation for ext4.
 | |
|  *
 | |
|  *
 | |
|  * ==========================================================================
 | |
|  * Extent status tree tracks all extent status.
 | |
|  *
 | |
|  * 1. Why we need to implement extent status tree?
 | |
|  *
 | |
|  * Without extent status tree, ext4 identifies a delayed extent by looking
 | |
|  * up page cache, this has several deficiencies - complicated, buggy,
 | |
|  * and inefficient code.
 | |
|  *
 | |
|  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
 | |
|  * block or a range of blocks are belonged to a delayed extent.
 | |
|  *
 | |
|  * Let us have a look at how they do without extent status tree.
 | |
|  *   --	FIEMAP
 | |
|  *	FIEMAP looks up page cache to identify delayed allocations from holes.
 | |
|  *
 | |
|  *   --	SEEK_HOLE/DATA
 | |
|  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
 | |
|  *
 | |
|  *   --	bigalloc
 | |
|  *	bigalloc looks up page cache to figure out if a block is
 | |
|  *	already under delayed allocation or not to determine whether
 | |
|  *	quota reserving is needed for the cluster.
 | |
|  *
 | |
|  *   --	writeout
 | |
|  *	Writeout looks up whole page cache to see if a buffer is
 | |
|  *	mapped, If there are not very many delayed buffers, then it is
 | |
|  *	time comsuming.
 | |
|  *
 | |
|  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
 | |
|  * bigalloc and writeout can figure out if a block or a range of
 | |
|  * blocks is under delayed allocation(belonged to a delayed extent) or
 | |
|  * not by searching the extent tree.
 | |
|  *
 | |
|  *
 | |
|  * ==========================================================================
 | |
|  * 2. Ext4 extent status tree impelmentation
 | |
|  *
 | |
|  *   --	extent
 | |
|  *	A extent is a range of blocks which are contiguous logically and
 | |
|  *	physically.  Unlike extent in extent tree, this extent in ext4 is
 | |
|  *	a in-memory struct, there is no corresponding on-disk data.  There
 | |
|  *	is no limit on length of extent, so an extent can contain as many
 | |
|  *	blocks as they are contiguous logically and physically.
 | |
|  *
 | |
|  *   --	extent status tree
 | |
|  *	Every inode has an extent status tree and all allocation blocks
 | |
|  *	are added to the tree with different status.  The extent in the
 | |
|  *	tree are ordered by logical block no.
 | |
|  *
 | |
|  *   --	operations on a extent status tree
 | |
|  *	There are three important operations on a delayed extent tree: find
 | |
|  *	next extent, adding a extent(a range of blocks) and removing a extent.
 | |
|  *
 | |
|  *   --	race on a extent status tree
 | |
|  *	Extent status tree is protected by inode->i_es_lock.
 | |
|  *
 | |
|  *   --	memory consumption
 | |
|  *      Fragmented extent tree will make extent status tree cost too much
 | |
|  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
 | |
|  *      the tree under a heavy memory pressure.
 | |
|  *
 | |
|  *
 | |
|  * ==========================================================================
 | |
|  * 3. Performance analysis
 | |
|  *
 | |
|  *   --	overhead
 | |
|  *	1. There is a cache extent for write access, so if writes are
 | |
|  *	not very random, adding space operaions are in O(1) time.
 | |
|  *
 | |
|  *   --	gain
 | |
|  *	2. Code is much simpler, more readable, more maintainable and
 | |
|  *	more efficient.
 | |
|  *
 | |
|  *
 | |
|  * ==========================================================================
 | |
|  * 4. TODO list
 | |
|  *
 | |
|  *   -- Refactor delayed space reservation
 | |
|  *
 | |
|  *   -- Extent-level locking
 | |
|  */
 | |
| 
 | |
| static struct kmem_cache *ext4_es_cachep;
 | |
| 
 | |
| static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
 | |
| static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 | |
| 			      ext4_lblk_t end);
 | |
| static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
 | |
| 				       int nr_to_scan);
 | |
| 
 | |
| int __init ext4_init_es(void)
 | |
| {
 | |
| 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
 | |
| 					   sizeof(struct extent_status),
 | |
| 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
 | |
| 	if (ext4_es_cachep == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void ext4_exit_es(void)
 | |
| {
 | |
| 	if (ext4_es_cachep)
 | |
| 		kmem_cache_destroy(ext4_es_cachep);
 | |
| }
 | |
| 
 | |
| void ext4_es_init_tree(struct ext4_es_tree *tree)
 | |
| {
 | |
| 	tree->root = RB_ROOT;
 | |
| 	tree->cache_es = NULL;
 | |
| }
 | |
| 
 | |
| #ifdef ES_DEBUG__
 | |
| static void ext4_es_print_tree(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_es_tree *tree;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
 | |
| 	tree = &EXT4_I(inode)->i_es_tree;
 | |
| 	node = rb_first(&tree->root);
 | |
| 	while (node) {
 | |
| 		struct extent_status *es;
 | |
| 		es = rb_entry(node, struct extent_status, rb_node);
 | |
| 		printk(KERN_DEBUG " [%u/%u) %llu %llx",
 | |
| 		       es->es_lblk, es->es_len,
 | |
| 		       ext4_es_pblock(es), ext4_es_status(es));
 | |
| 		node = rb_next(node);
 | |
| 	}
 | |
| 	printk(KERN_DEBUG "\n");
 | |
| }
 | |
| #else
 | |
| #define ext4_es_print_tree(inode)
 | |
| #endif
 | |
| 
 | |
| static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
 | |
| {
 | |
| 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
 | |
| 	return es->es_lblk + es->es_len - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search through the tree for an delayed extent with a given offset.  If
 | |
|  * it can't be found, try to find next extent.
 | |
|  */
 | |
| static struct extent_status *__es_tree_search(struct rb_root *root,
 | |
| 					      ext4_lblk_t lblk)
 | |
| {
 | |
| 	struct rb_node *node = root->rb_node;
 | |
| 	struct extent_status *es = NULL;
 | |
| 
 | |
| 	while (node) {
 | |
| 		es = rb_entry(node, struct extent_status, rb_node);
 | |
| 		if (lblk < es->es_lblk)
 | |
| 			node = node->rb_left;
 | |
| 		else if (lblk > ext4_es_end(es))
 | |
| 			node = node->rb_right;
 | |
| 		else
 | |
| 			return es;
 | |
| 	}
 | |
| 
 | |
| 	if (es && lblk < es->es_lblk)
 | |
| 		return es;
 | |
| 
 | |
| 	if (es && lblk > ext4_es_end(es)) {
 | |
| 		node = rb_next(&es->rb_node);
 | |
| 		return node ? rb_entry(node, struct extent_status, rb_node) :
 | |
| 			      NULL;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk
 | |
|  * if it exists, otherwise, the next extent after @es->lblk.
 | |
|  *
 | |
|  * @inode: the inode which owns delayed extents
 | |
|  * @lblk: the offset where we start to search
 | |
|  * @es: delayed extent that we found
 | |
|  */
 | |
| void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
 | |
| 				 struct extent_status *es)
 | |
| {
 | |
| 	struct ext4_es_tree *tree = NULL;
 | |
| 	struct extent_status *es1 = NULL;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	BUG_ON(es == NULL);
 | |
| 	trace_ext4_es_find_delayed_extent_enter(inode, lblk);
 | |
| 
 | |
| 	read_lock(&EXT4_I(inode)->i_es_lock);
 | |
| 	tree = &EXT4_I(inode)->i_es_tree;
 | |
| 
 | |
| 	/* find extent in cache firstly */
 | |
| 	es->es_lblk = es->es_len = es->es_pblk = 0;
 | |
| 	if (tree->cache_es) {
 | |
| 		es1 = tree->cache_es;
 | |
| 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 | |
| 			es_debug("%u cached by [%u/%u) %llu %llx\n",
 | |
| 				 lblk, es1->es_lblk, es1->es_len,
 | |
| 				 ext4_es_pblock(es1), ext4_es_status(es1));
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	es1 = __es_tree_search(&tree->root, lblk);
 | |
| 
 | |
| out:
 | |
| 	if (es1 && !ext4_es_is_delayed(es1)) {
 | |
| 		while ((node = rb_next(&es1->rb_node)) != NULL) {
 | |
| 			es1 = rb_entry(node, struct extent_status, rb_node);
 | |
| 			if (ext4_es_is_delayed(es1))
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (es1 && ext4_es_is_delayed(es1)) {
 | |
| 		tree->cache_es = es1;
 | |
| 		es->es_lblk = es1->es_lblk;
 | |
| 		es->es_len = es1->es_len;
 | |
| 		es->es_pblk = es1->es_pblk;
 | |
| 	}
 | |
| 
 | |
| 	read_unlock(&EXT4_I(inode)->i_es_lock);
 | |
| 
 | |
| 	ext4_es_lru_add(inode);
 | |
| 	trace_ext4_es_find_delayed_extent_exit(inode, es);
 | |
| }
 | |
| 
 | |
| static struct extent_status *
 | |
| ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
 | |
| 		     ext4_fsblk_t pblk)
 | |
| {
 | |
| 	struct extent_status *es;
 | |
| 	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
 | |
| 	if (es == NULL)
 | |
| 		return NULL;
 | |
| 	es->es_lblk = lblk;
 | |
| 	es->es_len = len;
 | |
| 	es->es_pblk = pblk;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't count delayed extent because we never try to reclaim them
 | |
| 	 */
 | |
| 	if (!ext4_es_is_delayed(es)) {
 | |
| 		EXT4_I(inode)->i_es_lru_nr++;
 | |
| 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
 | |
| 	}
 | |
| 
 | |
| 	return es;
 | |
| }
 | |
| 
 | |
| static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
 | |
| {
 | |
| 	/* Decrease the lru counter when this es is not delayed */
 | |
| 	if (!ext4_es_is_delayed(es)) {
 | |
| 		BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
 | |
| 		EXT4_I(inode)->i_es_lru_nr--;
 | |
| 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_free(ext4_es_cachep, es);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether or not two extents can be merged
 | |
|  * Condition:
 | |
|  *  - logical block number is contiguous
 | |
|  *  - physical block number is contiguous
 | |
|  *  - status is equal
 | |
|  */
 | |
| static int ext4_es_can_be_merged(struct extent_status *es1,
 | |
| 				 struct extent_status *es2)
 | |
| {
 | |
| 	if (es1->es_lblk + es1->es_len != es2->es_lblk)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ext4_es_status(es1) != ext4_es_status(es2))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
 | |
| 	    (ext4_es_pblock(es1) + es1->es_len != ext4_es_pblock(es2)))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct extent_status *
 | |
| ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
 | |
| {
 | |
| 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 | |
| 	struct extent_status *es1;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	node = rb_prev(&es->rb_node);
 | |
| 	if (!node)
 | |
| 		return es;
 | |
| 
 | |
| 	es1 = rb_entry(node, struct extent_status, rb_node);
 | |
| 	if (ext4_es_can_be_merged(es1, es)) {
 | |
| 		es1->es_len += es->es_len;
 | |
| 		rb_erase(&es->rb_node, &tree->root);
 | |
| 		ext4_es_free_extent(inode, es);
 | |
| 		es = es1;
 | |
| 	}
 | |
| 
 | |
| 	return es;
 | |
| }
 | |
| 
 | |
| static struct extent_status *
 | |
| ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
 | |
| {
 | |
| 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 | |
| 	struct extent_status *es1;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	node = rb_next(&es->rb_node);
 | |
| 	if (!node)
 | |
| 		return es;
 | |
| 
 | |
| 	es1 = rb_entry(node, struct extent_status, rb_node);
 | |
| 	if (ext4_es_can_be_merged(es, es1)) {
 | |
| 		es->es_len += es1->es_len;
 | |
| 		rb_erase(node, &tree->root);
 | |
| 		ext4_es_free_extent(inode, es1);
 | |
| 	}
 | |
| 
 | |
| 	return es;
 | |
| }
 | |
| 
 | |
| static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
 | |
| {
 | |
| 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 | |
| 	struct rb_node **p = &tree->root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct extent_status *es;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		es = rb_entry(parent, struct extent_status, rb_node);
 | |
| 
 | |
| 		if (newes->es_lblk < es->es_lblk) {
 | |
| 			if (ext4_es_can_be_merged(newes, es)) {
 | |
| 				/*
 | |
| 				 * Here we can modify es_lblk directly
 | |
| 				 * because it isn't overlapped.
 | |
| 				 */
 | |
| 				es->es_lblk = newes->es_lblk;
 | |
| 				es->es_len += newes->es_len;
 | |
| 				if (ext4_es_is_written(es) ||
 | |
| 				    ext4_es_is_unwritten(es))
 | |
| 					ext4_es_store_pblock(es,
 | |
| 							     newes->es_pblk);
 | |
| 				es = ext4_es_try_to_merge_left(inode, es);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			p = &(*p)->rb_left;
 | |
| 		} else if (newes->es_lblk > ext4_es_end(es)) {
 | |
| 			if (ext4_es_can_be_merged(es, newes)) {
 | |
| 				es->es_len += newes->es_len;
 | |
| 				es = ext4_es_try_to_merge_right(inode, es);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			p = &(*p)->rb_right;
 | |
| 		} else {
 | |
| 			BUG_ON(1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
 | |
| 				  newes->es_pblk);
 | |
| 	if (!es)
 | |
| 		return -ENOMEM;
 | |
| 	rb_link_node(&es->rb_node, parent, p);
 | |
| 	rb_insert_color(&es->rb_node, &tree->root);
 | |
| 
 | |
| out:
 | |
| 	tree->cache_es = es;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_es_insert_extent() adds a space to a extent status tree.
 | |
|  *
 | |
|  * ext4_es_insert_extent is called by ext4_da_write_begin and
 | |
|  * ext4_es_remove_extent.
 | |
|  *
 | |
|  * Return 0 on success, error code on failure.
 | |
|  */
 | |
| int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
 | |
| 			  ext4_lblk_t len, ext4_fsblk_t pblk,
 | |
| 			  unsigned long long status)
 | |
| {
 | |
| 	struct extent_status newes;
 | |
| 	ext4_lblk_t end = lblk + len - 1;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
 | |
| 		 lblk, len, pblk, status, inode->i_ino);
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	BUG_ON(end < lblk);
 | |
| 
 | |
| 	newes.es_lblk = lblk;
 | |
| 	newes.es_len = len;
 | |
| 	ext4_es_store_pblock(&newes, pblk);
 | |
| 	ext4_es_store_status(&newes, status);
 | |
| 	trace_ext4_es_insert_extent(inode, &newes);
 | |
| 
 | |
| 	write_lock(&EXT4_I(inode)->i_es_lock);
 | |
| 	err = __es_remove_extent(inode, lblk, end);
 | |
| 	if (err != 0)
 | |
| 		goto error;
 | |
| 	err = __es_insert_extent(inode, &newes);
 | |
| 
 | |
| error:
 | |
| 	write_unlock(&EXT4_I(inode)->i_es_lock);
 | |
| 
 | |
| 	ext4_es_lru_add(inode);
 | |
| 	ext4_es_print_tree(inode);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_es_lookup_extent() looks up an extent in extent status tree.
 | |
|  *
 | |
|  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
 | |
|  *
 | |
|  * Return: 1 on found, 0 on not
 | |
|  */
 | |
| int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
 | |
| 			  struct extent_status *es)
 | |
| {
 | |
| 	struct ext4_es_tree *tree;
 | |
| 	struct extent_status *es1 = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	trace_ext4_es_lookup_extent_enter(inode, lblk);
 | |
| 	es_debug("lookup extent in block %u\n", lblk);
 | |
| 
 | |
| 	tree = &EXT4_I(inode)->i_es_tree;
 | |
| 	read_lock(&EXT4_I(inode)->i_es_lock);
 | |
| 
 | |
| 	/* find extent in cache firstly */
 | |
| 	es->es_lblk = es->es_len = es->es_pblk = 0;
 | |
| 	if (tree->cache_es) {
 | |
| 		es1 = tree->cache_es;
 | |
| 		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 | |
| 			es_debug("%u cached by [%u/%u)\n",
 | |
| 				 lblk, es1->es_lblk, es1->es_len);
 | |
| 			found = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	node = tree->root.rb_node;
 | |
| 	while (node) {
 | |
| 		es1 = rb_entry(node, struct extent_status, rb_node);
 | |
| 		if (lblk < es1->es_lblk)
 | |
| 			node = node->rb_left;
 | |
| 		else if (lblk > ext4_es_end(es1))
 | |
| 			node = node->rb_right;
 | |
| 		else {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (found) {
 | |
| 		BUG_ON(!es1);
 | |
| 		es->es_lblk = es1->es_lblk;
 | |
| 		es->es_len = es1->es_len;
 | |
| 		es->es_pblk = es1->es_pblk;
 | |
| 	}
 | |
| 
 | |
| 	read_unlock(&EXT4_I(inode)->i_es_lock);
 | |
| 
 | |
| 	ext4_es_lru_add(inode);
 | |
| 	trace_ext4_es_lookup_extent_exit(inode, es, found);
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 | |
| 			      ext4_lblk_t end)
 | |
| {
 | |
| 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_status *es;
 | |
| 	struct extent_status orig_es;
 | |
| 	ext4_lblk_t len1, len2;
 | |
| 	ext4_fsblk_t block;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	es = __es_tree_search(&tree->root, lblk);
 | |
| 	if (!es)
 | |
| 		goto out;
 | |
| 	if (es->es_lblk > end)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Simply invalidate cache_es. */
 | |
| 	tree->cache_es = NULL;
 | |
| 
 | |
| 	orig_es.es_lblk = es->es_lblk;
 | |
| 	orig_es.es_len = es->es_len;
 | |
| 	orig_es.es_pblk = es->es_pblk;
 | |
| 
 | |
| 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
 | |
| 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
 | |
| 	if (len1 > 0)
 | |
| 		es->es_len = len1;
 | |
| 	if (len2 > 0) {
 | |
| 		if (len1 > 0) {
 | |
| 			struct extent_status newes;
 | |
| 
 | |
| 			newes.es_lblk = end + 1;
 | |
| 			newes.es_len = len2;
 | |
| 			if (ext4_es_is_written(&orig_es) ||
 | |
| 			    ext4_es_is_unwritten(&orig_es)) {
 | |
| 				block = ext4_es_pblock(&orig_es) +
 | |
| 					orig_es.es_len - len2;
 | |
| 				ext4_es_store_pblock(&newes, block);
 | |
| 			}
 | |
| 			ext4_es_store_status(&newes, ext4_es_status(&orig_es));
 | |
| 			err = __es_insert_extent(inode, &newes);
 | |
| 			if (err) {
 | |
| 				es->es_lblk = orig_es.es_lblk;
 | |
| 				es->es_len = orig_es.es_len;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else {
 | |
| 			es->es_lblk = end + 1;
 | |
| 			es->es_len = len2;
 | |
| 			if (ext4_es_is_written(es) ||
 | |
| 			    ext4_es_is_unwritten(es)) {
 | |
| 				block = orig_es.es_pblk + orig_es.es_len - len2;
 | |
| 				ext4_es_store_pblock(es, block);
 | |
| 			}
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (len1 > 0) {
 | |
| 		node = rb_next(&es->rb_node);
 | |
| 		if (node)
 | |
| 			es = rb_entry(node, struct extent_status, rb_node);
 | |
| 		else
 | |
| 			es = NULL;
 | |
| 	}
 | |
| 
 | |
| 	while (es && ext4_es_end(es) <= end) {
 | |
| 		node = rb_next(&es->rb_node);
 | |
| 		rb_erase(&es->rb_node, &tree->root);
 | |
| 		ext4_es_free_extent(inode, es);
 | |
| 		if (!node) {
 | |
| 			es = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 		es = rb_entry(node, struct extent_status, rb_node);
 | |
| 	}
 | |
| 
 | |
| 	if (es && es->es_lblk < end + 1) {
 | |
| 		ext4_lblk_t orig_len = es->es_len;
 | |
| 
 | |
| 		len1 = ext4_es_end(es) - end;
 | |
| 		es->es_lblk = end + 1;
 | |
| 		es->es_len = len1;
 | |
| 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
 | |
| 			block = es->es_pblk + orig_len - len1;
 | |
| 			ext4_es_store_pblock(es, block);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ext4_es_remove_extent() removes a space from a extent status tree.
 | |
|  *
 | |
|  * Return 0 on success, error code on failure.
 | |
|  */
 | |
| int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 | |
| 			  ext4_lblk_t len)
 | |
| {
 | |
| 	ext4_lblk_t end;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	trace_ext4_es_remove_extent(inode, lblk, len);
 | |
| 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
 | |
| 		 lblk, len, inode->i_ino);
 | |
| 
 | |
| 	if (!len)
 | |
| 		return err;
 | |
| 
 | |
| 	end = lblk + len - 1;
 | |
| 	BUG_ON(end < lblk);
 | |
| 
 | |
| 	write_lock(&EXT4_I(inode)->i_es_lock);
 | |
| 	err = __es_remove_extent(inode, lblk, end);
 | |
| 	write_unlock(&EXT4_I(inode)->i_es_lock);
 | |
| 	ext4_es_print_tree(inode);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi = container_of(shrink,
 | |
| 					struct ext4_sb_info, s_es_shrinker);
 | |
| 	struct ext4_inode_info *ei;
 | |
| 	struct list_head *cur, *tmp, scanned;
 | |
| 	int nr_to_scan = sc->nr_to_scan;
 | |
| 	int ret, nr_shrunk = 0;
 | |
| 
 | |
| 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
 | |
| 	trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
 | |
| 
 | |
| 	if (!nr_to_scan)
 | |
| 		return ret;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&scanned);
 | |
| 
 | |
| 	spin_lock(&sbi->s_es_lru_lock);
 | |
| 	list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
 | |
| 		list_move_tail(cur, &scanned);
 | |
| 
 | |
| 		ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
 | |
| 
 | |
| 		read_lock(&ei->i_es_lock);
 | |
| 		if (ei->i_es_lru_nr == 0) {
 | |
| 			read_unlock(&ei->i_es_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 		read_unlock(&ei->i_es_lock);
 | |
| 
 | |
| 		write_lock(&ei->i_es_lock);
 | |
| 		ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
 | |
| 		write_unlock(&ei->i_es_lock);
 | |
| 
 | |
| 		nr_shrunk += ret;
 | |
| 		nr_to_scan -= ret;
 | |
| 		if (nr_to_scan == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	list_splice_tail(&scanned, &sbi->s_es_lru);
 | |
| 	spin_unlock(&sbi->s_es_lru_lock);
 | |
| 
 | |
| 	ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
 | |
| 	trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void ext4_es_register_shrinker(struct super_block *sb)
 | |
| {
 | |
| 	struct ext4_sb_info *sbi;
 | |
| 
 | |
| 	sbi = EXT4_SB(sb);
 | |
| 	INIT_LIST_HEAD(&sbi->s_es_lru);
 | |
| 	spin_lock_init(&sbi->s_es_lru_lock);
 | |
| 	sbi->s_es_shrinker.shrink = ext4_es_shrink;
 | |
| 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
 | |
| 	register_shrinker(&sbi->s_es_shrinker);
 | |
| }
 | |
| 
 | |
| void ext4_es_unregister_shrinker(struct super_block *sb)
 | |
| {
 | |
| 	unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker);
 | |
| }
 | |
| 
 | |
| void ext4_es_lru_add(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 
 | |
| 	spin_lock(&sbi->s_es_lru_lock);
 | |
| 	if (list_empty(&ei->i_es_lru))
 | |
| 		list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
 | |
| 	else
 | |
| 		list_move_tail(&ei->i_es_lru, &sbi->s_es_lru);
 | |
| 	spin_unlock(&sbi->s_es_lru_lock);
 | |
| }
 | |
| 
 | |
| void ext4_es_lru_del(struct inode *inode)
 | |
| {
 | |
| 	struct ext4_inode_info *ei = EXT4_I(inode);
 | |
| 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 | |
| 
 | |
| 	spin_lock(&sbi->s_es_lru_lock);
 | |
| 	if (!list_empty(&ei->i_es_lru))
 | |
| 		list_del_init(&ei->i_es_lru);
 | |
| 	spin_unlock(&sbi->s_es_lru_lock);
 | |
| }
 | |
| 
 | |
| static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
 | |
| 				       int nr_to_scan)
 | |
| {
 | |
| 	struct inode *inode = &ei->vfs_inode;
 | |
| 	struct ext4_es_tree *tree = &ei->i_es_tree;
 | |
| 	struct rb_node *node;
 | |
| 	struct extent_status *es;
 | |
| 	int nr_shrunk = 0;
 | |
| 
 | |
| 	if (ei->i_es_lru_nr == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	node = rb_first(&tree->root);
 | |
| 	while (node != NULL) {
 | |
| 		es = rb_entry(node, struct extent_status, rb_node);
 | |
| 		node = rb_next(&es->rb_node);
 | |
| 		/*
 | |
| 		 * We can't reclaim delayed extent from status tree because
 | |
| 		 * fiemap, bigallic, and seek_data/hole need to use it.
 | |
| 		 */
 | |
| 		if (!ext4_es_is_delayed(es)) {
 | |
| 			rb_erase(&es->rb_node, &tree->root);
 | |
| 			ext4_es_free_extent(inode, es);
 | |
| 			nr_shrunk++;
 | |
| 			if (--nr_to_scan == 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	tree->cache_es = NULL;
 | |
| 	return nr_shrunk;
 | |
| }
 |